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ON FINITE SIMPLE AND NONSOLVABLE GROUPS
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MATTIA MECCHIA AND BRUNO ZIMMERMANN

We show that the only finite nonabelian simple groups to admit a locally lin-
ear, homologically trivial action on a closed simply connected 4-manifold M
(or on a 4-manifold with trivial first homology) are the alternating groups
A5, A6 and the linear fractional group PSL(2, 7). (We note that for homo-
logically nontrivial actions all finite groups occur.) The situation depends
strongly on the second Betti number b2(M) of M and was known before
if b2(M) is different from two, so the main new result concerns the case
b2(M) = 2. We prove that the only simple group that occurs in this case is
A5, and then deduce a short list of finite nonsolvable groups which contains
all candidates for actions of such groups.

1. Introduction

We are interested in actions of finite groups on closed orientable 4-manifolds. All
actions will be locally linear, faithful and orientation-preserving. An action is
locally linear if the isotropy group of each point leaves invariant a neighborhood
of the point which is equivariantly homeomorphic to an invariant neighborhood
of the origin in a linear action on some Euclidean space Rn (for example smooth
actions).

We showed in [Mecchia and Zimmermann 2006a] that the only finite nonabelian
simple groups acting on a homology 4-sphere are the alternating groups A5 and
A6 and from this deduced a short list of finite nonsolvable groups containing all
candidates for an action on a homology 4-sphere (in particular on the 4-sphere; the
corresponding situation in dimension three is considered in [Mecchia and Zimmer-
mann 2004; 2006b; Zimmermann 2004]). On the other hand, since each finitely
presented group is the fundamental group of a closed 4-manifold, each finite group
G admits a free action on a simply connected closed 4-manifold (the universal
covering of a closed 4-manifold with fundamental group G); as a consequence
of the Lefschetz fixed point theorem, such a free action has to act nontrivially on
homology. For homologically trivial actions on simply connected 4-manifolds,
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and more generally on 4-manifolds M with trivial first homology H1(M), there
are again strong restrictions. Building on previous work of various authors and
concentrating on the basic case of nonabelian simple groups, we prove:

Theorem. Let G be a finite nonabelian simple group which admits a homologi-
cally trivial action on a closed 4-manifold M with trivial first homology. Then G
is isomorphic to A5, A6 or PSL(2, 7).

For various cases the Theorem was known previously (and also in greater gen-
erality). In fact, the situation depends strongly on the second Betti number b2(M)
of M , and we shall discuss the different cases; M will always denote a closed
4-manifold with trivial first homology H1(M).

I. The case b2(M)≥ 3. In this case the possible finite groups that admit an action
are very restricted; in particular, no nonabelian simple groups occur.

Theorem 1 [McCooey 2002]. Let G be a finite group with a homologically trivial
action on a closed 4-manifold M with trivial first homology.

(i) If b2(M)≥ 3 then G is abelian of rank at most two (cyclic or a product of two
cyclic groups), and G has a global fixed point.

(ii) If b2(M)≥ 2 and G has a global fixed point, G is abelian of rank at most two.

II. The case b2(M)=1. In this case a complete classification is also known. M is
a homology complex projective plane CP2, so a reference model here is the group
of projectivities PGL(3,C) of CP2. For homologically trivial actions of arbitrary
finite groups we have the following result (see also [Wilczyński 1990]):

Theorem 2 [Wilczyński 1987; Hambleton and Lee 1988]. Let G be a finite group
admitting a homologically trivial action on a closed 4-manifold M with b2(M)= 1
and trivial first homology (for example the complex projective plane CP2). Then
G is isomorphic to a subgroup of PGL(3,C) and in particular, if G is nonabelian
simple, to A5, A6 or PSL(2, 7).

These are exactly the finite nonabelian simple subgroups of PGL(3,C). A main
ingredient of the proof of Theorem 2 is the classification of the finite simple groups
of 2-rank at most two — that is, without subgroups isomorphic to (Z2)

3.

In the two remaining cases, a complete classification seemingly remains distant,
so we concentrate on the basic case of finite simple groups.

III. The case b2(M)= 0 of a homology 4-sphere.

Theorem 3 [Mecchia and Zimmermann 2006a]. A finite nonabelian simple group
acting on a homology 4-sphere, and in particular on the 4-sphere S4, is isomorphic
to an alternating group A5 or A6.
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This result is used in [Mecchia and Zimmermann 2006a] to obtain a short list of
finite nonsolvable groups which contains all candidates for actions on a homology
4-sphere of such groups. A reference model here is the orthogonal group SO(5)
acting on S4. We note that now subgroups (Z2)

4 may occur, so the 2-rank of a finite
simple group acting on a homology 4-sphere might, in principle, be equal to four;
in fact, the main ingredient of the proof is the Gorenstein–Harada classification of
the finite simple groups of sectional 2-rank at most four (that is, each 2-subgroup
is generated by at most four elements).

IV. The case b2(M) = 2. This last case is dealt with in the next two theorems,
which are the main results of this paper:

Theorem 4. Let G be a finite nonabelian simple group which admits an action
on a closed 4-manifold M with b2(M) = 2 and trivial first homology (for exam-
ple S2

× S2). Then G is isomorphic to the alternating group A5, and M has the
intersection form

( 0
1

1
0

)
of S2

× S2.

In particular, if M is simply connected it is homeomorphic to S2
×S2, by [Freed-

man 1982], so a reference model here is S2
× S2 and the group SO(3)× SO(3)

consisting of isometries of S2
×S2 that act trivially on homology (whose only finite

simple subgroup is A5). Again subgroups (Z2)
4 might in principle occur and, as for

Theorem 3, a main tool of the proof will be the Gorenstein–Harada classification of
the finite simple groups of sectional 2-rank at most 4, together with Theorem 1(ii).

On the basis of Theorem 4 we obtain a short list of finite nonsolvable groups
which contains all candidates for actions on this class of manifolds.

Theorem 5. Let G be a finite nonsolvable group that admits a homologically triv-
ial action on a closed 4-manifold M with b2(M) = 2 and trivial first homology.
Then G contains, of index at most two, a normal subgroup isomorphic to one of
the following groups, where C is a cyclic group:

A5×C, A∗5 ×Z2 C, A5×A5, A5×A4.

This is close to the list of the finite nonsolvable subgroups of SO(3)× SO(3),
except that we are not able to exclude the binary dodecahedral group A∗5 at the
moment (of order 120; we suppose that it does not act). Some information about
the possible 2-extensions can be deduced from the proof of Theorem 5.

2. Proof of Theorem 4

In the following, M will always denote a closed 4-manifold with b2(M) = 2 and
trivial first homology H1(M), and G will be a finite nonabelian simple group acting
faithfully and locally linearly on M . Since the finite subgroups of GL(2,Z) are
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cyclic or dihedral and G is nonabelian simple, the action of G is homologically
trivial. We start with some preliminary results.

Lemma 1. Let g be an orientation-preserving periodic map of M which is not the
identity and acts trivially on the homology of M. Then the fixed point set of g is of
one of the following types:

(i) four isolated points;

(ii) a 2-sphere S2 and two isolated points;

(iii) two 2-spheres S2.

Proof. By a version of the Lefschetz fixed point theorem — given for example in
[tom Dieck 1987] — the Euler characteristic of the fixed point set of g equals the
alternating sum of the traces of the maps induced by g on the rational homology
H∗(M;Q) of M ; since g acts trivially on homology and H1(M) = 0 this is equal
to four. By [Edmonds 1989, Proposition 2.4], the fixed point set of g has no 1-
dimensional components and consists of isolated points and 2-spheres; this leaves
the three possibilities of the Lemma. �

Lemma 2. Let S be a finite 2-group which admits a faithful, homologically trivial
action on M. Then S is generated by at most four elements. In particular, G
has sectional 2-rank at most four (each 2-subgroup is generated by at most four
elements).

Proof. Let g be a central involution in S. The possible fixed point sets of g are listed
in Lemma 1. If the fixed point set Fix(g) consists of a 2-sphere S2 and two isolated
points then the 2-sphere S2 is invariant under S. By a result from [Edmonds 1989]
(see also [McCooey 2002, Theorem 2]), the action on S2 is orientation-preserving.
The subgroup of S acting trivially on S2 is cyclic (since S is homologically trivial
and hence orientation-preserving on M), its factor group acts faithfully on S2 and,
being a 2-group, is a subgroup of a dihedral group. Clearly S is generated by at
most three elements.

Suppose that Fix(g) consists of two 2-spheres. Then a subgroup of index at
most two of S leaves invariant both 2-spheres and, considering the first case, S is
generated by at most four elements.

Finally, suppose that Fix(g) consists of four isolated points, invariant under S.
Let S0 be the subgroup of S fixing one of these four points, of index at most four.
By Theorem 1(ii), S0 is abelian of rank at most two and hence S is generated by
at most four elements. �

We apply the Gorenstein–Harada classification of the finite simple groups of sec-
tional 2-rank at most four [Gorenstein and Harada 1974; Gorenstein 1983, page 6;
Suzuki 1986, Chapter 6, Theorem 8.12]. By Lemma 2, G has sectional 2-rank at
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most four and hence is one of the groups in the Gorenstein–Harada list; the groups
are the following, where q denotes an odd prime power:

PSL(m, q), PSU(m, q) (m ≤ 5),

G2(q), 3D4(q), PSp(4, q), 2G2(32m+1) (m ≥ 1),

PSL(2, 8), PSL(2, 16), PSL(3, 4), PSU(3, 4), Sz(8),

Am (7≤ m ≤ 11), Mi (i ≤ 23), Ji (i ≤ 3), McL, Ly.

In the following, we will exclude all of these groups except A5. We consider first
the linear fractional groups PSL(2, p), for a prime p≥ 5. The group PSL(2, p) has
a metacyclic subgroup (semidirect product) Zp nZ(p−1)/2 (represented by all upper
triangular matrices), with an effective action of Z(p−1)/2 (the diagonal matrices) on
the normal subgroup Zp (the matrices having both entries one on the diagonal).

Lemma 3. For an odd prime p and an integer q ≥ 2, let U = Zp n Zq be a
metacyclic group, with an effective action of Zq on the normal subgroup Zp.

(i) If U admits a faithful, orientation-preserving action on a homology 3-sphere
then q = 2.

(ii) If U admits a faithful, orientation-preserving action on a closed 4-manifold M
as in Theorem 4 then q = 2 or q = 4.

Proof. (i) See [Zimmermann 2002, Proof of Proposition 1].

(ii) We denote by g a generator of the normal subgroup Zp of U . If we are in
case ii of Lemma 1 then Zp fixes pointwise a 2-sphere S2 which is invariant under
Zq and U . If q > 2 then Zq and hence U have a global fixed point on S2; now
a U -invariant regular neighborhood in M of this fixed point is a 3-sphere with a
faithful action of U , contradicting part (i).

If the fixed point set of g consists of two 2-spheres then a subgroup of index
two of U fixes pointwise both 2-spheres. As before, this is possible only for q = 2
or q = 4.

Finally, suppose that the fixed point set of Zp consists of four isolated points.
Then a subgroup of index at most four of U has a fixed point and acts faithfully on
a 3-sphere. Again by part (i), this is possible only for q = 2, 4 or 8. If q = 8 then a
dihedral subgroup Zp n Z2 of U has a fixed point in M . The situation for actions
of dihedral groups has been analyzed in [McCooey 2002]; in particular it follows
from [McCooey 2002, Proposition 13] that in the case b2(M)= 2 a dihedral group
has to act without fixed points on M . This contradiction excludes q = 8. �

Lemma 4. (i) If G = PSL(2, p), for a prime p ≥ 5, then p= 5 and G is isomor-
phic to A5 ∼= PSL(2, 5).
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(ii) If G = PSL(2, q), for a prime power q = pn with n > 1, then q = 4 so again
G is isomorphic to A5 ∼= PSL(2, 4).

(iii) Let G̃ be a finite central extension, with nontrivial center, of a nonabelian
simple group G (for example, the central extension SL(2, q) of PSL(2, q)). If
G̃ acts faithfully on M then G is isomorphic to the dodecahedral group A5.

Proof. (i) Since PSL(2, p) has a metacyclic subgroup U = Zp n Z(p−1)/2, with
an effective action of Z(p−1)/2 on the normal subgroup Zp, the statement follows
from Lemma 3.

(ii) The group G = PSL(2, pn) has a subgroup U = (Zp)
n n Z(q−1)/2 if p is odd,

respectively U = (Zp)
n n Zq−1 if p = 2, with an effective action of Z(q−1)/2,

respectively Zq−1, on (Zp)
n . Since PSL(2, p) is a subgroup of PSL(2, pn), part

(i) implies that p = 2, 3 or 5.
Suppose that p = 3 or 5. We consider the subgroup (Zp)

n of U and a nontrivial
element g in (Zp)

n . If g fixes pointwise a 2-sphere (cases ii and iii of Lemma 1)
then this 2-sphere is invariant under (Zp)

n , hence there is a faithful action of
(Zp)

n−1 on S2 which is possible only if n ≤ 2. If g fixes four isolated points
then (Zp)

n has a global fixed point, and by Theorem 1(ii) again we have n ≤ 2.
Suppose that G=PSL(2, 25), with a subgroup U = (Z5)

2nZ12. If the element g
in (Z5)

2 fixes pointwise one or two 2-spheres then (Z5)
2 has two or four fixed

points and some nonabelian subgroup of U has a global fixed point contradicting
Theorem 1. If g fixes four isolated points then also (Z5)

2 fixes these points, and
again a nonabelian subgroup of U has a global fixed point. So PSL(2, 25) does
not occur.

Next we consider PSL(2, 9), with a subgroup (Z3)
2 n Z4; let g be a nontrivial

element in (Z3)
2. If g fixes four isolated points then all nontrivial elements in (Z3)

2

have exactly four fixed points (since all subgroups Z3 are conjugate). The whole
group (Z3)

2 fixes at least one of the four fixed points of g and hence admits a free
action on S3; but (Z3)

2 does not admit a free action on S3 (see [Bredon 1972])
so this case does not occur. A similar argument applies if g fixes two isolated
points and a 2-sphere. Finally, if g fixes pointwise two 2-spheres then each of
these 2-sphere is invariant under (Z3)

2 and (Z3)
2 has two global fixed points on it.

By [McCooey 2002, Proposition 14], the singular set of (Z3)
2 consists of exactly

four 2-spheres intersecting pairwise at their poles; this contradicts the fact that all
subgroups Z3 of (Z3)

2 are conjugate and hence fix pointwise two 2-spheres. So
PSL(2, 9) does not occur.

This leaves us with the groups PSL(2, 2n), for n ≥ 3, with a subgroup U =
(Z2)

n n Zq−1 such that all involutions in (Z2)
n are conjugate. Suppose that n ≥ 4.

Let g be an involution in (Z2)
n . If g has four isolated fixed points or fixes two

points and a 2-sphere, then a subgroup (Z2)
2 of (Z2)

n has a global fixed point and
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acts freely on S3 which is a contradiction. Suppose that the fixed point set of g
consists of two 2-spheres; then another involution in (Z2)

n leaves each of these
2-spheres invariant and acts orientation-preservingly on it, by [McCooey 2002,
Theorem 2], any involution has to act orientation-preservingly on such a 2-sphere
since the action is homologically trivial. Now again a subgroup (Z2)

2 has a global
fixed point, and a contradiction to [McCooey 2002, Proposition 14] is obtained as
in the previous case of the subgroup (Z3)

2 of PSL(2, 9).
Finally, we exclude the group PSL(2, 8) which has a subgroup (Z2)

3 n Z7 such
that all involutions are conjugate. Let g be an involution in (Z2)

3. If g fixes
two 2-spheres then a subgroup (Z2)

2 has four fixed points. By [McCooey 2002,
Proposition 14] the singular set of (Z2)

2 is a union of four 2-spheres which is a
contradiction since each involution in (Z2)

2 fixes pointwise two 2-spheres. If g
fixes a 2-sphere and two isolated points then again a subgroup (Z2)

2 has four fixed
points which is a contradiction to [McCooey 2002, Proposition 14] since each
involution fixes exactly one 2-sphere.

Suppose g has four isolated fixed points. None of them is fixed by a subgroup
(Z2)

2, since otherwise (Z2)
2 would act freely on a 3-sphere S3. So each orbit

under (Z2)
3 of a fixed point of an involution has exactly four elements, and there

are exactly seven such orbits. This is exactly the situation excluded for a group
(Z2)

3 in the proof of [McCooey 2007, Lemma 4.5], so PSL(2, 8) does not act.

(iii) Let g be a nontrivial central element of G̃. If g fixes pointwise one or two
2-spheres then such a 2-sphere is invariant under the factor group G̃/〈g〉 or under
a subgroup of index two, and hence G ∼= A5. If g has four isolated fixed points
then a subgroup of index at most four of G̃ fixes each of these four points; by
Theorem 1, such a group has to be abelian so this case does not occur. �

Continuing with the proof of Theorem 4, we consider next the groups G =
PSL(m, q) in the Gorenstein–Harada list, where q = pn is odd or m = 3 and
q = 4. We note that PSL(m, p) is a subgroup of PSL(m, q); also, for r < m,
the linear group SL(r, q) is a subgroup of the linear fractional group PSL(m, q);
see [Suzuki 1986, Chapter 6.5]. Applying Lemmas 3 and 4, it suffices then to ex-
clude the groups PSL(3, 4), PSL(3, 3) and PSL(3, 5); but PSL(3, 4) has a subgroup
PSL(3, 2) ∼= PSL(2, 7), the group PSL(3, 3) has a metacyclic subgroup Z13 n Z3

and PSL(3, 5) a metacyclic subgroup Z31 nZ3 which are all excluded by Lemma 3
or Lemma 4 (see [Conway et al. 1985] for information about the subgroup structure
of the finite simple groups). Thus among the linear fractional groups PSL(m, q)
there remains only the group PSL(2, 5)∼= A5.

The proof for the unitary groups PSU(m, q) and the symplectic groups PSp(4, q)
is similar, noting that PSU(2, q) ∼= PSL(2, q) ∼= PSp(2, q). The unitary groups
PSU(3, 3) and PSU(3, 5) are excluded since both have a subgroup PSL(2, 7), and
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PSU(3, 4) because it has a subgroup Z13nZ3. Noting that SU(r, q) is a subgroup of
PSU(m, q), for r <m, by Lemma 4(iii) this excludes all unitary groups PSU(m, q)
except PSU(2, 5)∼= PSL(2, 5).

Concerning the symplectic groups PSp(4, q), q odd, we note that PSp(4, 3) ∼=
PSU(4, 2) has a subgroup (Z3)

3 and PSp(4, 5) a subgroup (Z5)
3. Choosing an

element g in this subgroup (Z3)
3, respectively (Z5)

3, and applying Lemma 1, it is
easy to see that either such a subgroup must have a global fixed point contradicting
Theorem 1(ii), or there is a subgroup (Z3)

2, respectively (Z5)
2, acting faithfully on

a 2-sphere, which again gives a contradiction; hence these groups do not act on M .
Since Sp(2, q) is a subgroup of PSp(4, q) this excludes also the symplectic groups
PSp(4, q).

Consider the remaining groups in the Gorenstein–Harada list: 3D4(q) has as a
subgroup a central extension of G2(q), and G2(q) contains as a subgroup a central
extension of PSL(3, q) [Stensholt 1978, Table 0A8; Gorenstein and Lyons 1983,
Table 4-1]; by Lemma 4(iii), this excludes 3D4(q) and G2(q). The Ree groups
2G2(32m+1) have one conjugacy class of involutions and the centralizer of an invo-
lution is Z2×PSL(2, 32m+1) [Gorenstein 1982, page 164; Suzuki 1986, page 514]
so for m ≥ 1 they do not act (the group 2G2(3) is not simple).

The Sylow 2-subgroup S2 of the Suzuki group Sz(8) has order 64 and a normal
subgroup (Z2)

3, and all involutions are conjugate. Let g be a central involution in
S2. If g has four isolated fixed points, or fixes two isolated points and a 2-sphere,
then a subgroup of order at least 16 fixes one of these isolated fixed points and hence
is abelian by Theorem 1. Since Sz(8) has no elements of order eight, a subgroup
(Z2)

2 fixes a point and hence admits a free action on S3 which is a contradiction.
If the fixed point set of g consists of two 2-spheres then the argument used above
in the case of PSL(2, 8) again gives a contradiction, so Sz(8) does not occur.

Finally, A7 has a subgroup PSL(2, 7), the Mathieu groups Mi (i = 11, 12, 22
and 23) have a subgroup PSL(2, 11), the Janko groups J1, J2 and J3 have subgroups
PSL(2, 7), PSL(2, 7) ⊂ PSU(3, 3) and PSL(2, 17), respectively, the McLaughlin
group McL subgroups PSL(2, 11) ⊂ M11 and the Lyons group Ly a metacyclic
subgroup Z37 n Z18 (see [Conway et al. 1985]), so all these groups are excluded
by Lemma 3 or Lemma 4.

Hence we have excluded all finite simple groups from the Gorenstein–Harada
list except the alternating group A5, and for the proof of Theorem 4 it remains to
show that the 4-manifold M has intersection form of S2

× S2.
Now G = A5 has a subgroup A4 ∼= (Z2×Z2)n Z3, and we consider the normal

subgroup (Z2)
2 of A4. By [McCooey 2002, Proposition 14] either M has the right

intersection form or (Z2)
2 has a global fixed point, so we can assume the latter.

Let g be an involution in (Z2)
2. According to Lemma 1 we consider three cases.
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If g has four isolated fixed points then (Z2)
2 has two or four global fixed points.

But then also A4 has a global fixed point which contradicts Theorem 1.
If g fixes pointwise two 2-spheres then each of these 2-spheres is invariant under

the action of (Z2)
2; moreover by [McCooey 2002, Theorem 2], since (Z2)

2 acts
homologically trivial it acts orientation-preservingly on each of these 2-spheres.
Then (Z2)

2 has again exactly four global fixed points and we get a contradiction
as in the first case.

Finally, if the fixed point set of g consists of a 2-sphere and two isolated points
then (Z2)

2 has two or four global fixed points, so A4 has a global fixed point
contradicting Theorem 1.

3. Proof of Theorem 5

Recall that a finite group Q is quasisimple if it is perfect (the abelianized group
is trivial) and the factor group of Q by its center is a nonabelian simple group. A
finite group E is semisimple if it is perfect and the factor group of E by its center
is a direct product of nonabelian simple groups (see [Suzuki 1986, Chapter 6.6;
Gorenstein et al. 1994, Definition 3.1]). A semisimple group is a central product
of quasisimple groups that are uniquely determined. Any finite group G contains
a unique maximal semisimple normal group E(G) (the subgroup E(G) may be
trivial); the subgroup E(G) is characteristic in G and the quasisimple factors of
E(G) are called the components of G. To prove Theorem 5 we consider first the
case of trivial maximal normal semisimple subgroup and show that in this case the
groups are solvable.

Lemma 5. Let G be a finite group with trivial maximal normal semisimple sub-
group E(G). If G admits a homologically trivial action on a closed 4-manifold M
with b2(M)= 2 and trivial first homology, then G is solvable.

Proof. We consider first the case of G containing a normal nontrivial cyclic sub-
group H and we prove that in this case if E(G) is trivial then G is solvable. We
can suppose that H has prime order p so each nontrivial element of H has the
same fixed point set; since G normalizes H then G fixes setwise the fixed point
set of H .

If the fixed point set of H consists of two isolated points and a 2-sphere there
exists a subgroup G0 of index at most two in G such that G0 fixes both points; the
subgroup G0 is abelian by Theorem 1 and consequently G is solvable.

If the fixed point set of H consists of four isolated points there exists a normal
subgroup G0 of G that fixes each point; G0 is abelian by Theorem 1. The quotient
group G/G0 is isomorphic to a subgroup of S4, the symmetry group over four
elements that is a solvable group and we can conclude that G is solvable.
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Finally suppose that the fixed point set of H consists of two 2-spheres; there
exists a subgroup G0 of index at most two in G such that G0 leaves invariant
both 2-spheres. We consider in G0 the normal subgroup K of elements fixing
S2
+

pointwise, one of the two 2-spheres; the subgroup K contains H and since K
acts locally by rotations around S2

+
then K is cyclic. The factor group G0/K acts

faithfully on S2
+

. If G0/K is solvable, we get the thesis; otherwise we can suppose
that G0/K is isomorphic to A5 because it is the only nonsolvable finite group acting
orientation-preservingly on the 2-sphere (the action is orientation-preserving by a
result of Edmonds [1989]; see also [McCooey 2002, Theorem 2]). The action
of A5 by conjugation on K is trivial because K is cyclic and its automorphism
group is abelian; then G0 is a central extension of A5. The derived group G ′0 is a
quasisimple normal subgroup of G0 (see [Suzuki 1982, Theorem 9.18, page 257]);
this implies that E(G0), and consequently E(G), are not trivial in contradiction
with our hypothesis.

The proof of this particular case is now complete and in the following we can
use this fact.

Fact. If a subgroup N of G contains a nontrivial cyclic normal subgroup then
either N is solvable or E(N ) is not trivial.

We consider now the general case. We denote by F(G) the Fitting subgroup
of G (the maximal nilpotent normal subgroup of G). Since E(G) is trivial, the
Fitting subgroup F(G) coincides with the generalized Fitting subgroup F∗(G)
which is the product of the Fitting subgroup with the maximal semisimple normal
subgroup. The generalized Fitting subgroup F∗(G) contains its centralizer in G
and is nontrivial [Suzuki 1986, Theorem 6.11, page 452; Gorenstein et al. 1994,
Theorem 3.6].

Since F(G) is nilpotent it is the direct product of its Sylow p-subgroups. In
particular any Sylow subgroup of F(G) is normal in G; since F(G) is not trivial
we have a nontrivial p-subgroup P which is normal in G. We consider the maximal
elementary abelian p-subgroup Z contained in the center of P; this subgroup is
not trivial and it is normal in G.

Suppose first that we can choose p odd (the order of F(G) is not a power of
two). If Z contains an element with fixed point set consisting of four points or of
two points and one 2-sphere, the group Z has global fixed point set and has rank at
most two by Theorem 1. If Z contains an element with fixed point set consisting of
two 2-spheres each element of Z leaves invariant both 2-spheres; a quotient group
of Z by a cyclic group acts faithfully on the 2-spheres. This quotient group has to
be cyclic and it acts on the 2-spheres by rotations; then the group Z has also in this
case global fixed point set and it has rank at most two. If Z is cyclic, by the first
part of the proof, G is solvable. If Z has rank two, since it has global fixed point
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set it is described by [McCooey 2002, Proposition 14]. The fixed point set of Z
consists of four points. The whole group G leaves invariant the fixed point set of
Z and there exists a normal subgroup G0 that fixes each point. The quotient group
G/G0 is isomorphic to a subgroup of S4 that is solvable. By Theorem 1, G0 is
abelian and consequently G is solvable.

Suppose now that the order of F(G) is a power of two; in this case F(G)= P
is a 2-group and Z is an elementary abelian 2-group of rank at most four (by
Lemma 2). If Z has rank one by the first part of the proof G is solvable. If Z has
rank two we consider CG(Z) the centralizer of Z in G that is normal because Z
is normal; CG(Z) contains a nontrivial normal cyclic subgroup and it is solvable.
The factor G/CG(Z) is isomorphic to a subgroup of GL(2,Z2), the automorphism
group of an elementary abelian 2-group of rank two; since GL(2,Z2) is a solvable
group we can conclude that G is solvable. Suppose that Z has rank three. In
this case the factor group G/CG(Z) is isomorphic to a subgroup of GL(3,Z2), the
automorphism group of an elementary abelian 2-group of rank three; GL(3,Z2) has
order 23

·3·7 and any element of order seven permutes cyclically all the involutions
of (Z2)

3. The group G/CG(Z) can not contain any element of order 7 otherwise
all involutions in Z are conjugated and this can be excluded by the same argument
used to exclude PSL(2, 8) in the proof of Lemma 4; so the group G/CG(Z) has
order 2α3β and it is solvable. This fact implies that G is solvable.

It remains the case Z of rank four; the factor group G/CG(Z) is isomorphic to a
subgroup of GL(4,Z2), the automorphism group of an elementary abelian 2-group
of rank four.

We analyze the fixed point set of the elements in Z . The group Z cannot contain
any element with fixed point set consisting of two points and one 2-sphere. In this
case a subgroup of index at most two of Z has global fixed point set and this
impossible by Theorem 1.

Suppose first that h is an involution such that its fixed point set Fix(h) consists
of two 2-spheres. If an element of Z leaves invariant both components of Fix(h),
it acts on both 2-spheres orientation-preservingly, by [McCooey 2002, Theorem
2]. Since there exists only one involution acting trivially on Fix(h) and the max-
imal elementary 2-group acting faithfully on a 2-sphere has rank two, the group
Z contains with index two a subgroup Z0 that leaves invariant both 2-spheres in
Fix(h). Any involution of Z0 different from h acts nontrivially and orientation-
preservingly (again by [McCooey 2002, Theorem 2]) on the 2-spheres, so on each
2-sphere it fixes pointwise two points. This implies that the subgroup of rank two
generated by h and by the other involution has global fixed point set; this 2-rank
subgroup is described by [McCooey 2002, Proposition 14] and it contains two
involutions different from h, one with 0-dimensional fixed point set and one with
2-dimensional fixed point set. We obtain that if the fixed point set of h consists of
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two 2-spheres there exist exactly three involutions with 0-dimensional fixed point
set and with fixed point set contained in Fix(h).

We consider now an involution h′ such that its fixed point set Fix(h′) consists of
four isolated points. We consider the subgroup Z1 of Z that fixes pointwise Fix(h′);
since a maximal elementary 2-group in the symmetric group S4 has rank two, the
subgroup Z1 has index at most four but by Theorem 1 the subgroup Z1 has rank
at most two; we can conclude that the rank of Z1 is exactly two. In this case Z1 is
completely described by [McCooey 2002, Proposition 14] and there exist exactly
two involutions in Z with 2-dimensional fixed point set that contain Fix(h′).

If n is the number of involutions in Z with 0-dimensional fixed point set and
m is the number of involutions with 2-dimensional fixed point set we have that
n+m = 15 and by the previous computation 3m = 2n; we obtain that n = 9 and
m = 6.

Recall that the factor group G/CG(Z) is isomorphic to a subgroup of GL(4,Z2);
the group GL(4,Z2) has order 26

·32
·5 ·7; an automorphism of order five does not

centralize any involution of (Z2)
4 (we have three orbits with five elements) and an

automorphism of order seven centralizes exactly one involution (two orbits with
seven elements and one orbit with only one element). Since we have nine elements
with 0-dimensional fixed point set and six elements with 2-dimensional fixed point
set, the group G/CG(Z) can not contain elements of order five and seven and it has
order 2α3β ; we have that G/CG(Z) is solvable and consequently G is solvable. �

The following lemma considers the case of semisimple groups.

Lemma 6. Let G be a finite semisimple group that admits a homologically trivial
action on a closed 4-manifold M with b2(M) = 2 and trivial first homology; then
G is isomorphic to one of the groups A5, A∗5 or A5×A5.

Proof. By Lemma 4(iii), if G is quasisimple, then G is isomorphic either to A5 or
to A∗5

∼= SL(2, 5), that is, the unique perfect central extension of A5.
We consider now the case of G with two quasisimple components; since in our

list of quasisimple groups A∗5 is the unique group with nontrivial center, then either
G ∼= A∗5 ×Z2 A∗5 or G is the direct product of two quasisimple subgroups.

We prove that no involution can be contained in the center of G and the only
possibility with two components remains A5×A5. Suppose that h is an involution
contained in the center of G.

If the fixed point set Fix(h) of h consists of two points and one 2-sphere then
G has a subgroup of index at most two that fixes both points. By Theorem 1 this
group should be abelian of rank two, which is impossible.

If the fixed point set of h consists of four isolated points there exists a normal
subgroup G0 of G that fixes each point of Fix(h); by Theorem 1 G0 is abelian
of rank two. The quotient G/G0 acts faithfully on the four points of Fix(h) and
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it is isomorphic to a subgroup of S4. The group G contains a normal subgroup
isomorphic either to A∗5 or to A5; no quotient of these groups by an abelian normal
subgroup is isomorphic to a subgroup of S4.

Finally we consider when Fix(h) consists of two 2-spheres; in this case G leaves
invariant both 2-spheres because it does not contain any subgroup of index two (G
is perfect). The subgroup acting trivially on the 2-spheres is cyclic and normal
in G; the quotient of G by it acts faithfully on the 2-spheres and it is again the
product of two quasisimple groups. This can not occur.

By the previous part if G has three or more components the quasisimple factors
are all isomorphic to A5 but these groups cannot occur because the sectional 2-rank
of G is smaller then four. �

Proof of Theorem 5. If the maximal semisimple normal subgroup E(G) of G is
trivial then, by Lemma 5, G is solvable and we are done. So we can assume that
E(G) is nontrivial. By Lemma 6, E(G) is isomorphic to A5, A∗5 or A5×A5. We
denote by C the centralizer of E(G) in G; since E(G) is normal in G also its
centralizer is normal. We will first show that the fixed point set of any nontrivial
element in the centralizer C consists of two 2-spheres. Let h be a nontrivial element
in C ; we consider the three possibilities of Lemma 1.

If the fixed point set of h consists of two points and one 2-sphere then E(G)
has a subgroup of index at most two that fixes both points; by Theorem 1(ii), this
subgroup should be abelian (of rank at most two) which is not the case, so this case
does not occur.

If the fixed point set of h consists of four isolated points then there exists a
normal subgroup G0 of E(G) which fixes each of these four points; again by
Theorem 1(ii), the group G0 is abelian of rank at most two. The quotient E(G)/G0

acts faithfully on these four points and hence is isomorphic to a subgroup of the
symmetric group S4. The group E(G) contains a normal subgroup isomorphic
either to A∗5 or to A5. Since no quotient of these groups by an abelian normal
subgroup is isomorphic to a subgroup of S4, also this case does not occur.

Hence, by Lemma 1, the fixed point set of each nontrivial element of C consists
of two 2-spheres.

We discuss separately the three cases E(G) isomorphic to A5×A5, A5 or A∗5 .

Case 1. E(G) is isomorphic to A5×A5.

We will first show that in this case the subgroup C of G is trivial. Suppose
that C contains a nontrivial element f ; by the first part of the proof, the fixed
point set of f consists of two 2-spheres and is invariant under E(G) ∼= A5×A5.
Since this group does not contain any subgroup of index two, E(G) fixes setwise
each of these two 2-spheres. The subgroup of E(G) which fixes pointwise one of
these 2-spheres is cyclic and normal. Since E(G) does not contain any nontrivial
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normal cyclic subgroup, it acts faithfully on each 2-sphere; but A5×A5 does not
act faithfully on a 2-sphere, so we get a contradiction and hence C is trivial.

Since C is trivial, G is isomorphic to a subgroup of the automorphism group
Aut(E(G)) of E(G). This automorphism group contains the index two subgroup
Aut(A5)×Aut(A5)∼=S5×S5, and any element not in this subgroup exchanges the
two components A5 of E(G) (the quasisimple components of a group are permuted
by any automorphism of the group; see [Gorenstein et al. 1994, Theorem 3.5,
page 7 and Theorem 3.23, page 13]). We will show next that no element of G
exchanges the two components of E(G)∼= A5×A5.

Let S be a Sylow 2-subgroup of E(G), so S is an elementary abelian 2-group
of rank four. In the proof of Lemma 5, we showed that S contains six involutions
with fixed point set consisting of two 2-spheres, and nine involutions with fixed
point set consisting of four points. Let h be one of the six involutions fixing two
2-spheres; h is contained in a subgroup A of S of rank two which has a global
fixed point. By [McCooey 2002, Proposition 14], the singular set of A consists of
four 2-spheres, each of these four 2-spheres represents a primitive class in H2(M),
and together these four classes generate H2(M). The 2-spheres of the fixed point
set of h are exchanged by some elements of S; since the action is homologically
trivial, we conclude that the two 2-spheres of the fixed point set of h represent the
same homology class. So each involution in S with 2-dimensional fixed point set
gives one primitive class in homology.

The conjugacy classes of involutions of S in E(G) ∼= A5 ×A5 are three; each
quasisimple component A5 of E(G) contains three involutions which form a con-
jugacy class, and the remaining nine involutions form the third class. Then the
six involutions in the two quasisimple components are the six involutions with
2-dimensional fixed point set, and the two conjugacy classes in the quasisimple
components represent different elements in H2(M). Since the action of G is homo-
logically trivial, G does not contain any element which, by conjugation, exchanges
the two quasisimple components, and hence G is isomorphic to a subgroup of
Aut(A5)×Aut(A5)∼= S5×S5.

Suppose that G has a subgroup isomorphic to S5×A5; let t be an involution con-
tained in the second factor A5. Then the centralizer of t in G contains a subgroup
isomorphic to S5 × Z2×Z2, and the two involutions in Z2 × Z2 different from t
exchange the two 2-spheres of Fix(t) (otherwise the Sylow 2-subgroup Z2×Z2 of
the second factor A5 has a global fixed point and contains an involution with 0-
dimensional fixed point set which is not the case). This implies that there is a group
isomorphic to S5×Z2 that leaves invariant each of the two 2-spheres of Fix(t). The
normal subgroup of S5×Z2 that acts trivially on one of the 2-spheres is cyclic, and
hence its intersection with the first factor S5 is trivial. But then S5 acts faithfully
on a 2-sphere which is a contradiction.
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We obtain that either G = E(G)∼= A5×A5, or G contains E(G) as a subgroup
of index two and is isomorphic to the extension of A5×A5 by the automorphism
which fixes and acts nontrivially on each of the two components of E(G). This
completes the proof of Theorem 5 in Case 1.

Case 2. E(G) is isomorphic to A5.

We consider the Fitting subgroup F(G) of G; if F(G) is trivial then G is iso-
morphic to a subgroup of Aut(E(G)) ∼= Aut(A5) ∼= S5 and we are done [Suzuki
1986, Theorem 6.11, page 452; Gorenstein et al. 1994, Theorem 3.6]: the gener-
alized Fitting subgroup F∗(G) contains its centralizer in G and, if F(G) is trivial,
F∗(G)= E(G). So we can assume that F(G) is nontrivial. Since F(G) centralizes
E(G) [Suzuki 1986, page 452; Gorenstein et al. 1994, Theorem 3.5], by the first
part of the proof the fixed point set of each nontrivial element in F(G) consists of
two 2-spheres.

Suppose first that F(G) contains a nontrivial cyclic subgroup which is normal
in G; then G fixes setwise the two 2-spheres which are the fixed point set of this
cyclic normal subgroup. We choose one of these 2-spheres and consider the normal
subgroup K of all elements of G acting trivially on this 2-sphere. The subgroup K
is cyclic, and E(G)∼= A5 intersects K trivially. Since the automorphism group of
K is abelian, the group E(G) acts trivially by conjugation on K , and together they
generate a subgroup E(G)×K . Since by [McCooey 2002, Theorem 2], the action
of G on the two 2-spheres is orientation-preserving and A5 is maximal among the
finite groups acting orientation-preservingly on a 2-sphere, E(G)× K is exactly
the subgroup of G which leaves invariant both 2-spheres. Also, E(G)× K has
index at most two in G, and this proves the Theorem in this case.

We suppose now that the order of the Fitting subgroup F(G) is not a power of
two; then F(G) contains a characteristic p-subgroup with p odd. The center of
this subgroup is normal in G and it has to be cyclic (otherwise the centralizer of
any element in the center fixes pointwise two 2-spheres and contains a subgroup
isomorphic to A5 × Zp×Zp; this is not possible since A5 is maximal among the
finite groups acting orientation-preservingly on a 2-sphere). Hence we are in the
case considered in the previous paragraph, and this proves the Theorem in this case.

Finally suppose that the order of F(G) is a power of two. The center Z of
F(G) is a normal subgroup of G. Since by Lemma 2, the sectional 2-rank of G
is at most four and E(G) ∼= A5 contains an elementary 2-subgroup of rank two,
Z has rank at most two. If it is cyclic we are done by a previous case, so we can
suppose that Z has rank two. We consider the fixed point set of an involution in Z ,
consisting of two 2-spheres. By an argument used previously, the subgroup of index
at most two of E(G)× F(G) that leaves invariant both 2-spheres is isomorphic to
A5×Z2m . Since Z has rank two, F(G) is isomorphic to Z2m×Z2. If m > 1 there
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exists a central involution in G (in F(G) there exists a unique involution that is
not primitive), so we are done by a previous case.

There remains the case m = 1, that is, F(G)∼= Z2×Z2. Since F(G) is abelian,
F(G) is the center of the generalized Fitting subgroup F∗(G)= E(G)× F(G)∼=
A5×Z2

2, and G/F(G) is isomorphic to a subgroup of the automorphism group
Aut(F∗(G)) ∼= S5×GL(2,Z2) ∼= S5×S3 [Suzuki 1986, Theorem 6.11, page 452;
Gorenstein et al. 1994, Theorem 3.6]. We will assume in the following that in
G/F(G) there is an element f of order three which permutes the three involutions
in F(G) (otherwise an involution in F(G) is central in G and we are done by a
previous case). Let f be a preimage of f in G; we can choose f of order three.
Since all automorphisms of A5 of order three are inner, we can suppose that the
action of f on E(G) ∼= A5 is trivial. The subgroup G0 of G generated by F∗(G)
and f is a semidirect product isomorphic to A5×A4. We will show in the following
that there is no involution t̄ in G/F(G)⊂Aut(F∗(G))which acts trivially on F(G)
and as a noninner automorphism on A5. This implies that G0 has index at most
two in G and completes the proof of Theorem 5 in the present case.

Suppose, by contradiction, that there is an involution t̄ in G/F(G)⊂Aut(F∗(G))
as above. Let t be a preimage of t̄ in G; then also t is an involution (otherwise t2

would be an involution in F(G), hence f t2 f −1
6= t2; on the other hand, f t f −1

= t z,
for some z ∈ F(G), so f t2 f −1

= (t z)2 = t2). The involution t acts by conjugation
trivially on F(G), hence F∗(G) and t generate a subgroup of G isomorphic to
S5×F(G)∼=S5×Z2

2. However, we proved in Case 1 that such a group does not oc-
cur (note that, by the beginning of the proof of Theorem 5, each involution in F(G)
fixes two 2-spheres), so an involution t̄ as above does not exist and we are done.

Case 3. E(G) is isomorphic to A∗5 .

We denote by h the involution in the center of E(G) and by Fix(h) the fixed
point set of h consisting of two 2-spheres. The center of E(G) is normal in G and
G fixes setwise Fix(h). We consider the subgroup G0 of all elements in G which
fix setwise each 2-sphere in Fix(h). The subgroup G0 has index at most two in G
and contains E(G). Choosing one of the two 2-spheres in Fix(h), we denote by
K the cyclic normal subgroup of all elements in G0 which act trivially on this 2-
sphere; the quotient G0/K acts faithfully on the 2-sphere and contains a subgroup
isomorphic to A5 (the quotient of E(G) by its center). We recall that by [McCooey
2002, Theorem 2], the action of G0 on the two 2-spheres is orientation-preserving;
since A5 is maximal among the finite groups acting orientation-preservingly on a
2-sphere, G0/K is isomorphic to A5 and G0 is generated by E(G) ∼= A∗5 and K .
Since the action by conjugation of E(G) on K is trivial (the automorphism group
of K is abelian), G0 is the central product of E(G)∼= A∗5 and the cyclic group K .

This completes the proof of Case 3, and so of Theorem 5. �
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