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We are interested in the geography of simply connected, closed, symplectic
4-manifolds whose canonical classes have a given divisibility. In general, the ge-
ography question aims at finding for any given pair of integers (x, y) a closed
4-manifold M with some a priori specified properties (for example, irreducible,
spin, simply connected, symplectic or complex) such that the Euler characteristic
e(M) equals x and the signature σ(M) equals y. This question has been considered
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for simply connected symplectic 4-manifolds both in the spin and nonspin case for
example in [Gompf 1995; Park and Szabó 2000; Park 1998; 2002]; see also [Chen
1987; Fintushel and Stern 1994; Persson 1981; Persson et al. 1996]. We consider
the geography question for simply connected symplectic 4-manifolds whose canon-
ical class, considered as an element in second cohomology with integer coefficients,
is divisible by a given integer d > 1. Since the canonical class is characteristic, the
first case d = 2 corresponds to the general case of spin symplectic 4-manifolds.

Geography questions are often formulated in terms of the invariants c2
1 and χh

instead of e and σ , which for smooth closed 4-manifolds are defined by

c2
1(M)= 2e(M)+ 3σ(M) and χh(M)= 1

4(e(M)+ σ(M)).

For complex 4-manifolds these numbers have the same value as the square of the
first Chern class and the holomorphic Euler characteristic, making the definitions
consistent.

The constructions we use here depend on generalized fibre sums of symplec-
tic manifolds, which are also known as Gompf sums or normal connected sums
[Gompf 1995; McCarthy and Wolfson 1994], in particular in the form of knot
surgery [Fintushel and Stern 1998] and a generalized version of knot surgery along
embedded surfaces of higher genus [Fintushel and Stern 2004]. Some details on
the generalized fibre sum can be found in Section 2.

In Sections 4, 6 and 7, we consider the case c2
1 = 0 and the spin and nonspin

cases for c2
1 > 0 and negative signature, while the case c2

1 < 0 is covered at the
end of Section 1. We do not consider the case of nonnegative signature, since
even without a restriction on the divisibility of the canonical class, such simply
connected symplectic 4-manifolds are known to be difficult to find.

As a consequence of these geography results, there often exist at the same lattice
point in the (χh, c2

1)-plane several simply connected symplectic 4-manifolds whose
canonical classes have pairwise different divisibilities. It is natural to ask whether
the same smooth 4-manifold can admit several symplectic structures with canonical
classes of different divisibilities; we consider this question in Sections 8 and 9. The
symplectic structures with this property are inequivalent under deformations and
orientation-preserving self-diffeomorphisms of the manifold. Similar examples
have been found before on homotopy elliptic surfaces by McMullen and Taubes
[1999], Smith [2000] and Vidussi [2001]. Another application of the geography
question to the existence of inequivalent contact structures on certain 5-manifolds
can be found in [Hamilton 2008].

In the final part of this article, we give an independent construction of simply
connected symplectic 4-manifolds with divisible canonical class by finding com-
plex surfaces of general type with divisible canonical class. The construction uses
branched coverings over smooth curves in pluricanonical linear systems |nK |.
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1. General restrictions on the divisibility of the canonical class

We begin by deriving a few general restrictions for symplectic 4-manifolds admit-
ting a symplectic structure whose canonical class is divisible by an integer d > 1.

Let (M, ω) be a closed, symplectic 4-manifold. The canonical class K of the
symplectic form ω is defined as

K =−c1(T M, J ),

where J is an almost-complex structure compatible with ω. The self-intersection
number of K is given by the formula K 2

= c2
1(M) = 2e(M)+ 3σ(M). Since the

first Chern class c1(T M, J ) is characteristic, it follows by a general property of
the intersection form that c2

1(M)≡ σ(M) mod 8, and hence the number

χh(M)= 1
4(e(M)+ σ(M))

is an integer. If b1(M)= 0, this number is equal to 1
2(1+b+2 (M)). In particular, in

this case b+2 (M) is an odd integer and χh(M) > 0. There is a further constraint if
the manifold M is spin, equivalent to the congruence σ(M)≡ 0 mod 16 given by
Rohlin’s theorem [1952], which says that c2

1(M)≡ 8χh(M) mod 16. In particular,
c2

1(M) is divisible by 8. We say that K is divisible by an integer d if there exists a
cohomology class A ∈ H 2(M;Z) with K = d A.

Lemma 1. Let (M, ω) be a closed symplectic 4-manifold. Suppose K is divisible
by an integer d. Then c2

1(M) is divisible by d2 if d is odd and by 2d2 if d is even.

Proof. If d divides K , we can write K = d A, where A ∈ H 2(M;Z). The equation
c2

1(M)= K 2
= d2 A2 implies that c2

1(M) is divisible by d2 in any case. If d is even,
then w2(M) ≡ K ≡ 0 mod 2; hence M is spin and the intersection form QM is
even. This implies that A2 is divisible by 2; hence c2

1(M) is divisible by 2d2. �

The case c2
1(M)= 0 is special, since there are no restrictions from this lemma; see

Section 4. For the general case of spin symplectic 4-manifolds (d = 2), we recover
the constraint that c2

1 is divisible by 8.
Further restrictions come from the adjunction formula 2g− 2 = K ·C +C ·C ,

where C is an embedded symplectic surface of genus g oriented by the restriction
of the symplectic form.

Lemma 2. Let (M, ω) be a closed symplectic 4-manifold. Suppose K is divisible
by an integer d.

• If M contains a symplectic surface of genus g and self-intersection 0, then d
divides 2g− 2.

• If d 6= 1, then M is minimal. If M is in addition simply connected, then it is
irreducible.
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Proof. The first part follows immediately by the adjunction formula. If M is not
minimal, it contains a symplectically embedded sphere S of self-intersection (−1).
The adjunction formula can be applied and yields K · S =−1, and hence K is in-
divisible. The claim of irreducibility follows from [Hamilton and Kotschick 2006,
Corollary 1.4]. �

The canonical class of a 4-manifold M with b+2 ≥ 2 is a Seiberg–Witten basic
class, that is, it has nonvanishing Seiberg–Witten invariant. This implies that only
finitely many classes in H 2(M;Z) can occur as the canonical classes of symplectic
structures on M .

Theorem 3 [Li and Liu 2001]. Let M be a (smoothly) minimal closed 4-manifold
with b+2 = 1. Then the canonical classes of all symplectic structures on M are
equal up to sign.

If M is a Kähler surface, we can consider the canonical class of the Kähler form.

Theorem 4. Suppose that M is a minimal Kähler surface with b+2 > 1.

• If M is of general type, then ±KM are the only Seiberg–Witten basic classes
of M.

• If N is another minimal Kähler surface such that b+2 > 1 and φ :M→ N is a
diffeomorphism, then φ∗KN =±KM .

For the proofs see [Friedman and Morgan 1997; Morgan 1996; Witten 1994].
When φ is the identity diffeomorphism, the second part of this theorem has an
immediate consequence:

Corollary 5. Let M be a (smoothly) minimal closed 4-manifold with b+2 > 1. Then
the canonical classes of all Kähler structures on M are equal up to sign.

The corresponding statement is not true in general for the canonical classes
of symplectic structures on minimal 4-manifolds with b+2 > 1. There exist such
4-manifolds M admitting several symplectic structures whose canonical classes
in H 2(M;Z) are not equal up to sign. In addition, such examples can be con-
structed where the canonical classes cannot be permuted by orientation-preserving
self-diffeomorphisms of the manifold [McMullen and Taubes 1999; Smith 2000;
Vidussi 2001], for example because they have different divisibilities as elements
in integral cohomology (see the examples in Sections 8 and 9).

It is useful to define the (maximal) divisibility of the canonical class in the case
that H 2(M;Z) is torsion-free.

Definition 6. Suppose H is a finitely generated free abelian group. For a ∈ H , let

d(a)=max{k ∈ N0 | there exists a nonzero element b ∈ H with a = kb}.
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We call d(a) the divisibility of a (or, for emphasis, the maximal divisibility). The
divisibility of a is 0 if and only a = 0. We call a indivisible if d(a)= 1.

If M is a simply connected manifold, the integral cohomology group H 2(M;Z)
is torsion-free, and K ∈ H 2(M;Z) has a well-defined divisibility.

Proposition 7. Suppose M is a simply connected closed 4-manifold that admits at
least two symplectic structures whose canonical classes have different divisibilities.
Then M is not diffeomorphic to a complex surface.

Proof. The assumptions imply M has a symplectic structure whose canonical class
has divisibility 6= 1. By Lemma 2, the manifold M is (smoothly) minimal, and by
Theorem 3, it has b+2 > 1. Suppose M is diffeomorphic to a complex surface. The
Kodaira–Enriques classification implies M is diffeomorphic either to an elliptic
surface E(n)p,q with n ≥ 2 and p, q coprime, or to a surface of general type.

Consider the elliptic surfaces E(n)p,q for n≥2, and denote the class of a general
fibre by F . The Seiberg–Witten basic classes of these 4-manifolds are known
[Fintushel and Stern 1997], and consist of the set of classes of the form k f , where f
denotes the indivisible class f = F/pq and k is an integer such that

k ≡ npq − p− q mod 2 and |k| ≤ npq − p− q.

Suppose ω is a symplectic structure on E(n)p,q with canonical class K . By a
theorem of Taubes [Taubes 1995a; Kotschick 1997], the inequality K ·[ω]≥ |c·[ω]|
holds for any basic class c, with equality if and only if K = ±c, and the number
K · [ω] is positive if K is nonzero. It follows that the canonical class of any
symplectic structure on E(n)p,q is given by ±(npq− p−q) f ; hence there is only
one possible divisibility. This follows for surfaces of general type by the first part
of Theorem 4. �

We now consider the geography question for manifolds with c2
1 < 0. The next

theorem is due to C. H. Taubes [1995b] in the case b+2 ≥ 2 and to A.-K. Liu [1996]
in the case b+2 = 1.

Theorem 8. Let M be a closed, symplectic 4-manifold. Suppose M is minimal.

• If b+2 (M)≥ 2, then K 2
≥ 0.

• If b+2 (M) = 1 and K 2 < 0, then M is a ruled surface, that is, an S2-bundle
over a surface (of genus ≥ 2).

Since ruled surfaces over irrational curves are not simply connected, any simply
connected, symplectic 4-manifold M with c2

1(M)<0 is not minimal. By Lemma 2,
this implies that K is indivisible, that is, d(K )= 1.

Let (χh, c2
1) = (n,−r) be a lattice point with n, r ≥ 1, and let M be a simply

connected symplectic 4-manifold with these invariants. Since M is not minimal,
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we can successively blow down r (−1)-spheres in M to get a simply connected
symplectic 4-manifold N with invariants (χh, c2

1) = (n, 0) such that there exists a
diffeomorphism M = N #r CP2.

Conversely, consider the manifold M = E(n) #r CP2. Then M is a simply
connected symplectic 4-manifold with indivisible K . Since χh(E(n)) = n and
c2

1(E(n)) = 0, this implies (χh(M), c2
1(M)) = (n,−r). Hence the point (n,−r)

can be realized by a simply connected symplectic 4-manifold.

2. The generalized fibre sum

We next recall the definition of the generalized fibre sum from [Gompf 1995; Mc-
Carthy and Wolfson 1994] and fix some notation, used in [Hamilton 2008]. Let M
and N be closed oriented 4-manifolds that contain embedded oriented surfaces6M

and 6N of genus g and self-intersection 0. We choose trivializations of the form
6g×D2 for tubular neighbourhoods of the surfaces 6M and 6N . The generalized
fibre sum X = M #6M=6N N is then formed by deleting the interior of the tubular
neighbourhoods and gluing the resulting manifolds M ′ and N ′ along their bound-
aries 6g×S1, using a diffeomorphism that preserves the meridians to the surfaces,
given by the S1 fibres, and reverses the orientation on them. The closed oriented
4-manifold can depend on the choice of trivializations and gluing diffeomorphism.
The trivializations of the tubular neighbourhoods also determine push-offs of the
central surfaces 6M and 6N into the boundary. Under inclusion, the push-offs de-
termine surfaces6X and6′X of self-intersection 0 in the 4-manifold X . In general,
these surfaces do not represent the same homology class in X but differ by a rim
torus. However, if the gluing diffeomorphism is chosen so that it preserves also
the 6g-fibres in 6g× S1, then the push-offs get identified to a well-defined surface
6X in X .

Suppose the surfaces 6M and 6N represent indivisible nontorsion classes in the
homology of M and N . We can then choose surfaces BM and BN in M and N
that intersect 6M and 6N at a single positive transverse point. These surfaces
with a disk removed can be assumed to bound the meridians to 6M and 6N in the
manifolds M ′ and N ′; hence they sew together to give a surface BX in X .

The second cohomology of M can be split into a direct sum

H 2(M;Z)∼= P(M)⊕Z6M ⊕ZBM ,

where P(M) denotes the orthogonal complement to the subgroup Z6M ⊕ ZBM

in H 2(M;Z) with respect to the intersection form QM . The restriction of the
intersection form to the last two summands is given by(

0 1
1 B2

M

)
.
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This form is unimodular; hence the restriction of the intersection form to P(M)
(modulo torsion) is unimodular as well. There exists a similar decomposition for
the second cohomology of N .

Theorem 9. Suppose that the integral cohomology of M , N and X is torsion-free
and the surfaces 6M and 6N represent indivisible classes. If rim tori do not exist
in the fibre sum X = M #6M=6N N , then the second cohomology of X splits as a
direct sum

H 2(X;Z)∼= P(X)⊕Z6X ⊕ZBX , where P(X)∼= P(M)⊕ P(N ).

The restriction of the intersection form Q X to P(X) is the direct sum of the restric-
tions of QM and QN , and the restriction to Z6X ⊕ZBX is of the form(

0 1
1 B2

M + B2
N

)
.

A proof for this theorem can be found in [Hamilton 2008, Section V.3.5]. It
implies that there exist monomorphisms of abelian groups of both H 2(M;Z) and
H 2(N ;Z) into H 2(X;Z) given by

(1) 6M 7→6X , BM 7→ BX , Id : P(M)→ P(M),

and similarly for N . The monomorphisms do not preserve the intersection form if
B2

M or B2
N differ from B2

X . The next lemma can be useful in checking the conditions
for Theorem 9; its proof follows from [Hamilton 2008, Sections V.2 and V.3].

Lemma 10. Let X = M #6M=6N N be a generalized fibre sum along embedded
surfaces of self-intersection 0. Suppose that the map on integral first homology
induced by one of the embeddings, say 6N → N , is an isomorphism. Then rim
tori do not exist in X. If in addition one of the surfaces represents an indivisible
homology class, then H1(X;Z)∼= H1(M;Z).

Suppose M and N are symplectic 4-manifolds and 6M and 6N symplectically
embedded. We orient both surfaces by the restriction of the symplectic forms. Then
the generalized fibre sum X also admits a symplectic structure. The canonical class
K X can be calculated as follows:

Theorem 11. Under the assumptions of Theorem 9 and the embeddings of the
cohomology of M and N into the cohomology of X given by Equation (1), we have

K X = KM + KN − (2g− 2)BX + 26X .

A proof can be found in [Hamilton 2008, Section V.5]. The formula for g = 1 has
been proved in [Smith 2000] and a related formula for arbitrary g can be found in
[Ionel and Parker 2004].
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3. The knot surgery construction

We will frequently use the following construction due to Fintushel and Stern [1998].
Let K be a knot in S3, and denote a tubular neighbourhood of K by νK ∼= S1

×D2.
Let m be a fibre of the circle bundle ∂νK→ K , and use an oriented Seifert surface
for K to define a section l :K → ∂νK . The circles m and l are called the meridian
and the longitude of K . Let MK be the closed 3-manifold obtained by 0-Dehn
surgery on K . The manifold MK is constructed as follows: Consider S3

\ int νK
and let f : ∂(S1

× D2)→ ∂(S3
\ int νK ) be a diffeomorphism that maps the circle

∂D2 onto l. Then one defines

MK = (S3
\ int νK )∪ f (S1

× D2).

The manifold MK is determined by this construction uniquely up to diffeomor-
phism. One can show that it has the same integral homology as S2

× S1. The
meridian m, which bounds the fibre in the normal bundle to K in S3, becomes
nonzero in the homology of MK and defines a generator for H1(MK ;Z). The
longitude l is null-homotopic in MK , since it bounds one of the D2 fibres glued in.
This disk fibre together with the Seifert surface of K determine a closed, oriented
surface BK in MK that intersects m once and generates H2(MK ;Z).

We consider the closed, oriented 4-manifold MK × S1. It contains an embedded
torus TK = m × S1 of self-intersection 0, which has a framing coming from a
canonical framing of m. Let X be an arbitrary closed, oriented 4-manifold, which
contains an embedded torus TX of self-intersection 0, representing an indivisible
homology class. Then the result of knot surgery on X is given by the generalized
fibre sum X K = X #TX=TK (MK × S1). Here we have implicitly chosen a trivial-
ization of the form T 2

× D2 for the tubular neighbourhood of the torus TX . We
choose a gluing diffeomorphism that preserves both the T 2 factor and the S1 factor
on the boundaries of the tubular neighbourhoods and reverses orientation on the
S1 factor (the smooth 4-manifold X K might depend on the choice of the framing
for TX ). The embedded torus of self-intersection 0 in X K , defined by identifying
the push-offs, is denoted by TX K .

The closed surface BK in the 3-manifold MK determines under inclusion a
closed surface in the 4-manifold MK × S1, denoted by the same symbol. It inter-
sects the torus TK at a single transverse point. We also choose a surface BX in X
intersecting TX transversely and geometrically once. Both surfaces sew together to
form a surface BX K in X K that intersects the torus TX K at a single transverse point.

We assume the cohomology of X is torsion-free. By [Fintushel and Stern 1998],
it is known that there exists an isomorphism

(2) H 2(X;Z)∼= H 2(X K ;Z)
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preserving intersection forms. In the notation of Section 2 this follows because
H 2(MK × S1

;Z) ∼= ZTK ⊕ ZBK and hence P(MK × S1) = 0. In addition, the
self-intersection number of BX K is equal to the self-intersection number of BX ,
because the class BK has zero self-intersection (it can be moved away in the S1

direction). The claim then follows from Theorem 9 and Lemma 10.
In particular, assume that both X and X ′ = X \ TX are simply connected. Since

the fundamental group of MK×S1 is normally generated by the image of the funda-
mental group of TK under inclusion, it follows that X K is again simply connected;
hence by Freedman’s theorem [1982], the manifolds X and X K are homeomorphic.
However, one can show with Seiberg–Witten theory that X and X K are in many
cases not diffeomorphic [Fintushel and Stern 1998].

Suppose that K is a fibred knot, that is, there exists a fibration

S3
\ int νK

��

6′h
oo

S1

over the circle, where the fibres 6′h are punctured surfaces of genus h forming
Seifert surfaces for K . Then MK is fibred by closed surfaces BK of genus h. This
induces a fibre bundle

MK × S1

��

6hoo

T 2

and the torus TK = m × S1 is a section of this bundle. By a theorem of Thurston
[1976] the manifold MK×S1 admits a symplectic form such that TK and the fibres
are symplectic. This construction can be used to do symplectic generalized fibre
sums along TK if the manifold X is symplectic and the torus TX symplectically
embedded. The canonical class of MK × S1 can be calculated by the adjunction
formula, because the fibres BK and the torus TK are symplectic surfaces and form
a basis of H2(MK × S1

;Z). The result is KMK×S1 = (2h − 2)TK . According to
[Fintushel and Stern 1998], the canonical class of the symplectic 4-manifold X K

is then given by

(3) K X K = K X + 2hTX .

See also Theorem 11.

4. Symplectic 4-manifolds with c2
1 = 0

Definition 12. A closed, simply connected 4-manifold M is called a homotopy
elliptic surface if M is homeomorphic to a relatively minimal, simply connected
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elliptic surface, that is, to a complex surface of the form E(n)p,q with p, q coprime
and n ≥ 1.

For details on the surfaces E(n)p,q , see [Gompf and Stipsicz 1999, Section 3.3].
By definition, homotopy elliptic surfaces M are simply connected with invariants

c2
1(M)= 0, e(M)= 12n, σ (M)=−8n.

The integer n is equal to χh(M). In particular, K 2
= 0 for symplectic homotopy

elliptic surfaces. There is a converse:

Lemma 13. Let M be a closed, simply connected, symplectic 4-manifold with
K 2
= 0. Then M is a homotopy elliptic surface.

Proof. Since M is almost complex, χh(M) is an integer. The Noether formula

χh(M)= 1
12(K

2
+ e(M))= 1

12 e(M)

implies that e(M) is divisible by 12; hence e(M)= 12k for some k > 0. Together
with the equation

0= K 2
= 2e(M)+ 3σ(M),

it follows that σ(M) = −8k. Suppose that M is nonspin. If k is odd, then M has
the same Euler characteristic, signature and type as E(k). If k is even, then M has
the same Euler characteristic, signature and type as the nonspin manifold E(k)2.
Since M is simply connected, M is homeomorphic to the corresponding elliptic
surface by Freedman’s theorem [1982].

Suppose that M is spin. Then the signature is divisible by 16 due to Rohlin’s
theorem. Hence the integer k above has to be even. Then M has the same Euler
characteristic, signature and type as the spin manifold E(k). Again by Freedman’s
theorem, the 4-manifold M is homeomorphic to E(k). �

Lemma 14. Suppose that M is a symplectic homotopy elliptic surface such that
the divisibility of K is even. Then χh(M) is even.

Proof. The assumption implies that M is spin. The Noether formula then shows
that χh(M) is even, since K 2

= 0 and σ(M) is divisible by 16. �

The next theorem shows that this is the only restriction on the divisibility of the
canonical class K for symplectic homotopy elliptic surfaces.

Theorem 15 (homotopy elliptic surfaces). Let n and d be positive integers. If n is
odd, assume that d is odd also. Then there exists a symplectic homotopy elliptic
surface (M, ω) with χh(M)= n whose canonical class K has divisibility d.

Note that there is no constraint on d if n is even.
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Proof. If n is equal to 1 or 2, the symplectic manifold can be realized as an elliptic
surface. The canonical class of an elliptic surface E(n)p,q with p, q coprime is
given by K = (npq − p− q) f , where f is indivisible and F = pq f denotes the
class of a general fibre. For n = 1 and d odd, we can take the surface E(1)d+2,2,
since

(d + 2)2− (d + 2)− 2= d.

For n = 2 and d arbitrary, we can take E(2)d+1 = E(2)d+1,1, since

2(d + 1)− (d + 1)− 1= d.

We now consider the case n≥1 in general and separate the proof into several cases.

Case: d = 2k and n = 2m are both even with k,m ≥ 1. Consider the elliptic
surface E(n). It contains a general fibre F that is an embedded symplectic torus of
self-intersection 0. It also contains a rim torus R that arises from a decomposition
of E(n) as a fibre sum E(n)= E(n− 1) #F E(1); see [Gompf and Mrowka 1993]
and Example 30. The rim torus R has self-intersection 0 and there exists a dual
(Lagrangian) 2-sphere S with intersection RS = 1. We can assume that R and S
are disjoint from the fibre F . The rim torus is in a natural way Lagrangian. By
a perturbation of the symplectic form, we can assume that it becomes symplectic.
We give R the orientation induced by the symplectic form. The proof consists in
doing knot surgery along the fibre F and the rim torus R.

Let K1 be a fibred knot of genus g1=m(k−1)+1. We do knot surgery along F
with the knot K1 to get a new symplectic 4-manifold M1. The elliptic fibration
E(n)→CP1 has a section showing that the meridian of F , which is the S1 fibre of
∂νF→ F , bounds a disk in E(n)\ int νF . This implies that the complement of F
in E(n) is simply connected; hence the manifold M1 is again simply connected.
By the knot surgery construction the manifold M1 is homeomorphic to E(n). The
canonical class is given by formula (3):

KM1 = (n− 2)F + 2g1 F = (2m− 2+ 2mk− 2m+ 2)F = 2mk F.

Here we have identified the cohomology of M1 and E(n) under the isomorphism
in Equation (2). The rim torus R still exists as an embedded oriented symplectic
torus in M1 with a dual 2-sphere S because we can assume that the knot surgery
takes place in a small neighbourhood of F disjoint from R and S. In particular,
the complement of R in M1 is simply connected. Let K2 be a fibred knot of genus
g2= k, and let M be the result of knot surgery on M1 along R. Then M is a simply
connected symplectic 4-manifold homeomorphic to E(n). The canonical class of
M is given by K = 2mk F + 2k R.
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The cohomology class K is divisible by 2k. The sphere S sews together with
a Seifert surface for the knot K2 to give a surface C in M with C · R = 1 and
C · F = 0; hence C · K = 2k. Therefore the divisibility of K is precisely d = 2k.

Case: d = 2k+1 and n= 2m+1 are both odd with k ≥ 0 and m ≥ 1. We consider
the elliptic surface E(n) and do a similar construction. Let K1 be a fibred knot of
genus g1 = 2km+ k+ 1, and do knot surgery along F as above. We get a simply
connected symplectic 4-manifold M1 with canonical class

KM1 = (n− 2)F + 2g1 F

= (2m+ 1− 2+ 4km+ 2k+ 2)F = (4km+ 2k+ 2m+ 1)F

= (2m+ 1)(2k+ 1)F.

Next we consider a fibred knot K2 of genus g2 = 2k + 1 and do knot surgery
along the rim torus R. The result is a simply connected symplectic 4-manifold M
homeomorphic to E(n) with canonical class K = (2m+1)(2k+1)F+2(2k+1)R,
which is divisible by (2k + 1). The same argument as above shows that there is
a surface C in M with C · K = 2(2k + 1). We claim that the divisibility of K is
precisely (2k+ 1): This follows because M is still homeomorphic to E(n) by the
knot surgery construction. Since n is odd, the manifold M is not spin and hence
2 does not divide K . (An explicit surface with odd intersection number can be
constructed from a section of E(n) and a Seifert surface for the knot K1. This
surface has self-intersection number −n and intersection number (2m+1)(2k+1)
with K .)

To cover the remaining case m = 0 (corresponding to n = 1), we can do knot
surgery on the elliptic surface E(1) along a general fibre F with a knot K1 of genus
g1 = k+ 1. The resulting manifold M1 has canonical class

KM1 =−F + (2k+ 2)F = (2k+ 1)F.

Case: d = 2k + 1 is odd and n = 2m is even with k ≥ 0 and m ≥ 1. We consider
the elliptic surface E(n) and first perform a logarithmic transformation along F
of index 2. Let f denote the multiple fibre such that F is homologous to 2 f .
There exists a 2-sphere in E(n)2 that intersects f at a single point (for a proof
see Lemma 16). In particular, the complement of f in E(n)2 is simply connected.
The canonical class of E(n)2 = E(n)2,1 is given by K = (2n − 3) f . We can
assume that the torus f is symplectic (for example, by considering the logarithmic
transformation to be done on the complex algebraic surface E(n), resulting in
the complex algebraic surface E(n)2). Let K1 be a fibred knot of genus g1 =

4km+k+2, and do knot surgery along f with K1 as above. The result is a simply
connected symplectic 4-manifold homeomorphic to E(n)2. The canonical class is
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given by

KM1 = (2n− 3) f + 2g1 f

= (4m− 3+ 8km+ 2k+ 4) f = (8km+ 4m+ 2k+ 1) f

= (4m+ 1)(2k+ 1) f.

We now consider a fibred knot K2 of genus g2 = 2k+1 and do knot surgery along
the rim torus R. We get a simply connected symplectic 4-manifold M homeo-
morphic to E(n)2 with canonical class K = (4m + 1)(2k + 1) f + 2(2k + 1)R. A
similar argument as above shows that the divisibility of K is d = 2k+ 1. �

Lemma 16. Let p≥ 1 be an integer, and let f be the multiple fibre in E(n)p. Then
there exists a sphere in E(n)p that intersects f transversely at one point.

Proof. We can think of the logarithmic transformation as gluing T 2
× D2 into

E(n) \ int νF by a certain diffeomorphism φ : T 2
× S1

→ ∂νF . The fibre f
corresponds to T 2

× {0}. Consider a disk of the form {∗} × D2. It intersects f
once, and its boundary maps under φ to a certain simple closed curve on ∂νF .
Since E(n)\ int νF is simply connected, this curve bounds a disk in E(n)\ int νF .
The union of this disk and the disk {∗}×D2 is a sphere in E(n)p that intersects f
transversely once. �

Remark 17. Under the assumptions of Theorem 15, it is possible to construct
infinitely many homeomorphic but pairwise nondiffeomorphic symplectic homo-
topy elliptic surfaces (Mr )r∈N with χh(Mr )= n, whose canonical classes all have
divisibility equal to d . This follows because we can vary in each case the knot
K1 and its genus g1 without changing the divisibility of the canonical class. The
claim then follows by the formula for the Seiberg–Witten invariants of knot surgery
manifolds [Fintushel and Stern 1998].

5. Generalized knot surgery

Symplectic manifolds with c2
1 > 0 and divisible canonical class can be constructed

with a version of knot surgery for higher genus surfaces described in [Fintushel and
Stern 2004]. Let K = Kh denote the (2h+1,−2)-torus knot, which is a fibred knot
of genus h. Consider the manifold MK × S1 from the knot surgery construction
of Section 3. This manifold has the structure of a 6h-bundle over T 2:

MK × S1

��

6hoo

T 2

We denote a fibre of this bundle by 6F . The fibration defines a trivialization of
the normal bundle ν6F . We form g consecutive generalized fibre sums along the
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fibres 6F to get

Yg,h = (MK × S1) #6F=6F # · · · #6F=6F (MK × S1).

We choose the gluing diffeomorphism so that it identifies the 6h fibres in the
boundary of the tubular neighbourhoods. This implies that Yg,h is a 6h-bundle
over 6g:

Yg,h

��

6hoo

6g

We denote the fibre again by6F . The fibre bundle has a section6S sewed together
from g torus sections of MK × S1. Since the knot K is a fibred knot, the manifold
MK × S1 admits a symplectic structure such that the fibre and the section are
symplectic. By the Gompf construction this is then also true for Yg,h .

The invariants of the 4-manifold Yg,h can be calculated by standard formulas
[Park 2002, Lemma 2.4]:

c2
1(Yg,h)= 8(g− 1)(h− 1), e(Yg,h)= 4(g− 1)(h− 1), σ (Yg,h)= 0.

By induction on g, one can show that the fundamental group π1(Yg,h) is normally
generated by the image of π1(6S) under inclusion [Fintushel and Stern 2004,
Proposition 2]. This fact, together with the exact sequence

H1(6F )→ H1(Yg,h)→ H1(6g)→ 0

coming from the long exact homotopy sequence for the fibration6F→Yg,h→6g

by abelianization, shows that the inclusion 6S→ Yg,h induces an isomorphism on
H1 and the inclusion6F→Yg,h induces the zero map. In particular, the homology
group H1(Yg,h;Z) is free abelian of rank b1(Yg,h) = gb1(MK × S1) = 2g. This
implies with the formula for the Euler characteristic above that

b2(Yg,h)= 4h(g− 1)+ 2.

The summand 4h(g−1) results from 2h split classes (or vanishing classes) together
with 2h dual rim tori that are created in each fibre sum. The split classes are formed
as follows: In each fibre sum, the interior of a tubular neighbourhood ν6F of a fibre
on each side of the sum is deleted and the boundaries ∂ν6F glued together such
that the fibres inside the boundary get identified pairwise. Since the inclusion of the
fibre 6F into MK × S1 induces the zero map on first homology, the 2h generators
of H1(6h), where 6h is considered as a fibre in ∂ν6F , bound surfaces in MK ×S1

minus the interior of the tubular neighbourhood ν6F . The split classes arise from
sewing together surfaces bounding corresponding generators on each side of the
fibre sum. Fintushel and Stern show that in the case above there exists a basis for
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the group of split classes consisting of 2h(g− 1) disjoint surfaces of genus 2 and
self-intersection 2. This implies

H 2(Yg,h;Z)= 2h(g− 1)
(

2 1
1 0

)
⊕

(
0 1
1 0

)
,

where the last summand is the intersection form on (Z6S⊕Z6F ). They also show
that the canonical class of Yg,h is given by KY = (2h−2)6S+ (2g−2)6F , where
6S and 6F are oriented by the symplectic form.

Let M be a closed symplectic 4-manifold that contains a symplectic surface6M

of genus g and self-intersection 0, oriented by the symplectic form and representing
an indivisible homology class. We can then form the symplectic generalized fibre
sum X = M #6M=6S Yg,h . If the manifolds M and M \6M are simply connected,
then X is again simply connected because the fundamental group of Yg,h is nor-
mally generated by the image of π1(6S). Since the inclusion of the surface 6S

in Yg,h induces an isomorphism on first homology, it follows by Theorem 9 and
Lemma 10 that

H 2(X;Z)= P(M)⊕ P(Yg,h)⊕ (ZBX ⊕Z6X ).

The surface BX is sewed together from a surface BM in M with BM6M = 1 and
the fibre 6F in the manifold Yg,h . Since 62

F = 0, the embedding H 2(M;Z)→
H 2(X;Z) given by Equation (1) preserves the intersection form. Therefore we can
write

(4) H 2(X;Z)= H 2(M;Z)⊕ P(Yg,h)

with intersection form

Q X = QM ⊕ 2h(g− 1)
(

2 1
1 0

)
.

The invariants of X are given by

c2
1(X)= c2

1(M)+ 8h(g− 1), e(X)= e(M)+ 4h(g− 1), σ (X)= σ(M).

The canonical class of X can be calculated by Theorem 11 to be

(5) K X = KM + 2h6M ,

where the isomorphism in (4) is understood (this formula follows also from the cal-
culation of Seiberg–Witten invariants in [Fintushel and Stern 2004]). Equation (5)
is a generalization of Equation (3). In particular, we get:

Proposition 18. Suppose that M is a closed, symplectic 4-manifold that contains
a symplectic surface 6M of genus g > 1 and self-intersection 0. Suppose that
π1(M)= π1(M \6M)= 1 and that the canonical class of M is divisible by d.
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• If d is odd, there exists for every integer t ≥ 1 a simply connected symplectic
4-manifold X with invariants

c2
1(X)= c2

1(M)+ 8td(g− 1), e(X)= e(M)+ 4td(g− 1), σ (X)= σ(M)

and canonical class divisible by d.

• If d is even, there exists for every integer t ≥ 1 a simply connected symplectic
4-manifold X with invariants

c2
1(X)= c2

1(M)+ 4td(g− 1), e(X)= e(M)+ 2td(g− 1), σ (X)= σ(M)

and canonical class divisible by d.

This follows from the construction above by taking the genus of the torus knot
h = td if d is odd and h = 1

2 td if d is even. Hence if a symplectic surface 6M of
genus g > 1 and self-intersection 0 exists in M , we can raise c2

1 without changing
the signature or the divisibility of the canonical class.

6. Spin symplectic 4-manifolds with c2
1 > 0 and negative signature

We can apply the construction from Section 5 to the symplectic homotopy elliptic
surfaces constructed in Theorem 15. In this section we consider the case of even
divisibility d and in the following section the case of odd d .

Recall that in the first case in the proof of Theorem 15, we constructed a simply
connected symplectic 4-manifold M from the elliptic surface E(2m) by doing knot
surgery along a general fibre F with a fibred knot K1 of genus g1 = (k− 1)m+ 1
and a further knot surgery along a rim torus R with a fibred knot K2 of genus
g2 = k. Here 2m ≥ 2 and d = 2k ≥ 2 are arbitrary even integers. The canonical
class is given by

KM = 2mk F + 2k R = md F + d R.

The manifold M is still homeomorphic to E(2m). There is an embedded 2-sphere S
in E(2m) of self-intersection−2 that intersects the rim torus R once. The sphere S
is naturally Lagrangian [Auroux et al. 2005]. We can assume that S is disjoint from
the fibre F and by a perturbation of the symplectic structure on E(2m) that the
regular fibre F , the rim torus R and the dual 2-sphere S are all symplectic and the
symplectic form induces a positive volume form on each of them; see the proofs
of [Fintushel and Stern 2001, Lemma 2.1] and [Vidussi 2007, Proposition 3.2].

The 2-sphere S minus a disk sews together with a Seifert surface for K2 to give
a symplectic surface C in M of genus k and self-intersection −2 that intersects the
rim torus R once. By smoothing the double point we get a symplectic surface 6M

in M of genus g = k+ 1 and self-intersection 0 that represents C + R.
The complement of 6M in M is simply connected, since we can assume R ∪ S

in the elliptic surface E(2m) is contained in an embedded nucleus N (2); see
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[Gompf and Mrowka 1993; Gompf and Stipsicz 1999] and Example 30. Inside the
nucleus N (2) there exists a cusp that is homologous to R and disjoint from it. The
cusp is still contained in M and intersects the surface 6M once. Since M is simply
connected and the cusp homeomorphic to S2, the claim π1(M \6M)= 1 follows.1

Let t ≥ 1 be an arbitrary integer, and let K3 be the (2h + 1,−2)-torus knot of
genus h = tk. Consider the generalized fibre sum X = M #6M=6S Yg,h . Then X is
a simply connected symplectic 4-manifold with invariants

c2
1(X)= 8tk2

= 2td2, e(X)= 24m+ 4tk2
= 24m+ td2, σ (X)=−16m.

The canonical class is given by

K X = KM + 2tk6M = d(m F + R+ t6M).

Hence K X has divisibility d , since the class m F + R + t6M has intersection 1
with 6M . Therefore:

Theorem 19. Let d ≥ 2 be an even integer. Then for every pair m, t of positive
integers, there exists a simply connected closed spin symplectic 4-manifold X with
invariants

c2
1(X)= 2td2, e(X)= td2

+ 24m, σ (X)=−16m,

such that the canonical class K X has divisibility d.

Note that this solves by Lemma 1 and Rohlin’s theorem the existence question
for simply connected 4-manifolds with canonical class divisible by an even integer
and negative signature. In particular (for d = 2), every possible lattice point with
c2

1>0 and σ <0 can be realized by a simply connected spin symplectic 4-manifold
with this construction; the existence of such 4-manifolds has been proved similarly
in [Park and Szabó 2000].

Example 20 (spin homotopy Horikawa surfaces). To identify the homeomorphism
type of some of the manifolds in Theorem 19, let d = 2k; hence

c2
1(X)= 8tk2 and χh(X)= tk2

+ 2m.

We consider the case when the invariants are on the Noether line c2
1 = 2χh − 6.

This happens if and only if 6tk2
= 4m− 6 and hence 2m = 3tk2

+ 3, which has a
solution if and only if both t and k are odd. Hence for every pair t, k ≥ 1 of odd
integers, there exists a simply connected symplectic 4-manifold X with invariants

c2
1(X)= 8tk2 and χh(X)= 4tk2

+ 3

such that the divisibility of K X is 2k.

1This argument is similar to the argument showing that the complement of a section in E(n) is
simply connected; see [Gompf 1995, Example 5.2].
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By a construction of Horikawa [1976a], there exists for every odd integer r ≥ 1
a simply connected spin complex algebraic surface M on the Noether line with
invariants

c2
1(M)= 8r and χh(M)= 4r + 3.

See also [Gompf and Stipsicz 1999, Theorem 7.4.20] where this surface is called
U (3, r + 1).

By Freedman’s theorem [1982] the symplectic 4-manifolds X constructed above
for odd parameters t and k are homeomorphic to spin Horikawa surfaces with
r = tk2. If k > 1 and t is arbitrary, the canonical class of X has divisibility 2k > 2.
In this case the manifold X cannot be diffeomorphic to a Horikawa surface: It is
known by [Horikawa 1976a] that all Horikawa surfaces M have a fibration in genus
2 curves; hence by Lemma 2 the divisibility of KM is at most 2 and in the spin case
is equal to 2. Since Horikawa surfaces are minimal complex surfaces of general
type, the claim follows by Proposition 7.

7. Nonspin symplectic 4-manifolds with c2
1 > 0 and negative signature

We now we construct some families of simply connected symplectic 4-manifolds
with c2

1 > 0 such that the divisibility of K is a given odd integer d > 1. However,
we do not have a complete existence result as in Theorem 19.

We consider the case that the canonical class K X is divisible by an odd integer d
and the signature σ(X) is divisible by 8.

Lemma 21. Let X be a closed simply connected symplectic 4-manifold such that
K X is divisible by an odd integer d ≥ 1 and σ(X) is divisible by 8. Then c2

1(X) is
divisible by 8d2.

Proof. Suppose that σ(X)=8m for some integer m∈Z. Then b−2 (X)=b+2 (X)−8m
hence b2(X) = 2b+2 (X)− 8m. This implies e(X) = 2b+2 (X)+ 2− 8m. Since X
is symplectic, the integer b+2 (X) is odd, so we can write b+2 (X) = 2k + 1 for
some k ≥ 0. This implies e(X)= 4k + 4− 8m; hence e(X) is divisible by 4. The
equation c2

1(X)= 2e(X)+3σ(X) shows that c2
1(X) is divisible by 8. Since c2

1(X)
is also divisible by the odd integer d2, the claim follows. �

The following theorem covers the case that K X has odd divisibility and the
signature is negative, divisible by 8 and no greater than −16:

Theorem 22. Let d ≥ 1 be an odd integer. Then for every pair n, t of positive inte-
gers with n ≥ 2, there is a simply connected closed nonspin symplectic 4-manifold
X with invariants

c2
1(X)= 8td2, e(X)= 4td2

+ 12n, σ (X)=−8n

such that the canonical class K X has divisibility d.
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Proof. The proof is similar to the proof of Theorem 19. We can write d = 2k + 1
with k ≥ 0.

Case: n = 2m+ 1 is odd, where m ≥ 1. In the proof of Theorem 15, a homotopy
elliptic surface M with χh(M)= n was constructed from the elliptic surface E(n)
by doing knot surgery along a general fibre F with a fibred knot K1 of genus
g1 = 2km+k+1 and a further knot surgery along a rim torus R with a fibred knot
K2 of genus g2 = 2k+ 1= d. The canonical class is given by

KM = (2m+ 1)(2k+ 1)F + 2(2k+ 1)R = (2m+ 1)d F + 2d R.

There exists a symplectically embedded 2-sphere S in E(n) of self-intersection
−2 that sews together with a Seifert surface for K2 to give a symplectic surface
C in M of genus d and self-intersection −2 that intersects the rim torus R once.
By smoothing the double point, we get a symplectic surface 6M in M of genus
g= d+1 and self-intersection 0 that represents C+R. Using a cusp that intersects
6M once, it follows as above that the complement M \6M is simply connected.

Let t ≥ 1 be an arbitrary integer and K3 the (2h + 1,−2)-torus knot of genus
h= td. We consider the generalized fibre sum X=M #6M=6S Yg,h , where g=d+1.
Then X is a simply connected symplectic 4-manifold with invariants

c2
1(X)= 8td2, e(X)= 4td2

+ 12n, σ (X)=−8n.

The canonical class is given by

K X = KM + 2td6M = d((2m+ 1)F + 2R+ 2t6M).

Hence K X has divisibility d , since the class (2m+1)F+2R+2t6M twice intersects
6M and has intersection (2m + 1) with a surface coming from a section of E(n)
and a Seifert surface for K1.

Case: n= 2m is even, where m≥ 1. This case can be proved similarly. By doing a
logarithmic transform on the fibre F in E(n) and two further knot surgeries with a
fibred knot K1 of genus g1= 4km+k+2 on the multiple fibre f and with a fibred
knot K2 of genus g2 = 2k+1= d along a rim torus R, we get a homotopy elliptic
surface M with χh(M) = n and canonical class KM = (4m + 1)d f + 2d R. The
same construction as above yields a simply connected symplectic 4-manifold X
with invariants

c2
1(X)= 8td2, e(X)= 4td2

+ 12n, σ (X)=−8n.

The canonical class is given by

K X = KM + 2td6M = d((4m+ 1) f + 2R+ 2t6M).

Hence K X again has divisibility d . �
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Example 23 (nonspin homotopy Horikawa surfaces). The invariants of the mani-
folds in Theorem 22 are

c2
1(X)= 8td2 and χh(X)= td2

+ n.

Similarly to Example 20, this implies that for every pair d, t ≥1 of positive integers
with d odd and t arbitrary, there exists a nonspin symplectic homotopy Horikawa
surface X on the Noether line c2

1 = 2χh − 6 with invariants

c2
1(X)= 8td2 and χh(X)= 4td2

+ 3,

whose canonical class has divisibility d . Note that for every integer s ≥ 1 there
exists a nonspin complex Horikawa surface M [Horikawa 1976a] with invariants

c2
1(M)= 8s and χh(M)= 4s+ 3.

If d > 1 and t is an arbitrary integer, we get nonspin homotopy Horikawa surfaces
with s = td2 whose canonical classes have divisibility d . By the argument from
before, these 4-manifolds cannot be diffeomorphic to complex Horikawa surfaces.

With different constructions, it is possible to find examples of simply connected
symplectic 4-manifolds with canonical class of odd divisibility, c2

1 > 0 and signa-
ture not divisible by 8; see [Hamilton 2008, Section VI.2.3]. However, many cases
remain uncovered. For example, we could not answer this:

Question 24. For a given odd integer d>1, is there a simply connected symplectic
4-manifold M with c2

1(M)= d2 whose canonical class has divisibility d?

Note that there is a trivial example for d = 3, namely CP2.

8. Construction of inequivalent symplectic structures

In this section we prove a result similar to [Smith 2000, Theorem 1.5], which can be
used to show that certain 4-manifolds X admit inequivalent symplectic structures,
where equivalence is defined as follows (see [McMullen and Taubes 1999]).

Definition 25. Two symplectic forms on a closed oriented 4-manifold M are called
equivalent if they can be made identical by a combination of deformations through
symplectic forms and orientation-preserving self-diffeomorphisms of M .

The canonical classes of equivalent symplectic forms have the same (maximal)
divisibility as elements of H 2(M;Z). This follows because deformations do not
change the canonical class and the application of an orientation preserving self-
diffeomorphism does not change the divisibility.

Lemma 26. Let (M, ω) be a symplectic 4-manifold with canonical class K . Then
the symplectic structure −ω has canonical class −K .
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Proof. Let J be an almost complex structure on M compatible with ω. Then −J
is an almost complex structure compatible with −ω. The complex vector bundle
(T M,−J ) is the conjugate bundle to (T M, J ). By [Milnor and Stasheff 1974],
this implies that c1(T M,−J ) = −c1(T M, J ). Since the canonical class is minus
the first Chern class of the tangent bundle, the claim follows. �

Let MK × S1 be a 4-manifold used in knot surgery, where K is a fibred knot of
genus h. Let TK be a section of the fibre bundle

MK × S1

��

6hoo

T 2

and let BK be a fibre. We fix an orientation on TK and choose the orientation
on BK so that TK · BK =+1. There exist symplectic structures on MK × S1 such
that both the fibre and the section are symplectic. We can choose a symplectic
structureω+ that restricts to both TK and BK as a positive volume form with respect
to the orientations. It has canonical class K+ = (2h − 2)TK by the adjunction
formula. We also define the symplectic form ω− =−ω+. It restricts to a negative
volume form on TK and BK . The canonical class of this symplectic structure is
K− = −(2h − 2)TK . Let X be a closed oriented 4-manifold with torsion-free
cohomology that contains an embedded oriented torus TX of self-intersection 0,
representing an indivisible homology class. We form the oriented 4-manifold

X K = X #TX=TK (MK × S1),

by doing the generalized fibre sum along the pair (TX , TK ) of oriented tori. Suppose
that X has a symplectic structure ωX such that TX is symplectic. We consider two
cases: If ωX restricts to a positive volume form on TX , we can glue ωX to the
symplectic form ω+ on MK × S1 to get a symplectic structure ω+X K

on X K . The
canonical class of this symplectic structure is K+X K

= K X + 2hTX , as seen above;
see Equation (3).

Lemma 27. Suppose that ωX restricts to a negative volume form on TX . We can
glue ωX to the symplectic form ω− on MK × S1 to get a symplectic structure ω−X K

on X K . The canonical class of ω−X K
is K−X K

= K X − 2hTX .

Proof. We use Lemma 26 twice: The symplectic form −ωX restricts to a positive
volume form on TX . We can glue this symplectic form to the symplectic form ω+

on MK×S1, which also restricts to a positive volume form on TK . By the standard
formula (3), the canonical class of the resulting symplectic form on X K is

K =−K X + 2hTX .
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The symplectic form ω−X K
we want to consider is minus the symplectic form we

have just constructed. Hence its canonical class is K−X K
= K X − 2hTX . �

Lemma 28. Suppose (M, ω) is a closed symplectic 4-manifold with canonical
class KM . Suppose M contains pairwise disjoint embedded oriented Lagrangian
surfaces T1, . . . , Tr+1 (with r ≥ 1) such that

• the classes of the surfaces T1, . . . , Tr are linearly independent in H2(M;R),
and

• the surface Tr+1 is homologous to a1T1 + · · · + ar Tr , where all coefficients
a1, . . . , ar are positive integers.

Then for every nonempty subset S ⊂ {T1, . . . , Tr }, there exists a symplectic form
ωS on M such that

• all surfaces T1, . . . , Tr+1 are symplectic, and

• the symplectic form ωS induces on the surfaces in S and the surface Tr+1

a positive volume form and on the remaining surfaces in {T1, . . . , Tr } \ S a
negative volume form.

Also, the canonical classes of the symplectic structures ωS are all equal to KM .
We can also assume that any given closed oriented surface in M that is disjoint
from the surfaces T1, . . . , Tr+1 and is symplectic with respect to ω stays symplectic
for ωS with the same sign as the induced volume form.

Proof. The proof is similar to the proof of [Gompf 1995, Lemma 1.6]. We can
assume that S = {Ts+1, . . . , Tr } with s+ 1≤ r . Let

c =
s∑

i=1

ai and c′ =
r−1∑

i=s+1

ai .

Since the classes of the surfaces T1, . . . , Tr are linearly independent in H2(M;R)
and H 2

DR(M) is the dual space of H2(M;R), there exists a closed 2-form η on M
such that ∫

Ti

η =


−1 for i = 1, . . . , s,
+1 for i = s+ 1, . . . , r − 1,
c+ 1 for i = r,
c′+ 1 for i = r + 1,

Note that we can choose the value of η on T1, . . . , Tr arbitrarily. The value on Tr+1

is then determined by Tr+1 = a1T1+· · ·+ ar Tr . We can choose symplectic forms
ωi on each Ti such that∫

Ti

ωi =

∫
Ti

η for all i = 1, . . . , r + 1.
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The symplectic form ωi induces on Ti a negative volume form if i ≤ s and a
positive volume form if i ≥ s + 1. The difference ωi − j∗i η, where ji : Ti → M is
the embedding, has vanishing integral and hence is an exact 2-form on Ti of the
form dαi . We can extend each αi to a small tubular neighbourhood of Ti in M , cut
it off differentiably in a slightly larger tubular neighbourhood and extend by 0 to
all of M . We can do this such that the tubular neighbourhoods of T1, . . . , Tr+1 are
pairwise disjoint. Define the closed 2-form η′ = η+

∑r+1
i=1 dαi on M . Then

j∗i η
′
= j∗i η+ dαi = ωi .

The closed 2-form ω′ = ω + tη′ is symplectic for small values of t . Since the
surfaces Ti are Lagrangian, we have j∗i ω = 0 and hence j∗i ω

′
= tωi . This implies

that ω′ is for small values t > 0 a symplectic form on M that induces a volume
form on Ti of the same sign as ωi for all i = 1, . . . , r + 1. The claim about the
canonical class follows because the symplectic structures ωS are constructed by a
deformation of ω. We can also choose t > 0 small enough so that ω′ still restricts
to a symplectic form on any given symplectic surface disjoint from the tori without
changing the sign of the induced volume form on this surface. �

This construction will be used as follows: Suppose that (V1, ω1) and (V2, ω2)

are symplectic 4-manifolds such that V1 contains an embedded Lagrangian torus
T1 and V2 contains an embedded symplectic torus T2, both oriented and of self-
intersection 0. Let W denote the smooth oriented 4-manifold V1 #T1=T2 V2 obtained
as a generalized fibre sum. By Lemma 28, there exist small perturbations of ω1

to new symplectic forms ω+1 and ω−1 on the manifold V1 such that the torus T1

becomes symplectic with positive and negative induced volume form, respectively.
By the Gompf construction, it is then possible to define two symplectic forms on
the same oriented 4-manifold W :

• The symplectic forms ω+1 and ω2 determine a symplectic form on W .

• The symplectic forms ω−1 and −ω2 determine a symplectic form on W .

Hence the symplectic forms on the first manifold differ only by a small perturba-
tion, while on the second manifold they differ by the sign. Similarly, the canonical
classes of both perturbed symplectic forms on V1 are the same, while they differ
by the sign on V2. If additional tori exist and suitable fibre sums are performed, it
is possible to end up with two or more inequivalent symplectic forms on the same
4-manifold, distinguished by the divisibilities of their canonical classes.

To define the configuration of tori we want to consider, recall that the nucleus
N (n) is the smooth manifold with boundary defined as a regular neighbourhood
of a cusp fibre and a section in the simply connected elliptic surface E(n); see
[Gompf 1991]. It contains an embedded torus given by a regular fibre homologous
to the cusp. It also contains two embedded disks of self-intersection−1 that bound
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vanishing cycles on the torus. The vanishing cycles are the simple closed loops
given by the factors in T 2

= S1
× S1.

Definition 29 (Lagrangian triple). Let (M, ω) be a symplectic 4-manifold. Given
an integer a ≥ 1, a Lagrangian triple consists of three pairwise disjoint oriented
Lagrangian tori T1, T2 and R embedded in M with the following properties:

• All three tori have self-intersection zero and represent indivisible classes in
integral homology.

• T1 and T2 are linearly independent over Q and R is homologous to aT1+ T2.

• There exists an embedded nucleus N (2)⊂ M that contains R, corresponding
to a general fibre. Let S denote the 2-sphere in N (2) of self-intersection −2,
corresponding to a section. In addition to intersecting R, this sphere intersects
T2 transversely once. The torus T2 is disjoint from the vanishing disks of R,
coming from the cusp in N (2).

• The torus T1 is disjoint from the nucleus N (2) above, and there exists an
embedded 2-sphere S1 in M , also disjoint from N (2), that intersects T1 trans-
versely and positively once.

See Figure 1. The assumptions imply that S1T2 = S1(R− aT1)=−a.

Example 30. Let M be the elliptic surface E(n) with n ≥ 2. In this example we
show that E(n) contains n − 1 disjoint Lagrangian triples (T i

1 , T i
2 , Ri ) as above,

where Ri is homologous to ai T i
1 + T i

2 for i = 1, . . . , n − 1. The integers ai > 0
can be chosen arbitrarily and for each triple independently. In this case both T i

1
and Ri are contained in disjoint embedded nuclei N (2). Together with their dual
2-spheres they realize 2(n− 1) H -summands in the intersection form of E(n). In

N (2)
R

S

T2

T1

S1

Figure 1. Lagrangian triple.
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particular, the tori in different triples are linearly independent. We can also ensure
that all Lagrangian tori and the 2-spheres that intersect them once are disjoint from
the nucleus N (n) ⊂ E(n), defined as a regular neighbourhood of a cusp fibre and
a section in E(n).

The construction is similar to [Gompf and Mrowka 1993, Section 2] and is done
by induction. Suppose the Lagrangian triples are already constructed for E(n) and
consider a splitting of E(n+ 1) as a fibre sum E(n+ 1)= E(n) #F=F E(1) along
general fibres F . We choose fibred tubular neighbourhoods for the general fibres
in E(n) and E(1). The boundary of E(1) \ int νF is diffeomorphic to F × S1.
Let γ1 and γ2 be two simple closed loops spanning the torus F , and let m be the
meridian to F that spans the remaining S1 factor. We consider the three tori

V0 = γ1× γ2, V1 = γ1×m, V2 = γ2×m.

The tori are made disjoint by pushing them inside a collar of the boundary into the
interior of E(1)\int νF such that V2 is the innermost and V0 the outermost (closest
to the boundary). The torus V0 can be assumed symplectic, while V1 and V2 are
rim tori that can be assumed Lagrangian. Similarly the boundary of E(n) \ int νF
is diffeomorphic to F× S1, where F is spanned by the circles γ1 and γ2 and S1 by
the circle m and corresponding circles get identified in the gluing of the fibre sum.
In the interior of E(n) \ int νF we consider three tori V0, V1, V2 as above which
get identified with the corresponding tori on the E(1) side in the gluing. On the
E(n) side, the torus V0 is the innermost and V2 the outermost.

We can choose elliptic fibrations such that near the general fibre F there exist two
cusp fibres in E(1) and three cusp fibres in E(n). This is possible because E(m) has
an elliptic fibration with 6m cusp fibres for all m; see [Gompf and Stipsicz 1999,
Corollary 7.3.23]. The corresponding vanishing disks can be assumed pairwise
disjoint. We can also choose three disjoint sections for the elliptic fibration on
E(1) and one section for E(n).

The nuclei can now be defined as follows: The nucleus N (n+1) containing V0

has a dual −(n+ 1)-sphere sewed together from sections on each side of the fibre
sum. The vanishing disks for V0 come from the first cusp in E(n). The nucleus
N (2) containing V1 has a dual−2-sphere sewed together from two vanishing cycles
parallel to γ2 coming from the first cusp in E(1) and the second cusp in E(n). The
vanishing disks for V1 come from the second section of E(1) and from the vanish-
ing cycle parallel to γ1 of the second cusp in E(n). The nucleus N (2) containing
V2 has a dual −2-sphere sewed together from two vanishing cycles parallel to γ1

coming from the second cusp in E(1) and the third cusp in E(n). The vanishing
disks for V2 come from the third section of E(1) and from the vanishing cycle
parallel to γ2 of the second cusp in E(1).
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To define the Lagrangian triple (T1, T2, R), let T1 = V1 and R = V2. Denote by
ca : S1

→ F = S1
× S1 the embedded curve given by the (−a, 1)-torus knot, and

let T2 denote the Lagrangian rim torus T2 = ca ×m in the collar above. Then T2

represents the class −aT1+ R; hence R = aT1+T2. The torus T2 has one positive
transverse intersection with the sphere in the nucleus containing R and a negative
transverse intersections with the sphere in the nucleus containing T1.

Remark 31. To find more general examples of symplectic 4-manifolds containing
Lagrangian triples, suppose that Y is an arbitrary closed symplectic 4-manifold
that contains an embedded symplectic torus TY of self-intersection 0, representing
an indivisible class. Then the symplectic generalized fibre sum Y #TY=F E(n) also
contains n− 1 Lagrangian triples.

Suppose (M, ω) is a simply connected symplectic 4-manifold that contains a
Lagrangian triple T1, T2, R. Let K1 and K2 be fibred knots of genera h1 and h2 to
be chosen later. Consider the associated oriented 4-manifolds MKi × S1 as in the
knot surgery construction, and denote sections of the fibre bundles

MKi × S1

��

6hi
oo

T 2

by TKi , which are tori of self-intersection 0. We choose an orientation on each
torus TKi . Note that the Lagrangian tori T1 and T2 in M are oriented a priori.

We construct a smooth oriented 4-manifold X in three steps as follows: For an
integer m ≥ 1, consider the elliptic surface E(m) and denote an oriented general
fibre by F . Let M0 denote the smooth generalized fibre sum M0 = E(m) #F=R M .
The gluing diffeomorphism is chosen as follows: The push-offs R′ and F ′ into
the boundary of the tubular neighbourhoods νR and νF each contain a pair of
vanishing cycles. We choose the gluing so that the push-offs and the vanishing
cycles get identified. The corresponding vanishing disks then sew together pairwise
to give two embedded spheres of self-intersection−2 in M0, which can be assumed
disjoint by choosing two different push-offs given by the same trivializations.

Denote the torus in M0 coming from the push-off R′ by R0. Consider the tori
T1 and T2 in M0 . Then R0 is still homologous to aT1 + T2 in M0, because the
difference could only be a rim torus by [Hamilton 2008, Section V.3], which must
have nonzero intersection with one of the two vanishing spheres in M0. This is
excluded by our assumptions on Lagrangian triples. In the second step of the
construction, we do a knot surgery with the fibred knot K1 along the torus T1 in
M0 to get the oriented 4-manifold M1 = M0 #T1=TK1

(MK1× S1). The manifold M1

contains a torus, which we still denote by T2. We do a knot surgery with the fibred
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knot K2 along the torus T2 to get the oriented 4-manifold X = M1 #T2=TK2
(MK2 ×

S1).

Lemma 32. The closed oriented 4-manifold

X = E(m) #F=R M #T1=TK1
(MK1 × S1) #T2=TK2

(MK2 × S1)

is simply connected.

Proof. The existence of the sphere S shows that M \ R is simply connected. Since
E(m) \ F is simply connected, it follows that M0 is simply connected.

The sphere S and a section for the elliptic fibration on E(m) sew together to
give an embedded sphere S2 in M0 of self-intersection −(m + 2). The sphere S1

in M is disjoint from R and hence is still contained in M0. These spheres have the
following intersections:

• The sphere S1 intersects T1 transversely once, has intersection −a with T2,
and is disjoint from R0.

• The sphere S2 intersects R0 and T2 transversely once and is disjoint from T1.

The sphere S1 shows that M0 \ T1 is simply connected and hence M1 is simply
connected. The sphere S2 in M0 is disjoint from T1 and hence is still contained in
M1 and intersects T2 once. By the same argument, this shows that the manifold X
is simply connected. �

We define two symplectic forms ω+X and ω−X on X : By Lemma 28 there exist
two symplectic structures ω+ and ω− on M with the same canonical class KM as
ω such that

• the tori T1, T2 and R are symplectic with respect to both symplectic forms,

• the form ω+ induces on T1, T2 and R a positive volume form, and

• the form ω− induces on T1 a negative volume form and on T2 and R a positive
volume form.

We can also choose the sphere S to be symplectic with positive volume form in
both cases.

On the elliptic surface E(m), we can choose a symplectic (Kähler) form ωE

that restricts to a positive volume form on the oriented fibre F . It has canonical
class KE = (m − 2)F . We can glue both symplectic forms ω+ and ω− on M to
the symplectic form ωE on E(m) to get symplectic forms ω+0 and ω−0 on the 4-
manifold M0. The canonical class for both symplectic forms on M0 is given by
KM0 = KM+m R0; see [Fintushel and Stern 2001, proof of Lemma 2.2]. Since rim
tori exist in this fibre sum, Theorem 11 cannot be applied directly. However, the
formula remains correct because rim tori do not contribute in this case; for details
see [Hamilton 2008, Section V.6.1].
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We want to extend the symplectic forms to the 4-manifold X : We choose in each
fibre bundle MKi × S1 a fibre BKi and orient the surface BKi so that TKi ·BKi =+1
with the chosen orientation on TKi . There exist symplectic structures on the closed
4-manifolds MKi × S1 such that both the section and the fibre are symplectic. On
MK1 × S1, we choose two symplectic forms ω±1 : The form ω+1 induces a positive
volume form on both TK1 and BK1 . It has canonical class K+1 = (2h1−2)TK1 . The
form ω−1 is given by−ω+1 . It induces a negative volume form on both TK1 and BK1

and has canonical class K−1 =−(2h1− 2)TK1 .
On the manifold MK2× S1 we only choose a symplectic form ω2 that induces a

positive volume form on TK2 and BK2 . The canonical class is K2 = (2h2− 2)TK2 .

The oriented torus T1 in M0 is symplectic for both forms ω±0 constructed as
above so that ω+0 induces a positive volume form and ω−0 a negative volume form.
Gluing ω+0 to ω+1 and ω−0 to ω−1 , Lemma 27 implies that the closed oriented
4-manifold M1 has two symplectic structures with canonical classes

K+M1
= KM +m R0+ 2h1T1 and K−M1

= KM +m R0− 2h1T1.

The torus T2 can be considered as a symplectic torus in M1 such that both
symplectic structures induce positive volume forms, since we can assume that the
symplectic forms on M1 are still of the form ω+0 and ω−0 in a neighbourhood of T2.
Hence on the generalized fibre sum X = M1 #T2=TK2

MK2 × S1, we can glue each
of the two symplectic forms on M1 to the symplectic form ω2 on MK2 × S1. We
get two symplectic structures on X with canonical classes

K+X = KM +m R0+ 2h1T1+ 2h2T2,

K−X = KM +m R0− 2h1T1+ 2h2T2.

This can be written using R0 = aT1+ T2 as

K+X = KM + (2h1+ am)T1+ (2h2+m)T2,

K−X = KM + (−2h1+ am)T1+ (2h2+m)T2.

Theorem 33. Suppose (M, ω) is a simply connected symplectic 4-manifold that
contains a Lagrangian triple T1, T2, R such that R is homologous to aT1+ T2. Let
m be a positive integer, and let K1 and K2 be fibred knots of genus h1 and h2. Then
the closed oriented 4-manifold

X = E(m) #F=R M #T1=TK1
(MK1 × S1) #T2=TK2

(MK2 × S1)

is simply connected and admits symplectic structures ω+X and ω−X with canonical
classes

K+X = KM + (2h1+ am)T1+ (2h2+m)T2,

K−X = KM + (−2h1+ am)T1+ (2h2+m)T2.
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Remark 34. Instead of doing the generalized fibre sum with E(m) in the first
step of the construction, we could also do a knot surgery with a fibred knot K0 of
genus h0 ≥ 1. This has the advantage that both c2

1 and the signature do not change
under the construction. However, the sphere S2 in M0 is then replaced by a surface
of genus h0 sewed together from the sphere S in M and a Seifert surface for K0.
Hence it is no longer clear that M1 \ T2 and X are simply connected.

The following two surfaces are useful for determining the divisibility of the
canonical classes in Theorem 33.

Lemma 35. There is an oriented surface C2 in X that has intersection C2T2 = 1
and is disjoint from T1.

The surface C2 is sewed together from the sphere S2 and a Seifert surface for K2.

Lemma 36. There is an oriented surface C1 in X that has intersection C1T1 = 1
and is disjoint from T2.

Proof. The surface C1 can be constructed explicitly as follows: In the nucleus
N (2) ⊂ M containing R, we can find a surface of some genus homologous to aS
and intersecting both R and T2 in a positive transverse intersections. Tubing this
surface to the sphere S1, we get a surface A in M that has intersection number
AT2= 0 and intersects T1 transversely once. By increasing the genus we can make
A disjoint from T2. The surface A still intersects the torus R at a points. Sewing
the surface A to a surface in E(m) homologous to a times a section, we get a
surface B in M0 disjoint from T2 and intersecting T1 once. Sewing this surface to a
Seifert surface for K1 we get a surface C1 in X with C1T1= 1 disjoint from T2. �

9. Examples of inequivalent symplectic structures

Definition 37 (the set Q). Let N ≥ 0 and d ≥ 1 be integers, and let d0, . . . , dN be
positive integers dividing d , where d = d0. If d is even, assume that all d1, . . . , dN

are even. We define a set Q of positive integers as follows:

• If d is either odd or not divisible by 4, let Q be the set consisting of the greatest
common divisors of all (nonempty) subsets of {d0, . . . , dN }.

• If d is divisible by 4, we can assume by reordering that d1, . . . , ds are those
elements such that di is divisible by 4, while ds+1, . . . , dN are those elements
such that di is not divisible by 4, where s ≥ 0 is some integer. Then Q is
defined as the set of integers consisting of the greatest common divisors of all
(nonempty) subsets of {d0, . . . , ds, 2ds+1, . . . , 2dN }.

We can now state the main theorem on the existence of inequivalent symplectic
structures on homotopy elliptic surfaces.
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Theorem 38. Let N and d ≥ 1 be integers, and let d0, . . . , dN be positive integers
dividing d as in Definition 37. Let Q be the associated set of greatest common
divisors. Choose an integer n ≥ 3 as follows:

• If d is odd, let n be an arbitrary integer with n ≥ 2N + 1.

• If d is even, let n be an even integer with n ≥ 3N + 1.

Then there exists a homotopy elliptic surface W with χh(W ) = n and the prop-
erty that for each integer q ∈ Q, the manifold W admits a symplectic structure
whose canonical class K has divisibility equal to q. Hence W admits at least |Q|
inequivalent symplectic structures.

Proof. The proof splits into three cases depending on the parity of d . In each case
we follow the construction in Section 8, starting from the manifold M = E(l),
where l is an integer no less than N+1. By Example 30, E(l) contains N pairwise
disjoint Lagrangian triples T i

1 , T i
2 , Ri , where Ri is homologous to ai T i

1 + T i
2 for

indices i = 1, . . . , N . The construction is done on each triple separately2 and
involves knot surgeries along T i

1 and T i
2 with fibred knots of respective genus hi

and h, as well as fibre summing with elliptic surfaces E(m) along the tori Ri . The
numbers ai , hi , h and m will be fixed in each case.

Case: d is odd. Then all divisors d1, . . . , dN are odd. Consider the integers

m = 1, h = 1
2(d − 1),

ai = d + di , hi =
1
2(d − di ) for 1≤ i ≤ N .

Let l be an integer no less than N +1 and do the construction above, starting from
the elliptic surface E(l). We get a (simply connected) homotopy elliptic surface X
with χh(X)= l+N . By Theorem 33 the 4-manifold X has 2N symplectic structures
with canonical classes

K X = (l − 2)F +
N∑

i=1

(
(±2hi + ai )T i

1 + (2h+ 1)T i
2
)

= (l − 2)F +
N∑

i=1

(
(±(d − di )+ d + di )T i

1 + dT i
2
)
.

Here F denotes the torus in X coming from a general fibre in E(l) and the±-signs
in each summand can be varied independently. We can assume that F is symplectic
with positive induced volume form for all 2N symplectic structures on X . Consider
the even integer l(d−1)+2, and let K be a fibred knot of genus g= 1

2(l(d−1)+2).
We do knot surgery with K along the symplectic torus F to get a homotopy elliptic

2This is only a small generalization of Lemma 28, because the construction in the proof of this
lemma changes the symplectic structure only in a small neighbourhood of the Lagrangian surfaces.
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surface W with χh(W )= l + N having 2N symplectic structures whose canonical
classes are given by

KW = (l − 2+ 2g)F +
N∑

i=1

(
(±(d − di )+ d + di )T i

1 + dT i
2
)

= dl F +
N∑

i=1

(
(±(d − di )+ d + di )T i

1 + dT i
2
)
.

Suppose that q ∈ Q is the greatest common divisor of certain elements {di }i∈I ,
where I is a nonempty subset of {0, . . . , N }. Let J be the complement of I in
{0, . . . , N }. Choosing the minus sign for each i in I and the plus sign for each i
in J defines a symplectic structure ωI on W with canonical class given by

KW = dl F +
∑
i∈I

(2di T i
1 + dT i

2 )+
∑
j∈J

(2dT j
1 + dT j

2 ).

We claim that the divisibility of KW is equal to q. Since q divides d and all integers
di for i ∈ I , the class KW is divisible by q . Considering separately the surfaces
from Lemmas 35 and 36 for each Lagrangian triple implies that every number
that divides KW is odd (since it divides d) and a common divisor of all di with
indices i ∈ I . This proves the claim in this case.

Case: d is even but not divisible by 4. We can write d = 2k and di = 2ki for all
i = 1, . . . , N . The assumption implies that all integers k, ki are odd. Consider the
integers defined by

m = 2, h = k− 1,

ai =
1
2(k+ ki ), hi =

1
2(k− ki ).

Let l be an even integer no less than N + 1 and consider the construction above,
starting from E(l). We get a homotopy elliptic surface X with χh(X) = l + 2N .
The 4-manifold X has 2N symplectic structures with canonical classes

K X = (l − 2)F +
N∑

i=1

(
(±2hi + 2ai )T i

1 + (2h+ 2)T i
2
)

= (l − 2)F +
N∑

i=1

(
(±(k− ki )+ k+ ki )T i

1 + dT i
2
)
.

Consider a fibred knot K of genus g= 1
2(l(d−1)+2), noting that l is even. Doing

knot surgery with K along the symplectic torus F in X , we get a homotopy elliptic
surface W with χh(W )= l+2N having 2N symplectic structures whose canonical
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classes are

KW = (l − 2+ 2g)F +
N∑

i=1

(
(±(k− ki )+ k+ ki )T i

1 + dT i
2
)

= dl F +
N∑

i=1

(
(±(k− ki )+ k+ ki )T i

1 + dT i
2
)
.

Let q ∈ Q be the greatest common divisor of elements di , where i ∈ I for some
nonempty index set I with complement J in {0, . . . , N }. Choosing the plus and
minus signs as before, we get a symplectic structure ωI on W with canonical class

(6) KW = dl F +
∑
i∈I

(di T i
1 + dT i

2 )+
∑
j∈J

(dT i
1 + dT i

2 ).

As above, it follows that the canonical class of ωI has divisibility equal to q .

Case: d is divisible by 4. We can write d=2k and di =2ki for all i=1, . . . , N . We
can assume that the divisors are ordered as in Definition 37, that is, d1, . . . , ds are
those elements such that di is divisible by 4 while ds+1, . . . , dN are those elements
such that di is not divisible by 4. This is equivalent to k1, . . . , ks being even and
ks+1, . . . , kN odd. Consider the integers defined by

ai =
1
2(k+ ki ) and hi =

1
2(k− ki ) for i = 1, . . . , s,

ai =
1
2(k+ 2ki ) and hi =

1
2(k− 2ki ) for i = s+ 1, . . . , N .

We also define m = 2 and h = k − 1. Let l be an even integer ≥ N + 1. We
consider the same construction as above starting from E(l) to get a homotopy
elliptic surface X with χh(X) = l + 2N that has 2N symplectic structures with
canonical classes given by the formula

K X = (l − 2)F +
N∑

i=1

(
(±2hi + 2ai )T i

1 + (2h+ 2)T i
2
)

= (l − 2)F +
s∑

i=1

(
(±(k− ki )+ k+ ki )T i

1 + dT i
2
)

+

N∑
i=s+1

(
(±(k− 2ki )+ k+ 2ki )T i

1 + dT i
2
)
.

We then do knot surgery with a fibred knot K of genus g= 1
2(l(d−1)+2) along the

symplectic torus F in X to get a homotopy elliptic surface W with χh(W )= l+2N
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having 2N symplectic structures whose canonical classes are

(7)

KW = (l − 2+ 2g)F +
N∑

i=1

(
(±(k− ki )+ k+ ki )T i

1 + dT i
2
)

= dl F +
s∑

i=1

(
(±(k− ki )+ k+ ki )T i

1 + dT i
2
)

+

N∑
i=s+1

(
(±(k− 2ki )+ k+ 2ki )T i

1 + dT i
2
)
.

Let q be an element in Q. Note that this time

(k− ki )+ (ki + k)= d and −(k− ki )+ (ki + k)= di for i ≤ s,

(k− 2ki )+ (k+ 2ki )= d and −(k− 2ki )+ (k+ 2ki )= 2di for i ≥ s+ 1.

Since q is the greatest common divisor of certain elements di for i ≤ s and 2di

for i ≥ s + 1, it follows as above that we can choose the plus and minus signs
appropriately to get a symplectic structure ωI on W whose canonical class has
divisibility equal to q . �

Example 39. Suppose d = 45 and choose d0 = 45, d1 = 15, d2 = 9, d3 = 5. Then
Q={45, 15, 9, 5, 3, 1}, and for every integer n≥ 7 there exists a homotopy elliptic
surfaces W with χh(W )=n that admits at least 6 inequivalent symplectic structures
whose canonical classes have divisibilities given by the elements in Q. One can
also find an infinite family of homeomorphic but nondiffeomorphic manifolds of
this kind.

Corollary 40. Let m ≥ 1 be an arbitrary integer.

• There exist simply connected nonspin 4-manifolds W homeomorphic to the
elliptic surfaces E(2m+1) and E(2m+2)2 that admit at least 2m inequivalent
symplectic structures.

• There exist simply connected spin 4-manifolds W homeomorphic to E(6m−2)
and E(6m) that admit at least 22m−1 inequivalent symplectic structures, and
there are spin manifolds homeomorphic to E(6m+ 2) that admit at least 22m

inequivalent symplectic structures.

Proof. Choose N pairwise different odd prime numbers p1, . . . , pN . Let d = d0 =

p1 · · · pN , and consider the integers di obtained for i = 1, . . . , N by dividing d by
the prime pi . Then the associated set Q of greatest common divisors consists of
all products of the pi where each prime occurs at most once: If such a product x
does not contain precisely the primes pi1, . . . , pir then x is the greatest common
divisor of di1, . . . , dir . The set Q has 2N elements.
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Let m ≥ 1 be an arbitrary integer. If N = m, there exists by Theorem 38 for
every integer n≥ 2N+1= 2m+1 a homotopy elliptic surface W with χh(W )= n
that has 2m symplectic structures realizing all elements in Q as the divisibility of
their canonical classes. Since d is odd, the 4-manifolds W are nonspin.

If N = 2m − 1, there exists for every even integer n ≥ 3N + 1 = 6m − 2 a
homotopy elliptic surface W with χh(W )= n that has 22m−1 symplectic structures
realizing all elements in Q multiplied by 2 as the divisibility of their canonical
classes. Since all divisibilities are even, the manifold W is spin. If N = 2m, we can
choose n= 6m+2 to get a spin homotopy elliptic surface W with χh(W )= 6m+2
and 22m inequivalent symplectic structures. �

We can extend construction in the proof of Theorem 38 to the spin manifolds in
Theorem 19 with c2

1 > 0:

Theorem 41. Let N ≥ 1 be an integer. Suppose that d ≥ 2 is an even integer
and d0, . . . , dN are positive even integers dividing d as in Definition 37. Let Q
be the associated set of greatest common divisors. Let m be an integer such that
2m ≥ 3N + 2, and let t ≥ 1 be an arbitrary integer. Then there exists a simply
connected closed spin 4-manifold W with invariants

c2
1(W )= 2td2, e(W )= td2

+ 24m, σ (W )=−16m,

and the property that for each integer q ∈ Q, the manifold W admits a symplectic
structure whose canonical class K has divisibility equal to q. Hence W admits at
least |Q| inequivalent symplectic structures.

Proof. Let l = 2m−2N . By the construction of Theorem 19, there exists a simply
connected symplectic spin 4-manifold X with invariants

c2
1(X)= 2td2, e(X)= td2

+ 12l, σ (X)=−8l, K X = d( 1
2 l F + R+ t6M).

In particular, the canonical class of X has divisibility d . In the construction of X
starting from the elliptic surface E(l), we have only used one Lagrangian rim torus.
Hence l − 2 of the l − 1 triples of Lagrangian rim tori in E(l) (see Example 30)
remain unchanged. Note that l− 2≥ N by our assumptions. Since the symplectic
form on E(l) in a neighbourhood of these tori does not change in the construction
of X by the Gompf fibre sum, we can assume that X contains at least N triples
of Lagrangian tori as in the proof of Theorem 38. We can now use the same
construction as in this theorem on the N triples of Lagrangian tori in X to get a
simply connected spin 4-manifold W with invariants

c2
1(W )= 2td2, e(W )= td2

+ 12l + 24N

= td2
+ 24m,

σ (W )=−8l − 16N =−16m,
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admitting 2N symplectic structures. In particular, for each q ∈ Q the manifold W
admits a symplectic structure ωI whose canonical class is given by (6) and (7) if
the term dl F is replaced by K X = d(1

2 l F + R + t6M). It follows again that the
canonical class of ωI has divisibility precisely equal to q . �

Corollary 42. Let d ≥ 6 be an even integer, and let t ≥ 1 and m ≥ 3 be arbitrary
integers. Then there exists a simply connected closed spin 4-manifold W with
invariants

c2
1(W )= 2td2, e(W )= td2

+ 24m, σ (W )=−16m

such that W admits at least two inequivalent symplectic structures.

This follows with N = 1 and choosing d0 = d and d1 = 2, since in this case Q
consists of two elements.

Example 43. We consider Corollary 42 for the spin homotopy Horikawa surfaces
in Example 20. Let t ≥ 1 and k ≥ 3 be arbitrary odd integers, and define an
integer m by 2m = 3tk2

+ 3. Let d = 2k and d1 = 2. Since d = 2k is not divisible
by 4, the set Q is equal to {2k, 2} by Definition 37. Hence there exists a spin
homotopy Horikawa surface X on the Noether line with invariants c2

1(X) = 8tk2

and χh(X) = 4tk2
+ 3, and admitting two inequivalent symplectic structures: the

canonical class of the first symplectic structure has divisibility 2k, while that of the
second is divisible only by 2.

Similarly, we can extend the construction in Theorem 41 to the nonspin mani-
folds in Theorem 22 with c2

1 > 0:

Theorem 44. Let N ≥ 1 be an integer. Suppose d ≥ 3 is an odd integer, and
let d0, . . . , dN be positive integers dividing d as in Definition 37. Let Q be the
associated set of greatest common divisors. Let m ≥ 2N+2 and t ≥ 1 be arbitrary
integers. Then there exists a simply connected closed nonspin 4-manifold W with
invariants

c2
1(W )= 8td2, e(W )= 4td2

+ 12m, σ (W )=−8m

and the property that for each integer q ∈ Q, the manifold W admits a symplectic
structure whose canonical class K has divisibility equal to q. Hence W admits at
least |Q| inequivalent symplectic structures.

Proof. The proof is analogous to the proof of Theorem 41. Let l =m− N . By the
construction of Theorem 22, there exists a simply connected nonspin symplectic
4-manifold X with invariants

c2
1(X)= 8td2, e(X)= 4td2

+ 12l, σ (X)=−8l
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whose canonical class K X has divisibility d . The manifold X contains l−2 triples
of Lagrangian tori. By our assumptions, l − 2 ≥ N . Hence we can perform
the construction in Theorem 38 (for d odd) to get a simply connected nonspin
4-manifold W with invariants

c2
1(W )= 8td2, e(W )= 4td2

+ 12l + 12N

= 4td2
+ 12m,

σ (X)=−8l − 8N =−8m.

The 4-manifold W admits for every integer q ∈ Q a symplectic structure whose
canonical class has divisibility equal to q . �

Choosing N = 1, d0 = d and d1 = 1, the set Q contains two elements.

Corollary 45. Let d ≥ 3 be an odd integer, and let t ≥ 1 and m ≥ 4 be integers.
Then there exists a simply connected closed nonspin 4-manifold W with invariants

c2
1(W )= 8td2, e(W )= 4td2

+ 12m, σ (W )=−8m

such that W admits at least two inequivalent symplectic structures.

10. Branched coverings

Let Mn be a closed, oriented smooth manifold, and let Fn−2 be a closed, oriented
submanifold of codimension 2. Suppose the fundamental class [F] ∈ Hn−2(M;Z)
is divisible by an integer m > 1 and choose a class B ∈ Hn−2(M;Z) such that
[F] = m B. The integer m together with B determine a branched covering of M .

Definition 46. We denote by φ : M(F, B,m)→ M the m-fold branched covering
of M branched over F and determined by m and B.

For the construction of branched coverings, see [Hirzebruch 1969]. The smooth
manifold M(F, B,m) has the properties that

• over the complement M ′ = M \ F , the map φ : φ−1(M ′)→ M ′ is a standard
m-fold cyclic covering;

• φ maps the submanifold F = φ−1(F) diffeomorphically onto F , and on tubu-
lar neighbourhoods of F and F , the map φ : ν(F)→ ν(F) is locally of the
form

U × D2
→U × D2, (x, z) 7→ (x, zm),

where D2 is considered as the unit disk in C.

Suppose M is a smooth complex algebraic surface, and let D ⊂ M be a smooth
connected complex curve. If m>0 is an integer that divides [D] and B ∈H2(M;Z)
is a homology class such that [D] =m B, then the branched covering M(D, B,m)
also admits the structure of an algebraic surface.
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Proposition 47. Let D be a smooth connected complex curve in a complex surface
M such that [D] =m B. Let φ :M(D, B,m)→ M be the branched covering. Then
the invariants of N := M(D, B,m) are

(a) KN = φ
∗(KM + (m− 1)B),

(b) c2
1(N )= m(KM + (m− 1)B)2,

(c) e(N )= me(M)− (m− 1)e(D),

where e(D)= 2− 2g(D)=−(KM · D+ D2) by the adjunction formula.

Proof. The formula for e(N ) follows by a well-known formula for the Euler
characteristic of a topological space decomposed into two pieces and the formula
for standard, unramified coverings. The formula for c2

1(N ) then follows by the
signature formula of Hirzebruch [1969]:

σ(N )= mσ(M)− m2
−1

3m
D2.

The formula for KN can be found in [Barth et al. 1984, Chapter I, Lemma 17.1]. �

Suppose that the complex curve D is contained in the linear system |nKM | and
hence represents in homology a multiple nKM of the canonical class of M . Let
m > 0 be an integer dividing n and write n = ma. Now set [D] = nKM and
B = aKM in Proposition 47.

Corollary 48. Let D be a smooth connected complex curve in a complex surface
M with [D] = nKM and φ : M(D, aKM ,m)→ M the branched covering. Then
the invariants of N := M(D, aKM ,m) are

(a) KN = (n+ 1− a)φ∗KM ,

(b) c2
1(N )= m(n+ 1− a)2c2

1(M),

(c) e(N )= me(M)+ (m− 1)n(n+ 1)c2
1(M).

We consider again the general situation that M is a smooth, oriented manifold
and F is an oriented submanifold of codimension 2. The fundamental group of M
is related to the fundamental group of the complement M ′ = M \ F by

(8) π1(M)∼= π1(M ′)/N (σ ),

where σ denotes the meridian to F , given by a circle fibre of ∂ν(F)→ F , and N (σ )
denotes the normal subgroup in π1(M ′) generated by this element (a proof can be
found in the appendix of [Hamilton 2008]). Using this formula, the fundamental
group of a branched covering can be calculated in the following case.
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Theorem 49. Let Mn be a closed oriented manifold, and let Fn−2 be a closed
oriented submanifold. Suppose in addition that the fundamental group of M ′ is
abelian. Then for all m and B with [F] = m B, there exists an isomorphism

π1(M(F, B,m))∼= π1(M).

Proof. Let k > 0 denote the maximal integer dividing [F]. Since m divides k, we
can write k =ma with a > 0. Let M ′ denote the complement to F in M(F, B,m),
and let σ be the meridian to F . By Equation (8) we have

π1(M(F, B,m))∼= π1(M ′)/N (σ ).

There is an exact sequence 0→π1(M ′)
π∗
−−→π1(M ′)→Zm→ 0 since π :M ′→M ′

is an m-fold cyclic covering. The assumption that π1(M ′) is abelian implies that
π1(M ′) is also abelian. Therefore the normal subgroups generated by the meridians
are cyclic. The endpoints of the lifts of 0, σ, 2σ, . . . , (m − 1)σ , where σ is the
meridian to F , realize all m points in the fibre over the basepoint. This implies that
the induced map π∗ :π1(M ′)−→ π1(M ′)/〈σ 〉 is surjective. The kernel of this map
is equal to 〈σ 〉, because only the multiples of mσ = π∗σ lift to loops in M ′; hence

π1(M ′)/〈σ 〉
∼=
−→ π1(M ′)/〈σ 〉.

Again by Equation (8), this implies π1(M(F, B,m))∼= π1(M). �

We want to apply this theorem in the case where M is a 4-manifold and F is an
embedded surface. Even if M is simply connected, the complement M ′ does not
have abelian fundamental group in general. However, in the complex case, we can
use the following, which is [Nori 1983, Proposition 3.27].

Theorem 50. Let M be a smooth complex algebraic surface, and let D, E ⊂M be
smooth complex curves that intersect transversely. Assume that D′2 > 0 for every
connected component D′ ⊂ D. Then the kernel of π1(M \ (D ∪ E))→ π1(M \ E)
is a finitely generated abelian group.

If E =∅, this implies that the kernel of π1(M ′)→π1(M) is a finitely generated
abelian group if D is connected and D2 > 0, where M ′ = M \ D. If M is simply
connected, it follows that π1(M ′) is abelian. Thus with Theorem 49 we get this:

Corollary 51. Let M be a simply connected, smooth complex algebraic surface,
and let D ⊂ M be a smooth connected complex curve with D2 > 0. Let M be a
cyclic ramified cover of M branched over D. Then M is also simply connected.

Catanese [1984] has also used in a different situation restrictions on divisors to
ensure that certain ramified coverings are simply connected.
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11. Surfaces of general type and pluricanonical systems

We collect some results concerning the geography of simply connected surfaces of
general type and the existence of smooth divisors in pluricanonical systems.

The following is the main geography result we use for our constructions.

Theorem 52 [Persson 1981, Proposition 3.23]. Let x, y be positive integers such
that 2x − 6 ≤ y ≤ 4x − 8. Then there exists a simply connected minimal complex
surface M of general type such that χh(M) = x and c2

1(M) = y. Furthermore, M
can be chosen as a genus 2 fibration.

The smallest integer x for which an inequality can be realized with y > 0 is
x = 3. Since χh(M)= pg(M)+1 for simply connected surfaces, this corresponds
to surfaces with pg=2. Hence from Theorem 52, we get minimal simply connected
complex surfaces M with pg = 2 and K 2

= 1, 2, 3, 4. Similarly for x = 4 we get
surfaces with pg = 3 and K 2

= 2, . . . , 8.

Proposition 53. For K 2
= 1 and K 2

= 2, all possible values for pg given by the
Noether inequality K 2

≥ 2pg − 4 can be realized by simply connected minimal
complex surfaces of general type.

Proof. By the Noether inequality, the only possible values for pg are pg = 0, 1, 2
if K 2

= 1 and pg = 0, 1, 2, 3 if K 2
= 2. The cases pg = 2 for K 2

= 1 and
pg = 2, 3 for K 2

= 2 are covered by Persson’s theorem. In particular, the surface
with K 2

= 1 and pg = 2 and the surface with K 2
= 2 and pg = 3 are Horikawa

surfaces described in [Horikawa 1976a; 1976b]. The remaining cases can also
be covered: The Barlow surface from [1985] is a simply connected numerical
Godeaux surface, that is, a minimal complex surface of general type with K 2

= 1
and pg = 0. Simply connected minimal surfaces of general type with K 2

= 1, 2
and pg = 1 exist by constructions due to Enriques; see [Catanese 1979; Catanese
and Debarre 1989; Chakiris 1980]. Finally, Lee and Park [2007] have constructed
a simply connected minimal surface of general type with K 2

= 2 and pg = 0. It is
a numerical Campedelli surface. �

Suppose M is a minimal smooth complex algebraic surface of general type and
consider the multiples L = nK = K⊗n of the canonical line bundle of M . By a
theorem of Bombieri [Bombieri 1973; Barth et al. 1984], all divisors in the linear
system |nK | are connected. If |nK | has no fixed parts and is base point free, it
determines an everywhere-defined holomorphic map to a projective space, and we
can find a nonsingular divisor representing nK by taking the preimage of a generic
hyperplane section.

Theorem 54. Let M be a minimal smooth complex algebraic surface of general
type. Then the pluricanonical system |nK | determines an everywhere defined holo-
morphic map in the cases
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• n ≥ 4,

• n = 3 and K 2
≥ 2, and

• n = 2 and K 2
≥ 5 or pg ≥ 1.

For proofs and references, see [Bombieri 1970; 1973; Catanese and Tovena 1992;
Kodaira 1968; Mendes Lopes and Pardini 2002; Reider 1988].

Remark 55. In some of the remaining cases it is also known that pluricanonical
systems define a holomorphic map. In particular, suppose that M is a numerical
Godeaux surface. Then the map defined by |3K | is holomorphic if H1(M;Z)=0 or
Z2, for example, if M is simply connected [Miyaoka 1976; Reid 1978]. This is also
known for the map defined by |2K | in the case of a simply connected surface M
with K 2

= 4 and pg = 0 by [Catanese and Tovena 1992; Kotschick 1994].

12. Branched covering construction of algebraic surfaces with divisible
canonical class

Suppose that M is a simply connected minimal complex surface of general type.
Let m, d ≥ 2 be integers such that m − 1 divides d − 1 and define the integers
a = (d − 1)/(m − 1) and n = ma. Then d = n + 1 − a and the assumptions
imply that n≥ 2. We assume in addition that nKM can be represented by a smooth
complex connected curve D in M ; see Theorem 54. Let M = M(D, aKM ,m)
denote the associated m-fold branched cover over the curve D.

Theorem 56. Let M be a simply connected minimal surface of general type, and
let m, d ≥ 2 be integers such that d − 1 is divisible by m − 1 with quotient a.
Suppose that D is a smooth connected curve in the linear system |nKM |, where
n = ma. Then the m-fold cover of M , branched over D, is a simply connected
complex surface M of general type with invariants

KM = dφ∗KM , e(M)= m(e(M)+ (d − 1)(d + a)c2
1(M)),

c2
1(M)= md2c2

1(M), χh(M)= mχh(M)+ 1
12 m(d − 1)(2d + a+ 1)c2

1(M),

σ (M)=− 1
3 m(2e(M)+ (d(d − 2)+ 2a(d − 1))c2

1(M)).

In particular, the canonical class KM is divisible by d and M is minimal.

Proof. The invariants are given by Corollary 48. Since D2
= n2K 2

M > 0, the
complex surface M is simply connected by Corollary 51. Also, M is of general
type because c2

1(M) > 0 and M cannot be rational or ruled. Minimality follows
from Lemma 2, since the divisibility of KM is at least d ≥ 2. �

Note that the signature σ(M) is always negative; hence surfaces with positive
signature cannot be constructed in this way.
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The transformation

8 : (e(M), c2
1(M)) 7→ (e(M), c2

1(M))

given by Theorem 56 is linear and can be written as(
e(M)
c2

1(M)

)
= m

(
1 1

0 d2

)(
e(M)
c2

1(M)

)
,

with the abbreviation 1= (d−1)(d+a). This map is invertible over R and maps
the quadrant R+ × R+ of positive coordinates in R× R into the same quadrant.
The inverse of 8 is given by(

e(M)
c2

1(M)

)
=

1
m

(
1 −1/d2

0 1/d2

)(
e(M)
c2

1(M)

)
.

Definition 57. We call a point in R+×R+ admissible if e(M)+c2
1(M)≡0 mod 12.

The coordinates e(M) and c2
1(M) of a complex surface are always admissible by

the Noether formula.

Lemma 58. The image of the admissible points in R+ × R+ under the map 8
consists of the points satisfying

e(M)≡ 0 mod m, c2
1(M)≡ 0 mod md2, 1

m e(M)+ 1−1
md2 c2

1(M)≡ 0 mod 12.

The proof is immediate by the formula for the inverse of 8. We want to calculate
the image under 8 of the sector given by Theorem 52. First, we rewrite Persson’s
theorem in an equivalent form (we omit the proof):

Corollary 59. Let e and c be positive integers with c≥36−e and e+c≡0 mod 12.
If 1

5(e−36)≤ c≤ 1
2(e−24), then there exists a simply connected minimal surface

M of general type with invariants e(M)= e and c2
1(M)= c.

In the next step, we calculate the image under 8 of the lines in the (e, c)-plane
that appear in this corollary. A short calculation shows that the line c = 1

5(e− 36)
maps to

(9) c2
1(M)=

d2

5+1
(e(M)− 36m),

while the line c = 1
2(e− 24) maps to

(10) c2
1(M)=

d2

2+1
(e(M)− 24m).

Similarly, the constraint c ≥ 36− e maps to

(11) c2
1(M)≤

d2

−1+1
(e(M)− 36m).
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It follows that the image under 8 of the lattice points given by the constraints in
Corollary 59 consists precisely of those points in the sector between the lines (9)
and (10) that satisfy the constraint (11) and the constraints in Lemma 58.

The surfaces in Theorem 52 satisfy pg ≥ 2 and K 2
≥ 1. By Theorem 54, the

linear system |nK | for n ≥ 2 on these surfaces defines a holomorphic map, except
possibly in the case pg = 2, K 2

= 1 and n = 3. Since n = ma and m ≥ 2,
this occurs only for m = 3, a = 1 and d = 3. The corresponding image under
8 has invariants (e, c2

1) = (129, 27). This exception is implicitly understood in
the following theorem. In all other cases we can consider the branched covering
construction above. This can be summarized as follows: Consider integers m, a, d
as above, with m, d ≥ 2, a ≥ 1 and 1= (d − 1)(d + a).

Theorem 60. Let x and y be positive integers such that y(1−1) ≥ 36− x and
x + (1−1)y ≡ 0 mod 12. If

1
(5+1)

(x − 36)≤ y ≤ 1
(2+1)

(x − 24),

then there is a simply connected minimal complex surface M of general type with
invariants e(M) = mx and c2

1(M) = md2 y such that the canonical class of M is
divisible by d.

We calculate some explicit examples for the branched covering construction
given by Theorem 60 and for some surfaces not covered by Persson’s theorem.
For any d ≥ 2, we can choose m = 2 and a= d−1, corresponding to 2-fold covers
branched over (2d − 2)K . The formulas for the invariants simplify to

c2
1(M)= 2d2c2

1(M), e(M)= 24χh(M)+ 2d(2d − 3)c2
1(M),

χh(M)= 2χh(M)+ 1
2 d(d − 1)c2

1(M).

The first two examples are double coverings with m=2, whereas the third example
uses coverings of higher degree. Because of their topological invariants, some of
the surfaces are homeomorphic by Freedman’s theorem to the simply connected
symplectic 4-manifolds constructed in Sections 6 and 7.

Example 61. We consider the Horikawa surfaces [1976a] on the Noether line
c2

1 = 2χh − 6, which exist for every χh ≥ 4 and are also given by Persson’s
Theorem 52. In this case pg ≥ 3 and c2

1 ≥ 2; hence by Theorem 54, the linear
system |nK | for n ≥ 2 defines a holomorphic map on these surfaces.

Proposition 62. Let M be a Horikawa surface on the Noether line c2
1 = 2χh − 6,

where χh = 4+ l for l ≥ 0. Then the 2-fold cover M of the surface M , branched
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over (2d − 2)KM for an integer d ≥ 2, has invariants

c2
1(M)= 4d2(l + 1), χh(M)= 6+ (2+ d(d − 1))(l + 1),

e(M)= 72+ 4(l + 1)(6+ 2d2
− 3d), σ (M)=−48− 4(l + 1)(4+ d2

− 2d).

The canonical class KM is divisible by d.

For d even, the integer d2
− 2d = d(d − 2) is divisible by 4; hence σ is indeed

divisible by 16, which is necessary by Rohlin’s theorem. The invariants are on the
line

c2
1(M)=

4d2

2+d(d−1)
(χh(M)− 6),

which has inclination close to 4 for d very large.

Example 63. We calculate the invariants for the branched covers with m = 2 and
integers d ≥ 3 for the surfaces given by Proposition 53. Since n = ma ≥ 4 in this
case, Theorem 54 shows that the linear system |nK | defines a holomorphic map
and we can use the branched covering construction.

Proposition 64. Let M be a minimal complex surface of general type with K 2

equal to 1 or 2. The 2-fold cover M of the surface M , branched over (2d − 2)KM

for an integer d ≥ 3, has invariants as follows:

If K 2
= 1 and pg = 0, 1, 2, c2

1(M)= 2d2,

e(M)= 24(pg + 1)+ 2d(2d − 3),
σ (M)=−16(pg + 1)− 2d(d − 2).

If K 2
= 2 and pg = 0, 1, 2, 3, c2

1(M)= 4d2,

e(M)= 24(pg + 1)+ 4d(2d − 3),
σ (M)=−16(pg + 1)− 4d(d − 2).

In both cases the canonical class KM is divisible by d.

Example 65. Consider the Barlow surface MB and the surface MLP of Lee and
Park mentioned in the proof of Proposition 53. The invariants are

c2
1(MB)= 1, χh(MB)= 1, e(MB)= 11;

c2
1(MLP)= 2, χh(MLP)= 1, e(MLP)= 10.

By Theorem 54, we can consider branched covers over both surfaces with ma ≥ 3
(the Barlow surface is a simply connected numerical Godeaux surface, and hence
|3K | defines a holomorphic map by Remark 55). See Tables 1 and 2 for a calcu-
lation of the invariants of M for small values of d and m. There is an agreement
between the 4-fold cover of MB branched over 4KM and the 2-fold cover of MLP

branched over 6KM : Both have the same Chern invariants and the same divisibility
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d m ma (d − 1)(d + a) e(MB) c2
1(MB) χh(MB) b+2 (MB) σ (MB)

3 2 4 10 42 18 5 9 −22
3 3 3 8 57 27 7 13 −29
4 2 6 21 64 32 8 15 −32
4 4 4 15 104 64 14 27 −48
5 2 8 36 94 50 12 23 −46
5 3 6 28 117 75 16 31 −53
5 5 5 24 175 125 25 49 −75
6 2 10 55 132 72 17 33 −64
6 6 6 35 276 216 41 81 −112

Table 1. Ramified coverings of the Barlow surface MB of degree
m branched over maK .

d m ma (d − 1)(d + a) e(MLP) c2
1(MLP) χh(MLP) b+2 (MLP) σ (MLP)

3 2 4 10 60 36 8 15 −28
3 3 3 8 78 54 11 21 −34
4 2 6 21 104 64 14 27 −48
4 4 4 15 160 128 24 47 −64
5 2 8 36 164 100 22 43 −76
5 3 6 28 198 150 29 57 −82
5 5 5 24 290 250 45 89 −110
6 2 10 55 240 144 32 63 −112
6 6 6 35 480 432 76 151 −176

Table 2. Ramified coverings of the Lee–Park surface MLP of de-
gree m branched over maK .

d = 4 of the canonical class. Hence the manifolds are homeomorphic and by
Theorem 4, both branched coverings have the same Seiberg–Witten invariants.

Remark 66. More general examples are possible by considering branched cover-
ings over singular complex curves. The following example is described for instance
in [Gompf and Stipsicz 1999, Chapter 7]: Let Bn,m denote the singular complex
curve in CP1

×CP1 that is the union of 2n parallel copies of the first factor and 2m
parallel copies of the second factor. The curve Bn,m represents in cohomology the
class 2nS1+ 2mS2, where S1 = [CP1

× {∗}] and S2 = [{∗} ×CP1
]. Let X ′(n,m)

denote the double covering of CP1
× CP1 branched over Bn,m . It is a singular

complex surface that has a canonical resolution X (n,m); see [Barth et al. 1984,
Chapter III]. As a smooth 4-manifold, X (n,m) is diffeomorphic to the double



GEOGRAPHY OF SYMPLECTIC 4-MANIFOLDS 81

cover of CP1
×CP1 branched over the smooth curve B̃n,m given by smoothing the

double points. Hence the topological invariants for X = X (n,m) can be calculated
with the formulas from Proposition 47 to be

c2
1(X)= 4(n− 2)(m− 2), e(X)= 6+ 2(2m− 1)(2n− 1), σ (X)=−4mn.

Writing X ′ = X ′(n,m) and M = CP1
×CP1, denote by φ : X ′→ M the double

covering, by π :X→ X ′ the canonical resolution, and byψ=φ◦π the composition.
Since all singularities of Bn,m are ordinary double points, K X can be calculated by
a formula in [Barth et al. 1984, Theorem 7.2, Chapter III] as

K X = ψ
∗(KM +

1
2 Bm,n)= ψ

∗(−2S1− 2S2+ nS1+mS2)

= ψ∗((n− 2)S1+ (m− 2)S2).

We interpret this formula as follows: The map ψ : X → CP1
× CP1 followed

by the projection onto the first factor defines a fibration X → CP1 whose fibres
are the branched covers of the rational curves {p} × CP1, where p ∈ CP1. The
generic rational curve among them is disjoint from the 2m curves in Bn,m parallel
to {∗}×CP1 and intersects the 2n curves parallel to CP1

× {∗} at 2n points. This
implies that the generic fibre F2 of the fibration is a double branched cover of
CP1 at 2n distinct points and hence a smooth complex curve of genus n− 1. This
curve represents the class ψ∗S2 in the surface X . Similarly, there is a fibration
X → CP1 in genus m − 1 curves that represents F1 = ψ

∗S1. Hence we can write
K X = (n − 2)F1 + (m − 2)F2. In particular, the divisibility of K X is the greatest
common divisor of n− 2 and m− 2.

Remark 67. In [Catanese 1984; 1986; Catanese and Wajnryb 2007], the authors
constructed certain families of simply connected surfaces of general type with
divisible canonical class, using branched coverings over singular curves. Some
of these surfaces are diffeomorphic but not deformation equivalent, thus giving
counterexamples to a well-known conjecture.
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THERESIENSTRASSE 39
80333 MUNICH

GERMANY

mark.hamilton@math.lmu.de


