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We consider the exact asymptotic behavior of smooth solutions to boundary
blow-up problems for the k-Hessian equation on �, where ∂� is strictly
(k−1)-convex. Similar results were obtained by Cîrstea and Trombetti when
k= n (the Monge–Ampère equation) and by Bandle and Marcus for a semi-
linear equation.

1. Introduction and main results

We investigate the qualitative properties of solutions to the boundary blow-up prob-
lem for the k-Hessian equation of the form

(1-1)
{

Hk[D2u] = σk(λ1, . . . , λn)= b(x) f (u), x ∈�,
u(x)=∞, x ∈ ∂�,

where b(x) is a continuous weight function, λ1, . . . , λn are eigenvalues of D2u,
the Hessian matrix of a C2-function u defined over �, and � is a bounded domain
in Rn . The boundary condition means u(x)→+∞ as d(x), dist(x, ∂�)→ 0+.

Following [Caffarelli et al. 1985; Trudinger 1995], σk is defined by

(1-2) σk(λ1, . . . , λn)=
∑

1≤i1<···<ik≤n

λi1 · · · λik .

One can solve (1-1) in a class of k-convex functions by [Caffarelli et al. 1985; Jian
2006]. Recall that a function u ∈ C2(�) is called k-convex (or strictly k-convex)
if (λ1, . . . , λn)∈0k (or (λ1, . . . , λn)∈0k) for every x ∈�, where 0k is the convex
cone with vertex at the origin given by

0k = {λ= (λ1, . . . , λn) ∈ Rn
| σ j (λ) > 0, j = 1, . . . , k}.

Obviously,

01 ⊃ 02 ⊃ · · · ⊃ 0n = {λ= (λ1, . . . , λn) ∈ Rn
| λ j > 0, j = 1, . . . , k},
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where 0n is the positive cone, and σk(λ1, . . . , λn) is elliptic in the class of k-convex
functions.

For an open bounded subset � of Rn with boundary of class C2 and for every
x ∈∂�, we denote by ρ1(x), . . . , ρn−1(x) the principal curvatures of ∂� (relative to
the interior normal). Recall that � is said to be l-convex if (ρ1(x), . . . , ρn−1(x))∈
0l , and it is called strictly l-convex if (ρ1(x), . . . , ρn−1(x))∈0l , for every x ∈ ∂�.
In particular, strictly (n−1)-convex is just strictly convex.

Using radial function methods and techniques of ordinary differential inequal-
ity, Jian [2006] constructed various barriers functions, then proved existence and
nonexistence theorems using those barriers. Furthermore, generic boundary blow-
up rates for the solution are derived for the k-Hessian equation with boundary
blow-up problem. In this paper, we derive accurately the blow-up rate of solutions
to boundary blow-up problems for Hessian equations.

Let K` denote the set of all positive nondecreasing C1-functions m defined on
(0, ν), for some ν > 0, for which there exists

(1-3) lim
t→0+

∫ t
0 m(s) ds

m(t)
= 0 and lim

t→0+

d
dt

(∫ t
0 m(s) ds

m(t)

)
= `.

A complete characterization of K` (according to ` 6= 0 or ` = 0) is provided by
[Cı̂rstea and Rădulescu 2006].

One has the following examples for special `, where p > 0 is arbitrary:

(a) m(t)= (−1/ln t)p with `= 1,

(b) m(t)= t p with `= 1/(p+ 1),

(c) m(t)= e−1/t p
with `= 0.

Definition 1.1. A positive measurable function f defined on [a,∞), for some
a > 0, is called regularly varying at infinity with index q , written f ∈ RVq , if for
each λ > 0 and some q ∈ R,

(1-4) lim
t→∞

f (λt)
f (t)

= λq .

The real number q is called the index of regular variation.

When q = 0, we have:

Definition 1.2. A positive measurable function L defined on [a,∞), for some
a > 0, is called regularly varying at infinity, if for each λ > 0 and some q ∈ R,

(1-5) lim
t→∞

L(λt)
L(t)

= 1.

By Definitions 1.1 and 1.2, if f ∈ RVq , it can be represented in the form

(1-6) f (t)= uq L(t).
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Notation. If H is a nondecreasing function on R, then we denote by H← the
(left-continuous) inverse of H [Resnick 1987], that is,

H←(y)= inf{s : H(s)≥ y}.

If α > 0 is sufficiently large, we define

(1-7) P(u)= sup
{

f (y)
yk : α ≤ y ≤ u

}
, for u ≥ α.

Problem (1-1) is the Laplace operator when k = 1. There are many papers re-
solving existence, uniqueness and asymptotic behavior issues for blow-up solutions
of semilinear/quasilinear elliptic equations: for instance [Osserman 1957; Resnick
1987; Véron 1992; Bandle and Marcus 1992; 1995; Garcı́a-Melián et al. 2001;
Chuaqui et al. 2004; Cı̂rstea and Rădulescu 2006; Garcı́a-Melián 2006].

When k = n, problem (1-1) is the Monge–Ampère equation, for which Cı̂rstea
and Trombetti [2008] obtained existence, uniqueness and asymptotic behavior; see
also [Guan and Jian 2004; Mohammed 2007].

The boundary blow-up problem of the k-Hessian equation was considered in
[Salani 1998; Colesanti et al. 2000; Jian 2006]. See also [Takimoto 2006] for recent
results on boundary blow-up problems for k-curvature equations, where there is a
considerable difference between the cases 1 ≤ k ≤ n − 1 and k = n. However,
we can unify them by using techniques from [Colesanti et al. 2000; Cı̂rstea and
Trombetti 2008] for k-Hessian equations.

Our asymptotic results are obtained in the case when ∂� is strictly (k−1)-
convex, but for k-curvature equations in [Cı̂rstea and Trombetti 2008], the con-
dition that ∂� is strictly convex is needed.

Theorem 1.3. Let n ≥ 2 and � be a smooth, strictly (k−1)-convex bounded do-
main in Rn . Assume that f ∈ RVq with q > k and there exists m ∈ K` such that

(1-8) 0< β− = lim inf
d(x)→0

b(x)
mk+1(d(x))

and lim sup
d(x)→0

b(x)
mk+1(d(x))

= β+ <∞.

Then, every k-convex blow-up solution u∞ of (1-1) satisfies

(1-9) ξ− ≤ lim inf
d(x)→0

u
φ(d(x))

and lim sup
d(x)→0

u
φ(d(x))

≤ ξ+,

where φ is defined by

(1-10) φ(t)= P←
((∫ t

0
m(s) ds

)−k−1)
, for t > 0 small,
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and ξ± are positive constants given by

(1-11)
(ξ+)k−q

β−
max
∂�

σk−1 =
(ξ−)k−q

β+
min
∂�

σk−1 =

(
(q − k)/(n+ 1)

)k+1

1+ `(q − k)/(k+ 1)
.

On the other hand, Colesanti et al. [2000] established asymptotic estimates for
the behavior of the smallest viscosity solution near the boundary of � for the
Hessian equation

(1-12)
{

Hk[D2u] = f (u), x ∈�,
u(x)=∞, x ∈ ∂�.

Theorem 1.3 may also been seen as a generalization of the asymptotic behavior for
the viscosity solution in [Colesanti et al. 2000].

Remark 1.4. In the setting of Theorem 1.3, limd(x)→0 u/φ(d(x)) exists provided
that � is a ball and (1-8) holds with β− = β+ ∈ (0,∞). The latter condition is
equivalent to saying that

(1-13) b(x)∼ (m(d(x)))k+1 as d(x)→ 0, for some m ∈ K`.

More exactly, when � is a ball of radius R > 0, Theorem 1.3 reads as follows.

Corollary 1.5. Let �= BR be a ball of radius R > 0 and f ∈ RVq with q > k. If
(1-13) holds, then every strictly k-convex blow up solution u of (1-1) satisfies

(1-14) u(x)∼ ξφ(d(x)) as d(x)→ 0,

where φ is defined by (1-10) and ξ is given by

(1-15) ξ =

((
(q − k)/(k+ 1)

)k+1 Rk−1

1+ `(q − k)/(k+ 1)

)1/(k−q)

.

Under slightly more restrictive conditions than those in Theorem 1.3, there is at
most one strictly k-convex blow-up solution of (1-1).

Theorem 1.6. Let � be a smooth, strictly (k−1)-convex, bounded domain in Rn .
Suppose f ∈ RVq with q > k, and f (u)/uk is increasing on (0,∞). Then, (1-1)
has at most one strictly k-convex blow-up solution, provided that either

(i) b is positive on �, or

(ii) b is zero on ∂�, � is a ball of radius R > 0 and (1-13) holds.

Remark 1.7. When k = n (the Monge–Ampère equation), Theorems 1.3 and 1.6
were obtained in [Cı̂rstea and Trombetti 2008].
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2. Preliminaries

Proposition 2.1. Let � be an open subset of Rn with n ≥ 2. If h ∈ C2(R) and
g ∈ C2(�) then

(2-1) σk(D2h(g(x)))=
(
h′(g(x))

)k−1h′′(x)σk−1(D2g|i, j )gi g j

+
(
h′(g(x))

)k
σk(D2g), for all x ∈�,

where D2g|i, j is the cofactor of the (i, j)-th entry of the symmetric matrix D2g(x).

For µ > 0, we set 0µ = {x ∈� : d(x, ∂�) < µ}.

Remark 2.2. If � is bounded and ∂� ∈ C l for l ≥ 2, then there exists a positive
constant µ depending on � such that d ∈ C l(0µ). (See also Lemma 14.16 in
[Gilbarg and Trudinger 1998].)

Corollary 2.3. Let � be bounded with ∂� ∈ C l for l ≥ 2. Assume that µ > 0 is
small such that d ∈C2(0µ) and h is a C2-function on (0, µ). Let x0 ∈0µ \∂� and
y0 ∈ ∂� be such that |x0− y0| = d(x0). Then, we have

(2-2) σk
(
D2h(d(x0))

)
=
(
−h′(d(x0))

)k−1h′′(d(x0))σk−1(ε1, . . . , εn−1)

+
(
−h′(d(x0))

)k
σk(ε1, . . . , εn−1),

where ρ1(y0), . . . , ρn−1(y0) are the principal curvatures of ∂� at y0 and εi =

ρi (y0)/(1− ρi (y0)d(x0)), i = 1, . . . , n− 1.

Proof. It is easy to calculate that the expression of the Hessian matrix of d at x0

in terms of a principal coordinate system at y0 (see also Lemma 14.17 in [Gilbarg
and Trudinger 1998]), namely

D2d(x0)= diag
(

−ρ1(y0)

1− ρ1(y0)d(x0)
, . . . ,

−ρn−1(y0)

1− ρn−1(y0)d(x0)
, 0
)
,

Dd(x0)= (0, . . . , 0, 1).

Thus by Proposition 2.1, we obtain
σk
(
D2h(d(x0))

)
=
(
−h′(d(x0))

)k−1h′′(d(x0))σk−1




ρ1(y0)
1−ρ1(y0)d(x0)

. . .
ρn−1(y0)

1−ρn−1(y0)d(x0)




+
(
−h′(d(x0))

)k
σk




ρ1(y0)
1−ρ1(y0)d(x0)

. . .
ρn−1(y0)

1−ρn−1(y0)d(x0)


 . �
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We now give a brief account of the definitions and properties of regularly varying
functions; see also [Resnick 1987; Cı̂rstea and Trombetti 2008].

Proposition 2.4 (Uniform convergence theorem). If L is slowly varying, L(λu)
L(u)

tends to 1 as u→∞, uniformly on each compact λ-set in (0,∞).

Proposition 2.5. (See also Proposition 4.9 in [Cîrstea and Trombetti 2008].)

(i) If R ∈ RVq , then limu→∞ log R(u)/log u = q.

(ii) If R1 ∈ RVq1 and R2 ∈ RVq2 with limu→∞ R2(u)=∞, then

R1 ◦ R2 ∈ RVq1q2 .

(iii) Suppose R is nondecreasing and R ∈ RVq , 0< q <∞. Then

R← ∈ RVq−1 .

(iv) Suppose R1, R2 are nondecreasing and q-varying with q ∈ (0,∞). Then, for
c ∈ (0,∞), we have

lim
u→∞

R1(u)
R2(u)

= c if and only if lim
u→∞

R←1 (u)
R←2 (u)

= c−1/q .

Proposition 2.6. (See also Proposition 4.10 in [Cîrstea and Trombetti 2008]). Let
R ∈ RVq and choose B ≥ 0 so that R is locally bounded on [B,∞). If q > 0, then

(a) sup{R(y) : B ≤ y ≤ u} ∼ R(u) as u→∞,

(b) inf{R(y) : y ≥ u} ∼ R(u) as u→∞.

If q < 0, then

(c) inf{R(y) : y ≥ u} ∼ R(u) as u→∞,

(d) inf{R(y) : B ≤ y ≤ u} ∼ R(u) as u→∞.

3. Asymptotic properties of φ

Using Karamata’s theory of regular variation and its extensions, we now consider
the asymptotic properties of the function φ defined in (1-10).

Lemma 3.1. Let m ∈ K` and f ∈ RVq with q > k. If φ is defined by (1-10), then
there exists a functionψ ∈C2(0, τ )with τ >0 which satisfies limt→0 ψ(t)/φ(t)=1
and

lim
t→0

ψ(t)ψ ′′(t)
(ψ ′(t))2

= 1+
(q − k)`

k+ 1
,(3-1)

lim
t→0

(−ψ ′(t))k−1ψ ′′(t)
mk+1(t) f (ψ(t))

=

(
k+ 1
q − k

)k+1(
1+

(q − k)`
k+ 1

)
.(3-2)

where ` appears in (1-3).
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Proof. To prove (3-1), denote g(u) = f (u)/uk . Since g ∈ RVq−k and q > k,
by Proposition 2.6 we have limu→∞ g(u)/P(u) = 1. By Remark 4.8 in [Cı̂rstea
and Trombetti 2008] we infer that there exists a function ĝ ∈ C2(0, τ ) such that
limu→∞ ĝ(u)/g(u)= 1 and

(3-3) lim
u→∞

uĝ′(u)
ĝ(u)

= q − k, lim
u→∞

uĝ′′(u)
ĝ′(u)

= q − k− 1,

where we have used g ∈ RVq−k .
We define ψ by

(3-4) ĝ(ψ(t))=
(∫ t

0
m(s) ds

)−k−1

, for t > 0 small.

Notice that

(3-5) φ(t)= P←
((∫ t

0
m(s) ds

)−k−1)
, for t > 0 small.

Thus Proposition 2.5 gives

lim
t→0

ĝ←
(( ∫ t

0 m(s) ds
)−k−1)

P←
(( ∫ t

0 m(s) ds
)−k−1) = lim

t→0

ĝ
(( ∫ t

0 m(s) ds
)−k−1)

P
(( ∫ t

0 m(s) ds
)−k−1) = 1,

where we have used limu→∞ g(u)/P(u) = 1 and limu→∞ ĝ(u)/g(u) = 1 in the
last equality.

By the definition of the inverse of ĝ we see that

(3-6) lim
t→0

ψ(t)
φ(t)
= lim

t→0

ĝ←
(( ∫ t

0 m(s) ds
)−k−1)

P←
(( ∫ t

0 m(s) ds
)−k−1) = 1.

By differentiating (3-4) we obtain

(3-7) ĝ′(ψ(t))ψ ′(t)=−(k+ 1)
(∫ t

0
m(s) ds

)−k−2

m(t), for t > 0 small.

Then, by (3-3), (3-4) and (3-7),

(3-8)
ψ ′(t)
ψ(t)

∼
−(k+ 1)

q − k
m(t)∫ t

0 m(s) ds
, as t→ 0.

We differentiate (3-7), then use (1-3) and (3-3) to deduce that as t→ 0

(3-9) ĝ′(ψ(t))
(ψ ′(t))2

ψ(t)

(
q − k− 1+

ψ(t)ψ ′′(t)
(ψ ′(t))2

)
∼ (k+ 1)(k+ 1+ `)m2(s)

(∫ t

0
m(s) ds

)−k−3

.
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Putting (3-7) and (3-8) into (3-9), we have

−(k+ 1)
(∫ t

0
m(s) ds

)−k−2

m(t)
−(k+ 1)

q − k
m(t)∫ t

0 m(s) ds

(
q − k− 1+

ψ(t)ψ ′′(t)
(ψ ′(t))2

)

=
(k+ 1)2

q − k
m2(t)

(∫ t

0
m(s) ds

)−k−3(
q − k− 1+

ψ(t)ψ ′′(t)
(ψ ′(t))2

)
(3-10)

∼ (k+ 1)(k+ 1+ `)m2(s)
(∫ t

0
m(s) ds

)−k−3

.

Thus,

(3-11)
(k+ 1)
q − k

(
q − k− 1+

ψ(t)ψ ′′(t)
(ψ ′(t))2

)
∼ (k+ 1+ `).

(3-1) now follows from (3-11).
From (3-4) and (3-8), we find

(3-12) lim
t→0

(
−
ψ ′(t)
ψ(t)

)k+1 1
mk+1(t)ĝ(ψ(t))

=

(
k+ 1
q − k

)k+1

.

This, combined with (3-1), proves (3-2). �

4. Proof of Theorem 1.3

Fix ε ∈ (0, 1/2) and choose δ > 0 small enough such that:

(a) m is nondecreasing on (0, 2δ).

(b) β−(1−ε)
(
m(d(x))

)k+1
≤ b(x)≤ β+(1+ε)

(
m(d(x))

)k+1, for every x ∈�2δ,
where for λ > 0 we set

�λ = {x ∈� : d(x) < λ}.

(c) d(x) is a C2 function on 02δ = {x ∈� : d(x) < 2δ}.

(d) 0<ψ , ψ ′ < 0, and ψ ′′ > 0 on (0, 2δ), where ψ is as in Lemma 3.1.

(e) σk−1(diag(1−ρ1(y)d(x), . . . , 1−ρn−1(y)d(x))) > 1− ε, for every x ∈�2δ.
Recall that ρi (y), i = 1, . . . , n−1, denote the principal curvatures of ∂� at y,
where y ∈ ∂� is such that |x − y| = d(x).

Fix τ ∈ (0, δ). With ξ± given by (1-11), we set

(4-1) η± =
(
(1∓ ε)(1∓ 2ε)

)1/(k−q)
ξ±.

Define

(4-2)
{
v+τ = η

+ψ((1− e−T (d(x)−τ))/T ), x ∈�2δ \�τ ,

v−τ = η
−ψ((1− e−T (d(x)+τ))/T ), x ∈�2δ−τ .
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Step 1. We prove that, near the boundary, v+τ (respectively, v−τ ) is an upper (re-
spectively, lower) solution of (1-1), that is,

(4-3)

{
Hk[D2v+τ ] ≤ b(x) f (v+τ ), x ∈�2δ \�τ ,

Hk[D2v−τ ] ≥ b(x) f (v−τ ), x ∈�2δ−τ .

We denote by

(4-4) M+ = max
y∈∂�

σk−1(y) and M− = min
y∈∂�

σk−1(y).

After some computations we obtain, for a point x ∈�2δ \�τ ,

[v+τ ]i j = η
+e−T (d(x)−τ)(ψ ′di j + di d j (ψ

′′e−T (d(x)−τ)
− Tψ ′)

)
.

Since |Dd(x)| = 1 in x ∈�2δ \�τ , we can choose a coordinate system such that

Dd(x)= (0, . . . , 0, 1),

D2d(x)= diag
(
d11(x), . . . , dn−1,n−1(x), 0

)
,

where di i (x) = −ρi (y)/(1− ρi (y)d(x)), and y ∈ ∂� is such that |x − y| = d(x)
as in Corollary 2.3.

Hence

D2v+τ = η
+e−T (d(x)−τ) diag

(
ψ ′d11(x), . . . , ψ ′dn−1,n−1(x), ψ ′′e−T (d(x)−τ)

−Tψ ′
)
.

Using this and Corollary 2.3, we can easily compute the k-Hessian of v+τ :

(4-5) Hk[D2v+τ ] = (η
+)ke−(k+1)T (d(x)−τ)

[−ψ ′]k−1ψ ′′σk−1(−D2d(x))

+ (η+)ke−kT (d(x)−τ)
[−ψ ′]k

(
Tσk−1(−D2d(x))+ σk(−D2d(x))

)
.

Now, if

T1 ≤−
max�2δ\�τ

|σk(D2d(x))|

min�2δ\�τ
σk−1(−D2d(x))

,

then (4-5) and condition (e) yield for T ≤ T1,

Hk[D2v+τ ] ≤ (η
+)ke−(k+1)T (d(x)−τ)

[−ψ ′]k−1ψ ′′σk−1(−D2d(x)),

≤
(η+)k

1− ε
M+e−(k+1)T (d(x)−τ)

[−ψ ′]k−1ψ ′′, x ∈�2δ \�τ .

Similarly, we have for T2

T2 ≥
max�2δ−τ |σk(D2d(x))|

min�2δ−τ σk−1(−D2d(x))
,
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for T ≥ T2,

Hk[D2v−τ ] ≥ (η
−)ke−(k+1)T (d(x)+τ)

[−ψ ′]k−1ψ ′′σk−1(−D2d(x)),

≥
(η−)k

1+ ε
M−e−(k+1)T (d(x)+τ)

[−ψ ′]k−1ψ ′′, x ∈�2δ−τ .

Therefore, to deduce (4-3) it is enough to establish that

(4-6) lim
t→0

(η±)k
M±

β∓
[−ψ ′(t)]k−1ψ ′′(t)
mk+1(t) f (η±ψ(t))

= (1∓ ε)(1∓ ε).

Since f ∈ RVq , Lemma 3.1 and our choice of η± in (4-1),

lim
t→0

(η±)k
M±

β∓
[−ψ ′(t)]k−1ψ ′′(t)
mk+1(t) f (η±ψ(t))

= (η±)k
M±

β∓

( k+1
q−k

)k+1(
1+ (q−k)`

k+1

)
(η±)−q

=
(
(1∓ ε)(1∓ 2ε)

)
ξ±

(k−q) M±

β∓

( k+1
q−k

)k+1(
1+ (q−k)`

k+1

)
= (1∓ ε)(1∓ 2ε),

where we have used (1-11) in the last equality.

Step 2. Every strictly k-convex blow-up solution u of (1-1) satisfies (1-9).

Let C =maxd(x)=δ u(x). Notice that

(4-7)
{
v+τ +C =∞> u(x), x ∈� with d(x)= τ,
v+τ +C ≥ u(x), x ∈� with d(x)= δ.

Using (4-3) we deduce that for every x ∈�δ \�τ ,

Hk[D2(v+τ +C)] = Hk[D2v+τ ] ≤ b(x) f (v+τ )≤ b(x) f (v+τ +C).

Since u is a solution to (1-1), by the comparison principle for k-Hessians [Jian
2006, Lemma 2.1] we find

(4-8) v+τ +C ≥ u(x), for all x ∈�δ \�τ .

We set C ′= ξ−ψ(δ). Hence, we have C ′≥v−τ (x) for every x ∈�with d(x)= δ−τ .
It follows that

(4-9) u(x)+C ′ ≥ v−τ (x), for all x ∈ ∂�δ−τ .

We see that, for every x ∈�δ−τ ,

Hk[u(x)+C ′] = Hk[D2u(x)] ≤ b(x) f (u(x))≤ b(x) f (u(x)+C ′),

while by (4-3) we have

(4-10) Hk[D2v−τ ] ≥ b(x) f (v−τ ), x ∈�δ−τ .
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Using again the comparison principle for k-Hessian equations, we infer that

(4-11) u(x)+C ′ ≥ v−τ (x), for all x ∈�δ−τ .

By (4-8) and (4-11), letting τ → 0 we obtain

(4-12)

{(
(1+ε)(1+2ε)

)1/(k−q)
ξ−ψ((1−e−T2d(x))/T2)−C ′ ≤ u(x), x ∈�δ,

u(x)≤
(
(1−ε)(1−2ε)

)1/(k−q)
ξ+ψ((1−e−T1d(x))/T1)+C.

Dividing by ψ((1−e−Ti d(x))/Ti ) for i = 1, 2 and noticing that limt→0 ψ(t)/φ(t)=
1, letting d(x)→ 0, we obtain

(4-13)
{

lim infd(x)→0 u/φ(d(x))≥
(
(1+ ε)(1+ 2ε)

)1/(k−q)
ξ−,

lim infd(x)→0 u/φ(d(x))≤
(
(1− ε)(1− 2ε)

)1/(k−q)
ξ+.

Since ε > 0 is arbitrary, we let ε→ 0 and obtain (1-9). This completes the proof
of Theorem 1.3.

5. Proof of Theorem 1.6

We follow the methods in [Cı̂rstea and Trombetti 2008] and divide the proof into
two steps:

Step 1. For all strictly k-convex blow-up solutions u1, u2 of (1-1),

(5-1) lim
d(x)→0

u1(x)
u2(x)

= 1.

Step 2. There is at most one strictly convex blow-up solution of (1-1).

Proof of Step 1. The argument breaks into two cases.

Case (i): b > 0 on �. Since u1 and u2 are arbitrary, it suffices to show that

(5-2) lim inf
d(x)→0

u1(x)
u2(x)

≥ 1.

Without loss of generality, we can assume that 0 belongs to �. Let ε ∈ (0, 1) be
fixed and let λ > 1 be close to 1.

We set

(5-3) Cλ =
(
(1+ ε)λ2k max

x∈(1/λ)�

b(λx)
b(x)

)1/(q−k)
,

where (1/λ)�=
{
(1/λ)x : x ∈�

}
. Notice that Cλ→ (1+ ε)1/(q−k) as λ→ 1.

Hence, by Proposition 2.4 and limd(x)→0 u1(x)=∞, we deduce that there exists
δ = δ(ε) > 0, independent of λ, such that

(5-4) Cq
λ

f (u1(x))
f (Cλu1(x))

≤ 1+ ε, for all x ∈�δ and λ ∈ (1, 1+ η) for some η.
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We now define Uλ as

(5-5) Uλ(x)= Cλu1(λx), for all x ∈ (1/λ)�δ.

Notice by (5-3)–(5-5),

(5-6) Hk[D2Uλ(x)] = λ2kCk
λb(λx) f (u1(λx))

≤ λ2kCk−q
λ (1+ ε)b(λx) f (Cλu1(λx))

≤ b(x) f (Cλu1(λx))= b(x) f (Uλ(x)), x ∈ (1/λ)�δ,

which says that Uλ(x) is a supersolution of (1-1) with domain (1/λ)�δ.
Since f is increasing on (0,∞) and (5-6), for each constant M > 0,

(5-7) Hk[D2(Uλ(x)+M)] = Hk[D2Uλ(x)] ≤ b(x) f (Uλ(x))

≤ b(x) f (Uλ(x)+M), for all x ∈ (1/λ)�δ.

Notice also that Uλ(x) = ∞ > u2(x), for every x ∈ (1/λ)∂�. Moreover, x ∈
(1/λ)∂� implies that d(x) < δ (as λ > 1 is close to 1).

Thus, if we choose M > 0 large enough (for example, M = maxd(x)=δ u2(x)),
then by the comparison principle for k-Hessian equations we obtain

(5-8) Uλ(x)+M ≥ u2(x), for all x ∈�δ ∩ (1/λ)�δ.

Letting λ→ 1 in (5-8), we find

(5-9) (1+ ε)1/(q−k)u1(x)+M ≥ u2(x), for all x ∈�δ,

which implies that

(5-10) lim inf
d(x)→0

u1(x)
u2(x)

≥ (1+ ε)1/(k−q),

and then letting ε→ 0 we obtain (5-2).

Case (ii): b≡ 0 on ∂�, � is a ball of radius R> 0, and (1-13) holds. By Corollary
1.5, every strictly k-convex blow-up solution u of (1-1) satisfies

(5-11) lim
d(x)→0

u
φ(d(x))

=

((
(q − k)/(k+ 1)

)k+1 Rk−1

1+ `(q − k)/(k+ 1)

)1/(k−q)

,

where φ is defined by (1-10) and ` appears in (1-3). �

Proof of Step 2. If u1, u2 are arbitrary strictly k-convex blow-up solutions of (1-1),
it suffices to show that u1 ≤ u2 in �. Fix ε > 0. By Step 1 we infer that

(5-12) lim
d(x)→0

(
u1(x)− (1+ ε)u2(x)

)
=−∞.
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Since f (u)/uk is increasing on (0,∞), we deduce that

(5-13) Hk[D2(1+ ε)u2(x)] = (1+ ε)k Hk[D2u2(x)] ≤ (1+ ε)kb(x) f (u2(x))

≤ b(x) f ((1+ ε)u2(x)), for all x ∈�.

By (5-12), (5-13) and the comparison principle for k-Hessian equations,

(5-14) u1 ≤ (1+ ε)u2, for all x ∈�.

Letting ε→ 0, thus u1 ≤ u2 in �. This completes the proof of Step 2 and hence
of Theorem 1.6. �
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