Pacific

Journal of

 MathematicsBOUNDARY ASYMPTOTICAL BEHAVIOR OF LARGE SOLUTIONS TO HESSIAN EQUATIONS

Yong Huang

BOUNDARY ASYMPTOTICAL BEHAVIOR OF LARGE SOLUTIONS TO HESSIAN EQUATIONS

Yong Huang

Abstract

We consider the exact asymptotic behavior of smooth solutions to boundary blow-up problems for the k-Hessian equation on Ω, where $\partial \Omega$ is strictly ($k-1$)-convex. Similar results were obtained by Cîrstea and Trombetti when $k=n$ (the Monge-Ampère equation) and by Bandle and Marcus for a semilinear equation.

1. Introduction and main results

We investigate the qualitative properties of solutions to the boundary blow-up problem for the k-Hessian equation of the form

$$
\begin{cases}H_{k}\left[D^{2} u\right]=\sigma_{k}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=b(x) f(u), & x \in \Omega \tag{1-1}\\ u(x)=\infty, & x \in \partial \Omega\end{cases}
$$

where $b(x)$ is a continuous weight function, $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of $D^{2} u$, the Hessian matrix of a C^{2}-function u defined over Ω, and Ω is a bounded domain in \mathbb{R}^{n}. The boundary condition means $u(x) \rightarrow+\infty$ as $d(x) \triangleq \operatorname{dist}(x, \partial \Omega) \rightarrow 0_{+}$.

Following [Caffarelli et al. 1985; Trudinger 1995], σ_{k} is defined by

$$
\begin{equation*}
\sigma_{k}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \lambda_{i_{1}} \cdots \lambda_{i_{k}} . \tag{1-2}
\end{equation*}
$$

One can solve (1-1) in a class of k-convex functions by [Caffarelli et al. 1985; Jian 2006]. Recall that a function $u \in C^{2}(\Omega)$ is called k-convex (or strictly k-convex) if $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \bar{\Gamma}_{k}$ (or $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Gamma_{k}$) for every $x \in \Omega$, where Γ_{k} is the convex cone with vertex at the origin given by

$$
\Gamma_{k}=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n} \mid \sigma_{j}(\lambda)>0, j=1, \ldots, k\right\} .
$$

Obviously,

$$
\Gamma_{1} \supset \Gamma_{2} \supset \cdots \supset \Gamma_{n}=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n} \mid \lambda_{j}>0, j=1, \ldots, k\right\}
$$

where Γ_{n} is the positive cone, and $\sigma_{k}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is elliptic in the class of k-convex functions.

For an open bounded subset Ω of \mathbb{R}^{n} with boundary of class C^{2} and for every $x \in \partial \Omega$, we denote by $\rho_{1}(x), \ldots, \rho_{n-1}(x)$ the principal curvatures of $\partial \Omega$ (relative to the interior normal). Recall that Ω is said to be l-convex if $\left(\rho_{1}(x), \ldots, \rho_{n-1}(x)\right) \in$ $\bar{\Gamma}_{l}$, and it is called strictly l-convex if $\left(\rho_{1}(x), \ldots, \rho_{n-1}(x)\right) \in \Gamma_{l}$, for every $x \in \partial \Omega$. In particular, strictly $(n-1)$-convex is just strictly convex.

Using radial function methods and techniques of ordinary differential inequality, Jian [2006] constructed various barriers functions, then proved existence and nonexistence theorems using those barriers. Furthermore, generic boundary blowup rates for the solution are derived for the k-Hessian equation with boundary blow-up problem. In this paper, we derive accurately the blow-up rate of solutions to boundary blow-up problems for Hessian equations.

Let \mathfrak{K}_{ℓ} denote the set of all positive nondecreasing C^{1}-functions m defined on $(0, v)$, for some $v>0$, for which there exists

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{\int_{0}^{t} m(s) d s}{m(t)}=0 \quad \text { and } \quad \lim _{t \rightarrow 0^{+}} \frac{d}{d t}\left(\frac{\int_{0}^{t} m(s) d s}{m(t)}\right)=\ell \tag{1-3}
\end{equation*}
$$

A complete characterization of \mathfrak{K}_{ℓ} (according to $\ell \neq 0$ or $\ell=0$) is provided by [Cîrstea and Rădulescu 2006].

One has the following examples for special ℓ, where $p>0$ is arbitrary:
(a) $m(t)=(-1 / \ln t)^{p}$ with $\ell=1$,
(b) $m(t)=t^{p}$ with $\ell=1 /(p+1)$,
(c) $m(t)=e^{-1 / t^{p}}$ with $\ell=0$.

Definition 1.1. A positive measurable function f defined on $[a, \infty)$, for some $a>0$, is called regularly varying at infinity with index q, written $f \in \mathbb{R} \mathbb{V}_{q}$, if for each $\lambda>0$ and some $q \in \mathbb{R}$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(\lambda t)}{f(t)}=\lambda^{q} \tag{1-4}
\end{equation*}
$$

The real number q is called the index of regular variation.
When $q=0$, we have:
Definition 1.2. A positive measurable function L defined on $[a, \infty)$, for some $a>0$, is called regularly varying at infinity, if for each $\lambda>0$ and some $q \in \mathbb{R}$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{L(\lambda t)}{L(t)}=1 \tag{1-5}
\end{equation*}
$$

By Definitions 1.1 and 1.2 , if $f \in \mathbb{R} \mathbb{V}_{q}$, it can be represented in the form

$$
\begin{equation*}
f(t)=u^{q} L(t) \tag{1-6}
\end{equation*}
$$

Notation. If H is a nondecreasing function on \mathbb{R}, then we denote by H^{\leftarrow} the (left-continuous) inverse of H [Resnick 1987], that is,

$$
H^{\leftarrow}(y)=\inf \{s: H(s) \geq y\}
$$

If $\alpha>0$ is sufficiently large, we define

$$
\begin{equation*}
\mathscr{P}(u)=\sup \left\{\frac{f(y)}{y^{k}}: \alpha \leq y \leq u\right\}, \quad \text { for } u \geq \alpha \tag{1-7}
\end{equation*}
$$

Problem (1-1) is the Laplace operator when $k=1$. There are many papers resolving existence, uniqueness and asymptotic behavior issues for blow-up solutions of semilinear/quasilinear elliptic equations: for instance [Osserman 1957; Resnick 1987; Véron 1992; Bandle and Marcus 1992; 1995; García-Melián et al. 2001; Chuaqui et al. 2004; Cîrstea and Rădulescu 2006; García-Melián 2006].

When $k=n$, problem (1-1) is the Monge-Ampère equation, for which Cîrstea and Trombetti [2008] obtained existence, uniqueness and asymptotic behavior; see also [Guan and Jian 2004; Mohammed 2007].

The boundary blow-up problem of the k-Hessian equation was considered in [Salani 1998; Colesanti et al. 2000; Jian 2006]. See also [Takimoto 2006] for recent results on boundary blow-up problems for k-curvature equations, where there is a considerable difference between the cases $1 \leq k \leq n-1$ and $k=n$. However, we can unify them by using techniques from [Colesanti et al. 2000; Cîrstea and Trombetti 2008] for k-Hessian equations.

Our asymptotic results are obtained in the case when $\partial \Omega$ is strictly $(k-1)$ convex, but for k-curvature equations in [Cîrstea and Trombetti 2008], the condition that $\partial \boldsymbol{\Omega}$ is strictly convex is needed.

Theorem 1.3. Let $n \geq 2$ and Ω be a smooth, strictly $(k-1)$-convex bounded domain in \mathbb{R}^{n}. Assume that $f \in \mathbb{R} \mathbb{V}_{q}$ with $q>k$ and there exists $m \in \mathfrak{K}_{\ell}$ such that
(1-8) $0<\beta^{-}=\liminf _{d(x) \rightarrow 0} \frac{b(x)}{m^{k+1}(d(x))} \quad$ and $\quad \limsup _{d(x) \rightarrow 0} \frac{b(x)}{m^{k+1}(d(x))}=\beta^{+}<\infty$.
Then, every k-convex blow-up solution u_{∞} of (1-1) satisfies

$$
\begin{equation*}
\xi^{-} \leq \liminf _{d(x) \rightarrow 0} \frac{u}{\phi(d(x))} \quad \text { and } \quad \limsup _{d(x) \rightarrow 0} \frac{u}{\phi(d(x))} \leq \xi^{+} \tag{1-9}
\end{equation*}
$$

where ϕ is defined by

$$
\begin{equation*}
\phi(t)=\mathscr{P} \leftarrow\left(\left(\int_{0}^{t} m(s) d s\right)^{-k-1}\right), \quad \text { for } t>0 \text { small } \tag{1-10}
\end{equation*}
$$

and $\xi^{ \pm}$are positive constants given by

$$
\begin{equation*}
\frac{\left(\xi^{+}\right)^{k-q}}{\beta^{-}} \max _{\partial \Omega} \sigma_{k-1}=\frac{\left(\xi^{-}\right)^{k-q}}{\beta^{+}} \min _{\partial \Omega} \sigma_{k-1}=\frac{((q-k) /(n+1))^{k+1}}{1+\ell(q-k) /(k+1)} \tag{1-11}
\end{equation*}
$$

On the other hand, Colesanti et al. [2000] established asymptotic estimates for the behavior of the smallest viscosity solution near the boundary of Ω for the Hessian equation

$$
\begin{cases}H_{k}\left[D^{2} u\right]=f(u), & x \in \Omega \tag{1-12}\\ u(x)=\infty, & x \in \partial \Omega\end{cases}
$$

Theorem 1.3 may also been seen as a generalization of the asymptotic behavior for the viscosity solution in [Colesanti et al. 2000].

Remark 1.4. In the setting of Theorem 1.3, $\lim _{d(x) \rightarrow 0} u / \phi(d(x))$ exists provided that Ω is a ball and (1-8) holds with $\beta^{-}=\beta^{+} \in(0, \infty)$. The latter condition is equivalent to saying that

$$
\begin{equation*}
b(x) \sim(m(d(x)))^{k+1} \quad \text { as } d(x) \rightarrow 0, \quad \text { for some } m \in \mathfrak{K}_{\ell} \tag{1-13}
\end{equation*}
$$

More exactly, when Ω is a ball of radius $R>0$, Theorem 1.3 reads as follows.
Corollary 1.5. Let $\Omega=B_{R}$ be a ball of radius $R>0$ and $f \in \mathbb{R} \mathbb{V}_{q}$ with $q>k$. If (1-13) holds, then every strictly k-convex blow up solution u of (1-1) satisfies

$$
\begin{equation*}
u(x) \sim \xi \phi(d(x)) \quad \text { as } d(x) \rightarrow 0 \tag{1-14}
\end{equation*}
$$

where ϕ is defined by (1-10) and ξ is given by

$$
\begin{equation*}
\xi=\left(\frac{((q-k) /(k+1))^{k+1} R^{k-1}}{1+\ell(q-k) /(k+1)}\right)^{1 /(k-q)} \tag{1-15}
\end{equation*}
$$

Under slightly more restrictive conditions than those in Theorem 1.3, there is at most one strictly k-convex blow-up solution of (1-1).

Theorem 1.6. Let Ω be a smooth, strictly ($k-1$)-convex, bounded domain in \mathbb{R}^{n}. Suppose $f \in \mathbb{R} \mathbb{V}_{q}$ with $q>k$, and $f(u) / u^{k}$ is increasing on $(0, \infty)$. Then, (1-1) has at most one strictly k-convex blow-up solution, provided that either
(i) b is positive on $\bar{\Omega}$, or
(ii) b is zero on $\partial \Omega, \Omega$ is a ball of radius $R>0$ and (1-13) holds.

Remark 1.7. When $k=n$ (the Monge-Ampère equation), Theorems 1.3 and 1.6 were obtained in [Cîrstea and Trombetti 2008].

2. Preliminaries

Proposition 2.1. Let Ω be an open subset of \mathbb{R}^{n} with $n \geq 2$. If $h \in C^{2}(\mathbb{R})$ and $g \in C^{2}(\Omega)$ then

$$
\begin{align*}
& \sigma_{k}\left(D^{2} h(g(x))\right)=\left(h^{\prime}(g(x))\right)^{k-1} h^{\prime \prime}(x) \sigma_{k-1}\left(\left.D^{2} g\right|_{i, j}\right) g_{i} g_{j} \tag{2-1}\\
&+\left(h^{\prime}(g(x))\right)^{k} \sigma_{k}\left(D^{2} g\right), \quad \text { for all } x \in \Omega
\end{align*}
$$

where $\left.D^{2} g\right|_{i, j}$ is the cofactor of the (i, j)-th entry of the symmetric matrix $D^{2} g(x)$.
For $\mu>0$, we set $\Gamma_{\mu}=\{x \in \bar{\Omega}: d(x, \partial \boldsymbol{\Omega})<\mu\}$.
Remark 2.2. If Ω is bounded and $\partial \Omega \in C^{l}$ for $l \geq 2$, then there exists a positive constant μ depending on Ω such that $d \in C^{l}\left(\Gamma_{\mu}\right)$. (See also Lemma 14.16 in [Gilbarg and Trudinger 1998].)
Corollary 2.3. Let Ω be bounded with $\partial \Omega \in C^{l}$ for $l \geq 2$. Assume that $\mu>0$ is small such that $d \in C^{2}\left(\Gamma_{\mu}\right)$ and h is a C^{2}-function on $(0, \mu)$. Let $x_{0} \in \Gamma_{\mu} \backslash \partial \Omega$ and $y_{0} \in \partial \Omega$ be such that $\left|x_{0}-y_{0}\right|=d\left(x_{0}\right)$. Then, we have

$$
\begin{align*}
\sigma_{k}\left(D^{2} h\left(d\left(x_{0}\right)\right)\right)=\left(-h^{\prime}\left(d\left(x_{0}\right)\right)\right)^{k-1} h^{\prime \prime}(& \left.d\left(x_{0}\right)\right) \sigma_{k-1}\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right) \tag{2-2}\\
& +\left(-h^{\prime}\left(d\left(x_{0}\right)\right)\right)^{k} \sigma_{k}\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right)
\end{align*}
$$

where $\rho_{1}\left(y_{0}\right), \ldots, \rho_{n-1}\left(y_{0}\right)$ are the principal curvatures of $\partial \Omega$ at y_{0} and $\varepsilon_{i}=$ $\rho_{i}\left(y_{0}\right) /\left(1-\rho_{i}\left(y_{0}\right) d\left(x_{0}\right)\right), i=1, \ldots, n-1$.

Proof. It is easy to calculate that the expression of the Hessian matrix of d at x_{0} in terms of a principal coordinate system at y_{0} (see also Lemma 14.17 in [Gilbarg and Trudinger 1998]), namely

$$
\begin{aligned}
D^{2} d\left(x_{0}\right) & =\operatorname{diag}\left(\frac{-\rho_{1}\left(y_{0}\right)}{1-\rho_{1}\left(y_{0}\right) d\left(x_{0}\right)}, \ldots, \frac{-\rho_{n-1}\left(y_{0}\right)}{1-\rho_{n-1}\left(y_{0}\right) d\left(x_{0}\right)}, 0\right) \\
\operatorname{Dd}\left(x_{0}\right) & =(0, \ldots, 0,1)
\end{aligned}
$$

Thus by Proposition 2.1, we obtain

$$
\begin{aligned}
& \sigma_{k}\left(D^{2} h\left(d\left(x_{0}\right)\right)\right) \\
& =\left(-h^{\prime}\left(d\left(x_{0}\right)\right)\right)^{k-1} h^{\prime \prime}\left(d\left(x_{0}\right)\right) \sigma_{k-1}\left(\left[\begin{array}{lll}
\frac{\rho_{1}\left(y_{0}\right)}{1-\rho_{1}\left(y_{0}\right) d\left(x_{0}\right)} & & \\
& & \ddots \\
& & \frac{\rho_{n-1}\left(y_{0}\right)}{1-\rho_{n-1}\left(y_{0}\right) d\left(x_{0}\right)}
\end{array}\right]\right) \\
& \quad+\left(-h^{\prime}\left(d\left(x_{0}\right)\right)\right)^{k} \sigma_{k}\left(\left[\begin{array}{lll}
\frac{\rho_{1}\left(y_{0}\right)}{1-\rho_{1}\left(y_{0}\right) d\left(x_{0}\right)} & & \\
& \ddots & \\
& & \left.\left.\frac{\rho_{n-1}\left(y_{0}\right)}{1-\rho_{n-1}\left(y_{0}\right) d\left(x_{0}\right)}\right]\right)
\end{array}\right.\right.
\end{aligned}
$$

We now give a brief account of the definitions and properties of regularly varying functions; see also [Resnick 1987; Cîrstea and Trombetti 2008].
Proposition 2.4 (Uniform convergence theorem). If L is slowly varying, $\frac{L(\lambda u)}{L(u)}$ tends to 1 as $u \rightarrow \infty$, uniformly on each compact λ-set in $(0, \infty)$.
Proposition 2.5. (See also Proposition 4.9 in [Cîrstea and Trombetti 2008].)
(i) If $R \in \mathbb{R} \mathbb{V}_{q}$, then $\lim _{u \rightarrow \infty} \log R(u) / \log u=q$.
(ii) If $R_{1} \in \mathbb{R} \mathbb{V}_{q_{1}}$ and $R_{2} \in \mathbb{R} \mathbb{V}_{q_{2}}$ with $\lim _{u \rightarrow \infty} R_{2}(u)=\infty$, then

$$
R_{1} \circ R_{2} \in \mathbb{R} \mathbb{V}_{q_{1} q_{2}}
$$

(iii) Suppose R is nondecreasing and $R \in \mathbb{R} \mathbb{V}_{q}, 0<q<\infty$. Then

$$
R^{\leftarrow} \in \mathbb{R} \mathbb{V}_{q^{-1}} .
$$

(iv) Suppose R_{1}, R_{2} are nondecreasing and q-varying with $q \in(0, \infty)$. Then, for $c \in(0, \infty)$, we have

$$
\lim _{u \rightarrow \infty} \frac{R_{1}(u)}{R_{2}(u)}=c \quad \text { if and only if } \quad \lim _{u \rightarrow \infty} \frac{R_{1}^{\leftarrow}(u)}{R_{2}^{\leftarrow}(u)}=c^{-1 / q}
$$

Proposition 2.6. (See also Proposition 4.10 in [Cîrstea and Trombetti 2008]). Let $R \in \mathbb{R} \mathbb{V}_{q}$ and choose $B \geq 0$ so that R is locally bounded on $[B, \infty)$. If $q>0$, then
(a) $\sup \{R(y): B \leq y \leq u\} \sim R(u)$ as $u \rightarrow \infty$,
(b) $\inf \{R(y): y \geq u\} \sim R(u)$ as $u \rightarrow \infty$.

If $q<0$, then
(c) $\inf \{R(y): y \geq u\} \sim R(u)$ as $u \rightarrow \infty$,
(d) $\inf \{R(y): B \leq y \leq u\} \sim R(u)$ as $u \rightarrow \infty$.

3. Asymptotic properties of ϕ

Using Karamata's theory of regular variation and its extensions, we now consider the asymptotic properties of the function ϕ defined in (1-10).
Lemma 3.1. Let $m \in \mathfrak{K}_{\ell}$ and $f \in \mathbb{R} \mathbb{V}_{q}$ with $q>k$. If ϕ is defined by (1-10), then there exists a function $\psi \in C^{2}(0, \tau)$ with $\tau>0$ which satisfies $\lim _{t \rightarrow 0} \psi(t) / \phi(t)=1$ and

$$
\begin{align*}
\lim _{t \rightarrow 0} \frac{\psi(t) \psi^{\prime \prime}(t)}{\left(\psi^{\prime}(t)\right)^{2}} & =1+\frac{(q-k) \ell}{k+1} \tag{3-1}\\
\lim _{t \rightarrow 0} \frac{\left(-\psi^{\prime}(t)\right)^{k-1} \psi^{\prime \prime}(t)}{m^{k+1}(t) f(\psi(t))} & =\left(\frac{k+1}{q-k}\right)^{k+1}\left(1+\frac{(q-k) \ell}{k+1}\right) \tag{3-2}
\end{align*}
$$

where ℓ appears in (1-3).

Proof. To prove (3-1), denote $g(u)=f(u) / u^{k}$. Since $g \in \mathbb{R V}_{q-k}$ and $q>k$, by Proposition 2.6 we have $\lim _{u \rightarrow \infty} g(u) / \mathscr{P}(u)=1$. By Remark 4.8 in [Cîrstea and Trombetti 2008] we infer that there exists a function $\hat{g} \in C^{2}(0, \tau)$ such that $\lim _{u \rightarrow \infty} \hat{g}(u) / g(u)=1$ and

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{u \hat{g}^{\prime}(u)}{\hat{g}(u)}=q-k, \quad \lim _{u \rightarrow \infty} \frac{u \hat{g}^{\prime \prime}(u)}{\hat{g}^{\prime}(u)}=q-k-1 \tag{3-3}
\end{equation*}
$$

where we have used $g \in \mathbb{R} \mathbb{V}_{q-k}$.
We define ψ by

$$
\begin{equation*}
\hat{g}(\psi(t))=\left(\int_{0}^{t} m(s) d s\right)^{-k-1}, \quad \text { for } t>0 \text { small. } \tag{3-4}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\phi(t)=\mathscr{P} \leftarrow\left(\left(\int_{0}^{t} m(s) d s\right)^{-k-1}\right), \quad \text { for } t>0 \text { small. } \tag{3-5}
\end{equation*}
$$

Thus Proposition 2.5 gives

$$
\lim _{t \rightarrow 0} \frac{\hat{g}^{\leftarrow} \leftarrow\left(\left(\int_{0}^{t} m(s) d s\right)^{-k-1}\right)}{\mathscr{P} \leftarrow\left(\left(\int_{0}^{t} m(s) d s\right)^{-k-1}\right)}=\lim _{t \rightarrow 0} \frac{\hat{g}\left(\left(\int_{0}^{t} m(s) d s\right)^{-k-1}\right)}{\mathscr{P}\left(\left(\int_{0}^{t} m(s) d s\right)^{-k-1}\right)}=1,
$$

where we have used $\lim _{u \rightarrow \infty} g(u) / \mathscr{P}(u)=1$ and $\lim _{u \rightarrow \infty} \hat{g}(u) / g(u)=1$ in the last equality.

By the definition of the inverse of \hat{g} we see that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\psi(t)}{\phi(t)}=\lim _{t \rightarrow 0} \frac{\hat{g}^{\leftarrow} \leftarrow\left(\left(\int_{0}^{t} m(s) d s\right)^{-k-1}\right)}{\mathscr{P} \leftarrow\left(\left(\int_{0}^{t} m(s) d s\right)^{-k-1}\right)}=1 \tag{3-6}
\end{equation*}
$$

By differentiating (3-4) we obtain

$$
\begin{equation*}
\hat{g}^{\prime}(\psi(t)) \psi^{\prime}(t)=-(k+1)\left(\int_{0}^{t} m(s) d s\right)^{-k-2} m(t), \quad \text { for } t>0 \text { small. } \tag{3-7}
\end{equation*}
$$

Then, by (3-3), (3-4) and (3-7),

$$
\begin{equation*}
\frac{\psi^{\prime}(t)}{\psi(t)} \sim \frac{-(k+1)}{q-k} \frac{m(t)}{\int_{0}^{t} m(s) d s}, \quad \text { as } t \rightarrow 0 \tag{3-8}
\end{equation*}
$$

We differentiate (3-7), then use (1-3) and (3-3) to deduce that as $t \rightarrow 0$

$$
\begin{align*}
\hat{g}^{\prime}(\psi(t)) \frac{\left(\psi^{\prime}(t)\right)^{2}}{\psi(t)}(q-k-1 & \left.+\frac{\psi(t) \psi^{\prime \prime}(t)}{\left(\psi^{\prime}(t)\right)^{2}}\right) \tag{3-9}\\
& \sim(k+1)(k+1+\ell) m^{2}(s)\left(\int_{0}^{t} m(s) d s\right)^{-k-3}
\end{align*}
$$

Putting (3-7) and (3-8) into (3-9), we have

$$
-(k+1)\left(\int_{0}^{t} m(s) d s\right)^{-k-2} m(t) \frac{-(k+1)}{q-k} \frac{m(t)}{\int_{0}^{t} m(s) d s}\left(q-k-1+\frac{\psi(t) \psi^{\prime \prime}(t)}{\left(\psi^{\prime}(t)\right)^{2}}\right)
$$

$$
\begin{align*}
& =\frac{(k+1)^{2}}{q-k} m^{2}(t)\left(\int_{0}^{t} m(s) d s\right)^{-k-3}\left(q-k-1+\frac{\psi(t) \psi^{\prime \prime}(t)}{\left(\psi^{\prime}(t)\right)^{2}}\right) \tag{3-10}\\
& \sim(k+1)(k+1+\ell) m^{2}(s)\left(\int_{0}^{t} m(s) d s\right)^{-k-3}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\frac{(k+1)}{q-k}\left(q-k-1+\frac{\psi(t) \psi^{\prime \prime}(t)}{\left(\psi^{\prime}(t)\right)^{2}}\right) \sim(k+1+\ell) \tag{3-11}
\end{equation*}
$$

(3-1) now follows from (3-11).
From (3-4) and (3-8), we find

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left(-\frac{\psi^{\prime}(t)}{\psi(t)}\right)^{k+1} \frac{1}{m^{k+1}(t) \hat{g}(\psi(t))}=\left(\frac{k+1}{q-k}\right)^{k+1} \tag{3-12}
\end{equation*}
$$

This, combined with (3-1), proves (3-2).

4. Proof of Theorem 1.3

Fix $\epsilon \in(0,1 / 2)$ and choose $\delta>0$ small enough such that:
(a) m is nondecreasing on $(0,2 \delta)$.
(b) $\beta^{-}(1-\epsilon)(m(d(x)))^{k+1} \leq b(x) \leq \beta^{+}(1+\epsilon)(m(d(x)))^{k+1}$, for every $x \in \Omega_{2 \delta}$, where for $\lambda>0$ we set

$$
\boldsymbol{\Omega}_{\lambda}=\{x \in \Omega: d(x)<\lambda\}
$$

(c) $d(x)$ is a C^{2} function on $\Gamma_{2 \delta}=\{x \in \bar{\Omega}: d(x)<2 \delta\}$.
(d) $0<\psi, \psi^{\prime}<0$, and $\psi^{\prime \prime}>0$ on $(0,2 \delta)$, where ψ is as in Lemma 3.1.
(e) $\sigma_{k-1}\left(\operatorname{diag}\left(1-\rho_{1}(y) d(x), \ldots, 1-\rho_{n-1}(y) d(x)\right)\right)>1-\varepsilon$, for every $x \in \Omega_{2 \delta}$. Recall that $\rho_{i}(y), i=1, \ldots, n-1$, denote the principal curvatures of $\partial \Omega$ at y, where $y \in \partial \Omega$ is such that $|x-y|=d(x)$.
Fix $\tau \in(0, \delta)$. With $\xi^{ \pm}$given by (1-11), we set

$$
\begin{equation*}
\eta^{ \pm}=((1 \mp \varepsilon)(1 \mp 2 \varepsilon))^{1 /(k-q)} \xi^{ \pm} \tag{4-1}
\end{equation*}
$$

Define

$$
\begin{cases}v_{\tau}^{+}=\eta^{+} \psi\left(\left(1-e^{-T(d(x)-\tau)}\right) / T\right), & x \in \Omega_{2 \delta} \backslash \bar{\Omega}_{\tau} \tag{4-2}\\ v_{\tau}^{-}=\eta^{-} \psi\left(\left(1-e^{-T(d(x)+\tau)}\right) / T\right), & x \in \Omega_{2 \delta-\tau}\end{cases}
$$

Step 1. We prove that, near the boundary, $v_{\tau}^{+}\left(\right.$respectively, $\left.v_{\tau}^{-}\right)$is an upper (respectively, lower) solution of (1-1), that is,

$$
\begin{cases}H_{k}\left[D^{2} v_{\tau}^{+}\right] \leq b(x) f\left(v_{\tau}^{+}\right), & x \in \Omega_{2 \delta} \backslash \bar{\Omega}_{\tau}, \tag{4-3}\\ H_{k}\left[D^{2} v_{\tau}^{-}\right] \geq b(x) f\left(v_{\tau}^{-}\right), & x \in \Omega_{2 \delta-\tau}\end{cases}
$$

We denote by

$$
\begin{equation*}
M^{+}=\max _{y \in \partial \Omega} \sigma_{k-1}(y) \quad \text { and } \quad M^{-}=\min _{y \in \partial \Omega} \sigma_{k-1}(y) \tag{4-4}
\end{equation*}
$$

After some computations we obtain, for a point $x \in \Omega_{2 \delta} \backslash \bar{\Omega}_{\tau}$,

$$
\left[v_{\tau}^{+}\right]_{i j}=\eta^{+} e^{-T(d(x)-\tau)}\left(\psi^{\prime} d_{i j}+d_{i} d_{j}\left(\psi^{\prime \prime} e^{-T(d(x)-\tau)}-T \psi^{\prime}\right)\right)
$$

Since $|D d(x)|=1$ in $x \in \Omega_{2 \delta} \backslash \bar{\Omega}_{\tau}$, we can choose a coordinate system such that

$$
\begin{aligned}
D d(x) & =(0, \ldots, 0,1) \\
D^{2} d(x) & =\operatorname{diag}\left(d_{11}(x), \ldots, d_{n-1, n-1}(x), 0\right)
\end{aligned}
$$

where $d_{i i}(x)=-\rho_{i}(y) /\left(1-\rho_{i}(y) d(x)\right)$, and $y \in \partial \Omega$ is such that $|x-y|=d(x)$ as in Corollary 2.3.

Hence
$D^{2} v_{\tau}^{+}=\eta^{+} e^{-T(d(x)-\tau)} \operatorname{diag}\left(\psi^{\prime} d_{11}(x), \ldots, \psi^{\prime} d_{n-1, n-1}(x), \psi^{\prime \prime} e^{-T(d(x)-\tau)}-T \psi^{\prime}\right)$.
Using this and Corollary 2.3 , we can easily compute the k-Hessian of v_{τ}^{+}:

$$
\begin{align*}
H_{k}\left[D^{2} v_{\tau}^{+}\right] & =\left(\eta^{+}\right)^{k} e^{-(k+1) T(d(x)-\tau)}\left[-\psi^{\prime}\right]^{k-1} \psi^{\prime \prime} \sigma_{k-1}\left(-D^{2} d(x)\right) \tag{4-5}\\
& +\left(\eta^{+}\right)^{k} e^{-k T(d(x)-\tau)}\left[-\psi^{\prime}\right]^{k}\left(T \sigma_{k-1}\left(-D^{2} d(x)\right)+\sigma_{k}\left(-D^{2} d(x)\right)\right)
\end{align*}
$$

Now, if

$$
T_{1} \leq-\frac{\max _{\Omega_{2 \delta} \backslash \bar{\Omega}_{\tau}}\left|\sigma_{k}\left(D^{2} d(x)\right)\right|}{\min _{\Omega_{2 \delta} \backslash \bar{\Omega}_{\tau}} \sigma_{k-1}\left(-D^{2} d(x)\right)}
$$

then (4-5) and condition (e) yield for $T \leq T_{1}$,

$$
\begin{aligned}
H_{k}\left[D^{2} v_{\tau}^{+}\right] & \leq\left(\eta^{+}\right)^{k} e^{-(k+1) T(d(x)-\tau)}\left[-\psi^{\prime}\right]^{k-1} \psi^{\prime \prime} \sigma_{k-1}\left(-D^{2} d(x)\right), \\
& \leq \frac{\left(\eta^{+}\right)^{k}}{1-\varepsilon} M^{+} e^{-(k+1) T(d(x)-\tau)}\left[-\psi^{\prime}\right]^{k-1} \psi^{\prime \prime}, x \in \Omega_{2 \delta} \backslash \bar{\Omega}_{\tau}
\end{aligned}
$$

Similarly, we have for T_{2}

$$
T_{2} \geq \frac{\max _{\Omega_{2 \delta-\tau}}\left|\sigma_{k}\left(D^{2} d(x)\right)\right|}{\min _{\Omega_{2 \delta-\tau}} \sigma_{k-1}\left(-D^{2} d(x)\right)}
$$

for $T \geq T_{2}$,

$$
\begin{aligned}
H_{k}\left[D^{2} v_{\tau}^{-}\right] & \geq\left(\eta^{-}\right)^{k} e^{-(k+1) T(d(x)+\tau)}\left[-\psi^{\prime}\right]^{k-1} \psi^{\prime \prime} \sigma_{k-1}\left(-D^{2} d(x)\right), \\
& \geq \frac{\left(\eta^{-}\right)^{k}}{1+\varepsilon} M^{-} e^{-(k+1) T(d(x)+\tau)}\left[-\psi^{\prime}\right]^{k-1} \psi^{\prime \prime}, \quad x \in \Omega_{2 \delta-\tau}
\end{aligned}
$$

Therefore, to deduce (4-3) it is enough to establish that

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left(\eta^{ \pm}\right)^{k} \frac{M^{ \pm}}{\beta^{\mp}} \frac{\left[-\psi^{\prime}(t)\right]^{k-1} \psi^{\prime \prime}(t)}{m^{k+1}(t) f\left(\eta^{ \pm} \psi(t)\right)}=(1 \mp \varepsilon)(1 \mp \varepsilon) \tag{4-6}
\end{equation*}
$$

Since $f \in \mathbb{R} \mathbb{V}_{q}$, Lemma 3.1 and our choice of $\eta^{ \pm}$in (4-1),

$$
\begin{gathered}
\lim _{t \rightarrow 0}\left(\eta^{ \pm}\right)^{k} \frac{M^{ \pm}}{\beta^{\mp}} \frac{\left[-\psi^{\prime}(t)\right]^{k-1} \psi^{\prime \prime}(t)}{m^{k+1}(t) f\left(\eta^{ \pm} \psi(t)\right)}=\left(\eta^{ \pm}\right)^{k} \frac{M^{ \pm}}{\beta^{\mp}}\left(\frac{k+1}{q-k}\right)^{k+1}\left(1+\frac{(q-k) \ell}{k+1}\right)\left(\eta^{ \pm}\right)^{-q} \\
\quad=((1 \mp \varepsilon)(1 \mp 2 \varepsilon)) \xi^{ \pm(k-q)} \frac{M^{ \pm}}{\beta^{\mp}}\left(\frac{k+1}{q-k}\right)^{k+1}\left(1+\frac{(q-k) \ell}{k+1}\right)=(1 \mp \varepsilon)(1 \mp 2 \varepsilon)
\end{gathered}
$$

where we have used (1-11) in the last equality.
Step 2. Every strictly k-convex blow-up solution u of (1-1) satisfies (1-9).
Let $C=\max _{d(x)=\delta} u(x)$. Notice that

$$
\begin{cases}v_{\tau}^{+}+C=\infty>u(x), & x \in \Omega \text { with } d(x)=\tau \tag{4-7}\\ v_{\tau}^{+}+C \geq u(x), & x \in \Omega \text { with } d(x)=\delta\end{cases}
$$

Using (4-3) we deduce that for every $x \in \Omega_{\delta} \backslash \bar{\Omega}_{\tau}$,

$$
H_{k}\left[D^{2}\left(v_{\tau}^{+}+C\right)\right]=H_{k}\left[D^{2} v_{\tau}^{+}\right] \leq b(x) f\left(v_{\tau}^{+}\right) \leq b(x) f\left(v_{\tau}^{+}+C\right)
$$

Since u is a solution to (1-1), by the comparison principle for k-Hessians [Jian 2006, Lemma 2.1] we find

$$
\begin{equation*}
v_{\tau}^{+}+C \geq u(x), \quad \text { for all } x \in \Omega_{\delta} \backslash \bar{\Omega}_{\tau} \tag{4-8}
\end{equation*}
$$

We set $C^{\prime}=\xi^{-} \psi(\delta)$. Hence, we have $C^{\prime} \geq v_{\tau}^{-}(x)$ for every $x \in \Omega$ with $d(x)=\delta-\tau$. It follows that

$$
\begin{equation*}
u(x)+C^{\prime} \geq v_{\tau}^{-}(x), \quad \text { for all } x \in \partial \boldsymbol{\Omega}_{\delta-\tau} \tag{4-9}
\end{equation*}
$$

We see that, for every $x \in \Omega_{\delta-\tau}$,

$$
H_{k}\left[u(x)+C^{\prime}\right]=H_{k}\left[D^{2} u(x)\right] \leq b(x) f(u(x)) \leq b(x) f\left(u(x)+C^{\prime}\right)
$$

while by (4-3) we have

$$
\begin{equation*}
H_{k}\left[D^{2} v_{\tau}^{-}\right] \geq b(x) f\left(v_{\tau}^{-}\right), \quad x \in \Omega_{\delta-\tau} \tag{4-10}
\end{equation*}
$$

Using again the comparison principle for k-Hessian equations, we infer that

$$
\begin{equation*}
u(x)+C^{\prime} \geq v_{\tau}^{-}(x), \quad \text { for all } x \in \Omega_{\delta-\tau} \tag{4-11}
\end{equation*}
$$

By (4-8) and (4-11), letting $\tau \rightarrow 0$ we obtain
(4-12) $\left\{\begin{array}{l}((1+\epsilon)(1+2 \epsilon))^{1 /(k-q)} \xi^{-} \psi\left(\left(1-e^{-T_{2} d(x)}\right) / T_{2}\right)-C^{\prime} \leq u(x), x \in \Omega_{\delta}, \\ u(x) \leq((1-\epsilon)(1-2 \epsilon))^{1 /(k-q)} \xi^{+} \psi\left(\left(1-e^{-T_{1} d(x)}\right) / T_{1}\right)+C .\end{array}\right.$
Dividing by $\psi\left(\left(1-e^{-T_{i} d(x)}\right) / T_{i}\right)$ for $i=1,2$ and noticing that $\lim _{t \rightarrow 0} \psi(t) / \phi(t)=$ 1 , letting $d(x) \rightarrow 0$, we obtain

$$
\left\{\begin{array}{l}
\liminf _{d(x) \rightarrow 0} u / \phi(d(x)) \geq((1+\epsilon)(1+2 \epsilon))^{1 /(k-q)} \xi^{-} \tag{4-13}\\
\liminf _{d(x) \rightarrow 0} u / \phi(d(x)) \leq((1-\epsilon)(1-2 \epsilon))^{1 /(k-q)} \xi^{+}
\end{array}\right.
$$

Since $\epsilon>0$ is arbitrary, we let $\epsilon \rightarrow 0$ and obtain (1-9). This completes the proof of Theorem 1.3.

5. Proof of Theorem 1.6

We follow the methods in [Cîrstea and Trombetti 2008] and divide the proof into two steps:

Step 1. For all strictly k-convex blow-up solutions u_{1}, u_{2} of (1-1),

$$
\begin{equation*}
\lim _{d(x) \rightarrow 0} \frac{u_{1}(x)}{u_{2}(x)}=1 \tag{5-1}
\end{equation*}
$$

Step 2. There is at most one strictly convex blow-up solution of (1-1).
Proof of Step 1. The argument breaks into two cases.
Case (i): $b>0$ on $\bar{\Omega}$. Since u_{1} and u_{2} are arbitrary, it suffices to show that

$$
\begin{equation*}
\liminf _{d(x) \rightarrow 0} \frac{u_{1}(x)}{u_{2}(x)} \geq 1 \tag{5-2}
\end{equation*}
$$

Without loss of generality, we can assume that 0 belongs to Ω. Let $\varepsilon \in(0,1)$ be fixed and let $\lambda>1$ be close to 1 .

We set

$$
\begin{equation*}
C_{\lambda}=\left((1+\varepsilon) \lambda^{2 k} \max _{x \in(1 / \lambda) \bar{\Omega}} \frac{b(\lambda x)}{b(x)}\right)^{1 /(q-k)} \tag{5-3}
\end{equation*}
$$

where $(1 / \lambda) \bar{\Omega}=\{(1 / \lambda) x: x \in \bar{\Omega}\}$. Notice that $C_{\lambda} \rightarrow(1+\varepsilon)^{1 /(q-k)}$ as $\lambda \rightarrow 1$.
Hence, by Proposition 2.4 and $\lim _{d(x) \rightarrow 0} u_{1}(x)=\infty$, we deduce that there exists $\delta=\delta(\varepsilon)>0$, independent of λ, such that
(5-4) $\quad C_{\lambda}^{q} \frac{f\left(u_{1}(x)\right)}{f\left(C_{\lambda} u_{1}(x)\right)} \leq 1+\varepsilon, \quad$ for all $x \in \Omega_{\delta}$ and $\lambda \in(1,1+\eta)$ for some η.

We now define U_{λ} as

$$
\begin{equation*}
U_{\lambda}(x)=C_{\lambda} u_{1}(\lambda x), \quad \text { for all } x \in(1 / \lambda) \Omega_{\delta} \tag{5-5}
\end{equation*}
$$

Notice by (5-3)-(5-5),

$$
\begin{align*}
H_{k}\left[D^{2} U_{\lambda}(x)\right] & =\lambda^{2 k} C_{\lambda}^{k} b(\lambda x) f\left(u_{1}(\lambda x)\right) \tag{5-6}\\
& \leq \lambda^{2 k} C_{\lambda}^{k-q}(1+\varepsilon) b(\lambda x) f\left(C_{\lambda} u_{1}(\lambda x)\right) \\
& \leq b(x) f\left(C_{\lambda} u_{1}(\lambda x)\right)=b(x) f\left(U_{\lambda}(x)\right), \quad x \in(1 / \lambda) \Omega_{\delta}
\end{align*}
$$

which says that $U_{\lambda}(x)$ is a supersolution of (1-1) with domain $(1 / \lambda) \Omega_{\delta}$.
Since f is increasing on $(0, \infty)$ and (5-6), for each constant $M>0$,

$$
\begin{align*}
H_{k}\left[D^{2}\left(U_{\lambda}(x)+M\right)\right] & =H_{k}\left[D^{2} U_{\lambda}(x)\right] \leq b(x) f\left(U_{\lambda}(x)\right) \tag{5-7}\\
& \leq b(x) f\left(U_{\lambda}(x)+M\right), \quad \text { for all } x \in(1 / \lambda) \Omega_{\delta}
\end{align*}
$$

Notice also that $U_{\lambda}(x)=\infty>u_{2}(x)$, for every $x \in(1 / \lambda) \partial \Omega$. Moreover, $x \in$ $(1 / \lambda) \partial \Omega$ implies that $d(x)<\delta($ as $\lambda>1$ is close to 1$)$.

Thus, if we choose $M>0$ large enough (for example, $M=\max _{d(x)=\delta} u_{2}(x)$), then by the comparison principle for k-Hessian equations we obtain

$$
\begin{equation*}
U_{\lambda}(x)+M \geq u_{2}(x), \quad \text { for all } x \in \Omega_{\delta} \cap(1 / \lambda) \Omega_{\delta} \tag{5-8}
\end{equation*}
$$

Letting $\lambda \rightarrow 1$ in (5-8), we find

$$
\begin{equation*}
(1+\varepsilon)^{1 /(q-k)} u_{1}(x)+M \geq u_{2}(x), \quad \text { for all } x \in \Omega_{\delta} \tag{5-9}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\liminf _{d(x) \rightarrow 0} \frac{u_{1}(x)}{u_{2}(x)} \geq(1+\varepsilon)^{1 /(k-q)} \tag{5-10}
\end{equation*}
$$

and then letting $\varepsilon \rightarrow 0$ we obtain (5-2).
Case (ii): $b \equiv 0$ on $\partial \Omega, \Omega$ is a ball of radius $R>0$, and (1-13) holds. By Corollary 1.5 , every strictly k-convex blow-up solution u of (1-1) satisfies

$$
\begin{equation*}
\lim _{d(x) \rightarrow 0} \frac{u}{\phi(d(x))}=\left(\frac{((q-k) /(k+1))^{k+1} R^{k-1}}{1+\ell(q-k) /(k+1)}\right)^{1 /(k-q)} \tag{5-11}
\end{equation*}
$$

where ϕ is defined by (1-10) and ℓ appears in (1-3).
Proof of Step 2. If u_{1}, u_{2} are arbitrary strictly k-convex blow-up solutions of (1-1), it suffices to show that $u_{1} \leq u_{2}$ in Ω. Fix $\varepsilon>0$. By Step 1 we infer that

$$
\begin{equation*}
\lim _{d(x) \rightarrow 0}\left(u_{1}(x)-(1+\varepsilon) u_{2}(x)\right)=-\infty \tag{5-12}
\end{equation*}
$$

Since $f(u) / u^{k}$ is increasing on $(0, \infty)$, we deduce that

$$
\begin{align*}
H_{k}\left[D^{2}(1+\varepsilon) u_{2}(x)\right] & =(1+\varepsilon)^{k} H_{k}\left[D^{2} u_{2}(x)\right] \leq(1+\varepsilon)^{k} b(x) f\left(u_{2}(x)\right) \tag{5-13}\\
& \leq b(x) f\left((1+\varepsilon) u_{2}(x)\right), \quad \text { for all } x \in \Omega
\end{align*}
$$

By (5-12), (5-13) and the comparison principle for k-Hessian equations,

$$
\begin{equation*}
u_{1} \leq(1+\varepsilon) u_{2}, \quad \text { for all } x \in \Omega \tag{5-14}
\end{equation*}
$$

Letting $\varepsilon \rightarrow 0$, thus $u_{1} \leq u_{2}$ in Ω. This completes the proof of Step 2 and hence of Theorem 1.6.

Acknowledgments

We thank Professor Huaiyu Jian for his encouragement and many suggestions in this project, and Doctor Lu Xu for helpful discussions.

References

[Bandle and Marcus 1992] C. Bandle and M. Marcus, ""Large" solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour", J. Anal. Math. 58 (1992), 9-24. MR 94c:35081 Zbl 0802.35038
[Bandle and Marcus 1995] C. Bandle and M. Marcus, "Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary", Ann. Inst. H. Poincaré Anal. Non Linéaire 12:2 (1995), 155-171. MR 96e:35038 Zbl 0840.35033
[Caffarelli et al. 1985] L. Caffarelli, L. Nirenberg, and J. Spruck, "The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian", Acta Math. 155:3-4 (1985), 261-301. MR 87f:35098 Zbl 0654.35031
[Chuaqui et al. 2004] M. Chuaqui, C. Cortazar, M. Elgueta, and J. Garcia-Melian, "Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights", Commun. Pure Appl. Anal. 3:4 (2004), 653-662. MR 2005h:35115 Zbl 02143210
[Cîrstea and Rădulescu 2006] F. C. Cîrstea and V. Rădulescu, "Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach", Asymptot. Anal. 46:3-4 (2006), 275-298. MR 2007a:35045 Zbl 05042405
[Cîrstea and Trombetti 2008] F. C. Cîrstea and C. Trombetti, "On the Monge-Ampère equation with boundary blow-up: existence, uniqueness and asymptotics", Calc. Var. Partial Differential Equations 31:2 (2008), 167-186. MR 2008k:35178 Zbl 1148.35022
[Colesanti et al. 2000] A. Colesanti, P. Salani, and E. Francini, "Convexity and asymptotic estimates for large solutions of Hessian equations", Differential Integral Equations 13:10-12 (2000), 14591472. MR 2001j:35075 Zbl 0977.35046
[García-Melián 2006] J. García-Melián, "Nondegeneracy and uniqueness for boundary blow-up elliptic problems", J. Differential Equations 223:1 (2006), 208-227. MR 2007b:35113 Zbl 05019771
[García-Melián et al. 2001] J. García-Melián, R. Letelier-Albornoz, and J. Sabina de Lis, "Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up", Proc. Amer. Math. Soc. 129:12 (2001), 3593-3602. MR 2002j:35117 Zbl 0989.35044
[Gilbarg and Trudinger 1998] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer, Berlin, 1998. MR 2001k:35004 Zbl 1042.35002
[Guan and Jian 2004] B. Guan and H.-Y. Jian, "The Monge-Ampère equation with infinite boundary value", Pacific J. Math. 216:1 (2004), 77-94. MR 2005f:35100 Zbl 1126.35318
[Jian 2006] H. Jian, "Hessian equations with infinite Dirichlet boundary value", Indiana Univ. Math. J. 55:3 (2006), 1045-1062. MR 2008f:35120 Zbl 1126.35026
[Mohammed 2007] A. Mohammed, "On the existence of solutions to the Monge-Ampère equation with infinite boundary values", Proc. Amer. Math. Soc. 135:1 (2007), 141-149. MR 2008f:35129 Zbl 05120216
[Osserman 1957] R. Osserman, "On the inequality $\Delta u \geq f(u)$ ", Pacific J. Math. 7 (1957), 16411647. MR 20 \#4701 Zbl 0083.09402
[Resnick 1987] S. I. Resnick, Extreme values, regular variation, and point processes, Applied Probability 4, Springer, New York, 1987. MR 89b:60241 Zbl 0633.60001
[Salani 1998] P. Salani, "Boundary blow-up problems for Hessian equations", Manuscripta Math. 96:3 (1998), 281-294. MR 99e:35071 Zbl 0907.35052
[Takimoto 2006] K. Takimoto, "Solution to the boundary blowup problem for k-curvature equation", Calc. Var. Partial Differential Equations 26:3 (2006), 357-377. MR 2007h:35115 Zbl 1105.35039
[Trudinger 1995] N. S. Trudinger, "On the Dirichlet problem for Hessian equations", Acta Math. 175:2 (1995), 151-164. MR 96m:35113 Zbl 0887.35061
[Véron 1992] L. Véron, "Semilinear elliptic equations with uniform blow-up on the boundary", J. Anal. Math. 59 (1992), 231-250. MR 94k:35113 Zbl 0802.35042

Received September 18, 2008. Revised February 3, 2009.

Yong Huang

Wuhan Institute of Physics and Mathematics
Chinese Academy of Sciences
WUHAN 430071
China
huangyong@wipm.ac.cn

