Pacific

Journal of

Mathematics

A QUOTIENT OF THE BRAID GROUP RELATED TO PSEUDOSYMMETRIC BRAIDED CATEGORIES

Florin Panaite and Mihai D. Staic

A QUOTIENT OF THE BRAID GROUP RELATED TO PSEUDOSYMMETRIC BRAIDED CATEGORIES

Florin Panaite and Mihai D. Staic

Abstract

Motivated by the recent concept of a pseudosymmetric braided monoidal category, we define the pseudosymmetric group $\mathrm{PS}_{\boldsymbol{n}}$ to be the quotient of the braid group B_{n} by the relations $\sigma_{i} \sigma_{i+1}^{-1} \sigma_{i}=\sigma_{i+1} \sigma_{i}^{-1} \sigma_{i+1}$ with $1 \leq i \leq n-2$. It turns out that $\mathrm{PS}_{\boldsymbol{n}}$ is isomorphic to the quotient of $\boldsymbol{B}_{\boldsymbol{n}}$ by the commutator subgroup $\left[P_{n}, P_{n}\right.$] of the pure braid group P_{n} (which amounts to saying that $\left[P_{n}, P_{n}\right.$] coincides with the normal subgroup of B_{n} generated by the elements $\left[\sigma_{i}^{2}, \sigma_{i+1}^{2}\right]$ with $1 \leq i \leq n-2$), and that PS_{n} is a linear group.

Introduction

A symmetric category consists of a monoidal category \mathscr{C} equipped with a family of natural isomorphisms $c_{X, Y}: X \otimes Y \rightarrow Y \otimes X$ satisfying natural "bilinearity" conditions together with the symmetry relation $c_{Y, X} \circ c_{X, Y}=\mathrm{id}_{X \otimes Y}$ for all $X, Y \in \mathscr{C}$. This concept was generalized by Joyal and Street [1993] by dropping this symmetry relation from the axioms and arriving thus at the concept of braided category, of central importance in quantum group theory; see [Kassel 1995; Majid 1995].

Inspired by recently introduced categorical concepts of pure-braided structures [Staic 2004] and twines [Bruguières 2006], Panaite, Staic and Van Oystaeyen [Panaite et al. 2009] defined the concept of pseudosymmetric braiding to generalize symmetric braidings. A braiding c on a strict monoidal category \mathscr{C} is pseudosymmetric if it satisfies the modified braid relation
$\left(c_{Y, Z} \otimes \mathrm{id}_{X}\right) \circ\left(\mathrm{id}_{Y} \otimes c_{Z, X}^{-1}\right) \circ\left(c_{X, Y} \otimes \mathrm{id}_{Z}\right)=\left(\mathrm{id}_{Z} \otimes c_{X, Y}\right) \circ\left(c_{Z, X}^{-1} \otimes \mathrm{id}_{Y}\right) \circ\left(\mathrm{id}_{X} \otimes c_{Y, Z}\right)$
for all $X, Y, Z \in \mathscr{C}$. The main result in [Panaite et al. 2009] asserts that, if H is a Hopf algebra with bijective antipode, then the canonical braiding of the YetterDrinfeld category $H^{\text {OYD }}{ }^{H}$ is pseudosymmetric if and only if H is commutative and cocommutative.

[^0]It is well known that, at several levels, braided categories correspond to the braid groups B_{n}, while symmetric categories correspond to the symmetric groups S_{n}. It is natural to expect that there exist some groups corresponding, in the same way, to pseudosymmetric braided categories. Indeed, it is clear that these groups, denoted by PS_{n} and called (naturally) the pseudosymmetric groups, should be the quotients of the braid groups B_{n} by the relations $\sigma_{i} \sigma_{i+1}^{-1} \sigma_{i}=\sigma_{i+1} \sigma_{i}^{-1} \sigma_{i+1}$. Our aim is to study and find more explicitly the structure of these groups. We prove first that the kernel of the canonical group morphism $\mathrm{PS}_{n} \rightarrow S_{n}$ is abelian, and consequently PS_{n} is isomorphic to the quotient of B_{n} by the commutator subgroup [P_{n}, P_{n}] of the pure braid group P_{n}. (This amounts to saying that $\left[P_{n}, P_{n}\right]$ coincides with the normal subgroup of B_{n} generated by the elements $\left[\sigma_{i}^{2}, \sigma_{i+1}^{2}\right]$ with $1 \leq i \leq n-2$.)

There exist similarities, but also differences, between braid groups and pseudosymmetric groups. Bigelow [2001] and Krammer [2002] proved that braid groups are linear, and we show that so are pseudosymmetric groups. More precisely, we prove that the Lawrence-Krammer representation of B_{n} induces a representation of PS_{n} if the parameter q is chosen to be 1 , and that this representation of PS_{n} is faithful over $\mathbb{R}\left[t^{ \pm 1}\right]$. On the other hand, although PS_{n} is an infinite group, like B_{n}, it does have nontrivial elements of finite order, unlike B_{n}.

1. Preliminaries

Definition 1.1 [Panaite et al. 2007]. Let \mathscr{C} be a strict monoidal category and let $T_{X, Y}: X \otimes Y \rightarrow X \otimes Y$ be a family of natural isomorphisms in \mathscr{C}. We call T a strong twine if, for all $X, Y, Z \in \mathscr{C}$,

$$
\begin{aligned}
T_{I, I}=\mathrm{id}_{I}, \quad\left(T_{X, Y} \otimes \mathrm{id}_{Z}\right) \circ T_{X \otimes Y, Z} & =\left(\mathrm{id}_{X} \otimes T_{Y, Z}\right) \circ T_{X, Y \otimes Z}, \\
\left(T_{X, Y} \otimes \mathrm{id}_{Z}\right) \circ\left(\mathrm{id}_{X} \otimes T_{Y, Z}\right) & =\left(\mathrm{id}_{X} \otimes T_{Y, Z}\right) \circ\left(T_{X, Y} \otimes \mathrm{id}_{Z}\right)
\end{aligned}
$$

Definition 1.2 [Panaite et al. 2009]. Let \mathscr{C} be a strict monoidal category and c a braiding on \mathscr{C}. We say that c is pseudosymmetric if, for all $X, Y, Z \in \mathscr{C}$,

$$
\begin{align*}
\left(c_{Y, Z} \otimes \operatorname{id}_{X}\right) \circ\left(\operatorname{id}_{Y} \otimes c_{Z, X}^{-1}\right) \circ(& \left(c_{X, Y} \otimes \operatorname{id}_{Z}\right) \tag{1}\\
& =\left(\operatorname{id}_{Z} \otimes c_{X, Y}\right) \circ\left(c_{Z, X}^{-1} \otimes \operatorname{id}_{Y}\right) \circ\left(\operatorname{id}_{X} \otimes c_{Y, Z}\right)
\end{align*}
$$

In this case we say that \mathscr{C} is a pseudosymmetric braided category.
The next proposition, a key result in [Panaite et al. 2009], led to the introduction of the concept of pseudosymmetric braiding. Here, it will serve as a source of inspiration for a certain key result for braids, Proposition 2.1.

Proposition 1.3 [Panaite et al. 2009]. Let \mathscr{C} be a strict monoidal category and c a braiding on \mathscr{C}. Then the double braiding $T_{X, Y}:=c_{Y, X} \circ c_{X, Y}$ is a strong twine if and only if c is pseudosymmetric.

2. Defining relations for $\mathbf{P S}_{\boldsymbol{n}}$

Let $n \geq 3$ be a natural number. We denote by B_{n} the braid group on n strands, with its usual presentation by generators σ_{i} with $1 \leq i \leq n-1$ and relations

$$
\begin{align*}
\sigma_{i} \sigma_{j} & =\sigma_{j} \sigma_{i} & & \text { if }|i-j| \geq 2 \tag{2}\\
\sigma_{i} \sigma_{i+1} \sigma_{i} & =\sigma_{i+1} \sigma_{i} \sigma_{i+1} & & \text { if } 1 \leq i \leq n-2 \tag{3}
\end{align*}
$$

We begin with the analogue for braids of Proposition 1.3:
Proposition 2.1. For all $1 \leq i \leq n-2$, the relations

$$
\begin{align*}
\sigma_{i} \sigma_{i+1}^{-1} \sigma_{i} & =\sigma_{i+1} \sigma_{i}^{-1} \sigma_{i+1} \tag{4}\\
\sigma_{i}^{2} \sigma_{i+1}^{2} & =\sigma_{i+1}^{2} \sigma_{i}^{2} \tag{5}
\end{align*}
$$

are equivalent in B_{n}.
Proof. We show first that (4) implies (5):

$$
\begin{aligned}
\sigma_{i}^{2} \sigma_{i+1}^{2} & =\sigma_{i} \sigma_{i+1}^{-1} \sigma_{i+1} \sigma_{i} \sigma_{i+1} \sigma_{i+1} \\
\stackrel{(3)}{=} \sigma_{i} \sigma_{i+1}^{-1} \sigma_{i} \sigma_{i+1} \sigma_{i} \sigma_{i+1} & \stackrel{(3),(4)}{=} \sigma_{i+1} \sigma_{i}^{-1} \sigma_{i+1} \sigma_{i} \sigma_{i+1} \sigma_{i} \\
& \stackrel{(3)}{=} \sigma_{i+1} \sigma_{i}^{-1} \sigma_{i} \sigma_{i+1} \sigma_{i} \sigma_{i}=\sigma_{i+1}^{2} \sigma_{i}^{2}
\end{aligned}
$$

Conversely, we prove that (5) implies (4):

$$
\begin{aligned}
\sigma_{i} \sigma_{i+1}^{-1} \sigma_{i}= & \sigma_{i} \sigma_{i+1}^{-2} \sigma_{i}^{-1} \sigma_{i} \sigma_{i+1} \sigma_{i} \\
& \stackrel{(3)}{=} \sigma_{i} \sigma_{i+1}^{-2} \sigma_{i}^{-1} \sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
& =\sigma_{i} \sigma_{i+1}^{-2} \sigma_{i}^{-2} \sigma_{i} \sigma_{i+1} \sigma_{i} \sigma_{i+1} \stackrel{(3),(5)}{=} \sigma_{i} \sigma_{i}^{-2} \sigma_{i+1}^{-2} \sigma_{i+1} \sigma_{i} \sigma_{i+1}^{2} \\
& =\sigma_{i}^{-1} \sigma_{i+1}^{-1} \sigma_{i} \sigma_{i+1}^{2} \\
& =\sigma_{i+1} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1}^{-1} \sigma_{i} \sigma_{i+1}^{2} \\
& \stackrel{(3)}{=} \sigma_{i+1} \sigma_{i}^{-1} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i} \sigma_{i+1}^{2} \\
& =\sigma_{i+1} \sigma_{i}^{-1} \sigma_{i+1} .
\end{aligned}
$$

Definition 2.2. For a natural number $n \geq 3$, we define the pseudosymmetric group PS_{n} as the group with generators σ_{i} for $1 \leq i \leq n-1$, and relations (2), (3) and (4), or equivalently (2), (3) and (5).
Proposition 2.3. For $1 \leq i \leq n-2$, consider the elements

$$
\begin{equation*}
p_{i}:=\sigma_{i} \sigma_{i+1}^{-1} \quad \text { and } \quad q_{i}:=\sigma_{i}^{-1} \sigma_{i+1} \tag{6}
\end{equation*}
$$

in PS_{n}. Then, in PS_{n}, we have

$$
\begin{equation*}
p_{i}^{3}=q_{i}^{3}=\left(p_{i} q_{i}\right)^{3}=1 \quad \text { for all } 1 \leq i \leq n-2 \tag{7}
\end{equation*}
$$

Proof. The relations $p_{i}^{3}=1$ and $q_{i}^{3}=1$ follow immediately from (4); actually each of them is equivalent to (4). Now we compute

$$
\begin{aligned}
\left(p_{i} q_{i}\right)^{2} & =\left(\sigma_{i} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1}\right)^{2} \\
& =\sigma_{i} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1} \sigma_{i} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1} \\
& =\sigma_{i} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1} \sigma_{i} \sigma_{i+1} \sigma_{i+1}^{-2} \sigma_{i}^{-1} \sigma_{i+1} \\
& \stackrel{(3)}{=} \sigma_{i}^{2} \sigma_{i+1}^{-2} \sigma_{i}^{-1} \sigma_{i+1} \stackrel{(5)}{=} \sigma_{i+1}^{-2} \sigma_{i} \sigma_{i+1} \\
& =\sigma_{i+1}^{-2} \sigma_{i} \sigma_{i+1} \sigma_{i} \sigma_{i}^{-1} \\
& \stackrel{(3)}{=} \sigma_{i+1}^{-1} \sigma_{i} \sigma_{i+1} \sigma_{i}^{-1}=\left(p_{i} q_{i}\right)^{-1}
\end{aligned}
$$

and so $\left(p_{i} q_{i}\right)^{3}=1$.
Consider now the symmetric group S_{n} with its usual presentation by generators s_{i} with $1 \leq i \leq n-1$ and relations (2), (3) and $s_{i}^{2}=1$ for all $1 \leq i \leq n-1$. We denote by $\pi: B_{n} \rightarrow S_{n}, \beta: B_{n} \rightarrow \mathrm{PS}_{n}$ and $\alpha: \mathrm{PS}_{n} \rightarrow S_{n}$ the canonical surjective group homomorphisms given by $\pi\left(\sigma_{i}\right)=s_{i}, \alpha\left(\sigma_{i}\right)=s_{i}$ and $\beta\left(\sigma_{i}\right)=\sigma_{i}$ for all $1 \leq i \leq n-1$. Obviously we have $\pi=\alpha \circ \beta$; hence in particular we obtain $\operatorname{Ker}(\alpha)=\beta(\operatorname{Ker}(\pi))$. We denote as usual $\operatorname{Ker}(\pi)=P_{n}$, the pure braid group on n strands. It is well known (see [Kassel and Turaev 2008, page 21]) that P_{n} is generated by the elements

$$
\begin{equation*}
a_{i j}:=\sigma_{j-1} \sigma_{j-2} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^{-1} \quad \text { for } 1 \leq i<j \leq n \tag{8}
\end{equation*}
$$

that satisfy certain relations, of which we will use only one, namely, that for $1 \leq i<j \leq n$ and $1 \leq r<s \leq n$,

$$
\begin{equation*}
a_{i j} a_{r s}=a_{r s} a_{i j} \quad \text { if } s<i \text { or } i<r<s<j . \tag{9}
\end{equation*}
$$

Alternatively, P_{n} is generated by the elements

$$
\begin{equation*}
b_{i j}:=\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \cdots \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1} \cdots \sigma_{j-2} \sigma_{j-1} \quad \text { for } 1 \leq i<j \leq n \tag{10}
\end{equation*}
$$

It is easy to see that in B_{n} we have

$$
\begin{equation*}
\sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1}=\sigma_{i}^{-1} \sigma_{i+1}^{2} \sigma_{i} \quad \text { and } \quad \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1}=\sigma_{i} \sigma_{i+1}^{2} \sigma_{i}^{-1} \tag{11}
\end{equation*}
$$

and by using repeatedly these relations we obtain an equivalent description of the elements $a_{i j}$ and $b_{i j}$:

$$
\begin{array}{ll}
a_{i j}=\sigma_{i}^{-1} \sigma_{i+1}^{-1} \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^{2} \sigma_{j-2} \cdots \sigma_{i+1} \sigma_{i} & \text { for } 1 \leq i<j \leq n \\
b_{i j}=\sigma_{i} \sigma_{i+1} \cdots \sigma_{j-2} \sigma_{j-1}^{2} \sigma_{j-2}^{-1} \cdots \sigma_{i+1}^{-1} \sigma_{i}^{-1} & \text { for } 1 \leq i<j \leq n \tag{13}
\end{array}
$$

Now, for all $1 \leq i<j \leq n$, we define $A_{i, j}$ and $B_{i, j}$ as the elements in PS_{n} given by $A_{i, j}:=\beta\left(a_{i j}\right)$ and $B_{i, j}:=\beta\left(b_{i j}\right)$. From the discussion above it follows that $\operatorname{Ker}(\alpha)$ is generated by $\left\{A_{i, j}\right\}_{1 \leq i<j \leq n}$ and also by $\left\{B_{i, j}\right\}_{1 \leq i<j \leq n}$.
Lemma 2.4. The following relations hold in PS_{n} for $1 \leq i<j<n$:

$$
\begin{align*}
A_{i, j+1} & =\sigma_{j} A_{i, j} \sigma_{j}^{-1} \tag{14}\\
B_{i, j+1} & =\sigma_{j}^{-1} B_{i, j} \sigma_{j} \tag{15}
\end{align*}
$$

Proof. These relations are consequences of corresponding relations in B_{n} for the $a_{i j}$ and $b_{i j}$, which in turn follow immediately from (8) and (10).
Lemma 2.5. For all $i, j \in\{1,2, \ldots, n\}$ with $i+1<j$, we have in PS_{n}

$$
\begin{align*}
A_{i, j} & =\sigma_{i} A_{i+1, j} \sigma_{i}^{-1} \tag{16}\\
B_{i, j} & =\sigma_{i}^{-1} B_{i+1, j} \sigma_{i} \tag{17}
\end{align*}
$$

Proof. We prove (16), while (17) is similar and left to the reader. Note that in PS_{n} we have $\sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1}=\sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1}$, which together with the second of (11) implies $\sigma_{i} \sigma_{i+1}^{2} \sigma_{i}^{-1}=\sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1}$, hence

$$
\begin{aligned}
A_{i, j} & =\sigma_{j-1} \sigma_{j-2} \cdots\left(\sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1}\right) \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^{-1} \\
& =\sigma_{j-1} \sigma_{j-2} \cdots\left(\sigma_{i} \sigma_{i+1}^{2} \sigma_{i}^{-1}\right) \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^{-1} \\
& =\sigma_{i} \sigma_{j-1} \sigma_{j-2} \cdots \sigma_{i+1}^{2} \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^{-1} \sigma_{i}^{-1}=\sigma_{i} A_{i+1, j} \sigma_{i}^{-1}
\end{aligned}
$$

Proposition 2.6. For all $1 \leq i<j \leq n$, we have $A_{i, j}=B_{i, j}$ in PS_{n}.
Proof. We use (16) repeatedly:

$$
\begin{aligned}
A_{i, j}=\sigma_{i} A_{i+1, j} \sigma_{i}^{-1} & =\sigma_{i} \sigma_{i+1} A_{i+2, j} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \\
& \cdots \\
& =\sigma_{i} \sigma_{i+1} \cdots \sigma_{j-2} A_{j-1, j} \sigma_{j-2}^{-1} \cdots \sigma_{i+1}^{-1} \sigma_{i}^{-1} \\
& =\sigma_{i} \sigma_{i+1} \cdots \sigma_{j-2} \sigma_{j-1}^{2} \sigma_{j-2}^{-1} \cdots \sigma_{i+1}^{-1} \sigma_{i}^{-1} \stackrel{(13)}{=} B_{i, j}
\end{aligned}
$$

Lemma 2.7. For all $1 \leq i<j \leq n$ and $1 \leq h \leq k<n$, we have in PS_{n}

$$
\begin{align*}
A_{i, j} \sigma_{i}^{2} & =\sigma_{i}^{2} A_{i, j}, \tag{18}\\
A_{h, k+1} \sigma_{k}^{2} & =\sigma_{k}^{2} A_{h, k+1} \tag{19}
\end{align*}
$$

Proof. Note first that (18) is obvious for $j=i+1$. Assume that $i+1<j$; using the fact that $A_{r, s}=B_{r, s}$ for all r, s, we compute

$$
A_{i, j} \sigma_{i}^{2} \stackrel{(16)}{=} \sigma_{i} A_{i+1, j} \sigma_{i}=\sigma_{i} B_{i+1, j} \sigma_{i} \stackrel{(17)}{=} \sigma_{i}^{2} B_{i, j}=\sigma_{i}^{2} A_{i, j}
$$

Note also that (19) is obvious for $h=k$. Assume that $h<k$; using again $A_{r, s}=B_{r, s}$ for all r, s, we compute

$$
A_{h, k+1} \sigma_{k}^{2} \stackrel{(14)}{=} \sigma_{k} A_{h, k} \sigma_{k}=\sigma_{k} B_{h, k} \sigma_{k} \stackrel{(15)}{=} \sigma_{k}^{2} B_{h, k+1}=\sigma_{k}^{2} A_{h, k+1}
$$

3. The structure of $\mathrm{PS}_{\boldsymbol{n}}$

We denote by \mathfrak{P}_{n} the kernel of the morphism $\alpha: \mathrm{PS}_{n} \rightarrow S_{n}$ defined above.
Proposition 3.1. \mathfrak{P}_{n} is an abelian group.
Proof. It is enough to prove that any two elements $A_{i, j}$ and $A_{k, l}$ commute in PS_{n}. We only have to analyze the following seven cases for the numbers i, j, k, l :
(i) $i<j<k<l$. This is an obvious consequence of (9).
(ii) $i<j=k<l$. We write

$$
\begin{aligned}
& A_{i, j}=\sigma_{i}^{-1} \sigma_{i+1}^{-1} \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^{2} \sigma_{j-2} \cdots \sigma_{i+1} \sigma_{i} \\
& A_{j, l}=\sigma_{l-1} \sigma_{l-2} \cdots \sigma_{j+1} \sigma_{j}^{2} \sigma_{j+1}^{-1} \cdots \sigma_{l-2}^{-1} \sigma_{l-1}^{-1}
\end{aligned}
$$

and we obtain $A_{i, j} A_{j, l}=A_{j, l} A_{i, j}$ by using (2) and the fact that σ_{j-1}^{2} and σ_{j}^{2} commute in PS_{n}.
(iii) $i<k<j<l$. This follows since $A_{k, l}=B_{k, l}$ in PS_{n} (Proposition 2.6), and $a_{i j}$ and $b_{k l}$ commute in P_{n} if $i<k<j<l$, which is easily seen geometrically.
(iv) $i=k<j=l$. This is trivial.
(v) $i<k<l<j$. This is an obvious consequence of (9).
(vi) $i=k<j<l$. In case $j=i+1$, we have $A_{i, j}=\sigma_{i}^{2}$ and so we obtain $A_{i, j} A_{i, l}=A_{i, l} A_{i, j}$ by using (18); assuming now $i+1<j$, by using repeatedly (16) we can compute

$$
\begin{aligned}
A_{i, j} A_{i, l} & =\sigma_{i} A_{i+1, j} A_{i+1, l} \sigma_{i}^{-1} \\
& =\sigma_{i} \sigma_{i+1} A_{i+2, j} A_{i+2, l} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \\
& \cdots \\
& =\sigma_{i} \sigma_{i+1} \cdots \sigma_{j-2} A_{j-1, j} A_{j-1, l} \sigma_{j-2}^{-1} \cdots \sigma_{i+1}^{-1} \sigma_{i}^{-1},
\end{aligned}
$$

and similarly

$$
A_{i, l} A_{i, j}=\sigma_{i} \sigma_{i+1} \cdots \sigma_{j-2} A_{j-1, l} A_{j-1, j} \sigma_{j-2}^{-1} \cdots \sigma_{i+1}^{-1} \sigma_{i}^{-1}
$$

these are equal since $A_{j-1, j}=\sigma_{j-1}^{2}$ and by (18), $\sigma_{j-1}^{2} A_{j-1, l}=A_{j-1, l} \sigma_{j-1}^{2}$.
(vii) $i<k<j=l$. In case $j=k+1$, we have $A_{k, j}=\sigma_{k}^{2}$ and so we obtain $A_{i, j} A_{k, j}=A_{k, j} A_{i, j}$ by using (19); assuming now $k+1<j$, by repeatedly using (14) we can compute

$$
\begin{aligned}
A_{i, j} A_{k, j} & =\sigma_{j-1} A_{i, j-1} A_{k, j-1} \sigma_{j-1}^{-1} \\
& =\sigma_{j-1} \sigma_{j-2} A_{i, j-2} A_{k, j-2} \sigma_{j-2}^{-1} \sigma_{j-1}^{-1} \\
& \cdots \\
& =\sigma_{j-1} \sigma_{j-2} \cdots \sigma_{k+1} A_{i, k+1} A_{k, k+1} \sigma_{k+1}^{-1} \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^{-1},
\end{aligned}
$$

and similarly

$$
A_{k, j} A_{i, j}=\sigma_{j-1} \sigma_{j-2} \cdots \sigma_{k+1} A_{k, k+1} A_{i, k+1} \sigma_{k+1}^{-1} \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^{-1}
$$

these are equal since $A_{k, k+1}=\sigma_{k}^{2}$ and by (19), $A_{i, k+1} \sigma_{k}^{2}=\sigma_{k}^{2} A_{i, k+1}$.
Let G be a group. If $x, y \in G$ we denote by $[x, y]:=x^{-1} y^{-1} x y$ the commutator of x and y, and by G^{\prime} the commutator subgroup of G (the subgroup of G generated by all commutators $[x, y]$), which is the smallest normal subgroup N of G with the property that G / N is abelian. Moreover, G^{\prime} is a characteristic subgroup of G, that is, $\theta\left(G^{\prime}\right)=G^{\prime}$ for all $\theta \in \operatorname{Aut}(G)$.
Proposition 3.2. $\mathfrak{P}_{n} \simeq P_{n} / P_{n}^{\prime} \simeq \mathbb{Z}^{n(n-1) / 2}$.
Proof. For $1 \leq i \leq n-2$ we define $t_{i} \in P_{n}$ by $t_{i}:=\left[\sigma_{i}^{2}, \sigma_{i+1}^{2}\right]=\left[a_{i, i+1}, a_{i+1, i+2}\right]$. These elements are the relators added to the ones of B_{n} in order to obtain PS_{n}; therefore, as a particular case of a general fact about groups given by generators and relations (see for instance [Coxeter and Moser 1972, page 2]), the kernel of the map $\beta: B_{n} \rightarrow \mathrm{PS}_{n}$ defined above coincides with the normal subgroup of B_{n} generated by $\left\{t_{i}\right\}_{1 \leq i \leq n-2}$, which will be denoted by L_{n}. We obviously have $L_{n} \subseteq P_{n}$, and if we consider the map β restricted to P_{n}, we have a surjective morphism $P_{n} \rightarrow \mathfrak{P}_{n}$ with kernel L_{n}, so $\mathfrak{P}_{n} \simeq P_{n} / L_{n}$. By Proposition 3.1 we know that \mathfrak{P}_{n} is abelian, so we obtain $P_{n}^{\prime} \subseteq L_{n}$. On the other hand, since P_{n}^{\prime} is characteristic in P_{n} and P_{n} is normal in B_{n}, it follows (see [Suzuki 1982, Proposition 6.14]) that P_{n}^{\prime} is normal in B_{n}, and since $t_{1}, \ldots, t_{n-2} \in P_{n}^{\prime}$ and L_{n} is the normal subgroup of B_{n} generated by $\left\{t_{i}\right\}_{1 \leq i \leq n-2}$, we obtain $L_{n} \subseteq P_{n}^{\prime}$. Thus, we have obtained $L_{n}=P_{n}^{\prime}$ and so $\mathfrak{P}_{n} \simeq P_{n} / P_{n}^{\prime}$. On the other hand, it is well known that $P_{n} / P_{n}^{\prime} \simeq \mathbb{Z}^{n(n-1) / 2}$; see for instance [Kassel and Turaev 2008, Corollary 1.20].

As a consequence of the equality $L_{n}=P_{n}^{\prime}$, we obtain B_{n} / P_{n}^{\prime} :
Corollary 3.3. $\mathrm{PS}_{n} \simeq B_{n} / P_{n}^{\prime}$.
The extension with abelian kernel $1 \rightarrow \mathfrak{P}_{n} \rightarrow \mathrm{PS}_{n} \rightarrow S_{n} \rightarrow 1$ induces an action of S_{n} on \mathfrak{P}_{n}, given by $\sigma \cdot a=\tilde{\sigma} a \tilde{\sigma}^{-1}$ for $\sigma \in S_{n}$ and $a \in \mathfrak{P}_{n}$, where $\tilde{\sigma}$ is an element of PS_{n} with $\alpha(\tilde{\sigma})=\sigma$. In particular, on generators we have $s_{k} \cdot A_{i, j}=\sigma_{k} A_{i, j} \sigma_{k}^{-1}$,
for $1 \leq k \leq n-1$ and $1 \leq i<j \leq n$. By using some of the formulas given above, one can describe explicitly this action as

$$
\begin{align*}
s_{k} \cdot A_{i, j} & =A_{i, j} & & \text { if } k<i-1, \tag{20a}\\
s_{i-1} \cdot A_{i, j} & =A_{i-1, j}, & & \tag{20b}\\
s_{i} \cdot A_{i, j} & =A_{i+1, j} & & \text { if } j-i>1 \text { and } s_{i} \cdot A_{i, i+1}=A_{i, i+1}, \tag{20c}\\
s_{k} \cdot A_{i, j} & =A_{i, j} & & \text { if } i<k<j-1, \tag{20d}\\
s_{j-1} \cdot A_{i, j} & =A_{i, j-1} & & \text { if } j-i>1 \text { and } s_{j-1} \cdot A_{j-1, j}=A_{j-1, j}, \tag{20e}\\
s_{j} \cdot A_{i j} & =A_{i, j+1} & & \text { for } 1 \leq i<j<n, \tag{20f}\\
s_{k} \cdot A_{i, j} & =A_{i, j} & & \text { if } j<k . \tag{20~g}
\end{align*}
$$

Note that the first equality in (20c) follows by using (17) together with the fact that $A_{i, j}=B_{i, j}$ (Proposition 2.6), and the first equality in (20e) follows by an easy computation using also the fact that $A_{i, j}=B_{i, j}$. Also, one can easily see that these formulas may be expressed more compactly as follows: If $\sigma \in\left\{s_{1}, \ldots, s_{n-1}\right\}$ and $1 \leq i<j \leq n$, then $\sigma \cdot A_{i, j}=A_{\sigma(i), \sigma(j)}$, where we made the convention $A_{r, t}:=A_{t, r}$ for $t<r$. Since s_{1}, \ldots, s_{n-1} generate S_{n}, we have found the action of S_{n} on $A_{i, j}$:

Proposition 3.4. For any $\sigma \in S_{n}$ and $1 \leq i<j \leq n$, the action of σ on $A_{i, j}$ is given by $\sigma \cdot A_{i, j}=A_{\sigma(i), \sigma(j)}$, with the convention $A_{r, t}:=A_{t, r}$ for $t<r$.

Lemma 3.5. Let F be a free \mathbb{Z}-module of rank m, and let $\left\{X_{1}, \ldots, X_{m}\right\}$ be a generating system for F over \mathbb{Z}. Then $\left\{X_{1}, \ldots, X_{m}\right\}$ is a basis of F over \mathbb{Z}.

Proof. Assume X_{1}, \ldots, X_{m} are linearly dependent over \mathbb{Z} and take $\sum_{i=1}^{m} \alpha_{i} X_{i}=0$ a nontrivial linear combination over \mathbb{Z}. Choose a prime number p such that $\left|\alpha_{i}\right|<p$ for all $1 \leq i \leq m$, and consider $\bar{F}:=F / p F$, a linear space over the field $\mathbb{Z}_{p}=\mathbb{Z} / p \mathbb{Z}$, and \bar{X}_{i}, the images of the elements X_{i} in \bar{F}. These elements generate \bar{F} over \mathbb{Z}_{p}, and since the dimension of \bar{F} over \mathbb{Z}_{p} is m, it follows that $\left\{\bar{X}_{1}, \ldots, \bar{X}_{m}\right\}$ is a basis of \bar{F} over \mathbb{Z}_{p}. Thus, it follows that $\alpha_{i} \equiv 0(\bmod p)$ for all $1 \leq i \leq m$, which is a contradiction because we have chosen p so that $\left|\alpha_{i}\right|<p$ for all $1 \leq i \leq m$.

Proposition 3.6. In PS_{n}, there is no element of order 2 whose image in S_{n} is the transposition $s_{1}=(1,2)$. Consequently, the extension $1 \rightarrow \mathfrak{P}_{n} \rightarrow \mathrm{PS}_{n} \rightarrow S_{n} \rightarrow 1$ is not split.

Proof. Take $x \in \mathrm{PS}_{n}$ such that $\alpha(x)=s_{1}$. Since $\alpha\left(\sigma_{1}\right)=s_{1}$, we obtain that $x \sigma_{1}^{-1} \in \operatorname{Ker}(\alpha)=\mathfrak{P}_{n}$. By Proposition 3.2 and Lemma 3.5, it follows that the abelian group \mathfrak{P}_{n} is freely generated by $\left\{A_{i, j}\right\}_{1 \leq i<j \leq n}$, so we can write uniquely
$x=\prod_{1 \leq i<j \leq n} A_{i, j}^{m_{i j}} \sigma_{1}$, with $m_{i j} \in \mathbb{Z}$. We compute

$$
\begin{aligned}
x^{2} & =\left(\prod_{1 \leq i<j \leq n} A_{i, j}^{m_{i j}} \sigma_{1}\right)\left(\prod_{1 \leq i<j \leq n} A_{i, j}^{m_{i j}} \sigma_{1}\right) \\
& =\left(\prod_{1 \leq i<j \leq n} A_{i, j}^{m_{i j}}\right)\left(\sigma_{1} \prod_{1 \leq i<j \leq n} A_{i, j}^{m_{i j}} \sigma_{1}^{-1}\right) \sigma_{1}^{2} \\
& =\left(\prod_{1 \leq i<j \leq n} A_{i, j}^{m_{i j}}\right)\left(\prod_{1 \leq i<j \leq n} \sigma_{1} A_{i, j}^{m_{i j}} \sigma_{1}^{-1}\right) A_{1,2} \\
& =A_{1,2}^{2 m_{12}+1}\left(\prod_{3 \leq j \leq n} A_{1, j}^{m_{1 j}+m_{2 j}} A_{2, j}^{m_{1 j}+m_{2 j}}\right)\left(\prod_{3 \leq i<j \leq n} A_{i, j}^{2 m_{i j}}\right)
\end{aligned}
$$

and this element cannot be trivial because $2 m_{12}+1$ cannot be 0 . Note that for the last equality we used the commutation relations

$$
\begin{array}{ll}
\sigma_{1} A_{1,2} \sigma_{1}^{-1}=A_{1,2} \\
\sigma_{1} A_{1, j} \sigma_{1}^{-1}=A_{2, j} & \text { for all } j \geq 3 \\
\sigma_{1} A_{2, j} \sigma_{1}^{-1}=A_{1, j} & \text { for all } j \geq 3 \\
\sigma_{1} A_{i, j} \sigma_{1}^{-1}=A_{i, j} & \text { for all } 3 \leq i<j
\end{array}
$$

which can be easily proved by using some of the formulas given above.
Remark 3.7. As is well known [Brown 1982], any extension with abelian kernel corresponds to a 2-cocycle. Specifically, the extension $1 \rightarrow \mathfrak{P}_{n} \rightarrow \mathrm{PS}_{n} \rightarrow S_{n} \rightarrow 1$ corresponds to an element in $H^{2}\left(S_{n}, \mathbb{Z}^{n(n-1) / 2}\right)$. We illustrate this by computing explicitly the corresponding 2-cocycle for $n=3$. We consider the set-theoretical section $f: S_{3} \rightarrow \mathrm{PS}_{3}$ defined by $f(1)=1, f\left(s_{2}\right)=\sigma_{2}, f\left(s_{1}\right)=\sigma_{1}, f\left(s_{1} s_{2}\right)=\sigma_{1} \sigma_{2}$, $f\left(s_{2} s_{1}\right)=\sigma_{2} \sigma_{1}$ and $f\left(s_{2} s_{1} s_{2}\right)=\sigma_{2} \sigma_{1} \sigma_{2}$. The 2 -cocycle afforded by this section is defined by $u: S_{3} \times S_{3} \rightarrow \mathfrak{P}_{3},(x, y) \mapsto f(x) f(y) f(x y)^{-1}$, and a direct computation gives its explicit formula as in Table 1, where we have chosen an additive notation for the abelian group $\mathfrak{P}_{3} \simeq \mathbb{Z}^{3}$.

	1	s_{2}	s_{1}	$s_{1} s_{2}$	$s_{2} s_{1}$	$s_{2} s_{1} s_{2}$
1	0	0	0	0	0	0
s_{2}	0	$A_{2,3}$	0	0	$A_{2,3}$	$A_{2,3}$
s_{1}	0	0	$A_{1,2}$	$A_{1,2}$	0	$A_{1,2}$
$s_{1} s_{2}$	0	$A_{1,3}$	0	$A_{1,2}$	$A_{1,2}+A_{1,3}$	$A_{1,2}+A_{1,3}$
$s_{2} s_{1}$	0	0	$A_{1,3}$	$A_{1,3}+A_{2,3}$	$A_{2,3}$	$A_{1,3}+A_{2,3}$
$s_{2} s_{1} s_{2}$	0	$A_{1,2}$	$A_{2,3}$	$A_{1,3}+A_{2,3}$	$A_{1,2}+A_{1,3}$	$A_{1,2}+A_{1,3}+A_{2,3}$

Table 1. The 2-cocycle for $n=3$ associated to the section f.

4. $\mathrm{PS}_{\boldsymbol{n}}$ is linear

Bigelow [2001] and Krammer [2002] proved that the braid group B_{n} is linear. More precisely, let R be a commutative ring, let q and t be two invertible elements in R, and let V be a free R-module of rank $n(n-1) / 2$ with a basis $\left\{x_{i, j}\right\}_{1 \leq i<j \leq n}$. Then the map $\rho: B_{n} \rightarrow \operatorname{GL}(V)$, defined by

$$
\begin{aligned}
\sigma_{k} x_{k, k+1} & =t q^{2} x_{k, k+1}, & & \\
\sigma_{k} x_{i, k} & =(1-q) x_{i, k}+q x_{i, k+1} & & \text { for } i<k \\
\sigma_{k} x_{i, k+1} & =x_{i, k}+t q^{k-i+1}(q-1) x_{k, k+1} & & \text { for } i<k \\
\sigma_{k} x_{k, j} & =t q(q-1) x_{k, k+1}+q x_{k+1, j} & & \text { for } k+1<j \\
\sigma_{k} x_{k+1, j} & =x_{k, j}+(1-q) x_{k+1, j} & & \text { for } k+1<j \\
\sigma_{k} x_{i, j} & =x_{i, j} & & \text { for } i<j<k \text { or } k+1<i<j, \\
\sigma_{k} x_{i, j} & =x_{i, j}+t q^{k-i}(q-1)^{2} x_{k, k+1} & & \text { for } i<k<k+1<j
\end{aligned}
$$

and $\rho(x)(v)=x v$ for $x \in B_{n}$ and $v \in V$, gives a representation of B_{n}, and if also $R=\mathbb{R}\left[t^{ \pm 1}\right]$ and $q \in \mathbb{R} \subseteq R$ with $0<q<1$, then the representation is faithful; see [Krammer 2002].

We consider now the general formula for ρ, in which we take $q=1$:

$$
\begin{aligned}
\sigma_{k} x_{k, k+1} & =t x_{k, k+1}, & & \\
\sigma_{k} x_{i, k} & =x_{i, k+1} & & \text { for } i<k, \\
\sigma_{k} x_{i, k+1} & =x_{i, k} & & \text { for } i<k, \\
\sigma_{k} x_{k, j} & =x_{k+1, j} & & \text { for } k+1<j, \\
\sigma_{k} x_{k+1, j} & =x_{k, j} & & \text { for } k+1<j, \\
\sigma_{k} x_{i, j} & =x_{i, j} & & \text { for } i<j<k \text { or } k+1<i<j, \\
\sigma_{k} x_{i, j} & =x_{i, j} & & \text { for } i<k<k+1<j .
\end{aligned}
$$

One can easily see that these formulas imply

$$
\sigma_{k}^{2} x_{k, k+1}=t^{2} x_{k, k+1} \quad \text { and } \quad \sigma_{k}^{2} x_{i, j}=x_{i, j} \quad \text { if }(i, j) \neq(k, k+1)
$$

One can then check that $\rho\left(\sigma_{k}^{2}\right)$ commutes with $\rho\left(\sigma_{k+1}^{2}\right)$ for all $1 \leq k \leq n-2$, and so for $q=1$ it turns out that ρ is a representation of PS_{n}.

Theorem 4.1. This representation of PS_{n} is faithful if $R=\mathbb{R}\left[t^{ \pm 1}\right]$. Therefore, PS_{n} is linear.

Proof. We first prove that $A_{i, j} x_{i, j}=t^{2} x_{i, j}$, and $A_{i, j} x_{k, l}=x_{k, l}$ if $(i, j) \neq(k, l)$. We do it by induction over $|j-i|$. If $|j-i|=1$, the relations follow from the fact that $A_{i, i+1}=\sigma_{i}^{2}$. Assume the relations hold for $|j-i|=s-1$. We want to prove
them for $|j-i|=s$. We recall that $A_{i, j}=\sigma_{j-1} A_{i, j-1} \sigma_{j-1}^{-1}$; see (14). We compute

$$
\begin{aligned}
A_{i, j} x_{i, j}=\sigma_{j-1} A_{i, j-1} \sigma_{j-1}^{-1} x_{i, j} & =\sigma_{j-1} A_{i, j-1} x_{i, j-1} \\
& =\sigma_{j-1} t^{2} x_{i, j-1} \quad \text { (by induction) } \\
& =t^{2} x_{i, j}
\end{aligned}
$$

On the other hand, if $(i, j) \neq(k, l)$ then $\sigma_{j-1}^{-1} x_{k, l}=x_{u, v}$ with $(i, j-1) \neq(u, v)$, and so

$$
\begin{aligned}
A_{i, j} x_{k, l}=\sigma_{j-1} A_{i, j-1} \sigma_{j-1}^{-1} x_{k, l} & =\sigma_{j-1} A_{i, j-1} x_{u, v} \\
& =\sigma_{j-1} x_{u, v} \quad \text { (by induction) } \\
& =\sigma_{j-1} \sigma_{j-1}^{-1} x_{k, l}=x_{k, l}
\end{aligned}
$$

as desired.
To show that the representation is faithful, take $b \in \mathrm{PS}_{n}$ such that $\rho(b)=\mathrm{id}_{V}$ and consider $\alpha(b)$, the image of b in S_{n}. From the way ρ is defined it follows that

$$
b x_{i, j}=t^{p} x_{\alpha(b)(i), \alpha(b)(j)} \quad \text { for all } 1 \leq i<j \leq n
$$

with $p \in \mathbb{Z}$, where we made the convention $x_{r, s}:=x_{s, r}$ if $1 \leq s<r \leq n$. Since $x_{i, j}$ is a basis in V and we assumed $\rho(b)=\mathrm{id}_{V}$, we find that the permutation $\alpha(b) \in S_{n}$ has the property that if $1 \leq i<j \leq n$, then either $\alpha(b)(i)=i$ and $\alpha(b)(j)=j$ or $\alpha(b)(i)=j$ and $\alpha(b)(j)=i$. Since we assumed $n \geq 3$, the only such permutation is the trivial one. Thus, we have obtained that $b \in \operatorname{Ker}(\alpha)=\mathfrak{P}_{n}$ and so we can write $b=\prod_{1 \leq i<j \leq n} A_{i, j}^{m_{i, j}}$, with $m_{i, j} \in \mathbb{Z}$. By using the formulas given above for the action of $A_{i, j}$ on $x_{k, l}$ we immediately obtain $b x_{k, l}=t^{2 m_{k, l}} x_{k, l} \quad$ for all $1 \leq k<l \leq n$. Using again the assumption $\rho(b)=\mathrm{id}_{V}$, we obtain $t^{2 m_{k, l}}=1$ and hence $m_{k, l}=0$ for all $1 \leq k<l \leq n$, that is $b=1$, finishing the proof.

5. Pseudosymmetric groups and pseudosymmetric braidings

We recall from [Kassel 1995, XIII.2] that to braid groups one can associate the so-called braid category \mathscr{B}, a universal braided monoidal category. Similarly, we can construct a pseudosymmetric braided category $\mathscr{P P}$ associated to pseudosymmetric groups. Namely, the objects of $\mathscr{P P}$ are natural numbers $n \in \mathbb{N}$. The set of morphisms from m to n is empty if $m \neq n$ and is PS_{n} if $m=n$. The monoidal structure of $\mathscr{P} \mathscr{Y}$ is defined as the one for \mathscr{B}, and so is the braiding, namely

$$
\begin{aligned}
c_{n, m} & : n \otimes m \rightarrow m \otimes n \\
c_{0, n} & =\mathrm{id}_{n}=c_{n, 0} \\
c_{n, m} & =\left(\sigma_{m} \sigma_{m-1} \cdots \sigma_{1}\right)\left(\sigma_{m+1} \sigma_{m} \cdots \sigma_{2}\right) \cdots\left(\sigma_{m+n-1} \sigma_{m+n-2} \cdots \sigma_{n}\right) \quad \text { if } m, n>0
\end{aligned}
$$

We denote by $t_{m, n}=c_{n, m} \circ c_{m, n}$ the double braiding. In view of Proposition 1.3, to prove that c is pseudosymmetric it is enough to check that, for all $m, n, p \in \mathbb{N}$,

$$
\begin{equation*}
\left(t_{m, n} \otimes \mathrm{id}_{p}\right) \circ\left(\mathrm{id}_{m} \otimes t_{n, p}\right)=\left(\mathrm{id}_{m} \otimes t_{n, p}\right) \circ\left(t_{m, n} \otimes \mathrm{id}_{p}\right) \tag{21}
\end{equation*}
$$

Note that $t_{m, n} \otimes \mathrm{id}_{p}$ and $\mathrm{id}_{m} \otimes t_{n, p}$ are elements in \mathfrak{P}_{m+n+p}, which is an abelian group, and the composition \circ between $t_{m, n} \otimes \mathrm{id}_{p}$ and $\mathrm{id}_{m} \otimes t_{n, p}$ is just the multiplication in the group \mathfrak{P}_{m+n+p}, so (21) is obviously true.

Let \mathscr{C} be a strict braided monoidal category with braiding c, let n be a natural number and let $V \in \mathscr{C}$. Consider the automorphisms c_{1}, \ldots, c_{n-1} of $V^{\otimes n}$ defined by $c_{i}=\operatorname{id}_{V \otimes(i-1)} \otimes c_{V, V} \otimes \operatorname{id}_{V \otimes(n-i-1)}$. It is well known (see [Kassel 1995, XV.4]) that there exists a unique group morphism $\rho_{n}^{c}: B_{n} \rightarrow \operatorname{Aut}\left(V^{\otimes n}\right)$ such that $\rho_{n}^{c}\left(\sigma_{i}\right)=c_{i}$ for all $1 \leq i \leq n-1$. It is clear that, if c is pseudosymmetric, then ρ_{n}^{c} factorizes to a group morphism $\mathrm{PS}_{n} \rightarrow \operatorname{Aut}\left(V^{\otimes n}\right)$. Thus, pseudosymmetric braided categories provide representations of pseudosymmetric groups.

References

[Bigelow 2001] S. J. Bigelow, "Braid groups are linear", J. Amer. Math. Soc. 14:2 (2001), 471-486. MR 2002a:20043 Zbl 0988.20021
[Brown 1982] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer, New York, 1982. MR 83k:20002 Zbl 0584.20036
[Bruguières 2006] A. Bruguières, "Double braidings, twists and tangle invariants", J. Pure Appl. Algebra 204:1 (2006), 170-194. MR 2006k:57030 Zbl 1091.57007
[Coxeter and Moser 1972] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete 14, Springer, New York, 1972. MR 50 \#2313 Zbl 0239.20040
[Joyal and Street 1993] A. Joyal and R. Street, "Braided tensor categories", Adv. Math. 102:1 (1993), 20-78. MR 94m:18008 Zbl 0817.18007
[Kassel 1995] C. Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer, New York, 1995. MR 96e:17041 Zbl 0808.17003
[Kassel and Turaev 2008] C. Kassel and V. Turaev, Braid groups, Graduate Texts in Mathematics 247, Springer, New York, 2008. MR 2009e:20082 Zbl 05268073
[Krammer 2002] D. Krammer, "Braid groups are linear", Ann. of Math. (2) 155:1 (2002), 131-156. MR 2003c:20040 Zbl 1020.20025
[Majid 1995] S. Majid, Foundations of quantum group theory, Cambridge University Press, 1995. MR 97g:17016 Zbl 0857.17009
[Panaite et al. 2007] F. Panaite, M. D. Staic, and F. Van Oystaeyen, "On some classes of lazy cocycles and categorical structures", J. Pure Appl. Algebra 209:3 (2007), 687-701. MR 2007k:16074 Zbl 1155.16030
[Panaite et al. 2009] F. Panaite, M. D. Staic, and F. Van Oystaeyen, "Pseudosymmetric braidings, twines and twisted algebras", J. Pure Appl. Algebra (2009). arXiv 0801.2055
[Staic 2004] M. D. Staic, "Pure-braided Hopf algebras and knot invariants", J. Knot Theory Ramifications 13:3 (2004), 385-400. MR 2005d:16069 Zbl 1106.16042
[Suzuki 1982] M. Suzuki, Group theory, I, Grundlehren der Mathematischen Wissenschaften 247, Springer, Berlin, 1982. MR 82k:20001c Zbl 0472.20001

Received December 17, 2008. Revised June 26, 2009.
Florin Panaite
Institute of Mathematics of the Romanian Academy
P.O. Box 1-764

014700 BUCHAREST
Romania
Florin.Panaite@imar.ro
http://www.imar.ro/~fpanaite/

Mihai D. Staic
Institute of Mathematics of the Romanian Academy
P.O. Box 1-764

014700 BUCHAREST
Romania
Current address:
Department of Mathematics
Indiana University
Rawles Hall
Bloomington, IN 47405
United States
mstaic@indiana.edu

[^0]: MSC2000: primary 20F36; secondary 18D10.
 Keywords: braid group, symmetric group, braided categories, pseudosymmetric braidings.
 Research partially supported by the CNCSIS project "Hopf algebras, cyclic homology and monoidal categories", contract number 560/2009.

