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A QUOTIENT OF THE BRAID GROUP RELATED TO
PSEUDOSYMMETRIC BRAIDED CATEGORIES

FLORIN PANAITE AND MIHAI D. STAIC

Motivated by the recent concept of a pseudosymmetric braided monoidal
category, we define the pseudosymmetric group PSn to be the quotient of the
braid group Bn by the relations σiσ

−1
i+1σi = σi+1σ

−1
i σi+1 with 1 ≤ i ≤ n− 2.

It turns out that PSn is isomorphic to the quotient of Bn by the commutator
subgroup [Pn, Pn] of the pure braid group Pn (which amounts to saying
that [Pn, Pn] coincides with the normal subgroup of Bn generated by the
elements [σ 2

i , σ
2
i+1] with 1≤ i ≤ n− 2), and that PSn is a linear group.

Introduction

A symmetric category consists of a monoidal category C equipped with a family
of natural isomorphisms cX,Y : X ⊗ Y → Y ⊗ X satisfying natural “bilinearity”
conditions together with the symmetry relation cY,X ◦cX,Y = idX⊗Y for all X, Y ∈C.
This concept was generalized by Joyal and Street [1993] by dropping this symmetry
relation from the axioms and arriving thus at the concept of braided category, of
central importance in quantum group theory; see [Kassel 1995; Majid 1995].

Inspired by recently introduced categorical concepts of pure-braided structures
[Staic 2004] and twines [Bruguières 2006], Panaite, Staic and Van Oystaeyen
[Panaite et al. 2009] defined the concept of pseudosymmetric braiding to generalize
symmetric braidings. A braiding c on a strict monoidal category C is pseudo-
symmetric if it satisfies the modified braid relation

(cY,Z⊗idX )◦(idY⊗c−1
Z ,X )◦(cX,Y⊗idZ )= (idZ⊗cX,Y )◦(c−1

Z ,X⊗idY )◦(idX⊗cY,Z )

for all X, Y, Z ∈ C. The main result in [Panaite et al. 2009] asserts that, if H is
a Hopf algebra with bijective antipode, then the canonical braiding of the Yetter–
Drinfeld category HYDH is pseudosymmetric if and only if H is commutative and
cocommutative.
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It is well known that, at several levels, braided categories correspond to the braid
groups Bn , while symmetric categories correspond to the symmetric groups Sn . It
is natural to expect that there exist some groups corresponding, in the same way, to
pseudosymmetric braided categories. Indeed, it is clear that these groups, denoted
by PSn and called (naturally) the pseudosymmetric groups, should be the quotients
of the braid groups Bn by the relations σiσ

−1
i+1σi = σi+1σ

−1
i σi+1. Our aim is to

study and find more explicitly the structure of these groups. We prove first that the
kernel of the canonical group morphism PSn → Sn is abelian, and consequently
PSn is isomorphic to the quotient of Bn by the commutator subgroup [Pn, Pn] of
the pure braid group Pn . (This amounts to saying that [Pn, Pn] coincides with the
normal subgroup of Bn generated by the elements [σ 2

i , σ
2
i+1] with 1≤ i ≤ n− 2.)

There exist similarities, but also differences, between braid groups and pseudo-
symmetric groups. Bigelow [2001] and Krammer [2002] proved that braid groups
are linear, and we show that so are pseudosymmetric groups. More precisely, we
prove that the Lawrence–Krammer representation of Bn induces a representation
of PSn if the parameter q is chosen to be 1, and that this representation of PSn is
faithful over R[t±1

]. On the other hand, although PSn is an infinite group, like Bn ,
it does have nontrivial elements of finite order, unlike Bn .

1. Preliminaries

Definition 1.1 [Panaite et al. 2007]. Let C be a strict monoidal category and let
TX,Y : X ⊗ Y → X ⊗ Y be a family of natural isomorphisms in C. We call T a
strong twine if, for all X, Y, Z ∈ C,

TI,I = idI , (TX,Y ⊗ idZ ) ◦ TX⊗Y,Z = (idX ⊗ TY,Z ) ◦ TX,Y⊗Z ,

(TX,Y ⊗ idZ ) ◦ (idX ⊗ TY,Z )= (idX ⊗ TY,Z ) ◦ (TX,Y ⊗ idZ ).

Definition 1.2 [Panaite et al. 2009]. Let C be a strict monoidal category and c a
braiding on C. We say that c is pseudosymmetric if, for all X, Y, Z ∈ C,

(1) (cY,Z ⊗ idX ) ◦ (idY ⊗ c−1
Z ,X ) ◦ (cX,Y ⊗ idZ )

= (idZ ⊗ cX,Y ) ◦ (c−1
Z ,X ⊗ idY ) ◦ (idX ⊗ cY,Z ).

In this case we say that C is a pseudosymmetric braided category.

The next proposition, a key result in [Panaite et al. 2009], led to the introduction
of the concept of pseudosymmetric braiding. Here, it will serve as a source of
inspiration for a certain key result for braids, Proposition 2.1.

Proposition 1.3 [Panaite et al. 2009]. Let C be a strict monoidal category and c a
braiding on C. Then the double braiding TX,Y := cY,X ◦ cX,Y is a strong twine if
and only if c is pseudosymmetric.
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2. Defining relations for PSn

Let n≥ 3 be a natural number. We denote by Bn the braid group on n strands, with
its usual presentation by generators σi with 1≤ i ≤ n− 1 and relations

σiσ j = σ jσi if |i − j | ≥ 2,(2)

σiσi+1σi = σi+1σiσi+1 if 1≤ i ≤ n− 2.(3)

We begin with the analogue for braids of Proposition 1.3:

Proposition 2.1. For all 1≤ i ≤ n− 2, the relations

σiσ
−1
i+1σi = σi+1σ

−1
i σi+1,(4)

σ 2
i σ

2
i+1 = σ

2
i+1σ

2
i(5)

are equivalent in Bn .

Proof. We show first that (4) implies (5):

σ 2
i σ

2
i+1 = σiσ

−1
i+1σi+1σiσi+1σi+1

(3)
= σiσ

−1
i+1σiσi+1σiσi+1

(3),(4)
= σi+1σ

−1
i σi+1σiσi+1σi

(3)
= σi+1σ

−1
i σiσi+1σiσi = σ

2
i+1σ

2
i .

Conversely, we prove that (5) implies (4):

σiσ
−1
i+1σi = σiσ

−2
i+1σ

−1
i σiσi+1σi

(3)
= σiσ

−2
i+1σ

−1
i σi+1σiσi+1

= σiσ
−2
i+1σ

−2
i σiσi+1σiσi+1

(3),(5)
= σiσ

−2
i σ−2

i+1σi+1σiσ
2
i+1

= σ−1
i σ−1

i+1σiσ
2
i+1

= σi+1σ
−1
i+1σ

−1
i σ−1

i+1σiσ
2
i+1

(3)
= σi+1σ

−1
i σ−1

i+1σ
−1
i σiσ

2
i+1

= σi+1σ
−1
i σi+1. �

Definition 2.2. For a natural number n ≥ 3, we define the pseudosymmetric group
PSn as the group with generators σi for 1≤ i ≤ n−1, and relations (2), (3) and (4),
or equivalently (2), (3) and (5).

Proposition 2.3. For 1≤ i ≤ n− 2, consider the elements

(6) pi := σiσ
−1
i+1 and qi := σ

−1
i σi+1

in PSn . Then, in PSn , we have

(7) p3
i = q3

i = (pi qi )
3
= 1 for all 1≤ i ≤ n− 2.
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Proof. The relations p3
i = 1 and q3

i = 1 follow immediately from (4); actually each
of them is equivalent to (4). Now we compute

(pi qi )
2
= (σiσ

−1
i+1σ

−1
i σi+1)

2

= σiσ
−1
i+1σ

−1
i σi+1σiσ

−1
i+1σ

−1
i σi+1

= σiσ
−1
i+1σ

−1
i σi+1σiσi+1σ

−2
i+1σ

−1
i σi+1

(3)
= σ 2

i σ
−2
i+1σ

−1
i σi+1

(5)
= σ−2

i+1σiσi+1

= σ−2
i+1σiσi+1σiσ

−1
i

(3)
= σ−1

i+1σiσi+1σ
−1
i = (pi qi )

−1,

and so (pi qi )
3
= 1. �

Consider now the symmetric group Sn with its usual presentation by generators
si with 1 ≤ i ≤ n − 1 and relations (2), (3) and s2

i = 1 for all 1 ≤ i ≤ n − 1.
We denote by π : Bn → Sn , β : Bn → PSn and α : PSn → Sn the canonical
surjective group homomorphisms given by π(σi )= si , α(σi )= si and β(σi )= σi

for all 1≤ i ≤ n− 1. Obviously we have π = α ◦β; hence in particular we obtain
Ker(α) = β(Ker(π)). We denote as usual Ker(π) = Pn , the pure braid group
on n strands. It is well known (see [Kassel and Turaev 2008, page 21]) that Pn is
generated by the elements

(8) ai j := σ j−1σ j−2 · · · σi+1σ
2
i σ
−1
i+1 · · · σ

−1
j−2σ

−1
j−1 for 1≤ i < j ≤ n

that satisfy certain relations, of which we will use only one, namely, that for
1≤ i < j ≤ n and 1≤ r < s ≤ n,

(9) ai j ars = arsai j if s < i or i < r < s < j .

Alternatively, Pn is generated by the elements

(10) bi j := σ
−1
j−1σ

−1
j−2 · · · σ

−1
i+1σ

2
i σi+1 · · · σ j−2σ j−1 for 1≤ i < j ≤ n.

It is easy to see that in Bn we have

(11) σi+1σ
2
i σ
−1
i+1 = σ

−1
i σ 2

i+1σi and σ−1
i+1σ

2
i σi+1 = σiσ

2
i+1σ

−1
i ,

and by using repeatedly these relations we obtain an equivalent description of the
elements ai j and bi j :

ai j = σ
−1
i σ−1

i+1 · · · σ
−1
j−2σ

2
j−1σ j−2 · · · σi+1σi for 1≤ i < j ≤ n,(12)

bi j = σiσi+1 · · · σ j−2σ
2
j−1σ

−1
j−2 · · · σ

−1
i+1σ

−1
i for 1≤ i < j ≤ n.(13)
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Now, for all 1≤ i < j ≤ n, we define Ai, j and Bi, j as the elements in PSn given
by Ai, j := β(ai j ) and Bi, j := β(bi j ). From the discussion above it follows that
Ker(α) is generated by {Ai, j }1≤i< j≤n and also by {Bi, j }1≤i< j≤n .

Lemma 2.4. The following relations hold in PSn for 1≤ i < j < n:

Ai, j+1 = σ j Ai, jσ
−1
j ,(14)

Bi, j+1 = σ
−1
j Bi, jσ j .(15)

Proof. These relations are consequences of corresponding relations in Bn for the
ai j and bi j , which in turn follow immediately from (8) and (10). �

Lemma 2.5. For all i, j ∈ {1, 2, . . . , n} with i + 1< j , we have in PSn

Ai, j = σi Ai+1, jσ
−1
i ,(16)

Bi, j = σ
−1
i Bi+1, jσi .(17)

Proof. We prove (16), while (17) is similar and left to the reader. Note that in PSn

we have σ−1
i+1σ

2
i σi+1= σi+1σ

2
i σ
−1
i+1, which together with the second of (11) implies

σiσ
2
i+1σ

−1
i = σi+1σ

2
i σ
−1
i+1; hence

Ai, j = σ j−1σ j−2 · · · (σi+1σ
2
i σ
−1
i+1) · · · σ

−1
j−2σ

−1
j−1

= σ j−1σ j−2 · · · (σiσ
2
i+1σ

−1
i ) · · · σ−1

j−2σ
−1
j−1

= σiσ j−1σ j−2 · · · σ
2
i+1 · · · σ

−1
j−2σ

−1
j−1σ

−1
i = σi Ai+1, jσ

−1
i . �

Proposition 2.6. For all 1≤ i < j ≤ n, we have Ai, j = Bi, j in PSn .

Proof. We use (16) repeatedly:

Ai, j = σi Ai+1, jσ
−1
i = σiσi+1 Ai+2, jσ

−1
i+1σ

−1
i

· · ·

= σiσi+1 · · · σ j−2 A j−1, jσ
−1
j−2 · · · σ

−1
i+1σ

−1
i

= σiσi+1 · · · σ j−2σ
2
j−1σ

−1
j−2 · · · σ

−1
i+1σ

−1
i

(13)
= Bi, j . �

Lemma 2.7. For all 1≤ i < j ≤ n and 1≤ h ≤ k < n, we have in PSn

Ai, jσ
2
i = σ

2
i Ai, j ,(18)

Ah,k+1σ
2
k = σ

2
k Ah,k+1.(19)

Proof. Note first that (18) is obvious for j = i + 1. Assume that i + 1 < j ; using
the fact that Ar,s = Br,s for all r, s, we compute

Ai, jσ
2
i
(16)
= σi Ai+1, jσi = σi Bi+1, jσi

(17)
= σ 2

i Bi, j = σ
2
i Ai, j .
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Note also that (19) is obvious for h= k. Assume that h< k; using again Ar,s = Br,s

for all r, s, we compute

Ah,k+1σ
2
k
(14)
= σk Ah,kσk = σk Bh,kσk

(15)
= σ 2

k Bh,k+1 = σ
2
k Ah,k+1. �

3. The structure of PSn

We denote by Pn the kernel of the morphism α : PSn→ Sn defined above.

Proposition 3.1. Pn is an abelian group.

Proof. It is enough to prove that any two elements Ai, j and Ak,l commute in PSn .
We only have to analyze the following seven cases for the numbers i, j, k, l:

(i) i < j < k < l. This is an obvious consequence of (9).

(ii) i < j = k < l. We write

Ai, j = σ
−1
i σ−1

i+1 · · · σ
−1
j−2σ

2
j−1σ j−2 · · · σi+1σi ,

A j,l = σl−1σl−2 · · · σ j+1σ
2
j σ
−1
j+1 · · · σ

−1
l−2σ

−1
l−1,

and we obtain Ai, j A j,l = A j,l Ai, j by using (2) and the fact that σ 2
j−1 and σ 2

j
commute in PSn .

(iii) i < k < j < l. This follows since Ak,l = Bk,l in PSn (Proposition 2.6), and ai j

and bkl commute in Pn if i < k < j < l, which is easily seen geometrically.

(iv) i = k < j = l. This is trivial.

(v) i < k < l < j . This is an obvious consequence of (9).

(vi) i = k < j < l. In case j = i + 1, we have Ai, j = σ
2
i and so we obtain

Ai, j Ai,l = Ai,l Ai, j by using (18); assuming now i+1< j , by using repeatedly
(16) we can compute

Ai, j Ai,l = σi Ai+1, j Ai+1,lσ
−1
i

= σiσi+1 Ai+2, j Ai+2,lσ
−1
i+1σ

−1
i

· · ·

= σiσi+1 · · · σ j−2 A j−1, j A j−1,lσ
−1
j−2 · · · σ

−1
i+1σ

−1
i ,

and similarly

Ai,l Ai, j = σiσi+1 · · · σ j−2 A j−1,l A j−1, jσ
−1
j−2 · · · σ

−1
i+1σ

−1
i ;

these are equal since A j−1, j = σ
2
j−1 and by (18), σ 2

j−1 A j−1,l = A j−1,lσ
2
j−1.
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(vii) i < k < j = l. In case j = k + 1, we have Ak, j = σ
2
k and so we obtain

Ai, j Ak, j = Ak, j Ai, j by using (19); assuming now k + 1 < j , by repeatedly
using (14) we can compute

Ai, j Ak, j = σ j−1 Ai, j−1 Ak, j−1σ
−1
j−1

= σ j−1σ j−2 Ai, j−2 Ak, j−2σ
−1
j−2σ

−1
j−1

· · ·

= σ j−1σ j−2 · · · σk+1 Ai,k+1 Ak,k+1σ
−1
k+1 · · · σ

−1
j−2σ

−1
j−1,

and similarly

Ak, j Ai, j = σ j−1σ j−2 · · · σk+1 Ak,k+1 Ai,k+1σ
−1
k+1 · · · σ

−1
j−2σ

−1
j−1;

these are equal since Ak,k+1 = σ
2
k and by (19), Ai,k+1σ

2
k = σ

2
k Ai,k+1. �

Let G be a group. If x, y ∈G we denote by [x, y] := x−1 y−1xy the commutator
of x and y, and by G ′ the commutator subgroup of G (the subgroup of G generated
by all commutators [x, y]), which is the smallest normal subgroup N of G with
the property that G/N is abelian. Moreover, G ′ is a characteristic subgroup of G,
that is, θ(G ′)= G ′ for all θ ∈ Aut(G).

Proposition 3.2. Pn ' Pn/P ′n ' Zn(n−1)/2.

Proof. For 1 ≤ i ≤ n− 2 we define ti ∈ Pn by ti := [σ 2
i , σ

2
i+1] = [ai,i+1, ai+1,i+2].

These elements are the relators added to the ones of Bn in order to obtain PSn;
therefore, as a particular case of a general fact about groups given by generators and
relations (see for instance [Coxeter and Moser 1972, page 2]), the kernel of the map
β : Bn→ PSn defined above coincides with the normal subgroup of Bn generated
by {ti }1≤i≤n−2, which will be denoted by Ln . We obviously have Ln ⊆ Pn , and if
we consider the map β restricted to Pn , we have a surjective morphism Pn→Pn

with kernel Ln , so Pn ' Pn/Ln . By Proposition 3.1 we know that Pn is abelian,
so we obtain P ′n ⊆ Ln . On the other hand, since P ′n is characteristic in Pn and
Pn is normal in Bn , it follows (see [Suzuki 1982, Proposition 6.14]) that P ′n is
normal in Bn , and since t1, . . . , tn−2 ∈ P ′n and Ln is the normal subgroup of Bn

generated by {ti }1≤i≤n−2, we obtain Ln ⊆ P ′n . Thus, we have obtained Ln = P ′n
and so Pn ' Pn/P ′n . On the other hand, it is well known that Pn/P ′n ' Zn(n−1)/2;
see for instance [Kassel and Turaev 2008, Corollary 1.20]. �

As a consequence of the equality Ln = P ′n , we obtain Bn/P ′n:

Corollary 3.3. PSn ' Bn/P ′n .

The extension with abelian kernel 1→Pn→ PSn→ Sn→ 1 induces an action
of Sn on Pn , given by σ ·a= σ̃aσ̃−1 for σ ∈ Sn and a ∈Pn , where σ̃ is an element
of PSn with α(σ̃ )= σ . In particular, on generators we have sk · Ai, j = σk Ai, jσ

−1
k ,
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for 1≤ k ≤ n− 1 and 1≤ i < j ≤ n. By using some of the formulas given above,
one can describe explicitly this action as

sk · Ai, j = Ai, j if k < i − 1,(20a)

si−1 · Ai, j = Ai−1, j ,(20b)

si · Ai, j = Ai+1, j if j − i > 1 and si · Ai,i+1 = Ai,i+1,(20c)

sk · Ai, j = Ai, j if i < k < j − 1,(20d)

s j−1 · Ai, j = Ai, j−1 if j − i > 1 and s j−1 · A j−1, j = A j−1, j ,(20e)

s j · Ai j = Ai, j+1 for 1≤ i < j < n,(20f)

sk · Ai, j = Ai, j if j < k.(20g)

Note that the first equality in (20c) follows by using (17) together with the fact
that Ai, j = Bi, j (Proposition 2.6), and the first equality in (20e) follows by an easy
computation using also the fact that Ai, j = Bi, j . Also, one can easily see that these
formulas may be expressed more compactly as follows: If σ ∈ {s1, . . . , sn−1} and
1≤ i < j ≤ n, then σ · Ai, j = Aσ(i),σ ( j), where we made the convention Ar,t := At,r

for t < r . Since s1, . . . , sn−1 generate Sn , we have found the action of Sn on Ai, j :

Proposition 3.4. For any σ ∈ Sn and 1≤ i < j ≤ n, the action of σ on Ai, j is given
by σ · Ai, j = Aσ(i),σ ( j), with the convention Ar,t := At,r for t < r .

Lemma 3.5. Let F be a free Z-module of rank m, and let {X1, . . . , Xm} be a
generating system for F over Z. Then {X1, . . . , Xm} is a basis of F over Z.

Proof. Assume X1, . . . , Xm are linearly dependent over Z and take
∑m

i=1 αi X i = 0
a nontrivial linear combination over Z. Choose a prime number p such that |αi |< p
for all 1≤ i ≤m, and consider F := F/pF , a linear space over the field Zp=Z/pZ,
and X i , the images of the elements X i in F . These elements generate F over Zp,
and since the dimension of F over Zp is m, it follows that {X1, . . . , Xm} is a basis
of F over Zp. Thus, it follows that αi ≡ 0 (mod p) for all 1 ≤ i ≤ m, which is a
contradiction because we have chosen p so that |αi |< p for all 1≤ i ≤ m. �

Proposition 3.6. In PSn , there is no element of order 2 whose image in Sn is the
transposition s1 = (1, 2). Consequently, the extension 1→Pn→ PSn→ Sn→ 1
is not split.

Proof. Take x ∈ PSn such that α(x) = s1. Since α(σ1) = s1, we obtain that
xσ−1

1 ∈ Ker(α) = Pn . By Proposition 3.2 and Lemma 3.5, it follows that the
abelian group Pn is freely generated by {Ai, j }1≤i< j≤n , so we can write uniquely
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x =
∏

1≤i< j≤n Ami j
i, j σ1, with mi j ∈ Z. We compute

x2
=

( ∏
1≤i< j≤n

Ami j
i, j σ1

)( ∏
1≤i< j≤n

Ami j
i, j σ1

)
=

( ∏
1≤i< j≤n

Ami j
i, j

)(
σ1

∏
1≤i< j≤n

Ami j
i, j σ

−1
1

)
σ 2

1

=

( ∏
1≤i< j≤n

Ami j
i, j

)( ∏
1≤i< j≤n

σ1 Ami j
i, j σ

−1
1

)
A1,2

= A2m12+1
1,2

( ∏
3≤ j≤n

Am1 j+m2 j
1, j Am1 j+m2 j

2, j

)( ∏
3≤i< j≤n

A2mi j
i, j

)
,

and this element cannot be trivial because 2m12+ 1 cannot be 0. Note that for the
last equality we used the commutation relations

σ1 A1,2σ
−1
1 = A1,2,

σ1 A1, jσ
−1
1 = A2, j for all j ≥ 3,

σ1 A2, jσ
−1
1 = A1, j for all j ≥ 3,

σ1 Ai, jσ
−1
1 = Ai, j for all 3≤ i < j,

which can be easily proved by using some of the formulas given above. �

Remark 3.7. As is well known [Brown 1982], any extension with abelian kernel
corresponds to a 2-cocycle. Specifically, the extension 1→Pn→ PSn→ Sn→ 1
corresponds to an element in H 2(Sn,Zn(n−1)/2). We illustrate this by computing
explicitly the corresponding 2-cocycle for n = 3. We consider the set-theoretical
section f : S3→PS3 defined by f (1)=1, f (s2)=σ2, f (s1)=σ1, f (s1s2)=σ1σ2,
f (s2s1)= σ2σ1 and f (s2s1s2)= σ2σ1σ2. The 2-cocycle afforded by this section is
defined by u : S3×S3→P3, (x, y) 7→ f (x) f (y) f (xy)−1, and a direct computation
gives its explicit formula as in Table 1, where we have chosen an additive notation
for the abelian group P3 ' Z3.

1 s2 s1 s1s2 s2s1 s2s1s2

1 0 0 0 0 0 0
s2 0 A2,3 0 0 A2,3 A2,3

s1 0 0 A1,2 A1,2 0 A1,2

s1s2 0 A1,3 0 A1,2 A1,2+ A1,3 A1,2+ A1,3

s2s1 0 0 A1,3 A1,3+ A2,3 A2,3 A1,3+ A2,3

s2s1s2 0 A1,2 A2,3 A1,3+ A2,3 A1,2+ A1,3 A1,2+ A1,3+ A2,3

Table 1. The 2-cocycle for n = 3 associated to the section f .
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4. PSn is linear

Bigelow [2001] and Krammer [2002] proved that the braid group Bn is linear. More
precisely, let R be a commutative ring, let q and t be two invertible elements in R,
and let V be a free R-module of rank n(n− 1)/2 with a basis {xi, j }1≤i< j≤n . Then
the map ρ : Bn→ GL(V ), defined by

σk xk,k+1 = tq2xk,k+1,

σk xi,k = (1− q)xi,k + qxi,k+1 for i < k,

σk xi,k+1 = xi,k + tqk−i+1(q − 1)xk,k+1 for i < k,

σk xk, j = tq(q − 1)xk,k+1+ qxk+1, j for k+ 1< j,

σk xk+1, j = xk, j + (1− q)xk+1, j for k+ 1< j,

σk xi, j = xi, j for i < j < k or k+ 1< i < j,

σk xi, j = xi, j + tqk−i (q − 1)2xk,k+1 for i < k < k+ 1< j,

and ρ(x)(v) = xv for x ∈ Bn and v ∈ V , gives a representation of Bn , and if also
R = R[t±1

] and q ∈ R⊆ R with 0< q < 1, then the representation is faithful; see
[Krammer 2002].

We consider now the general formula for ρ, in which we take q = 1:

σk xk,k+1 = t xk,k+1,

σk xi,k = xi,k+1 for i < k,

σk xi,k+1 = xi,k for i < k,

σk xk, j = xk+1, j for k+ 1< j,

σk xk+1, j = xk, j for k+ 1< j,

σk xi, j = xi, j for i < j < k or k+ 1< i < j,

σk xi, j = xi, j for i < k < k+ 1< j.

One can easily see that these formulas imply

σ 2
k xk,k+1 = t2xk,k+1 and σ 2

k xi, j = xi, j if (i, j) 6= (k, k+ 1).

One can then check that ρ(σ 2
k ) commutes with ρ(σ 2

k+1) for all 1≤ k ≤ n− 2, and
so for q = 1 it turns out that ρ is a representation of PSn .

Theorem 4.1. This representation of PSn is faithful if R = R[t±1
]. Therefore, PSn

is linear.

Proof. We first prove that Ai, j xi, j = t2xi, j , and Ai, j xk,l = xk,l if (i, j) 6= (k, l). We
do it by induction over | j − i |. If | j − i | = 1, the relations follow from the fact
that Ai,i+1 = σ

2
i . Assume the relations hold for | j − i | = s− 1. We want to prove
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them for | j − i | = s. We recall that Ai, j = σ j−1 Ai, j−1σ
−1
j−1; see (14). We compute

Ai, j xi, j = σ j−1 Ai, j−1σ
−1
j−1xi, j = σ j−1 Ai, j−1xi, j−1

= σ j−1t2xi, j−1 (by induction)

= t2xi, j .

On the other hand, if (i, j) 6= (k, l) then σ−1
j−1xk,l = xu,v with (i, j − 1) 6= (u, v),

and so

Ai, j xk,l = σ j−1 Ai, j−1σ
−1
j−1xk,l = σ j−1 Ai, j−1xu,v

= σ j−1xu,v (by induction)

= σ j−1σ
−1
j−1xk,l = xk,l,

as desired.
To show that the representation is faithful, take b ∈ PSn such that ρ(b) = idV

and consider α(b), the image of b in Sn . From the way ρ is defined it follows that

bxi, j = t pxα(b)(i),α(b)( j) for all 1≤ i < j ≤ n,

with p ∈ Z, where we made the convention xr,s := xs,r if 1≤ s < r ≤ n. Since xi, j

is a basis in V and we assumed ρ(b)= idV , we find that the permutation α(b)∈ Sn

has the property that if 1 ≤ i < j ≤ n, then either α(b)(i)= i and α(b)( j)= j or
α(b)(i)= j and α(b)( j)= i . Since we assumed n ≥ 3, the only such permutation
is the trivial one. Thus, we have obtained that b ∈ Ker(α) = Pn and so we can
write b=

∏
1≤i< j≤n Ami, j

i, j , with mi, j ∈Z. By using the formulas given above for the
action of Ai, j on xk,l we immediately obtain bxk,l= t2mk,l xk,l for all 1≤k< l≤n.
Using again the assumption ρ(b) = idV , we obtain t2mk,l = 1 and hence mk,l = 0
for all 1≤ k < l ≤ n, that is b = 1, finishing the proof. �

5. Pseudosymmetric groups and pseudosymmetric braidings

We recall from [Kassel 1995, XIII.2] that to braid groups one can associate
the so-called braid category B, a universal braided monoidal category. Similarly,
we can construct a pseudosymmetric braided category PS associated to pseudo-
symmetric groups. Namely, the objects of PS are natural numbers n ∈N. The set
of morphisms from m to n is empty if m 6= n and is PSn if m = n. The monoidal
structure of PS is defined as the one for B, and so is the braiding, namely

cn,m : n⊗m→ m⊗ n,

c0,n = idn = cn,0,

cn,m = (σmσm−1 · · · σ1)(σm+1σm · · · σ2) · · · (σm+n−1σm+n−2 · · · σn) if m, n > 0.
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We denote by tm,n = cn,m ◦cm,n the double braiding. In view of Proposition 1.3, to
prove that c is pseudosymmetric it is enough to check that, for all m, n, p ∈ N,

(tm,n ⊗ idp) ◦ (idm ⊗ tn,p)= (idm ⊗ tn,p) ◦ (tm,n ⊗ idp).(21)

Note that tm,n ⊗ idp and idm ⊗ tn,p are elements in Pm+n+p, which is an abelian
group, and the composition ◦ between tm,n ⊗ idp and idm ⊗ tn,p is just the multi-
plication in the group Pm+n+p, so (21) is obviously true.

Let C be a strict braided monoidal category with braiding c, let n be a natural
number and let V ∈ C. Consider the automorphisms c1, . . . , cn−1 of V⊗n defined
by ci = idV⊗(i−1)⊗cV,V⊗idV⊗(n−i−1) . It is well known (see [Kassel 1995, XV.4]) that
there exists a unique group morphism ρc

n : Bn→ Aut(V⊗n) such that ρc
n(σi ) = ci

for all 1≤ i ≤ n−1. It is clear that, if c is pseudosymmetric, then ρc
n factorizes to

a group morphism PSn → Aut(V⊗n). Thus, pseudosymmetric braided categories
provide representations of pseudosymmetric groups.
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