Pacific Journal of Mathematics

A QUOTIENT OF THE BRAID GROUP RELATED TO PSEUDOSYMMETRIC BRAIDED CATEGORIES

FLORIN PANAITE AND MIHAI D. STAIC

Volume 244 No. 1

January 2010

A QUOTIENT OF THE BRAID GROUP RELATED TO PSEUDOSYMMETRIC BRAIDED CATEGORIES

FLORIN PANAITE AND MIHAI D. STAIC

Motivated by the recent concept of a pseudosymmetric braided monoidal category, we define the pseudosymmetric group PS_n to be the quotient of the braid group B_n by the relations $\sigma_i \sigma_{i+1}^{-1} \sigma_i = \sigma_{i+1} \sigma_i^{-1} \sigma_{i+1}$ with $1 \le i \le n-2$. It turns out that PS_n is isomorphic to the quotient of B_n by the commutator subgroup $[P_n, P_n]$ of the pure braid group P_n (which amounts to saying that $[P_n, P_n]$ coincides with the normal subgroup of B_n generated by the elements $[\sigma_i^2, \sigma_{i+1}^2]$ with $1 \le i \le n-2$), and that PS_n is a linear group.

Introduction

A symmetric category consists of a monoidal category \mathscr{C} equipped with a family of natural isomorphisms $c_{X,Y} : X \otimes Y \to Y \otimes X$ satisfying natural "bilinearity" conditions together with the symmetry relation $c_{Y,X} \circ c_{X,Y} = \mathrm{id}_{X \otimes Y}$ for all $X, Y \in \mathscr{C}$. This concept was generalized by Joyal and Street [1993] by dropping this symmetry relation from the axioms and arriving thus at the concept of braided category, of central importance in quantum group theory; see [Kassel 1995; Majid 1995].

Inspired by recently introduced categorical concepts of pure-braided structures [Staic 2004] and twines [Bruguières 2006], Panaite, Staic and Van Oystaeyen [Panaite et al. 2009] defined the concept of pseudosymmetric braiding to generalize symmetric braidings. A braiding c on a strict monoidal category \mathscr{C} is pseudo-symmetric if it satisfies the modified braid relation

$$(c_{Y,Z} \otimes \mathrm{id}_X) \circ (\mathrm{id}_Y \otimes c_{Z,X}^{-1}) \circ (c_{X,Y} \otimes \mathrm{id}_Z) = (\mathrm{id}_Z \otimes c_{X,Y}) \circ (c_{Z,X}^{-1} \otimes \mathrm{id}_Y) \circ (\mathrm{id}_X \otimes c_{Y,Z})$$

for all $X, Y, Z \in \mathcal{C}$. The main result in [Panaite et al. 2009] asserts that, if H is a Hopf algebra with bijective antipode, then the canonical braiding of the Yetter– Drinfeld category $_H \mathfrak{YD}^H$ is pseudosymmetric if and only if H is commutative and cocommutative.

MSC2000: primary 20F36; secondary 18D10.

Keywords: braid group, symmetric group, braided categories, pseudosymmetric braidings. Research partially supported by the CNCSIS project "Hopf algebras, cyclic homology and monoidal categories", contract number 560/2009.

It is well known that, at several levels, braided categories correspond to the braid groups B_n , while symmetric categories correspond to the symmetric groups S_n . It is natural to expect that there exist some groups corresponding, in the same way, to pseudosymmetric braided categories. Indeed, it is clear that these groups, denoted by PS_n and called (naturally) the pseudosymmetric groups, should be the quotients of the braid groups B_n by the relations $\sigma_i \sigma_{i+1}^{-1} \sigma_i = \sigma_{i+1} \sigma_i^{-1} \sigma_{i+1}$. Our aim is to study and find more explicitly the structure of these groups. We prove first that the kernel of the canonical group morphism PS_n $\rightarrow S_n$ is abelian, and consequently PS_n is isomorphic to the quotient of B_n by the commutator subgroup $[P_n, P_n]$ of the pure braid group P_n . (This amounts to saying that $[P_n, P_n]$ coincides with the normal subgroup of B_n generated by the elements $[\sigma_i^2, \sigma_{i+1}^2]$ with $1 \le i \le n-2$.)

There exist similarities, but also differences, between braid groups and pseudosymmetric groups. Bigelow [2001] and Krammer [2002] proved that braid groups are linear, and we show that so are pseudosymmetric groups. More precisely, we prove that the Lawrence–Krammer representation of B_n induces a representation of PS_n if the parameter q is chosen to be 1, and that this representation of PS_n is faithful over $\mathbb{R}[t^{\pm 1}]$. On the other hand, although PS_n is an infinite group, like B_n , it does have nontrivial elements of finite order, unlike B_n .

1. Preliminaries

Definition 1.1 [Panaite et al. 2007]. Let \mathscr{C} be a strict monoidal category and let $T_{X,Y} : X \otimes Y \to X \otimes Y$ be a family of natural isomorphisms in \mathscr{C} . We call *T* a *strong twine* if, for all *X*, *Y*, *Z* $\in \mathscr{C}$,

$$T_{I,I} = \mathrm{id}_{I}, \qquad (T_{X,Y} \otimes \mathrm{id}_{Z}) \circ T_{X \otimes Y,Z} = (\mathrm{id}_{X} \otimes T_{Y,Z}) \circ T_{X,Y \otimes Z}, (T_{X,Y} \otimes \mathrm{id}_{Z}) \circ (\mathrm{id}_{X} \otimes T_{Y,Z}) = (\mathrm{id}_{X} \otimes T_{Y,Z}) \circ (T_{X,Y} \otimes \mathrm{id}_{Z}).$$

Definition 1.2 [Panaite et al. 2009]. Let \mathscr{C} be a strict monoidal category and *c* a braiding on \mathscr{C} . We say that *c* is *pseudosymmetric* if, for all *X*, *Y*, *Z* $\in \mathscr{C}$,

(1)
$$(c_{Y,Z} \otimes \mathrm{id}_X) \circ (\mathrm{id}_Y \otimes c_{Z,X}^{-1}) \circ (c_{X,Y} \otimes \mathrm{id}_Z)$$

= $(\mathrm{id}_Z \otimes c_{X,Y}) \circ (c_{Z,X}^{-1} \otimes \mathrm{id}_Y) \circ (\mathrm{id}_X \otimes c_{Y,Z})$.

In this case we say that \mathscr{C} is a *pseudosymmetric braided category*.

The next proposition, a key result in [Panaite et al. 2009], led to the introduction of the concept of pseudosymmetric braiding. Here, it will serve as a source of inspiration for a certain key result for braids, Proposition 2.1.

Proposition 1.3 [Panaite et al. 2009]. Let \mathscr{C} be a strict monoidal category and c a braiding on \mathscr{C} . Then the double braiding $T_{X,Y} := c_{Y,X} \circ c_{X,Y}$ is a strong twine if and only if c is pseudosymmetric.

2. Defining relations for PS_n

Let $n \ge 3$ be a natural number. We denote by B_n the braid group on n strands, with its usual presentation by generators σ_i with $1 \le i \le n-1$ and relations

(2)
$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 if $|i - j| \ge 2$,

(3)
$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \quad \text{if } 1 \le i \le n-2.$$

We begin with the analogue for braids of Proposition 1.3:

Proposition 2.1. For all $1 \le i \le n-2$, the relations

(4)
$$\sigma_i \sigma_{i+1}^{-1} \sigma_i = \sigma_{i+1} \sigma_i^{-1} \sigma_{i+1},$$

(5)
$$\sigma_i^2 \sigma_{i+1}^2 = \sigma_{i+1}^2 \sigma_i^2$$

are equivalent in B_n .

Proof. We show first that (4) implies (5):

$$\sigma_i^2 \sigma_{i+1}^2 = \sigma_i \sigma_{i+1}^{-1} \sigma_{i+1} \sigma_i \sigma_{i+1} \sigma_{i+1}$$

$$\stackrel{(3)}{=} \sigma_i \sigma_{i+1}^{-1} \sigma_i \sigma_{i+1} \sigma_i \sigma_{i+1} \stackrel{(3),(4)}{=} \sigma_{i+1} \sigma_i^{-1} \sigma_{i+1} \sigma_i \sigma_{i+1} \sigma_i$$

$$\stackrel{(3)}{=} \sigma_{i+1} \sigma_i^{-1} \sigma_i \sigma_{i+1} \sigma_i \sigma_i = \sigma_{i+1}^2 \sigma_i^2.$$

Conversely, we prove that (5) implies (4):

$$\sigma_{i}\sigma_{i+1}^{-1}\sigma_{i} = \sigma_{i}\sigma_{i+1}^{-2}\sigma_{i}^{-1}\sigma_{i}\sigma_{i+1}\sigma_{i}$$

$$\stackrel{(3)}{=}\sigma_{i}\sigma_{i+1}^{-2}\sigma_{i}^{-1}\sigma_{i+1}\sigma_{i}\sigma_{i+1}$$

$$= \sigma_{i}\sigma_{i+1}^{-2}\sigma_{i}^{-2}\sigma_{i}\sigma_{i+1}\sigma_{i}\sigma_{i+1} \stackrel{(3),(5)}{=}\sigma_{i}\sigma_{i}^{-2}\sigma_{i+1}^{-2}\sigma_{i+1}\sigma_{i}\sigma_{i+1}^{2}$$

$$= \sigma_{i}^{-1}\sigma_{i+1}^{-1}\sigma_{i}\sigma_{i+1}^{2}$$

$$= \sigma_{i+1}\sigma_{i+1}^{-1}\sigma_{i}^{-1}\sigma_{i+1}\sigma_{i}\sigma_{i+1}^{2}$$

$$\stackrel{(3)}{=}\sigma_{i+1}\sigma_{i}^{-1}\sigma_{i-1}\sigma_{i}\sigma_{i+1}^{2}$$

$$= \sigma_{i+1}\sigma_{i}^{-1}\sigma_{i+1}.$$

Definition 2.2. For a natural number $n \ge 3$, we define the *pseudosymmetric group* PS_n as the group with generators σ_i for $1 \le i \le n-1$, and relations (2), (3) and (4), or equivalently (2), (3) and (5).

Proposition 2.3. For $1 \le i \le n-2$, consider the elements

(6)
$$p_i := \sigma_i \sigma_{i+1}^{-1} \quad and \quad q_i := \sigma_i^{-1} \sigma_{i+1}$$

in PS_n . Then, in PS_n , we have

(7)
$$p_i^3 = q_i^3 = (p_i q_i)^3 = 1 \text{ for all } 1 \le i \le n-2.$$

Proof. The relations $p_i^3 = 1$ and $q_i^3 = 1$ follow immediately from (4); actually each of them is equivalent to (4). Now we compute

$$(p_{i}q_{i})^{2} = (\sigma_{i}\sigma_{i+1}^{-1}\sigma_{i}^{-1}\sigma_{i+1})^{2}$$

$$= \sigma_{i}\sigma_{i+1}^{-1}\sigma_{i}^{-1}\sigma_{i+1}\sigma_{i}\sigma_{i-1}^{-1}\sigma_{i+1}$$

$$= \sigma_{i}\sigma_{i+1}^{-1}\sigma_{i}^{-1}\sigma_{i+1}\sigma_{i}\sigma_{i+1}\sigma_{i}^{-2}\sigma_{i}^{-1}\sigma_{i+1}$$

$$\stackrel{(3)}{=}\sigma_{i}^{2}\sigma_{i+1}^{-2}\sigma_{i}^{-1}\sigma_{i+1} \stackrel{(5)}{=}\sigma_{i+1}^{-2}\sigma_{i}\sigma_{i+1}$$

$$= \sigma_{i+1}^{-2}\sigma_{i}\sigma_{i+1}\sigma_{i}\sigma_{i}^{-1}$$

$$\stackrel{(3)}{=}\sigma_{i+1}^{-1}\sigma_{i}\sigma_{i+1}\sigma_{i}^{-1} = (p_{i}q_{i})^{-1},$$

$$\mu_{i})^{3} = 1.$$

and so $(p_i q_i)^3 = 1$.

Consider now the symmetric group S_n with its usual presentation by generators s_i with $1 \le i \le n - 1$ and relations (2), (3) and $s_i^2 = 1$ for all $1 \le i \le n - 1$. We denote by $\pi : B_n \to S_n$, $\beta : B_n \to PS_n$ and $\alpha : PS_n \to S_n$ the canonical surjective group homomorphisms given by $\pi(\sigma_i) = s_i$, $\alpha(\sigma_i) = s_i$ and $\beta(\sigma_i) = \sigma_i$ for all $1 \le i \le n - 1$. Obviously we have $\pi = \alpha \circ \beta$; hence in particular we obtain Ker(α) = β (Ker(π)). We denote as usual Ker(π) = P_n , the pure braid group on *n* strands. It is well known (see [Kassel and Turaev 2008, page 21]) that P_n is generated by the elements

(8)
$$a_{ij} := \sigma_{j-1} \sigma_{j-2} \cdots \sigma_{i+1} \sigma_i^2 \sigma_{i+1}^{-1} \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^{-1}$$
 for $1 \le i < j \le n$

that satisfy certain relations, of which we will use only one, namely, that for $1 \le i < j \le n$ and $1 \le r < s \le n$,

(9)
$$a_{ij}a_{rs} = a_{rs}a_{ij} \quad \text{if } s < i \quad \text{or} \quad i < r < s < j.$$

Alternatively, P_n is generated by the elements

(10)
$$b_{ij} := \sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \cdots \sigma_{i+1}^{-1} \sigma_i^2 \sigma_{i+1} \cdots \sigma_{j-2} \sigma_{j-1}$$
 for $1 \le i < j \le n$.

It is easy to see that in B_n we have

(11)
$$\sigma_{i+1}\sigma_i^2\sigma_{i+1}^{-1} = \sigma_i^{-1}\sigma_{i+1}^2\sigma_i$$
 and $\sigma_{i+1}^{-1}\sigma_i^2\sigma_{i+1} = \sigma_i\sigma_{i+1}^2\sigma_i^{-1}$,

and by using repeatedly these relations we obtain an equivalent description of the elements a_{ij} and b_{ij} :

(12)
$$a_{ij} = \sigma_i^{-1} \sigma_{i+1}^{-1} \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^2 \sigma_{j-2} \cdots \sigma_{i+1} \sigma_i$$
 for $1 \le i < j \le n$,

(13)
$$b_{ij} = \sigma_i \sigma_{i+1} \cdots \sigma_{j-2} \sigma_{j-1}^2 \sigma_{j-2}^{-1} \cdots \sigma_{i+1}^{-1} \sigma_i^{-1}$$
 for $1 \le i < j \le n$

Now, for all $1 \le i < j \le n$, we define $A_{i,j}$ and $B_{i,j}$ as the elements in PS_n given by $A_{i,j} := \beta(a_{ij})$ and $B_{i,j} := \beta(b_{ij})$. From the discussion above it follows that Ker(α) is generated by $\{A_{i,j}\}_{1 \le i < j \le n}$ and also by $\{B_{i,j}\}_{1 \le i < j \le n}$.

Lemma 2.4. The following relations hold in PS_n for $1 \le i < j < n$:

(14)
$$A_{i,j+1} = \sigma_j A_{i,j} \sigma_j^{-1},$$

$$B_{i,j+1} = \sigma_j^{-1} B_{i,j} \sigma_j.$$

Proof. These relations are consequences of corresponding relations in B_n for the a_{ij} and b_{ij} , which in turn follow immediately from (8) and (10).

Lemma 2.5. *For all* $i, j \in \{1, 2, ..., n\}$ *with* i + 1 < j, we have in PS_n

(16)
$$A_{i,j} = \sigma_i A_{i+1,j} \sigma_i^{-1},$$

$$B_{i,j} = \sigma_i^{-1} B_{i+1,j} \sigma_i.$$

Proof. We prove (16), while (17) is similar and left to the reader. Note that in PS_n we have $\sigma_{i+1}^{-1}\sigma_i^2\sigma_{i+1} = \sigma_{i+1}\sigma_i^2\sigma_{i+1}^{-1}$, which together with the second of (11) implies $\sigma_i\sigma_{i+1}^2\sigma_i^{-1} = \sigma_{i+1}\sigma_i^2\sigma_{i+1}^{-1}$; hence

$$A_{i,j} = \sigma_{j-1}\sigma_{j-2}\cdots(\sigma_{i+1}\sigma_{i}^{2}\sigma_{i+1}^{-1})\cdots\sigma_{j-2}^{-1}\sigma_{j-1}^{-1}$$

= $\sigma_{j-1}\sigma_{j-2}\cdots(\sigma_{i}\sigma_{i+1}^{2}\sigma_{i}^{-1})\cdots\sigma_{j-2}^{-1}\sigma_{j-1}^{-1}$
= $\sigma_{i}\sigma_{j-1}\sigma_{j-2}\cdots\sigma_{i+1}^{2}\cdots\sigma_{j-2}^{-1}\sigma_{j-1}^{-1}=\sigma_{i}A_{i+1,j}\sigma_{i}^{-1}.$

Proposition 2.6. For all $1 \le i < j \le n$, we have $A_{i,j} = B_{i,j}$ in PS_n .

Proof. We use (16) repeatedly:

$$A_{i,j} = \sigma_i A_{i+1,j} \sigma_i^{-1} = \sigma_i \sigma_{i+1} A_{i+2,j} \sigma_{i+1}^{-1} \sigma_i^{-1}$$

...
$$= \sigma_i \sigma_{i+1} \cdots \sigma_{j-2} A_{j-1,j} \sigma_{j-2}^{-1} \cdots \sigma_{i+1}^{-1} \sigma_i^{-1}$$

$$= \sigma_i \sigma_{i+1} \cdots \sigma_{j-2} \sigma_{j-1}^2 \sigma_{j-2}^{-1} \cdots \sigma_{i+1}^{-1} \sigma_i^{-1} \stackrel{(13)}{=} B_{i,j}.$$

Lemma 2.7. For all $1 \le i < j \le n$ and $1 \le h \le k < n$, we have in PS_n

(18)
$$A_{i,j}\sigma_i^2 = \sigma_i^2 A_{i,j},$$

(19)
$$A_{h,k+1}\sigma_k^2 = \sigma_k^2 A_{h,k+1}$$

Proof. Note first that (18) is obvious for j = i + 1. Assume that i + 1 < j; using the fact that $A_{r,s} = B_{r,s}$ for all r, s, we compute

$$A_{i,j}\sigma_i^2 \stackrel{(16)}{=} \sigma_i A_{i+1,j}\sigma_i = \sigma_i B_{i+1,j}\sigma_i \stackrel{(17)}{=} \sigma_i^2 B_{i,j} = \sigma_i^2 A_{i,j}.$$

Note also that (19) is obvious for h = k. Assume that h < k; using again $A_{r,s} = B_{r,s}$ for all r, s, we compute

$$A_{h,k+1}\sigma_k^2 \stackrel{(14)}{=} \sigma_k A_{h,k}\sigma_k = \sigma_k B_{h,k}\sigma_k \stackrel{(15)}{=} \sigma_k^2 B_{h,k+1} = \sigma_k^2 A_{h,k+1}.$$

3. The structure of PS_n

We denote by \mathfrak{P}_n the kernel of the morphism $\alpha : PS_n \to S_n$ defined above.

Proposition 3.1. \mathfrak{P}_n is an abelian group.

Proof. It is enough to prove that any two elements $A_{i,j}$ and $A_{k,l}$ commute in PS_n. We only have to analyze the following seven cases for the numbers i, j, k, l:

(i) i < j < k < l. This is an obvious consequence of (9).

(ii) i < j = k < l. We write

$$A_{i,j} = \sigma_i^{-1} \sigma_{i+1}^{-1} \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^2 \sigma_{j-2}^2 \cdots \sigma_{i+1} \sigma_i,$$

$$A_{j,l} = \sigma_{l-1} \sigma_{l-2} \cdots \sigma_{j+1} \sigma_j^2 \sigma_{j+1}^{-1} \cdots \sigma_{l-2}^{-1} \sigma_{l-1}^{-1},$$

and we obtain $A_{i,j}A_{j,l} = A_{j,l}A_{i,j}$ by using (2) and the fact that σ_{j-1}^2 and σ_j^2 commute in PS_n.

- (iii) i < k < j < l. This follows since $A_{k,l} = B_{k,l}$ in PS_n (Proposition 2.6), and a_{ij} and b_{kl} commute in P_n if i < k < j < l, which is easily seen geometrically.
- (iv) i = k < j = l. This is trivial.
- (v) i < k < l < j. This is an obvious consequence of (9).
- (vi) i = k < j < l. In case j = i + 1, we have $A_{i,j} = \sigma_i^2$ and so we obtain $A_{i,j}A_{i,l} = A_{i,l}A_{i,j}$ by using (18); assuming now i + 1 < j, by using repeatedly (16) we can compute

$$A_{i,j}A_{i,l} = \sigma_i A_{i+1,j} A_{i+1,l} \sigma_i^{-1}$$

= $\sigma_i \sigma_{i+1} A_{i+2,j} A_{i+2,l} \sigma_{i+1}^{-1} \sigma_i^{-1}$
...
= $\sigma_i \sigma_{i+1} \cdots \sigma_{j-2} A_{j-1,j} A_{j-1,l} \sigma_{j-2}^{-1} \cdots \sigma_{i+1}^{-1} \sigma_i^{-1}$,

and similarly

$$A_{i,l}A_{i,j} = \sigma_i \sigma_{i+1} \cdots \sigma_{j-2} A_{j-1,l} A_{j-1,j} \sigma_{j-2}^{-1} \cdots \sigma_{i+1}^{-1} \sigma_i^{-1};$$

these are equal since $A_{i-1,j} = \sigma_{i-1}^2$ and by (18), $\sigma_{i-1}^2 A_{j-1,l} = A_{j-1,l} \sigma_{i-1}^2$.

(vii) i < k < j = l. In case j = k + 1, we have $A_{k,j} = \sigma_k^2$ and so we obtain $A_{i,j}A_{k,j} = A_{k,j}A_{i,j}$ by using (19); assuming now k + 1 < j, by repeatedly using (14) we can compute

$$A_{i,j}A_{k,j} = \sigma_{j-1}A_{i,j-1}A_{k,j-1}\sigma_{j-1}^{-1}$$

= $\sigma_{j-1}\sigma_{j-2}A_{i,j-2}A_{k,j-2}\sigma_{j-2}^{-1}\sigma_{j-1}^{-1}$
...
= $\sigma_{j-1}\sigma_{j-2}\cdots\sigma_{k+1}A_{i,k+1}A_{k,k+1}\sigma_{k+1}^{-1}\cdots\sigma_{j-2}^{-1}\sigma_{j-1}^{-1}$,

and similarly

$$A_{k,j}A_{i,j} = \sigma_{j-1}\sigma_{j-2}\cdots\sigma_{k+1}A_{k,k+1}A_{i,k+1}\sigma_{k+1}^{-1}\cdots\sigma_{j-2}^{-1}\sigma_{j-1}^{-1};$$

these are equal since $A_{k,k+1} = \sigma_k^2$ and by (19), $A_{i,k+1}\sigma_k^2 = \sigma_k^2 A_{i,k+1}$.

Let *G* be a group. If $x, y \in G$ we denote by $[x, y] := x^{-1}y^{-1}xy$ the commutator of *x* and *y*, and by *G'* the commutator subgroup of *G* (the subgroup of *G* generated by all commutators [x, y]), which is the smallest normal subgroup *N* of *G* with the property that G/N is abelian. Moreover, *G'* is a characteristic subgroup of *G*, that is, $\theta(G') = G'$ for all $\theta \in \text{Aut}(G)$.

Proposition 3.2. $\mathfrak{P}_n \simeq P_n / P'_n \simeq \mathbb{Z}^{n(n-1)/2}$.

Proof. For $1 \le i \le n-2$ we define $t_i \in P_n$ by $t_i := [\sigma_i^2, \sigma_{i+1}^2] = [a_{i,i+1}, a_{i+1,i+2}]$. These elements are the relators added to the ones of B_n in order to obtain PS_n; therefore, as a particular case of a general fact about groups given by generators and relations (see for instance [Coxeter and Moser 1972, page 2]), the kernel of the map $\beta : B_n \to PS_n$ defined above coincides with the normal subgroup of B_n generated by $\{t_i\}_{1\le i\le n-2}$, which will be denoted by L_n . We obviously have $L_n \subseteq P_n$, and if we consider the map β restricted to P_n , we have a surjective morphism $P_n \to \mathfrak{P}_n$ with kernel L_n , so $\mathfrak{P}_n \simeq P_n/L_n$. By Proposition 3.1 we know that \mathfrak{P}_n is abelian, so we obtain $P'_n \subseteq L_n$. On the other hand, since P'_n is characteristic in P_n and P_n is normal in B_n , and since $t_1, \ldots, t_{n-2} \in P'_n$ and L_n is the normal subgroup of B_n generated by $\{t_i\}_{1\le i\le n-2}$, we obtain $L_n \subseteq P'_n$. Thus, we have obtained $L_n = P'_n$ and so $\mathfrak{P}_n \simeq P_n/P'_n$. On the other hand, it is well known that $P_n/P'_n \simeq \mathbb{Z}^{n(n-1)/2}$; see for instance [Kassel and Turaev 2008, Corollary 1.20].

As a consequence of the equality $L_n = P'_n$, we obtain B_n/P'_n :

Corollary 3.3. $PS_n \simeq B_n / P'_n$.

The extension with abelian kernel $1 \to \mathfrak{P}_n \to \mathrm{PS}_n \to S_n \to 1$ induces an action of S_n on \mathfrak{P}_n , given by $\sigma \cdot a = \tilde{\sigma} a \tilde{\sigma}^{-1}$ for $\sigma \in S_n$ and $a \in \mathfrak{P}_n$, where $\tilde{\sigma}$ is an element of PS_n with $\alpha(\tilde{\sigma}) = \sigma$. In particular, on generators we have $s_k \cdot A_{i,j} = \sigma_k A_{i,j} \sigma_k^{-1}$, for $1 \le k \le n - 1$ and $1 \le i < j \le n$. By using some of the formulas given above, one can describe explicitly this action as

(20a)	$s_k \cdot A_{i,j} = A_{i,j}$	if $k < i - 1$,
(20b)	$s_{i-1} \cdot A_{i,j} = A_{i-1,j},$	
(20c)	$s_i \cdot A_{i,j} = A_{i+1,j}$	if $j - i > 1$ and $s_i \cdot A_{i,i+1} = A_{i,i+1}$,
(20d)	$s_k \cdot A_{i,j} = A_{i,j}$	if $i < k < j - 1$,
(20e)	$s_{j-1} \cdot A_{i,j} = A_{i,j-1}$	if $j - i > 1$ and $s_{j-1} \cdot A_{j-1,j} = A_{j-1,j}$,
(20f)	$s_j \cdot A_{ij} = A_{i,j+1}$	for $1 \leq i < j < n$,
(20g)	$s_k \cdot A_{i,j} = A_{i,j}$	if $j < k$.

Note that the first equality in (20c) follows by using (17) together with the fact that $A_{i,j} = B_{i,j}$ (Proposition 2.6), and the first equality in (20e) follows by an easy computation using also the fact that $A_{i,j} = B_{i,j}$. Also, one can easily see that these formulas may be expressed more compactly as follows: If $\sigma \in \{s_1, \ldots, s_{n-1}\}$ and $1 \le i < j \le n$, then $\sigma \cdot A_{i,j} = A_{\sigma(i),\sigma(j)}$, where we made the convention $A_{r,t} := A_{t,r}$ for t < r. Since s_1, \ldots, s_{n-1} generate S_n , we have found the action of S_n on $A_{i,j}$:

Proposition 3.4. For any $\sigma \in S_n$ and $1 \le i < j \le n$, the action of σ on $A_{i,j}$ is given by $\sigma \cdot A_{i,j} = A_{\sigma(i),\sigma(j)}$, with the convention $A_{r,t} := A_{t,r}$ for t < r.

Lemma 3.5. Let F be a free \mathbb{Z} -module of rank m, and let $\{X_1, \ldots, X_m\}$ be a generating system for F over \mathbb{Z} . Then $\{X_1, \ldots, X_m\}$ is a basis of F over \mathbb{Z} .

Proof. Assume X_1, \ldots, X_m are linearly dependent over \mathbb{Z} and take $\sum_{i=1}^m \alpha_i X_i = 0$ a nontrivial linear combination over \mathbb{Z} . Choose a prime number p such that $|\alpha_i| < p$ for all $1 \le i \le m$, and consider $\overline{F} := F/pF$, a linear space over the field $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$, and \overline{X}_i , the images of the elements X_i in \overline{F} . These elements generate \overline{F} over \mathbb{Z}_p , and since the dimension of \overline{F} over \mathbb{Z}_p is m, it follows that $\{\overline{X}_1, \ldots, \overline{X}_m\}$ is a basis of \overline{F} over \mathbb{Z}_p . Thus, it follows that $\alpha_i \equiv 0 \pmod{p}$ for all $1 \le i \le m$, which is a contradiction because we have chosen p so that $|\alpha_i| < p$ for all $1 \le i \le m$.

Proposition 3.6. In PS_n , there is no element of order 2 whose image in S_n is the transposition $s_1 = (1, 2)$. Consequently, the extension $1 \to \mathfrak{P}_n \to PS_n \to S_n \to 1$ is not split.

Proof. Take $x \in PS_n$ such that $\alpha(x) = s_1$. Since $\alpha(\sigma_1) = s_1$, we obtain that $x\sigma_1^{-1} \in \text{Ker}(\alpha) = \mathfrak{P}_n$. By Proposition 3.2 and Lemma 3.5, it follows that the abelian group \mathfrak{P}_n is freely generated by $\{A_{i,j}\}_{1 \le i < j \le n}$, so we can write uniquely

$$\begin{aligned} x &= \prod_{1 \le i < j \le n} A_{i,j}^{m_{ij}} \sigma_1, \text{ with } m_{ij} \in \mathbb{Z}. \text{ We compute} \\ x^2 &= \left(\prod_{1 \le i < j \le n} A_{i,j}^{m_{ij}} \sigma_1\right) \left(\prod_{1 \le i < j \le n} A_{i,j}^{m_{ij}} \sigma_1\right) \\ &= \left(\prod_{1 \le i < j \le n} A_{i,j}^{m_{ij}}\right) \left(\sigma_1 \prod_{1 \le i < j \le n} A_{i,j}^{m_{ij}} \sigma_1^{-1}\right) \sigma_1^2 \\ &= \left(\prod_{1 \le i < j \le n} A_{i,j}^{m_{ij}}\right) \left(\prod_{1 \le i < j \le n} \sigma_1 A_{i,j}^{m_{ij}} \sigma_1^{-1}\right) A_{1,2} \\ &= A_{1,2}^{2m_{12}+1} \left(\prod_{3 \le j \le n} A_{1,j}^{m_{1j}+m_{2j}} A_{2,j}^{m_{1j}+m_{2j}}\right) \left(\prod_{3 \le i < j \le n} A_{i,j}^{2m_{ij}}\right), \end{aligned}$$

and this element cannot be trivial because $2m_{12} + 1$ cannot be 0. Note that for the last equality we used the commutation relations

$$\sigma_{1}A_{1,2}\sigma_{1}^{-1} = A_{1,2},$$

$$\sigma_{1}A_{1,j}\sigma_{1}^{-1} = A_{2,j} \text{ for all } j \ge 3,$$

$$\sigma_{1}A_{2,j}\sigma_{1}^{-1} = A_{1,j} \text{ for all } j \ge 3,$$

$$\sigma_{1}A_{i,j}\sigma_{1}^{-1} = A_{i,j} \text{ for all } 3 \le i < j,$$

which can be easily proved by using some of the formulas given above.

Remark 3.7. As is well known [Brown 1982], any extension with abelian kernel corresponds to a 2-cocycle. Specifically, the extension $1 \to \mathfrak{P}_n \to \mathrm{PS}_n \to S_n \to 1$ corresponds to an element in $H^2(S_n, \mathbb{Z}^{n(n-1)/2})$. We illustrate this by computing explicitly the corresponding 2-cocycle for n = 3. We consider the set-theoretical section $f: S_3 \to \mathrm{PS}_3$ defined by f(1) = 1, $f(s_2) = \sigma_2$, $f(s_1) = \sigma_1$, $f(s_1s_2) = \sigma_1\sigma_2$, $f(s_2s_1) = \sigma_2\sigma_1$ and $f(s_2s_1s_2) = \sigma_2\sigma_1\sigma_2$. The 2-cocycle afforded by this section is defined by $u: S_3 \times S_3 \to \mathfrak{P}_3$, $(x, y) \mapsto f(x)f(y)f(xy)^{-1}$, and a direct computation gives its explicit formula as in Table 1, where we have chosen an additive notation for the abelian group $\mathfrak{P}_3 \simeq \mathbb{Z}^3$.

	1	<i>s</i> ₂	s_1	$s_1 s_2$	<i>s</i> ₂ <i>s</i> ₁	<i>s</i> ₂ <i>s</i> ₁ <i>s</i> ₂
1	0	0	0	0	0	0
<i>s</i> ₂	0	$A_{2,3}$	0	0	$A_{2,3}$	$A_{2,3}$
s_1	0	0	$A_{1,2}$	$A_{1,2}$	0	$A_{1,2}$
$s_1 s_2$	0	$A_{1,3}$	0	$A_{1,2}$	$A_{1,2} + A_{1,3}$	$A_{1,2} + A_{1,3}$
$s_2 s_1$	0	0	$A_{1,3}$	$A_{1,3} + A_{2,3}$	$A_{2,3}$	$A_{1,3} + A_{2,3}$
$s_2 s_1 s_2$	0	$A_{1,2}$	$A_{2,3}$	$A_{1,3} + A_{2,3}$	$A_{1,2} + A_{1,3}$	$A_{1,2} + A_{1,3} + A_{2,3}$

Table 1. The 2-cocycle for n = 3 associated to the section f.

 \square

4. PS_n is linear

Bigelow [2001] and Krammer [2002] proved that the braid group B_n is linear. More precisely, let R be a commutative ring, let q and t be two invertible elements in R, and let V be a free R-module of rank n(n-1)/2 with a basis $\{x_{i,j}\}_{1 \le i < j \le n}$. Then the map $\rho : B_n \to \operatorname{GL}(V)$, defined by

$$\begin{aligned} \sigma_k x_{k,k+1} &= tq^2 x_{k,k+1}, \\ \sigma_k x_{i,k} &= (1-q)x_{i,k} + qx_{i,k+1} & \text{for } i < k, \\ \sigma_k x_{i,k+1} &= x_{i,k} + tq^{k-i+1}(q-1)x_{k,k+1} & \text{for } i < k, \\ \sigma_k x_{k,j} &= tq(q-1)x_{k,k+1} + qx_{k+1,j} & \text{for } k+1 < j, \\ \sigma_k x_{k+1,j} &= x_{k,j} + (1-q)x_{k+1,j} & \text{for } k+1 < j, \\ \sigma_k x_{i,j} &= x_{i,j} & \text{for } i < j < k \text{ or } k+1 < i < j, \\ \sigma_k x_{i,j} &= x_{i,j} + tq^{k-i}(q-1)^2 x_{k,k+1} & \text{for } i < k < k+1 < j, \end{aligned}$$

and $\rho(x)(v) = xv$ for $x \in B_n$ and $v \in V$, gives a representation of B_n , and if also $R = \mathbb{R}[t^{\pm 1}]$ and $q \in \mathbb{R} \subseteq R$ with 0 < q < 1, then the representation is faithful; see [Krammer 2002].

We consider now the general formula for ρ , in which we take q = 1:

$$\sigma_{k} x_{k,k+1} = t x_{k,k+1},$$

$$\sigma_{k} x_{i,k} = x_{i,k+1} \quad \text{for } i < k,$$

$$\sigma_{k} x_{i,k+1} = x_{i,k} \quad \text{for } i < k,$$

$$\sigma_{k} x_{k,j} = x_{k+1,j} \quad \text{for } k+1 < j,$$

$$\sigma_{k} x_{k,j} = x_{i,j} \quad \text{for } i < j < k \text{ or } k+1 < i,$$

$$\sigma_{k} x_{i,j} = x_{i,j} \quad \text{for } i < k < k+1 < j.$$

One can easily see that these formulas imply

$$\sigma_k^2 x_{k,k+1} = t^2 x_{k,k+1}$$
 and $\sigma_k^2 x_{i,j} = x_{i,j}$ if $(i, j) \neq (k, k+1)$.

One can then check that $\rho(\sigma_k^2)$ commutes with $\rho(\sigma_{k+1}^2)$ for all $1 \le k \le n-2$, and so for q = 1 it turns out that ρ is a representation of PS_n.

Theorem 4.1. This representation of PS_n is faithful if $R = \mathbb{R}[t^{\pm 1}]$. Therefore, PS_n is linear.

Proof. We first prove that $A_{i,j}x_{i,j} = t^2x_{i,j}$, and $A_{i,j}x_{k,l} = x_{k,l}$ if $(i, j) \neq (k, l)$. We do it by induction over |j - i|. If |j - i| = 1, the relations follow from the fact that $A_{i,i+1} = \sigma_i^2$. Assume the relations hold for |j - i| = s - 1. We want to prove

them for |j-i| = s. We recall that $A_{i,j} = \sigma_{j-1}A_{i,j-1}\sigma_{j-1}^{-1}$; see (14). We compute

$$A_{i,j}x_{i,j} = \sigma_{j-1}A_{i,j-1}\sigma_{j-1}^{-1}x_{i,j} = \sigma_{j-1}A_{i,j-1}x_{i,j-1}$$

= $\sigma_{j-1}t^2x_{i,j-1}$ (by induction)
= $t^2x_{i,j}$.

On the other hand, if $(i, j) \neq (k, l)$ then $\sigma_{j-1}^{-1} x_{k,l} = x_{u,v}$ with $(i, j-1) \neq (u, v)$, and so

$$A_{i,j}x_{k,l} = \sigma_{j-1}A_{i,j-1}\sigma_{j-1}^{-1}x_{k,l} = \sigma_{j-1}A_{i,j-1}x_{u,v}$$

= $\sigma_{j-1}x_{u,v}$ (by induction)
= $\sigma_{j-1}\sigma_{j-1}^{-1}x_{k,l} = x_{k,l}$,

as desired.

To show that the representation is faithful, take $b \in PS_n$ such that $\rho(b) = id_V$ and consider $\alpha(b)$, the image of b in S_n . From the way ρ is defined it follows that

$$bx_{i,j} = t^p x_{\alpha(b)(i),\alpha(b)(j)}$$
 for all $1 \le i < j \le n$,

with $p \in \mathbb{Z}$, where we made the convention $x_{r,s} := x_{s,r}$ if $1 \le s < r \le n$. Since $x_{i,j}$ is a basis in *V* and we assumed $\rho(b) = \mathrm{id}_V$, we find that the permutation $\alpha(b) \in S_n$ has the property that if $1 \le i < j \le n$, then either $\alpha(b)(i) = i$ and $\alpha(b)(j) = j$ or $\alpha(b)(i) = j$ and $\alpha(b)(j) = i$. Since we assumed $n \ge 3$, the only such permutation is the trivial one. Thus, we have obtained that $b \in \mathrm{Ker}(\alpha) = \mathfrak{P}_n$ and so we can write $b = \prod_{1 \le i < j \le n} A_{i,j}^{m_{i,j}}$, with $m_{i,j} \in \mathbb{Z}$. By using the formulas given above for the action of $A_{i,j}$ on $x_{k,l}$ we immediately obtain $bx_{k,l} = t^{2m_{k,l}}x_{k,l}$ for all $1 \le k < l \le n$. Using again the assumption $\rho(b) = \mathrm{id}_V$, we obtain $t^{2m_{k,l}} = 1$ and hence $m_{k,l} = 0$ for all $1 \le k < l \le n$, that is b = 1, finishing the proof.

5. Pseudosymmetric groups and pseudosymmetric braidings

We recall from [Kassel 1995, XIII.2] that to braid groups one can associate the so-called *braid category* \mathcal{B} , a universal braided monoidal category. Similarly, we can construct a pseudosymmetric braided category $\mathcal{P}\mathcal{G}$ associated to pseudosymmetric groups. Namely, the objects of $\mathcal{P}\mathcal{G}$ are natural numbers $n \in \mathbb{N}$. The set of morphisms from *m* to *n* is empty if $m \neq n$ and is PS_n if m = n. The monoidal structure of $\mathcal{P}\mathcal{G}$ is defined as the one for \mathcal{B} , and so is the braiding, namely

$$c_{n,m} : n \otimes m \to m \otimes n,$$

$$c_{0,n} = \mathrm{id}_n = c_{n,0},$$

$$c_{n,m} = (\sigma_m \sigma_{m-1} \cdots \sigma_1)(\sigma_{m+1} \sigma_m \cdots \sigma_2) \cdots (\sigma_{m+n-1} \sigma_{m+n-2} \cdots \sigma_n) \quad \text{if } m, n > 0.$$

We denote by $t_{m,n} = c_{n,m} \circ c_{m,n}$ the double braiding. In view of Proposition 1.3, to prove that *c* is pseudosymmetric it is enough to check that, for all *m*, *n*, *p* $\in \mathbb{N}$,

(21)
$$(t_{m,n} \otimes \mathrm{id}_p) \circ (\mathrm{id}_m \otimes t_{n,p}) = (\mathrm{id}_m \otimes t_{n,p}) \circ (t_{m,n} \otimes \mathrm{id}_p).$$

Note that $t_{m,n} \otimes id_p$ and $id_m \otimes t_{n,p}$ are elements in \mathfrak{P}_{m+n+p} , which is an abelian group, and the composition \circ between $t_{m,n} \otimes id_p$ and $id_m \otimes t_{n,p}$ is just the multiplication in the group \mathfrak{P}_{m+n+p} , so (21) is obviously true.

Let \mathscr{C} be a strict braided monoidal category with braiding c, let n be a natural number and let $V \in \mathscr{C}$. Consider the automorphisms c_1, \ldots, c_{n-1} of $V^{\otimes n}$ defined by $c_i = \operatorname{id}_{V^{\otimes (i-1)}} \otimes c_{V,V} \otimes \operatorname{id}_{V^{\otimes (n-i-1)}}$. It is well known (see [Kassel 1995, XV.4]) that there exists a unique group morphism $\rho_n^c : B_n \to \operatorname{Aut}(V^{\otimes n})$ such that $\rho_n^c(\sigma_i) = c_i$ for all $1 \le i \le n-1$. It is clear that, if c is pseudosymmetric, then ρ_n^c factorizes to a group morphism $\operatorname{PS}_n \to \operatorname{Aut}(V^{\otimes n})$. Thus, pseudosymmetric braided categories provide representations of pseudosymmetric groups.

References

- [Bigelow 2001] S. J. Bigelow, "Braid groups are linear", *J. Amer. Math. Soc.* **14**:2 (2001), 471–486. MR 2002a:20043 Zbl 0988.20021
- [Brown 1982] K. S. Brown, *Cohomology of groups*, Graduate Texts in Mathematics **87**, Springer, New York, 1982. MR 83k:20002 Zbl 0584.20036
- [Bruguières 2006] A. Bruguières, "Double braidings, twists and tangle invariants", J. Pure Appl. Algebra **204**:1 (2006), 170–194. MR 2006k:57030 Zbl 1091.57007
- [Coxeter and Moser 1972] H. S. M. Coxeter and W. O. J. Moser, *Generators and relations for discrete groups*, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete **14**, Springer, New York, 1972. MR 50 #2313 Zbl 0239.20040
- [Joyal and Street 1993] A. Joyal and R. Street, "Braided tensor categories", *Adv. Math.* **102**:1 (1993), 20–78. MR 94m:18008 Zbl 0817.18007
- [Kassel 1995] C. Kassel, *Quantum groups*, Graduate Texts in Mathematics **155**, Springer, New York, 1995. MR 96e:17041 Zbl 0808.17003
- [Kassel and Turaev 2008] C. Kassel and V. Turaev, *Braid groups*, Graduate Texts in Mathematics **247**, Springer, New York, 2008. MR 2009e:20082 Zbl 05268073
- [Krammer 2002] D. Krammer, "Braid groups are linear", *Ann. of Math.* (2) **155**:1 (2002), 131–156. MR 2003c:20040 Zbl 1020.20025
- [Majid 1995] S. Majid, Foundations of quantum group theory, Cambridge University Press, 1995. MR 97g:17016 Zbl 0857.17009
- [Panaite et al. 2007] F. Panaite, M. D. Staic, and F. Van Oystaeyen, "On some classes of lazy cocycles and categorical structures", *J. Pure Appl. Algebra* **209**:3 (2007), 687–701. MR 2007k:16074 Zbl 1155.16030
- [Panaite et al. 2009] F. Panaite, M. D. Staic, and F. Van Oystaeyen, "Pseudosymmetric braidings, twines and twisted algebras", *J. Pure Appl. Algebra* (2009). arXiv 0801.2055
- [Staic 2004] M. D. Staic, "Pure-braided Hopf algebras and knot invariants", J. Knot Theory Ramifications 13:3 (2004), 385–400. MR 2005d:16069 Zbl 1106.16042

[Suzuki 1982] M. Suzuki, *Group theory, I*, Grundlehren der Mathematischen Wissenschaften **247**, Springer, Berlin, 1982. MR 82k:20001c Zbl 0472.20001

Received December 17, 2008. Revised June 26, 2009.

FLORIN PANAITE INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY P.O. BOX 1-764 014700 BUCHAREST ROMANIA Florin.Panaite@imar.ro

http://www.imar.ro/~fpanaite/

MIHAI D. STAIC INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY P.O. BOX 1-764 014700 BUCHAREST ROMANIA *Current address*: DEPARTMENT OF MATHEMATICS INDIANA UNIVERSITY RAWLES HALL BLOOMINGTON, IN 47405 UNITED STATES mstaic@indiana.edu