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TOPOLOGICAL INVARIANTS OF PUTATIVE C∗-SYMMETRIC
EXOTIC COMPLEX PROJECTIVE SPACES

J. RYAN BROWN AND JAN SEGERT

A classical problem in complex geometry is to determine the conditions un-
der which two manifolds with the same differentiable structure admit dif-
ferent complex structures. We call a complex manifold X an exotic complex
projective space if it is diffeomorphic to CPn but not biholomorphic to CPn.
It is unknown whether such exotic structures exist, but Emery Thomas has
given necessary and sufficient conditions for an element of the cohomology
ring to occur as the total Chern class of an almost-complex structure in low
dimensions, thus establishing the existence of almost-complex structures
with exotic Chern classes. We show that most of these elements cannot
occur as the total Chern class of a complex structure with C∗ symmetry.
We include an overview of the equivariant index theory used in the proof.

1. Introduction

Let X be a complex manifold diffeomorphic to CPn , regarded as a smooth man-
ifold. A classical problem in differential geometry and complex analysis is to
determine under what conditions X is biholomorphically equivalent to CPn , that
is, when X has not only the same differentiable structure as CPn but also the same
complex manifold structure as CPn . We call such a manifold X an exotic complex
projective space if X is not biholomorphically equivalent to CPn . It is well known
in the n = 1 case that X has the unique complex structure of a genus 0 Riemann
surface. Additionally, Yau [1977] showed that any complex surface homotopic to
CP2 is biholomorphic to CP2. Hirzebruch and Kodaira showed similar results when
X is Kähler. If n ≥ 3 and X is not assumed to be Kähler, results are scant. Indeed,
little is known about the existence of exotic complex projective spaces when n≥ 3.

In complex dimension 3, this is related to the long-standing problem of deter-
mining whether the sphere S6 admits a complex structure. If we take S6 with any
of its almost-complex structures and blow it up at a point, we obtain a new almost-
complex manifold X . This manifold is diffeomorphic to the three-dimensional

MSC2000: 32Q55, 53C15, 53C56, 58D19.
Keywords: exotic projective space, holomorphic symmetries, almost-complex structure, complex

structure.

201

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2010.244-2


202 J. RYAN BROWN AND JAN SEGERT

complex projective space CP3, but the total Chern class of the almost-complex
structure on X is different from the total Chern class of the standard (integrable)
almost-complex structure on CP3. The blown-up S6 is one example of an exotic
almost-complex structure on CP3.

Here we focus on manifolds X admitting complex structures invariant under
holomorphic C∗ actions. We begin with a brief introduction to almost-complex
and complex geometry in Section 2, concluding with a statement about almost-
complex structures on complex projective spaces due to E. Thomas. In Section 3,
we summarize some of the main topological tools we use in our analysis, including
a particularly useful reformulation of the Atiyah–Singer index theorem due to C.
Kosniowski. In Section 4, we prove in complex dimensions three and four that if
X is a complex manifold diffeomorphic to CPn whose complex structure is C∗-
symmetric, then the Todd genus Td(X) of X is 0 or 1. We show this using an
index calculation. An immediate corollary restricts the possible Chern classes of
putative C∗-symmetric exotic complex projective spaces.

2. Complex structures on vector bundles

A complex structure on a real vector space V is an R-linear map J : V → V with
the property J 2

=−I, where I : V → V is the identity map. A complex structure J
makes the real vector space V into a complex vector space, with complex scalar
multiplication defined by (α+ iβ)v = αv+β J (v) for α, β ∈ R and v ∈ V .

Conversely, suppose V is a complex vector space of complex dimension n and
VR is the underlying real vector space of dimension 2n. Then scalar multiplication
by i produces a real-linear map J : VR→ VR, with J 2

=−I .
Suppose π : E→ X is a real vector bundle, so for every point p ∈ X , the fiber

E p = π
−1(p) is a real vector space. If π1 : E→ X and π2 : F→ X are real vector

bundles, a real vector bundle morphism ρ : E→ F is a fiber-preserving map such
that the restriction ρp : E p→ Fp to each fiber is real-linear. A complex structure
on a real vector bundle π : E → X is a real vector bundle morphism J : E → E
with the property J 2

=−I, where I : E→ E is the identity morphism.
A complex structure J makes the real vector bundle π : E→ X into a complex

vector bundle. Indeed, for every point p ∈ X , the restriction Jp : E p → E p is a
complex structure on the fiber, making E p into a complex vector space. Conversely,
if π : E→ X is a complex vector bundle, then scalar multiplication by i is an real-
linear map Jp : E p→ E p satisfying J 2

p =−Ip.
We focus on the important special case of a real vector bundle that is the tangent

bundle π : T X → X of a smooth manifold X . An almost-complex structure on a
smooth manifold X is a complex structure J on the tangent bundle π : T X→ X .
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Let X be a compact oriented smooth manifold, and let π : E→ X be a complex
vector bundle of rank k. The fundamental invariants of the complex vector bundle
are the Chern classes c j (E)∈ H 2 j (X,Z) for j = 1, 2, . . . , k, which detect nontriv-
iality of a complex vector bundle. All Chern classes of a trivial (or product) bundle
are zero. See Milnor and Stasheff [1974] for the axiomatic definitions and also Bott
and Tu [1982], who use slightly different conventions. Alternately Chern classes
may be defined using the curvature of a connection; see for example Kobayashi
and Nomizu [1969].

We rapidly review some of the fundamental properties of Chern classes.

Proposition 2.1. Let π : E → X be a complex bundle of rank k. The top Chern
class ck(E) ∈ H 2k(X,Z) is equal to the Euler class e(ER) ∈ H 2k(X,Z) of the
underlying oriented real vector bundle ER.

A complex structure on the tangent bundle π : T X → X of a smooth compact
manifold X computes the Euler characteristic χ (X) =

∑2n
k=0(−1)k dim H k(X,Z)

via the relation χ (X)=
∫

X e(T X)=
∫

X cn(T X). Here 2n is the real dimension of
the manifold X .

The total Chern class of a rank k complex vector bundle π : E → X is the
mixed-degree element c(E)= 1+ c1(E)+ c2(E)+ · · · + ck(E) ∈ H∗(X,Z). The
total Chern class is multiplicative for direct sums of vector bundles:

Proposition 2.2. Let E and F be complex vector bundles over X , and let E ⊕ F
denote the direct sum. Then c(E ⊕ F)= c(E)c(F) ∈ H∗(X,Z).

The conjugate of a complex vector bundle π : E → X is the complex vector
bundle π : E→ X with the same underlying real bundle ER, but with the “opposite”
complex structure −J .

Proposition 2.3. Let E be the conjugate of a complex vector bundle E. Then

c j (E)= (−1) j c j (E).

A choice of Hermitian metric corresponds to a choice of complex vector bundle
isomorphism between the conjugate bundle E and the dual bundle E ′.

Chern classes are invariants of a complex vector bundle, not merely of the under-
lying real vector bundle. Two different complex structures on the same underlying
real vector bundle may have different Chern classes. This is not the case for the
Pontrjagin classes, which are specific combinations of Chern classes, and depend
only on the underlying real vector bundle, that is, the Pontrjagin classes do not
change if we change the complex structure on the underlying real vector bundle.
In fact, Pontrjagin classes can be defined for any real vector bundle, even those
without complex structure.
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Definition 2.4. The Pontrjagin classes of a complex vector bundle π : E→ X of
rank k are defined by p j (E)= (−1) j c2 j (E⊕ E) ∈ H 4 j (X,Z) for j = 1, 2, . . . , k.

The complex bundle E ⊕ E is isomorphic to its conjugate E ⊕ E , so the odd
Chern classes c2 j+1(E ⊕ E) vanish by Proposition 2.3 and do not give nontrivial
invariants.

Using the Propositions 2.2 and 2.3, we immediately obtain a relation between
the Pontrjagin classes and Chern classes of a complex vector bundle:

Theorem 2.5. Let π : E→ X be complex vector bundle of rank k. Then

1− p1+ p2− · · ·± pk = (1+ c1+ c2+ · · ·+ ck)(1− c1+ c2− · · ·± ck).

Theorem 2.5 expresses each Pontrjagin class in terms of the Chern classes. The
first two such expressions are

p1 = c2
1− 2c2 ∈ H 4(X,Z) and p2= c2

2− 2c1c3+ 2c4 ∈ H 8(X,Z).

There is a simple reason why the Pontrjagin classes of a complex vector bundle
are independent of the complex structure, whereas an arbitrary combination of
Chern classes is not. Let W be a complex vector space, and WR the underlying real
vector space obtained by forgetting the complex structure. It is easy to construct a
natural isomorphism of complex vector spaces W ⊕W 'WR⊗R C. Carrying this
construction over to vector bundles, we observe that the complex vector bundle
E ⊕ E ' ER ⊗R C depends only on the underlying real bundle ER. Thus the
definition of Pontrjagin classes can be extended to arbitrary real vector bundles
π : V → X via p j (V )= (−1) j c2 j (V ⊗R C) ∈ H 4 j (X,Z).

Theorem 2.5 gives a clear necessary condition on the Chern classes of an almost-
complex structure on CPn . The next theorem shows that this is also a sufficient
condition for 1 ≤ n ≤ 4. Let x ∈ H 2(CPn,Z) denote the class corresponding to
the first Chern class of the canonical complex line bundle over CPn . Then x i is a
generator of H 2i (CPn,Z) for 1≤ i ≤ n.

Theorem 2.6 [Thomas 1967]. Consider the complex projective space CPn for n =
1, 2, 3, 4. The following cohomology classes, and only these, occur as the total
Chern class of an almost-complex structure on CPn .

CP1
: 1+ 2x;

CP2
: 1+ 3x + 3x2, 1− 3x + 3x2

;

CP3
: 1+ 2 j x + 2( j2

− 1)x2
+ 4x3, j ∈ Z;

CP4
: 1+ εx − 2x2

+ εx3
+ 5x4,

1+ 5εx + 10x2
+ 10εx3

+ 5x4,

1+ 25εx + 60x2
+ 1922εx3

+ 5x4, where ε =+1 or ε =−1.
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In Section 4 we show that when n = 3 or n = 4 most of these almost-complex
structures cannot be induced by a C∗-symmetric complex structure.

3. Fixed-point theory for holomorphic C∗ actions

Here we summarize some results to be used in Section 4. We use the fixed point
results of Atiyah, Bott, Singer, and others as formulated in [Kosniowski 1970]. We
begin by recalling many of the basic facts from equivariant geometry.

Definition 3.1. A closed subgroup H of a complex Lie group G is called a real
form of G if g = h⊗ C = h⊕ ih, where g and h denote the Lie algebras of G
and H , respectively.

Definition 3.2. A connected complex Lie group G is called reductive if it has a
compact real form.

Note that reductive is also well defined for disconnected complex Lie groups.
The group C∗ is a reductive group; its real form is S1. We can understand a C∗

action on a manifold X by understanding the action of S1 on X .

Theorem 3.3 (linearization). Assume that a reductive complex Lie group G acts
holomorphically on a complex manifold X , and assume that x ∈ X is a G-fixed
point. Let H be a maximal compact subgroup of G and let L(g) : Tx X → Tx X be
the tangential map. Then there exist neighborhoods U of x and V of 0 ∈ Tx X and
an isomorphism φ :U → V such that φ ◦ h = L(h) ◦φ for all h ∈ H.

Moreover, if W is a neighborhood of H , and U ′ is an open subset of U such
that WU ′ ⊂U , then (L(w) ◦φ)(x)= (φ ◦w)(x) for all x ∈U ′.

We call U a linearizing neighborhood of x . This theorem yields useful infor-
mation about the fixed point set of a C∗ action on X . See [Huckleberry 1990].

We turn now to the main results of [Kosniowski 1970]. Suppose X is a compact
complex manifold of complex dimension n. Define χp(X) :=

∑n
q=0(−1)qh p,q ,

where h p,q
= dimC H p,q(X,C) are the Hodge numbers of X . The Hirzebruch–

Riemann–Roch theorem gives the relationship

(1) χ0(X)=
∫

X
Td(X),

where Td(X) denotes the Todd class of X . If X =CPn and ω is an almost-complex
structure on X , Hirzebruch and Kodaira [1957] give the following universal expres-
sion for the right side of (1):

(2)
∫

X
Td(ω)=

(
(λ+ n− 1)/2

n

)
,

where x is the class in H 2(CPn,Z) that corresponds to the first Chern class of the
canonical complex line bundle over CPn , and c1(ω)= λx .
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Following [Hirzebruch 1966] we also introduce the polynomial χ (X, y),

χ (X, y)=
n∑

p=0

χp(X)y
p,

where y is an indeterminate. Note that if y = −1, then χ (X,−1) = χ (X), the
Euler characteristic of X .

Let A be a holomorphic vector field with simple isolated zeros. At each zero
x of A, there is an induced linear endomorphism L x(A) of Tx X , which is non-
singular at all of the zeros of A. The eigenvalues of A are in general nonzero
complex numbers. Let c be a complex number such that Real(θ/c) 6= 0 for all
eigenvalues θ of L(A). Define s(x, c) to be the number of eigenvalues of L x(A)
for which Real(θ/c) is positive.

Theorem 3.4 [Kosniowski 1970]. If X is a compact complex manifold and A a
holomorphic vector field with simple isolated zeros, then

χ (X, y)=
∑

(−y)s(x,c),

where the sum is over all of the zeros x of A.

Theorem 3.4 can be extended to arbitrary fixed point sets by using the holomor-
phic Lefschetz fixed point formula of Atiyah and Segal [1968]. It is required that
the one parameter group of the vector field lies in a compact group. We call such
a vector field a compact vector field. Decompose the normal bundle N A of the
zero set of A as N A

=
∑

θ N A(θ), where N A(θ) is the subbundle of N A on which
exp(A) acts as exp(iθ) and θ is a real number. Then define s(k,±) as the number
of θ with sign ± at a component X A

k of the zero set X A.

Theorem 3.5 [Kosniowski 1970]. Let X be a compact complex manifold and A a
compact holomorphic vector field. Then

χ (X, y)=
∑

k

(−y)s(k,+)χ (X A
k , y)=

∑
k

(−y)s(k,−)χ (X A
k , y),

where X A
k is a component of the zero set X A of A.

These theorems together give necessary conditions for a vector field to be a
holomorphic vector field on X . We will use these to determine necessary conditions
for X to admit a holomorphic C∗ action.

We conclude this discussion with properties of the fixed point sets of holomor-
phic C∗ actions on complex projective spaces.
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Theorem 3.6 [Su 1963; Bredon 1972]. Suppose S1 acts on a smooth manifold X
diffeomorphic to CPn , with fixed point set F. Then F has at most n + 1 compo-
nents Fi for i = 1, . . . ,m, and each Fi has the same cohomology ring of complex
projective ki -space, with

∑m
i=1 ki = n−m+ 1.

This theorem holds in the more general case where X is an integral cohomology
complex projective space, that is, a topological space with the same cohomology
ring as CPn with integer coefficients.

4. Symmetry and fixed loci

Suppose C∗ acts holomorphically on a complex manifold X that is diffeomorphic
to CPn . In this setting we can apply Theorem 3.6 for an initial restriction of the
fixed point set of this action. Moreover, a consequence of Theorem 3.3 is that each
component of the fixed point set is itself a complex submanifold of X .

Lemma 4.1. Suppose X is a complex manifold diffeomorphic to CPn . If X admits a
holomorphic C∗ action whose fixed locus contains a hypersurface, then χ0(X)= 1.

Proof. Since the fixed point set of the action contains a hypersurface S, this set
has two connected components S and x , where x is an isolated point and S is a
complex submanifold with the cohomology of complex projective space.

Theorem 3.5 gives the relationship

(3) χ (X, y)= (−y)s(x,+)+ (−y)s(S,+)χ (S, y),

where s(x,+) ∈ Z, 0 ≤ s(x,+) ≤ n, and s(S,+) = 0 or 1. We will prove
Lemma 4.1 by a calculation in which we compare coefficients of y in (3).

Recall the relationship

(4) h p,q
= hn−p,n−q

among the Hodge numbers of a compact complex manifold resulting from Serre
duality. We also have an expression for the Euler characteristic:

(5) χ (X)=
n∑

p=0

n∑
q=0

(−1)p+qh p,q
=

n∑
p=0

(−1)pχp(X)

Suppose n is even. Equation (4) implies

χ (X, y)= χ0(X)+χ1(X)y+ · · ·+χn/2(X)y
n/2
+ · · ·+χ1(X)y

n−1
+χ0(X)y

n

and

χ (S, y)= χ0(S)+χ1(S)y+ · · ·+χn/2−1(S)y
n/2−1

−χn/2−1(S)y
n/2+1

+ · · ·−χ1(S)y
n−2
−χ0(S)y

n−1.
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We can assume that s(S,+)= 0. Then (3) becomes

χ0(X)+χ1(X)y+. . .+χ0(X)y
n
= (−y)s(x,+)+χ0(S)+χ1(S)y+. . .−χ0(S)y

n−1.

Suppose s(x,+)= n. Then

(6) χk(X)= (−1)k

Now suppose s(x,+) = n− 1. Then χ0(X) = 0, but (6) still holds for 1 ≤ k ≤ n.
We can continue in this way and use (5) to express the Euler characteristic in terms
of s(x,+) as

χ (X)=−n+ 2s(x,+)+ 1.

But χ (X) is a topological invariant of X , so χ (X) = χ (CPn) = n + 1. This is
exactly the case when s(x,+)= n, so χ0(X)= 1.

Now suppose n is odd. Equation (4) implies

χ (X, y)= χ0(X)+χ1(X)y+ · · ·+χ(n−1)/2(X)y
(n−1)/2

−χ(n−1)/2(X)y
(n−1)/2+1

− · · ·−χ1(X)y
n−1
−χ0(X)y

n

and

χ (S, y)= χ0(S)+χ1(S)y+ · · ·+χ(n−1)/2(S)y
(n−1)/2

+χ(n−1)/2(S)y
(n−1)/2+1

+ · · ·+χ1(S)y
n−2
+χ0(S)y

n−1.

Again we assume that s(S,+)= 0. Then (3) becomes

χ0(X)+χ1(X)y+. . .+χ0(X)y
n
= (−y)s(x,+)+χ0(S)+χ1(S)y+. . .−χ0(S)y

n−1.

Suppose s(x,+) = n. As above, (6) holds. Now suppose s(x,+) = n − 1. Then
χ0(X) = 0, but (6) still holds for 1 ≤ k ≤ n. Continuing this way, we obtain the
same expression for the Euler characteristic. As above this implies s(x,+) = n,
so χ0(X)= 1. �

Theorem 4.2. Suppose X is a complex manifold diffeomorphic to CPn for n = 3
or n = 4. Suppose C∗ acts holomorphically on X. Then χ0(X)= 0 or χ0(X)= 1.

Proof. We consider the cases n = 3 and n = 4 separately. Suppose that n = 3.
The fixed point set F has at most four connected components F1, F2, F3, F4 with
H∗(Fi ,Z)∼= H∗(CPni ,Z), and each is a complex submanifold of X .

Combining (4) and (5) yields

(7) χ (X, y)= χ0(X)+ (2−χ0(X))y− (2−χ0(X))y
2
−χ0(X)y

3.

Suppose that F has two connected components F1 and F2. The relationship
n1+n2 = 2 gives two cases: first, F1 = x and F2 = S, where x is an isolated point
and S is a hypersurface; or second F1 = CP1 and F2 = CP1. In the first case we
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know from Lemma 4.1 that χ0(X)= 1. Suppose then that F1=CP1 and F2=CP1.
This gives

χ (X, y)= (−y)s(1,+)(1− y)+ (−y)s(2,+)(1− y)

= (−y)s(1,+)+ (−y)s(1,+)+1
+ (−y)s(2,+)+ (−y)s(2,+)+1.

This expression for χ (X, y) is consistent with (7) if and only if χ0(X) = 1 or
χ0(X)= 0.

Consider now the case F has three connected components: two isolated points
and CP1. Theorem 3.5 gives

χ (X, y)= (−y)s(1,+)+ (−y)s(2,+)+ (−y)s(3,+)(1− y).

Suppose χ0(X) 6= 0 in (7). Performing the same calculations as above gives that
χ0(X) = 1. We see then that this expression is consistent with (7) if and only if
χ0(X)= 0 or χ0(X)= 1.

Finally, if F has four connected components, then each component Fi is a
point xi , and we have by Theorem 3.4

χ (X, y)= (−y)a1 + (−y)a2 + (−y)a3 + (−y)a4,

and again this is consistent with (7) if and only if χ0(X)= 0 or χ0(X)= 1.
Now suppose n = 4. The argument is the same as above but now simpler, even

though there are more cases to check. This is because of one of the consequences of
Theorem 2.6 is that χ0(X)=0, 1, or 1001. A quick check of the same relationships
as above shows that χ0(X) 6= 1001 if X admits a holomorphic C∗ action. �

Corollary 4.3. Suppose X is a complex manifold diffeomorphic to CPn for n = 3
or n= 4. Suppose further that C∗ acts holomorphically on X. Then the total Chern
class of X is one of the following.

n = 3 : 1+ 2x2
+ 4x3,

1+ 2x + 4x3,

1− 2x + 4x3,

1+ 4x + 6x2
+ 4x3

;

n = 4 : 1+ εx − 2x2
+ εx3

+ 5x4,

1+ 5εx + 10x2
+ 10εx3

+ 5x4, where ε =+1 or ε =−1.
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