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We show that the shifted rank, or srank, of any partition A with distinct
parts equals the lowest degree of the terms appearing in the expansion of
Schur’s @, function in terms of power sum symmetric functions. This gives
an affirmative answer to a conjecture of Clifford. As pointed out by Clif-
ford, the notion of the srank can be naturally extended to a skew partition
A/p as the minimum number of bars among the corresponding skew bar
tableaux. While the srank conjecture is not valid for skew partitions, we
give an algorithm to compute the srank.

1. Introduction

This paper answers two open problems raised by Clifford [2005] on sranks of
partitions and Schur’s Q-functions. For any partition 4 with distinct parts, we give
a proof of Clifford’s srank conjecture that the lowest degree of the terms in the
power sum expansion of Schur’s Q-function Q; is equal to the number of bars in
a minimal bar tableau of shape 4. Clifford [2003; 2005] also posed the problem
of determining the minimum number of bars among bar tableaux of a skew shape
A/ u. He noted that this minimum number can be naturally regarded as the shifted
rank, or srank, of 1/u, denoted srank(4/u). For a skew bar tableau, we present
an algorithm to generate a skew bar tableau without increasing the number of bars.
This algorithm gives a bar tableau with the minimum number of bars.

Schur’s Q-functions arise in the study of the projective representations of sym-
metric groups [Schur 1911]; see also [Morris 1962; 1979; Humphreys 1986; Naza-
rov 1988; Jozefiak 1989; Hoffman and Humphreys 1992]. Shifted tableaux are
closely related to Schur’s Q-functions, playing a role analogous to that of ordi-
nary tableaux for Schur functions. Sagan [1987] and Worley [1984] have indepen-
dently developed a combinatorial theory of shifted tableaux, which includes shifted
versions of the Robinson—Schensted—Knuth correspondence, Knuth’s equivalence
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relations, Schiitzenberger’s jeu de taquin, etc. The connections between this com-
binatorial theory of shifted tableaux and the theory of projective representations of
the symmetric groups are further explored by Stembridge [1989].

Clifford [2005] studied the srank of shifted diagrams for partitions with distinct
parts. Recall that the rank of an ordinary partition is defined as the number of boxes
on the main diagonal of the corresponding Young diagram. Nazarov and Tarasov
[2002] found an important generalization of the rank of an ordinary partition to
a skew partition in their study of tensor products of Yangian modules. A general
theory of border strip decompositions and border strip tableaux of skew partitions
was developed by Stanley [2002], and it has been shown that the rank of a skew
partition is the least number of strips to construct a minimal border strip decom-
position of the skew diagram. Motivated by Stanley’s theorem, Clifford [2005]
generalized the rank of a partition to the rank of a shifted partition, called srank,
in terms of minimal bar tableaux.

Clifford also noticed that the srank is closely related to Schur’s Q-function,
as suggested by the work of Stanley [2002] on the rank of a partition. Stanley
introduced a degree operator by taking the degree of the power sum symmetric
function p, as the number of nonzero parts of the indexing partition y. Clifford
and Stanley [2004] defined the bottom Schur functions to be the sum of the lowest
degree terms in the expansion of the Schur functions in terms of the power sums.
Clifford [2005] studied the lowest degree terms in the expansion of Schur’s Q-
functions in terms of power sum symmetric functions and conjectured that the
lowest degree of Schur’s Q-function Q; is equal to the srank of 4. Our first result
is a proof of this conjecture.

However, in general, the lowest degree of the terms, which appear in the expan-
sion of the skew Schur’s Q-function Q;/, in terms of the power sums, is not equal
to the srank of the shifted skew diagram of A/u. This is different from the case
for ordinary skew partitions and skew Schur functions. Instead, we will take an
algorithmic approach to the computation of the srank of a skew partition. It would
be interesting to find an algebraic interpretation in terms of Schur’s Q-functions.

2. Shifted diagrams and bar tableaux

We adopt the notation and terminology on partitions and symmetric functions in
[Macdonald 1995]. A partition A is a weakly decreasing sequence of positive
integers 11 > Ay > --- > Ay, denoted 4 = (41, 42, ..., 4¢), and k is called the
length of A, denoted ¢(1). For convenience we may add enough 0’s at the end of
A I Zle A;i = n, we say that 4 is a partition of the integer n, and write 4 - n.
For each partition A there exists a geometric representation, known as the Young
diagram, which is an array of squares in the plane justified from the top left corner
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with £(1) rows and 4; squares in the i-th row. A partition is said to be odd or even
if it has an odd or even number of even parts. We call a partition strict if all its
parts are distinct. We denote by P°(n) the set of all partitions of n with only odd
parts, and by %(n) the set of all strict partitions of n. For each 1 € %(n), let S(1)
be the shifted diagram of 1, which is obtained from the Young diagram by shifting
the i-th row i —1 squares to the right for each i > 1. For instance, here is the shifted
diagram of shape (8,7, 5, 3, 1):

|

Given two partitions 4 and u with A; > u; for each i, the skew partition 1/ u is
defined to be the diagram obtained from the diagram of 1 by removing the diagram
of u at the top-left corner. Similarly, the skew shifted diagram S(4/u) is defined
as the set-theoretic difference of S(1) and S(u).

Now we recall the definitions of bars and bar tableaux as given in [Hoffman and
Humphreys 1992]. Let 4 € 9(n) be a partition with length £(4) = k. Fixing an odd
positive integer r, three subsets 1, Iy, I_ of integers between 1 and k are defined
as follows:

Iy ={i:Aj41 <A; —r < Aj for some j <k (setting Ax41 = 0)},
I()Z{i!lizr},
I_={i:r—A;=4jforsome j withi < j <k}.

Set I(A,r) =1, UIlyUI_. Foreachi € I(4,r), we define a new strict partition

A(i, r) of @(n —r) in the following way:

(1) Ifi € I; (hence A; > r), let A(i, ) be the partition obtained from A by removing
/4; and inserting A; —r between A; and 4;1.

(2) If i € Iy, let A(i, r) be the partition obtained from A by removing A;.

(3) If i € I_, let A(i, r) be the partition obtained from A by removing 4; and 4;.

Meanwhile, for each i € I (4, r), the associated r-bar is given as follows:

(1) If i € I, the r-bar consists of the rightmost » squares in the i-th row of S(4),
and we say that the r-bar is of Type 1.

(2') If i € Iy, the r-bar consists of all the squares of the i-th row of S(4), and we
say that the r-bar is of Type 2.

(3') If i € I_, the r-bar consists of all the squares of the i-th and j-th rows, and
we say that the r-bar is of Type 3.
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Thus, in the following diagram of a bar tableau of shape (9, 7, 6, 3, 1), for example,
the squares filled with 6 are a 7-bar of Type 1, the squares filled with 4 are a 3-bar
of Type 2, and the squares filled with 3 are a 7-bar of Type 3.

1116
1
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A bar tableau of shape 1 is an array of positive integers of shape S(4) subject
to the following conditions:

(1) It is weakly increasing in every row.

(2) The number of parts equal to i is odd for each positive integer i.

(3) Each positive integer i can appear in at most two rows, and if i appears in two
rows, then these two rows must begin with i.

(4) For each i the diagram occupied by integers less than or equal to i has distinct
parts.

We say that a bar tableau T is of type p = (p1, p2, ... ) if the total number of
i’s appearing in T is p;. For example, the bar tableau

(1[1]1]3]4]
2

is of type (3, 1, 1, 1). The weight wt(T") of a bar tableau T of shape A is defined
recursively: If 7' is empty, let wt(T) = 1. Let ¢(1) denote the parity of the partition
A (that is, the number of even parts of A, modulo 2). Suppose that the largest
numbers in 7 form an r-bar, which is associated with an index i € I (4, r). Let j
be the integer that occurs in the definitions of I, and /_. Let 7" be the bar tableau
of shape A(i, r) obtained from 7' by removing this r-bar. Now, let

(2-1) wt(T) = n; wi(T"),
where

(—1)J—ipl=e(), ifi el
(2-2) ni =1 (=1)»-, ifi ey,

(=1 mitspl=e) - ifj e ],
For example, the weight of the bar tableau in the figure immediately above equals

(2_3) (_1)]—12]—0 X (_1)]—12]—1 X (_1)2—2 X (_1)]—1 =9,
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The following lemma will be used in Section 3 to determine whether certain
terms will vanish in the power sum expansion of Schur’s Q-functions indexed by
partitions with two distinct parts.

Lemma 2.1. Let A = (11, A2) be a strict partition with two parts A1 and 1, having
the same parity. Given a partition 6 = (o1, 02) € P°(|A]), if 62 < A2, then among
all bar tableaux of shape A there exist only two bar tableaux of type o, say T\ and
T,, and furthermore, we have wt(Ty) + wt(T2) = 0.

Proof. Suppose that both 4, and 1, are even. The case when A; and 4, are odd
numbers can be proved analogously. Note that 6o < A5 < 4. By putting 2’s in the
rightmost o, squares of the second row and then filling the remaining squares in
the diagram with 1’s, we obtain a tableau 77. By putting 2’s in the last oy squares
of the first row and then filling the remaining squares with 1’s, we obtain another
tableau 7. Clearly, both 77 and 7, are bar tableaux of shape 4 and type o, and
they are the only two such bar tableaux. We notice that

(2-4) wit(Ty) = (=1)?722170. (=2~ 1Hhpl-t = 2,

For the weight of T3, there are two cases to consider. If 1{ — g, > 15, then

(2-5) Wi(To) = (—1)! 712170 (Z1)2-1+Ai—opl=l o

If 21 — 02 < A7, then

(2-6) wi(Tp) = (=1)>7 12170 (= )FHpl=t = o,

Thus we have wt(7;) = 2 in either case, so wt(77) + wt(73) = 0. O

For example, taking A = (8, 6) and ¢ = (11, 3), the two bar tableaux 7} and 7,
in the above lemma are like this:

o= L[ fafefn] po [afefrfafr]2]2]2
11]1]2]2]2 INERNE

Clifford [2003] gave a natural generalization of bar tableaux to skew shapes.
Formally, a skew bar tableau of shape 4/ u is an assignment of nonnegative integers
to the squares of S(4) such that in addition to the four conditions (1)—(4) we impose
a further one:

(5) The partition obtained by removing all squares filled with positive integers
and reordering the remaining rows is u.

For example, the first diagram in Figure 1 is a skew bar tableau with shape
(8,6,5,4,1)/(8, 2, 1), and the transformations shown demonstrate this fact.

A bar tableau of shape 1 is said to be minimal if there does not exist a bar tableau
with fewer bars. Motivated by the results in [Stanley 2002], Clifford [2005] defined
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[o]o]o]o]oo]o]0] [o]o]o]o]o]o]o]0] [o]o]o]o]o]o]o]0]
111]1[3]3]3 olo]2]2]2 11]1]1
olo]2]2]2] _. 1[1]1]1 . 111

1111 111 0[0
0] 0] 0]
[o]o]oJo[o]o]o0]0]

— 0o
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Figure 1. Checking the legality of a skew bar tableau by verifying
conditions (4) and (5).

the srank of a shifted partition S(1), denoted srank(4), as the number of bars in a
minimal bar tableau of shape 1. Clifford also gave a formula for srank(4):

Theorem 2.2 [Clifford 2005, Theorem 4.1]. Given a strict partition A, let o be the

number of odd parts of A, and let e be the number of nonzero even parts. Then
srank(1) = max(o, ¢ + (£(1) mod 2)).

Next we consider the number of bars in a minimal skew bar tableau of shape
A/u. Note that the squares filled with 0’s in the skew bar tableau give rise to a
shifted diagram of shape u by reordering the rows. Let o, (respectively e,) be the
number of nonempty rows of odd (respectively even) length without 0’s, and let
o5 (respectively es) be the number of rows of 4 with some squares filled with 0’s
and odd (respectively the nonzero even) number of squares not filled with 0’s. For
the skew bar tableau in Figure 1, we have e, =2, 0, =0 ¢, =0 and o, = 1. The
following result is obvious.

Proposition 2.3. The number of bars in a minimal skew bar tableau is at least
05 +2e5 +max(o,, e, + ((e, + 0,) mod 2)).

This quantity has been considered by Clifford [2003]. Observe that it depends
on the positions of the 0’s.

It should be noted that a legal bar tableau of shape 1/ may not exist once the
positions of 0’s are fixed. Similar to the case of shifted partitions, the srank of a
skew shifted partition 1/ u is defined to be the minimal number of bars among all
possible positions of 0’s, denoted by srank(4/x). An open problem proposed in
[Clifford 2003] is to find a characterization of srank(4/u). In Section 5 we will
give an algorithm to compute the srank of a skew shape.



THE SRANK CONJECTURE ON SCHUR’S Q-FUNCTIONS 217

3. Clifford’s conjecture

In this section, we show that the lowest degree of the power sum expansion of
a Schur’s Q-function Q; equals srank(4). Let us recall relevant terminology of
Schur’s Q-functions. Let x = (x1, x7, ...) be an infinite sequence of independent
indeterminates. We define the symmetric functions g; = g (x) in x1, x2, ... for all
integers k by the following expansion of the formal power series in ¢:

[ = e
! k

i>1

In particular, g = 0 for k£ < 0 and g¢ = 1. It immediately follows that

(3-1) > (=D'qiq; =0,

i+j=n

foralln > 1. Let Q) = g4 and

b
Q(a,b) =d{qa4b +2 Z(_l)mqa-i-me—m-

m=1

From (3-1) we see that Q. ») = —Q@,q) and thus Q4 = 0 for any a, b. In
general, for any strict partition A, the symmetric function Q, is defined by the
recurrence relations

2k+1
1
(3-2) Qr,disr) = Z:(_l)m+ Dim Q(il ..... Tomtseees A2k 1)?
m=1
2k

(3-3) Qi) = 21" Qi) Qi T i)

m—
where ~ stands for a missing entry.

It was known that Q; can be also defined as the specialization at ¢t = —1 of the
Hall-Littlewood functions associated with A [Macdonald 1995]. Originally, these
0, symmetric functions were introduced in order to express irreducible projective
characters of the symmetric groups [Schur 1911]. Note that the irreducible projec-
tive representations of S, are in one-to-one correspondence with partitions of n with
distinct parts; see [J6zefiak 1989; Stembridge 1989; 1990b]. For any A € %(n), let
(4) denote the character of the irreducible projective or spin representation indexed
by A. Morris [1965] has found a combinatorial rule for calculating the characters,
which is the projective analogue of the Murnaghan—Nakayama rule. In terms of
bar tableaux, Morris’ theorem reads as follows:
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Theorem 3.1 [Morris 1965]. Let 1 € @(n) and © € P°(n). Then
(3-4) (A) () =D wi(T),
T

where the sum ranges over all bar tableaux of shape A and type «.

This theorem for projective characters implies the following formula, which will
be used later in the proof of Lemma 3.7.

Corollary 3.2. Let A be a strict partition of length 2. Suppose that the two parts
A1, Ao are both odd. Then we have

(3-5) (2)(2) =1,

Proof. Let T be the bar tableau obtained by filling the rightmost A, squares in the
first row of S(1) with 2’s and the remaining squares with 1’s, and let 7’ be the
bar tableau obtained by filling the first row of S(1) with 1’s and the second row
with 2’s. Clearly, T and T’ are of the same type A. Let us first consider the weight
of T.If A; — 4> < A5, then

wi(T) = (= 1)2 12170 (—)2- I+l = o
If 21 — A2 > Ay, then
wi(T) = (—=1)!=12170 ()2 IHh—Aapl=l = 9,

In both cases, the weight of 7’ equals wt(7") = (—1)>~2.(=1)!~! = 1. Since there
are only two bar tableaux, T and T’, of type 4, the corollary immediately follows
from Theorem 3.1. U

Let pr(x) denote the k-th power sum symmetric functions, that is, pr(x) =
Zizl x;‘. For any partition A = (41, 42,...), let p, = p;, p,, - - - . The fundamental
connection between @, symmetric functions and the projective representations of

the symmetric group is as follows.
Theorem 3.3 [Schur 1911]. Let 1 € @(n). Then we have

(3-6) 0= > QD@ +N/2 gy () P2
7 €P°(n) T
where
Ze = 1"my! - 2™my) -, i = (122,

Stanley [2002] introduced a degree operator on symmetric functions by defining
deg(p;) =1, and so deg(p,) =¢(v). Clifford [2005] applied this operator to Schur’s
Q-functions and obtained the following lower bound from Theorem 3.3.

Corollary 3.4 [Clifford 2005, Corollary 6.2]. The terms of the lowest degree in Q)
have degree at least srank(4).
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Conjecture 3.5 [Clifford 2005, Conjecture 6.4]. The terms of the lowest degree in
Q, have degree srank(1).

Our proof of the above conjecture depends on the Pfaffian formula for Schur’s
Q-functions. Given a skew-symmetric matrix A = (a;;) of even size 2n x 2n, the
Pfaffian of A, denoted Pf(A), is defined by

PEA) = D (=D ayj, -y,
T
where the sum ranges over all set partitions 7= of {1,2,...,2n} into two element
blocks iy < ji and cr(z) is the number of crossings of 7z, that is, the number of
pairs h < k for which i, < iy < j, < ji.

Theorem 3.6 [Macdonald 1995]. Given a strict partition J = (A1, A2, ..., A)
satisfying A1 > ---> Ao, >0, let M) = (Q().,-,/lj))- Then we have

Q,; =Pf(M;).

We first prove that Clifford’s conjecture holds for strict partitions of length less
than three. The proof for the general case relies on this special case.

Lemma 3.7. Let A be a strict partition of length €(1) < 3. Then the terms of the
lowest degree in Q; have degree srank(1).

Proof. In view of Theorem 3.1 and Theorem 3.3, if there exists a unique bar tableau
of shape A and type x, then the coefficient of p, is nonzero in the expansion of
Q). There are five cases to consider.

(1) €(A) =1 and 4, is odd. Clearly, we have srank(4) = 1. Note that there exists
a unique bar tableau T of shape A and of type A with all squares of S(4) filled
with 1’s. Therefore, the coefficient of p, in the power sum expansion of Q;
is nonzero and the lowest degree of Q; is 1.

(2) €(4) = 1 and A; is even. We see that srank(4) = 2. Since the bars are all
of odd size, there does not exist any bar tableau of shape 4 and of type A.
But there is a unique bar tableau T of shape A and of type (4; — 1, 1), which
is obtained by filling the rightmost square of S(4) with 2 and the remaining
squares with 1’s. So the coefficient of p(;,_1,1) in the power sum expansion
of Q, is nonzero and the terms of the lowest degree in O, have degree 2.

(3) €(A4) =2 and the two parts 41, 4, have different parity. In this case, we have
srank(1) = 1. Note that there exists a unique bar tableau 7' of shape 1 and of
type (41 + 42), which is obtained by filling all the squares of S(4) with 1’s.
Thus, the coefficient of p;,,,, in the power sum expansion of Q; is nonzero
and the terms of lowest degree in Q; have degree 1.
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(4) €(1) =2 and the two parts 41, 4, are both even. It is easy to see srank(4) = 2.
Since there exists a unique bar tableau 7' of shape 1 and of type (1;—1, A,+1),
which is obtained by filling the rightmost 1,4+ 1 squares in the first row of S(4)
with 2’s and the remaining squares with 1’s, the coefficient of p(;,—1,1,+1) in
the power sum expansion of Q, is nonzero; hence the lowest degree of Q; is
equal to 2.

(5) €(4) = 2 and the two parts A1, A, are both odd. In this case, srank(1) = 2.
By Corollary 3.2, the coefficient of p, in the power sum expansion of Q} is
nonzero, and therefore the terms of the lowest degree in O, have degree 2. [

Given a strict partition 4, we consider the Pfaffian expansion of Q; as shown in
Theorem 3.6. To prove Clifford’s conjecture, we need to determine which terms
may appear in the expansion of Q; in terms of power sum symmetric functions.
Suppose that the Pfaffian expansion of Q) is as follows:

(3-7) PEM;) =D (=D ™ Q0 1) Qlhey ey )

T
where the sum ranges over all set partitions 7 of {1,2,...,2m]} into two element
blocks {(7‘[1, 71'2), ey (7t2m_1, ﬂzm)} with T <3 <:-- <Tu—1 and Th—1 < ok

for any k. For the above expansion of Q;, the following two lemmas will be used
to choose certain lowest degree terms in the power sum expansion of Q;, 1) in
the matrix M.

Lemma 3.8. Suppose that A has both odd parts and nonzero even parts. Let 1;,
(respectively 4 j,) be the largest odd (respectively even) part of A. If the power sum
symmetric function pj, +;; appears in the terms of lowest degree originated from
the product Q. i)+ QG
{m1, w2} = {in, J1}-

Proof. Without loss of generality, we may assume that 4;, > 4. By Lemma 3.7,
the term P, +4,, appears in Q(i,.l’ ) with a nonzero coefficient. Since 4;,, 4, are
the largest odd and even parts, p;, 4, does not appear as a factor of any term of
the lowest degree in the expansion of any other Q, 1, ), where 4; and 4 have
different parity. Meanwhile, if 4;, and 4; have the same parity, then we consider
the bar tableaux of shape (4;,, 4;,) and of type (4;, + 4, Aiy + 4, — iy — 4;)).
Observe that 4;, + 4, — 4, — 4j, < 4;,. Since the lowest degree of Q(;, ;) is 2,
from Lemma 2.1 it follows that p;, 4,, can not be a factor of any term of lowest
O

iny,) GS in the expansion (3-7), then we have

T2m—1°

degree in the power sum expansion of Q1)

Lemma 3.9. Suppose that 1 only has even parts. Let 11, 1o be the two largest
parts of 4 (allowing A, = 0). If the power sums p;,_1p,,+1 appears in the terms of
the lowest degree given by the product Q (j, ) Q. Iny,) @S i (3-7), then
we have (n1, m2) = (1, 2).

2m—1°
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Proof. From Case (4) of the proof of Lemma 3.7 it follows that p;,_1 p,,+1 appears
as a term of the lowest degree in the power sum expansion of Q;, ;,). We next
consider the power sum expansion of any other Q;, ;,). First, we consider the
case when A; +4; > Ao +1and 4; < 1. Since 4; +4; — (A2 +1) < 4;, by Lemma
2.1, the term pj,4 is not a factor of any term of the lowest degree in the power
sum expansion of Q;, ;). Now we are left with the case when Ai+A;> A1 —1
and 4; <A1 —2. Since 4; +4; — (41 —1) < 4;, by Lemma 2.1 the term p;, _; does
not appear as a factor in the terms of the lowest degree of Q;, ;). So we have
shown that if either p,, 1 or p;,— appears as a factor of some lowest degree term
for Qi.2)) then we deduce that 4; = 4;. Moreover, if both p;,_; and p,,; are
factors of the lowest degree terms in the power sum expansion of Q(;, ;,), then we
have 1; = 4,. O

We now present the main result of this paper.

Theorem 3.10. For any A € % (n), the terms of the lowest degree in Q) have degree
srank(4).

Proof. We write the strict partition A in the form (11, 42, ..., 42,4), where the 4;’s
satisfy A > --- > Ay, > 0. Suppose that the partition A has o odd parts and e
nonzero even parts. For the sake of presentation, let (4;,, 4;,, ..., 4;,) denote the
sequence of odd parts in decreasing order, and let (1;,4;,,...,4;,) denote the
sequence of nonzero even parts in decreasing order.

We first consider the case o > e. In this case, it will be shown that srank (1) = o.
By Theorem 2.2, if 25, > 0, that is, £(4) = 2m, we have srank(1) =max(o, e+0) =
o. If Ay, =0, that is, £(1) = 2m — 1, we still have srank(1) = max(o, e+ 1) = o.

Let

A= Diiag  Phighig Phiyy Phiyy " Piiy
We claim that A appears as a term of the lowest degree in the power sum expansion
of Q;. To this end, we need to determine those matchings = of {1,2,...,2m} in
(3-7) for which the power sum expansion of the product Q (i, ,i.,) = QUiny, _,siny,)
contains A as a term of the lowest degree.

By Lemma 3.8, if the p,, 4+, appears as a factor in the lowest degree terms of
the power sum expansion of Q(ill,%) ce Q(i%il,i%), then we have {7, 72} =
{i1, ji}. Iterating this argument, we see that if p;, 1+, -+ pj, +4, appears as a
factor in the lowest degree terms of Qi i) """ Qr,, ,./xy, ) then we have

e+2

{1, may =1{i1, j1}s - s AT2e—1, T2e} = {ic, Je)-

It remains to determine the ordered pairs {(72e+1, @2e+2)5 - - - » (T2m—1, Tom)}. By
the argument of Case (5) of the proof of Lemma 3.7, forany e+ 1 <k <[ <o,
the term p;, pj, appears as a term of the lowest degree in the power sum expan-

sion of Q,, ,4,)- Also, if the power sum symmetric function p;, w1 Phig, 7 Pl
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appears as a term of the lowest degree in the power sum expansion of the product

O Ktngiyngsn) Q(;_MWl g ) then the composition of the pairs

{(T2e41, T2e42), - - s (T2m—1, Tom)}

could be any matching of {1,2,...,2m}\ {i1, ji,..., e, Je}-

To summarize, there are (2(m —e) — 1)!! matchings =7 where A appears as a term
of the lowest degree in the power sum expansion of Q (i, i) ** Qiny, | iny,)-
Combining Corollary 3.2 and Theorem 3.3, we find that the coefficient of p;, p;,
(e+1 <k <[ <0) in the power sum expansion of Q(ifk,iil) is —4/(4i, Ai,), while
the coefficient of p;, (e+1 <k <0) in the power sum expansion of Q( 20,0182/ Aj,.
Thus the coefficient of A in the expansion of the product Q;, ,1,,) - Q gy hay,)
is independent of the choice of #. Since (2(m — ¢) — 1)!! is an odd number,
the term A will not vanish in the expansion of Q;. Note that the degree of A
is e + (0 — €) = 0, which is equal to srank(4), as desired.

Similarly, we consider the case ¢ > 0. Set ¢/ = e + (£(1)mod2), and let
(Zji» Ajy» - -5 Aj,) be the sequence of even parts in decreasing order. By Theorem
2.2, we have srank(4) = max(o, ¢') = ¢'. Let

B= Diiy+aj " Phig+j Paj,  —1Phj 41" Paj,  —1P2;,+1-
We proceed to prove that B appears as a term of the lowest degree in the power
sum expansion of Q;. Applying Lemma 3.8 repeatedly, we deduce that if the term
Pii+2j, " Pii,+4;, appears as a factor in the lowest degree terms of the product

Q(A”I ’)L”Z) T Q(A”Zm—] ’/1”2);1)’ then
(3_8) {7[17 7[2} = {ll, .]1}9 crt {7[20717 7.[20} = {iO’ .]0}

On the other hand, iteration of Lemma 3.9 reveals that if the power sum symmetric
function P, —1P2j, ,+1 """ Pa;, —1Pa;, +1appearsasa term of the lowest degree
in the power sum expansion of Q; “* Qhny,_viny,)» then

A

20+1° ”20+2)

(3_9) {7[20+1, 7[20+2} = {j0+17 ]0+2}9 LI {n-ZM7la 71'2m} = {je/719 je/}'

Therefore, if B appears as a term of the lowest degree in the power sum expansion
Of Qir,hny) """ Qliny, | 17ny,)» then the matching 7 is uniquely determined by (3-8)
and (3-9). Note that the degree of B is ¢/, which coincides with srank(1).

Since there is always a term of degree srank(4) in the power sum expansion of
Q,, the theorem follows. O

4. Skew Schur’s Q-functions

In this section, we show that srank(4/u) is a lower bound of the lowest degree of
the terms in the power sum expansion of the skew Schur’s Q-function Q,/,. Note
that Clifford’s conjecture does not hold for skew shapes.
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We first recall a definition of the skew Schur’s Q-function in terms of strip
tableaux. The concept of strip tableaux was introduced by Stembridge [1990b] to
describe the Morris rule for the evaluation of irreducible spin characters. Given
a skew partition A/u, the j-th diagonal of the skew shifted diagram S(1/u) is
defined as the set of squares (1, j), (2, j+1), (3, j+2),... in S(A/u). A skew
diagram S(A/u) is called a strip if it is connected and each diagonal contains
at most one box. The height h of a strip is defined to be the number of rows
it occupies. A double strip is a skew diagram formed by the union of two strips
which both start on the diagonal consisting of squares (j, j). The depth of a double
strip is defined to be o + f if it has o diagonals of length two and its diagonals of
length one occupy f rows. A strip tableau of shape A/u and type & = (1, ..., wk)
is defined to be a sequence of shifted diagrams

S(u) =SG) CSGH S-S 50F) =S

with |4/ /21='| = 7; (1 <i < k) such that each skew shifted diagram S(A/ /A7) is
either a strip or a double strip.

The skew Schur’s Q-function can be defined as the weight generating function
of strip tableaux in the following way. For a strip of height 4 we assign the weight
(—=1)"=1, and for a double strip of depth d we assign the weight 2(—1)¢~!. The
weight of a strip tableau T', denoted wt(T'), is the product of the weights of strips
and double strips of which T is composed. Then the skew Schur’s Q-function

Q. 1s given by
(4-1) Q= > D 2w,
re@o(a/ul) T ‘x

where T ranges over all strip tableaux 7" of shape A/u and type 7 ; see [Stembridge
1990b, Theorem 5.1].
We have the following Pfaffian formula for the skew Schur’s Q-function.

Theorem 4.1 [J6zefiak and Pragacz 1991]. Let A and u be strict partitions with
m=~4(A),n=~L(u), u C A, and let M (A, n) denote the skew-symmetric matrix

A B
—-B" 0)°
where A = (Q1;.2,)) and B = (Q (3, - p,41_j))-
(1) If m +n is even, we have Q;,,, =Pf(M (4, u)).
(2) If m+n is odd, we have Q;;,, =PE(M (A, ")), where ' = (u1, ..., iy, 0).

A combinatorial proof of the above theorem was given by Stembridge [1990a]
in terms of lattice paths, and later, Hamel [1996] gave an interesting generalization
by using the border strip decompositions of the shifted diagram.
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Given a skew partition A/, Clifford [2003] constructed a bijection between
skew bar tableaux of shape 1/u and skew strip tableaux of the same shape, which
preserves the type of the tableau. Using this bijection, it is straightforward to derive
the following result.

Proposition 4.2. The terms of the lowest degree in Q,,, have degree at least
srank(A/ ut).

Different from the case of nonskew shapes, in general, the lowest degree terms
in Q,/, do not have the degree srank(4/u). For example, take the skew partition
(4,3)/(3). It is easy to see that srank((4, 3)/(3)) = 2. While, using Theorem 4.1
and Stembridge’s SF package for Maple [Stembridge], we obtain that

0 OQwus Qv Qnu
Oas 0 Q@ Q)
—O0w Q3 0 0
Q20 Q0 0 0

This shows that the lowest degree of Q(4.3)/3) equals 4, which is strictly greater
than srank((4, 3)/(3)).

(4-2) Qwu3)3) =Pf =2pf.

5. The srank of skew partitions

In this section, we present an algorithm to determine the srank for the skew partition
A/ u. In fact, the algorithm leads to a configuration of 0’s. To obtain the srank of a
skew partition, we need to minimize the number of bars by adjusting the positions
of 0’s. Given a configuration € of 0’s in the shifted diagram S(1), let

k(€) = 05 + 2e5 +max(o,, e, + ((e, +0,) mod 2)),

where o, (respectively e,) counts the number of nonempty rows in which there
are an odd (respectively even) number of squares and no squares are filled with 0,
and o, (respectively e;) records the number of rows in which at least one square
is filled with O but there are an odd (respectively nonzero even) number of squares
not labeled 0.

If there exists at least one bar tableau of shape A/u under some configuration
%, we say that 6 is admissible. For a fixed configuration ‘6, each row is one of the
following eight possible types:

(1) an even row bounded by an even number of 0’s, denoted (e, ¢),
(2) an odd row bounded by an even number of 0’s, denoted (e, 0),
(3) an odd row bounded by an odd number of 0’s, denoted (o, ¢),

(4) an even row bounded by an odd number of 0’s, denoted (o, 0),
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(5) an even row without 0’s, denoted (&, ¢),
(6) an odd row without 0’s, denoted (&, 0),
(7) an even row filled with 0’s, denoted (e, @),
(8) an odd row filled with 0’s, denoted (0, &).

Given two rows with respective types s and s’ for some configuration €, if we
can obtain a new configuration 6’ by exchanging the locations of 0’s in these two
rows such that their new types are ¢ and ¢’ respectively, then denote it by

e=<([]-[)

Let oy, e,, 05, €5 be defined as above corresponding to configuration 6, and let o).,
e, 0, e, be those of €.

We will show how the quantity x () changes when exchanging the locations of
0’s in €.

Lemma 5.1. If

==L o e=]-L)

that is, the types of the two involved rows are remained or exchanged, where s, s’
are any two possible types, then k(6') = k (6).

(e e)} . [(@, )

Lemma 5.2. If ¢ = (6([(@, 0) (e, 0)

]), then k(€') < k().
Proof. In this case we have
/

/ / /
o,=0s+1, e, =e—1, o.=0,—1, e, =e +1.

Note that 0, + ¢, = €(4) — €(u). Now there are two cases to consider.
Case L. The skew partition A/u satisfies that £(1) —€(u) =0 (mod 2).

(1) If o, <e,, then o] <e, and

k() =o05+2es+e, Kk(€)=o0;+1+2(e;—1)+e. =o05+2e+e =r(6).
(2) Ifo, > e, +2,theno. =0, —1 >e,+ 1 =¢, and

k(6) =05 +2es+0,, Kk(€)=o05+2e;— 140, =05+2e+0, —2 <K(6).
Case II. The skew partition A/u satisfies that £(4) — €(u) = 1 (mod 2).

(1) If o, < e, + 1, then 0. < e, and

k(€)=o0s+2es+e+1, k(€)=o0s+2es—14e.+1=0,+2e;+e,+1=xr(6).
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(2) If o, > e, +3,theno, =0, —1 > e, +2 > ¢, and
k(6) =05 +2e5+0,, k(€)=o05+2e;—1+0. =05+2e+0,—2 <K(6).

Therefore, the inequality x(€¢’) < x(‘¢) holds under the assumption. U
(0,€) ] N [(@ ’ O)D, then 1(€') < 1(Q).

Lemma 5.3. If ¢' =% ([(@, e) (0,0)

Proof. In this case we have
o.=o0;+1, e =e—1, o.=0,+1, e =e —1
s — Ys B s — ¢S s r — Yr ’ r — tr .

Now there are two possibilities.

Case I. The skew partition A/u satisfies that £(1) —€(u) =0 (mod 2).
(1) If o, < e, —2, then o, <e, and
k() =o05+2es+e,, K(®)=o0;+14+2(es—1)+e. =o05+2e5+e, —2 <K (6).
(2) Ifo, > e, theno. =0, +1> ¢, — 1 =¢, and

k(€)=o05+2¢s+0,, k(€)=o05+2¢;—1+0. =05+2e5+0, =x(6).
Case II. The skew partition 1/ u satisfies that £(1) — £(u) =1 (mod 2).
(1) If o, <e, — 1, then o, <e.+ 1 and
k(€)=o0s+2es+e,+1, k(€)=o0s4+2es—14e.+1=0,+2¢;+e,—1 <k (6).
(2) Ifo, > e, +1,theno, =0, +1>e,+1=¢,.+2 and

k(€) =o05+2es+0,, k(€)=o0;+2¢;—1+0, =o05+2e+0, =k(6).

In both cases we have x(€¢’) < x(6), as required. O
Lemma 5.4. If ¢ = ¢ ([(6’ e)] N [(0’ O)D, then 1(€') < 1(€).
(0, €) (e, 0)

Proof. In this case, we have

/ / / /
0, =0s+2, e, =e—2, 0.=o0 €. =e¢.

Therefore,
k(€') = o0, + 2e. + max(o,, e, + ((e, + 0,) mod 2)) = k(€) —2.
The desired inequality immediately follows. U

(6,0)] R [(Q’O)D, then k(€') < k(6).

Lemma 5.5, If ¢' =% ([(g, e) (e, @)
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Proof. Under this transformation we have

/ / / /
o,=0,—1, e, =e, o.,=o0,+1, e.=e —1.

Since o, + e, = £(1) — £(u) is invariant, there are two cases.
Case 1. The skew partition 1/u satisfies that £(1) — £(u) =0 (mod 2).
(1) If o, > e,, then o). > e, and

k(€) =0, +2e, + 0, =0, —142¢+0,+1=x(6).
(2) Ifo, <e, —2,theno. =0, +1<e, —1=¢ and

k(€)=0;—14+2e5+e. =0,+2e5+e —2 < k(6).
Case II. The skew partition A/u satisfies that £(4) — €(u) =1 (mod 2).
(1) Ifo, >e,+1,theno, =0, +1>e¢,+2> e, + 1 and

k(€)= 0, +2e, + 0. =05 +2es + 0, = k().

(2) Ifo, <e, —1,theno. =0, +1<e,=e¢.+1 and

K(%/)=0;+2e;+e;—|—l=os—}—285—{—er—1<IC(<6). O

;L (0, 0) (2,e) ,
Lemma 5.6. If € _‘6<|:(®’ 0)] — [(0’ @)}), then k (€') <k (6).
Proof. In this case we have

o=o0s—1, e.=e, o.=o0,—1, € =e +1.
There are two possibilities:
Case I. The skew partition A/u satisfies that £(1) — €(u) =0 (mod 2).
(1) Ifo, > e, +2,theno. =0, —1 > e, + 1 =¢, and
k(€)=0.+42e.+0. =0, — 142,40, — 1 <k(%).
(2) Ifo, <e,,theno. =0, —1 <e, — 1 < e, and
k() =05 — 14+2e5+e. =05 +2e; + e, = k().
Case II. The skew partition A/u satisfies that £(4) — €(u) = 1 (mod 2).
(1) Ifo, > e, +3,theno. =0, —1>e¢,+2=¢,.+ 1 and
k(€') =0, +2e. + 0. =05 +2es+0, —2 < k(€).
(2) Ifo, <e,+1,theno. =0, —1 <e, <e.+1 and

k(€)=o0,+2e +e +1=0,+2e+e +1=r(6).
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Therefore, in both cases we have x (6¢) < x (6).
Lemma 5.7. If
r_ (e, 0) (0, €) r_ (0, 0) (e, e)
= (loal=leal) o e=llen]-leal)
then k(6') = k (6).
Proof. In each case we have

/ !/ / /
o, =0;—2, e, =e;+1, o0,.=o0, e .=e.

Therefore
k(€") = 0, + 2e; + max (o), e, + ((e, + 0,) mod 2)) =« (6),
as desired.

Lemma 5.8. If €’ is one of the following possible cases

('(0, 6)} [(0, e) ]) (_ (0, 6)} [(@, O)D
© — , @ — R
(0, €) (0, 2) L(&, 0) (0,9)
then k(6') < k(6).

Proof. In each case we have

/ / / /
o,=05, €,=e—1, 0.=o0, e =e.

Therefore

k(€') = 0, + 2¢. + max (o), e. + ((e. + 0.) mod 2)) < k().

(leal=les)) «(eal-lea)) (el

6 — , @ — , @ —

(e, €) (e, 2) L(0,0) (e, 2) (e, €) (e, 2)

e o e O
[ (2, e) (e, 2) L (0, €) (0, 2) (e, 0) (0, 2)

J)
)

O

Note that Lemmas 5.1-5.8 cover all possible transformations of exchanging the
locations of 0’s in two involved rows. Lemmas 5.2-5.4 imply that, to minimize
the number of bars, we should put 0’s in the skew shifted diagram such that there
are as many as possible rows for which the first several squares are filled with 0’s
and then followed by an odd number of blank squares. Meanwhile, from Lemmas
5.5-5.8 we know that the number of rows fully filled with 0’s should be as large as
possible. Based on these observations, we have the following algorithm to deter-
mine the locations of 0’s for a given skew partition 1/4, where both 4 and u are
strict partitions. Using this algorithm we will obtain a shifted diagram with some
squares filled with 0’s such that the corresponding quantity x (%) is minimized.

This property allows us to determine the srank of 1/ .
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The algorithm for determining the locations of 0’s.

(S1) Let 6 = S(1) be the initial configuration of 1/u with blank squares. Set
i=land J={1,...,4(2)}.

(S2) Fori < £(u), iterate the following procedure:

(A) If u; = A; for some j € J, then we fill the j-th row of 6; with 0.
(B) If u; # A; for any j € J, then there are two possibilities.

(B1) A;—pu;isoddforsome j e J and A; > u;. Then we take the largest
such j and fill the leftmost x; squares with O in the j-th row of €;.

(B2) Aj—pu;isevenforany j € J and 4; > u;. Then we take the largest
such j and fill the leftmost x; squares by O in the j-th row of €;.

Denote the new configuration by 6; 1. Set J = J\{j}.
(S3) Set €* =4;, and we get the desired configuration.

We emphasize that although the above algorithm does not necessarily generate
a bar tableau, it is sufficient for the computation of the srank of a skew partition.

Using the arguments in the proofs of Lemmas 5.1-5.8, we can derive the fol-
lowing crucial property of the configuration €*.

Proposition 5.9. For any configuration € of O’s in the skew shifted diagram of
A/ u, we have k(€*) < k(6).

Proof. Given any configuration ¢, we shall prove that €* can be obtained from %
through a sequence of transformations by exchanging the locations of 0’s in two
certain rows without increasing the quantity x ().

Suppose that, for some i, j, k, the j-th row of 6 contains m (m > 0) squares
labeled 0, the k-th row contains u; squares labeled 0, and u; = A;. Let €’ be
the configuration obtained from ‘€ by exchanging the locations of 0’s in these two
rows. Note that this transformation falls into those cases of Lemmas 5.5-5.8. Thus
k(6") <k (6). Continue in this way until there are no rows which can be fully filled
with 0’s. For convenience, we still denote the resulting configuration by 6.

Then suppose that i is the least number such that there does not exist j satisfying
ui = A; and the k-th row contains exactly u; squares filled with 0’s. If no such i
exists, then 6 is already “6*. If there exists some j such that A; > u; and 4; — u;
is odd, then find the largest such j and exchange the locations of 0’s in the k-th
row and the j-th row. Otherwise, find the largest number j such that 1; > u;,
then we also exchange the locations of 0’s in the k-th row and the j-th row. It
is straightforward to verify that these two kinds of transformations will fall into
the cases of Lemmas 5.2-5.4. Let €’ be the configuration obtained from 6 by
exchanging the locations of the 0’s in the two rows involved. Then x (€') < x(6).
Continuing in this way, the resulting configuration will become €* according to
the algorithm. At each step the index j should be chosen from those indices which
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are not used in the previous steps, as described in the algorithm. Therefore, we
have x (€*) < k(6). O

Theorem 5.10. Given a skew partition A/ u, let €* be the configuration of 0’s
obtained by applying the algorithm described above. Then

(5-1) srank(4/u) = k (6%).

Proof. Suppose that for the configuration €* there are o) rows of odd size with
blank squares, and there are o; rows with at least one square filled with O and an
odd number of blank squares. Likewise we let e’ and e} denote the number of
remaining rows. By definition,

Kk (€*) = o +2¢; + max (o), e + ((e) + o)) mod 2)).

ro“r

By Proposition 2.3, for each configuration ‘6 the number of bars in a minimal bar
tableau is greater than or equal to x (‘¢), and thus it is greater than or equal to x (€*)
due to Proposition 5.9. It suffices to confirm the existence of a skew bar tableau,
say T, with x (™) bars.

Note that it is possible that the configuration €* is not admissible. The key idea
of our proof is to move 0’s in the diagram such that the resulting configuration 6’
is admissible and x(6") = x(€¢*). To achieve this goal, we will use the numbers
{1,2,...,x(€")} to fill up the blank squares of €* guided by the rule that the bars
of Type 2 or Type 3 will occur before bars of Type 1.

Let us consider the rows without 0’s, and there are two possibilities:

(A) of > e,
(B) of <e’.

In Case (A) we choose a row of even size and a row of odd size, and fill up these
two rows with x (€*) to generate a bar of Type 3. Then we continue to choose a
row of even size and a row of odd size, and fill up these two rows with x (€*) — 1.
Repeat this procedure until all even rows are filled up. Finally, we fill the remaining
rows of odd size with x (€*) — e}, k(€*) —eX — 1, ..., k(€*) — o) + 1 to generate
bars of Type 2.

In Case (B) we choose the row with the i-th smallest even size and the row
with the i-th smallest odd size and fill their squares with the number x (6¢*) —i + 1

*

fori =1,...,0}. In this way, we obtain o} bars of Type 3. Now consider the

remaining rows of even size without 0’s. There are two subcases.

(B1) The remaining diagram, obtained by removing the previous o} bars of Type 3,
does not contain any row with only one square. Under this assumption, it is
possible to fill the squares of a row of even size with the number x (€*) — o
except the leftmost square. This operation will result in a bar of Type 1. After
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removing this bar from the diagram, we may combine this leftmost square
of the current row and another row of even size, if it exists, to generate a
bar of Type 3. Repeating this procedure until there are no more rows of
even size, we obtain a sequence of bars of Type 1 and Type 3. Evidently, if
e’ — o) is odd, there is a bar of Type 2 with only one square. Thus we have
max (o}, e} 4 ((e} 4+ o)) mod 2)) bars.

(B2) The remaining diagram, obtained by removing the previous o} bars of Type 3,
contains a row composed of the unique square filled with 0. In this case, we
will move this 0 into the leftmost square of a row of even size; see Figure 2.
Denote this new configuration by 6’; from Lemma 5.6 we see that x (€¢*) =
x(4'). If we start with 6’ instead of 6*, by a similar construction, we get

/ /

max(o,, e, + ((e, + 0,.) mod 2)) bars, occupying the rows without 0’s in the

diagram.

(T1111] [T
0] ]

Figure 2. Vacating the unique square at the bottom of the diagram.

Without loss of generality, we may assume that for the configuration €* the
rows without 0’s in the diagram have been occupied by the bars with the first
max (o}, el + ((ef + of) mod 2)) largest positive integers of {1,2, ..., x(€*)}.
By removing these bars and reordering the remaining rows, we may get a shifted
diagram with which we can continue the above procedure to construct a bar tableau.

At this point, it is necessary to show that it is possible to use 0§ 4 2e} bars to fill
this diagram. In doing so, we process the rows from bottom to top. If the bottom
row is completely filled with O’s, then we continue to deal with the row above the
bottom row. If the bottom row has an odd number of blank squares, then we simply
assign the symbol o} +2¢; to these squares to produce a bar of Type 1. Otherwise,
we fill the rightmost square of the bottom row with o} 4 2e} and the remaining
squares with o] 4+2e; — 1. Suppose that we have filled i rows from the bottom and
all the involved bars have been removed from the diagram. Then we consider the
(i+1)-st row from the bottom. Let ¢ denote the largest number not greater than
o; + 2e; which has not been used before. If all squares in the (i+1)-st row are
filled with O’s, then we continue to deal with the (i+2)-nd row. If the number of
blank squares in the (i+1)-st row is odd, then we fill these squares with 7. If the
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number of blank squares in the (i+41)-st row is even, then we are left with two
cases:

(A’) The rows of the diagram obtained by removing the rightmost square of the
(i+1)-st row have distinct lengths. In this case, we fill the rightmost square
with ¢ and the remaining blank squares of the (i+1)-st row with ¢ — 1.

(B’) The removal of the rightmost square of the (i+1)-st row does not result in a
bar tableau. Suppose that the (i41)-st row has m squares in total. It can only
happen that the row underneath the (i+41)-st row has m — 1 squares and all
these squares are filled with 0’s. By interchanging the locations of the 0’s in
these two rows, we get a new configuration 6’; see Figure 3. From Lemma
5.7 we deduce that x (€¢*) =k (6’). So we can transform 6* to ¢’ and continue
to fill up the (i+1)-st row.

o]o]o olofofolo]o

0/0/0/0|0/0 0100

Figure 3. Interchanging the locations of the 0’s in two neighbor-
ing rows.

Finally, we arrive at a shifted diagram whose rows are all filled up. Clearly,
for rows containing at least one O there are o] + 2e; bars that are generated in the
construction. For rows containing no 0’s there are max (o}, e 4 ((e)f 4+0;) mod 2))
bars that are generated. It has been shown that during the procedure of filling
the diagram with nonnegative numbers if the configuration 6* is transformed to
another configuration €', then x(¢’) remains equal to x(€*). Hence the above
procedure leads to a skew bar tableau of shape A/u with x(€*) bars. O
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