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AREA-MINIMIZING REGIONS WITH SMALL VOLUME
IN RIEMANNIAN MANIFOLDS WITH BOUNDARY

MOUHAMED MOUSTAPHA FALL

Given a domain � of a Riemannian manifold, we prove that regions mini-
mizing the area (relative to �) are nearly the maxima of the mean curvature
of ∂� when their volume tends to zero. We deduce some sharp local relative
isoperimetric inequalities involving mean curvature comparisons.

1. Introduction

Let � be a bounded smooth domain of a Riemannian manifold (Mn+1, g). Recall
that the partitioning problem in � consists in finding, for a given v < |�|g, a
critical point of the perimeter functional Pg( · , � ) in the class of Borel sets in
� that enclose a volume v. A set that minimizes the perimeter will be called
an isoperimetric region. It is clear that the boundary of a smooth solution to the
partitioning problem in � have constant mean curvature and, if it touches ∂�, it
will intersect it orthogonally; see for example [Ros and Vergasta 1995]. In light
of standard results in geometric measure theory, minimizers do exist for any given
volume and may have various topologies; see the survey [Ros 2005].

Up to now the complete description of minimizers has been achieved only in
special cases; see for example [Bürger and Kuwert 2008; Ros and Vergasta 1995;
Ritoré and Rosales 2004; Sternberg and Zumbrun 1998]. However, the study of
existence and geometric and topological properties of stationary surfaces (not nec-
essarily minimizers) is far from complete. Grüter and Jost [1986] have proved
the existence of minimal discs in convex bodies, while Jost [1986] proved the
existence of embedded minimal surfaces of higher genus. In the particular case of
the free boundary Plateau problem, some global existence results were obtained by
M. Struwe [1984; 1988]. In [Fall 2007] we proved the existence of surfaces similar
to half spheres surrounding a small volume near nondegenerate critical points of
the mean curvature of ∂�; in the same paper it was shown that the boundary mean
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curvature determines the main terms when studying the problem via a Lyapunov–
Schmidt reduction. In Appendix B we complement this last result as follows:

Proposition B.1. There exist r0 > 0 and a smooth function f : (0, r0)× ∂�→ R

such that for every r ∈ (0, r0), if p is a critical point of f (r, · ), the geodesic ball
centered at p with radius r can be perturbed smoothly to a set which is a solution
to the partitioning problem in �. Furthermore

‖ f (r, · )− H∂�( · )‖C1(∂�) ≤ c r,

where H∂�(p) is the mean curvature of ∂� at p.

In the body of the paper our main goal is the location of minimal area separating
hypersurfaces of � enclosing a small volume:

Theorem 1.2. Isoperimetric regions with small volume in � are near global max-
ima of the mean curvature of ∂�.

Results of this kind were recently obtained in [Druet 2002; Nardulli 2007]. These
authors showed that isoperimetric regions with small volume are nearly maxima
of the scalar curvature.

To prove the above theorem, we first show a regularity result that generalizes
Theorem 2.2 in [Morgan and Johnson 2000] (see Lemma 4.2). We notice that
the original proof of that theorem highlights that the diameter of an isoperimetric
region Ev tends to zero as the volume v tends to zero. Moreover as pointed out by
Bayle and Rosales [2005], this set must touch the boundary ∂� if v is small enough
(Ev is not compactly contained in �). From this one sees that Ev is contained in
a geodesic sphere centered at some point p ∈ ∂� for v small. Hence, using the
result of Morgan and Johnson just mentioned, one concludes that the hypersurface
6v = ∂Ev ∩ � can be written, after suitable scaling, as a graph over a round
hemisphere, and the function defining the graph tends to zero. This also shows that
∂6v ⊂ ∂�. But, according to our argument we need convergence up to the free
boundary. We achieve this, following [Grüter 1987], by proving a monotonicity
result for the area of 6v in a tubular neighborhood of ∂�. This allows us to get
a bound for the area of ∂6v and hence, by compactness, weak convergence up to
the free boundary and smoothly by [Grüter and Jost 1986].

The second step is to reduce the isoperimetric problem to a finite-dimensional
variational one (see Lemma 4.7) by adopting a variant of the method in [Nardulli
2007]. To this end, by means of the implicit function theorem we construct, for
any fixed v sufficiently small, a manifold Cv of sets having volume v and dif-
feomorphic to ∂� (see Lemma 4.6). Any set E ∈ Cv is a pseudo-half-ball (see
Definition 4.5) which is uniquely determined by its center of mass p ∈ ∂� while
its boundary, ∂E =6p,ωp,v , is a normal graph over a geodesic sphere centered at p
with ωp,v (defining the graph) tending to zero as v→ 0. Finally we show that an



AREA-MINIMIZING REGIONS WITH SMALL VOLUME 237

isoperimetric region with small volume v must belong to Cv, so looking for the
minimum of the perimeter among sets in � with volume v is equivalent to taking
the minimum among sets in Cv. Taking advantage of the role of the mean curvature
in the expansion of the area of normal graphs centered at the free boundary ∂� (see
Appendix A), the theorem then follows.

It is well known that much of the information concerning the partitioning prob-
lem is contained in the isoperimetric profile relative to �, namely the mapping

v 7→ I�(v)= min
E⊂�
|E |g=v

Pg(E, �).

Explicit lower bounds for the profile I� are very important in applications and are
called isoperimetric inequalities; for instance see [Chavel 1984; 2001].

Nardulli [2007, Theorem 7] gave an expansion of the isoperimetric profile of a
compact Riemannian manifold Mn+1 as

(1) IM(v)=
(

1− γn max
p∈M

SM(p) v2/(n+1)
+ O(v4/(n+1))

)
IRn+1(v),

where SM is the scalar curvature of M and γn is a positive number. This was
obtained after showing that small isoperimetric regions can be written as normal
graphs over the boundary of a geodesic ball BM(p, r) centered at some point p.
So he reduced the isoperimetric problem to a finite-dimensional one.

In our situation, as we will see later, the presence of the obstacle ∂� is not
negligible and in fact the second fundamental form of ∂� determines the first-order
expansion of the profile I�. Before going on, we recall that Bayle and Rosales
[2005] have shown that

I�(v)= (1+ O(v)) IRn+1
+
(v),

where IRn+1
+
(v)= (n+ 1)

∣∣Bn+1
+

∣∣1/(n+1)
vn/(n+1). From the reduction of the isoperi-

metric problem to a finite-dimensional one (Lemma 4.7), we can determine the
first coefficient of the asymptotic expansions of the profile of � near zero. Letting
v = |r Bn+1

+ | in Lemmas 4.7 and 4.8, we show that

I�(v)= min
p∈∂�

{
IRn+1
+
(v)−

n
n+ 2

|Bn|

|Bn+1
+ |

H∂�(p) v+ Op(v
(n+2)/(n+1))

}
,

where H∂�(p) is the mean curvature of ∂� at p and Op(ρ) is a smooth function
in p and ρ tending to zero uniformly with respect to p as ρ tends to zero. Hence:

Corollary 1.3. With βn =
n

(n+1)(n+2)
|Bn
|

|Bn+1
+ |

(n+2)/(n+1)
, we have

I�(v)∼
(

1−βn max
p∈∂�

H∂�(p) v1/(n+1)
+ O(v2/(n+1))

)
IRn+1
+
(v).
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Choe, Ghomi and Ritoré [2007] showed that an isoperimetric region outside
a convex domain in Euclidean space has no less perimeter than the area of a
hemisphere, provided it encloses the volume of a half-ball. In this situation, from
Corollary 1.3, we can weaken convexity by strict H-convexity (that is, the domain
has nonnegative mean curvature).

Corollary 1.4. If � is a strictly H-convex smooth bounded domain of Rn+1 and v
is small enough,

IRn+1\�(v) > IRn+1
+
(v).

This, therefore, moves toward the question of isoperimetric inequalities inside H-
convex domains.

Druet [2002] proved a local sharp isoperimetric inequality, with the aim of an-
swering a question from [Morgan and Johnson 2000]: In a compact Riemannian
manifold (Mn+1, g) whose scalar curvature satisfies maxp∈∂M Sg(p) < n(n+1)K0

for some K0 ∈ R, the perimeter of the solution to the isoperimetric problem with
small volume is strictly greater than that of an isoperimetric region in the space
form of constant sectional curvature K0. In this direction we have obtained:

Corollary 1.5. Suppose� is a bounded smooth domain in a Riemannian manifold
(Mn+1, g). Let�0 be a bounded smooth domain in any other Riemannian manifold
(Mn+1

0 , g0) with mean curvatures satisfying maxp∈∂� H∂�(p) < maxp∈∂�0 H∂�0 .
Then, if v is small enough,

I�(v) > I�0(v).

2. Preliminaries

We denote by N∂� the unit interior normal vector field along ∂�. We consider
an oriented orthonormal frame field (E1, . . . , En, N∂�) of M along ∂�, and use
it to introduce geodesic normal coordinates in a neighborhood (in ∂�) of a point
p ∈ ∂� with coordinates x ′ = (x1, . . . , xn) ∈ Rn. We set

f p(x ′) := exp∂�p (x
i Ei ).

This choice of coordinates induces coordinate vector fields on ∂�:

Yi (x ′)= f∗(∂x i ), for i = 1, . . . , n.

For any vector field Y on T ∂�, we define S(Y )=∇Y N∂�, where ∇ is the connec-
tion on M.

Now consider a local parametrization of a neighborhood of p in M by

F p(x) := expM
f p(x ′)(x

n+1 N∂�), x = (x ′, xn+1) ∈ Rn+1.
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This yields the coordinate vector fields in M

X i (x) := F p
∗
(∂x i ), i = 1, . . . , n,

Xn+1(x) := F p
∗
(∂xn+1).

In the whole paper, for any vector fields X, Y ∈ TM, we define 〈X, Y 〉 := g(X, Y ).
We denote by Rp and RM

p the Riemannian tensors of ∂� and M, respectively.

Lemma 2.1. Near the point F p(x ′, 0)= f p(x ′),

X i = Yi + xn+1S(Yi )+
1
2(x

n+1)2 RM
p (N∂�, Yi )N∂�+ O(|xn+1

|
3).

Near p = F p(0) we have

〈Yi , Y j 〉 = δi j +
1
3〈Rp(Ek, Ei )El, E j 〉xk x l

+ O(|x |3).

Proof. By construction,

∇
k
Xn+1

Xn+1| f (x ′) = 0 for any integer k ≥ 1.

Now since ∇Xn+1 X i | f (x ′) =∇X i Xn+1| f (x ′) = S(Yi ) and Xn+1| f (x ′) = N∂�, we get

∇
2
Xn+1

X i
∣∣

f (x ′) =∇Xn+1(∇X i Xn+1)
∣∣

f (x ′)

= RM
p (N∂�, Yi )N∂�+∇X i∇Xn+1 Xn+1

∣∣
f (x ′) = RM

p (N∂�, Yi )N∂�.

For the proof of the last expansions, see for example [Pacard and Xu 2009, Propo-
sition 2.1]. �

This lemma affords the next proposition, which gives expansions of the metric
gαβ := 〈Xα, Xβ〉 in a neighborhood of p ∈ ∂� in M with α, β ∈ {1, . . . , n, n+ 1}.

Proposition 2.2. In a neighborhood of p,

gi j = δi j + 2〈S(Yi ), Y j 〉xn+1
+

1
3〈Rp(Ek, Ei )El, E j 〉xk x l

+
(
〈RM

p (N∂�, Ei )N∂�, E j 〉+ 〈S(Yi ), S(Y j )〉
)
(xn+1)2+ O(|x |3),

gin+1 = O(|x |3), gn+1n+1 = 1.

We fix the following notation:

Rn+1
+
:=
{

x = (x1, . . . , xn+1) ∈ Rn+1
: xn+1 > 0

}
.

Let Bn+1 be the unit ball of Rn+1 centered at the origin. We define

Bn+1
+
= Bn+1

∩Rn
+

and Sn
+
:= ∂Bn+1

+
.

We will denote by 2 : Bn
→ Sn

+
the inverse of the stereographic projection from

the south pole. 2 = (21, . . . ,2n, 2n+1 ) is a conformal parametrization of Sn
+
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and, for any z = (z1, . . . , zn) ∈ Bn ,

2(z)= (zµ(z), µ(z)− 1) =
(

2 z1

1+ |z|2
, . . . ,

2 zn

1+ |z|2
,

1− |z|2

1+ |z|2

)
with conformal factor given by

(2) µ(z) := 2
1+|z|2

.

We often use the projection of 2 on Rn
×{0} and denote it by

(3) 2̃(z) := (z, 0) µ(z).

The next lemma collect some useful properties of the function 2. We omit the
proof, which can be obtained with elementary computations.

Lemma 2.3. For every i, j, l = 1, . . . , n,

2n+1
i =−µ2i , 2̃i =−2

i 2̃+µ Ei , 〈2i ,2 j 〉 = µ
2 δi j ,

1Sn =1Rn −〈2i i ,2k〉2
k∂k .

Here 2l is the partial derivative of 2 in the variable zl .

Observe that all hypersurfaces nearby a geodesic sphere centered at p∈ ∂�with
radius r can be parametrized by a mapping G : Bn

→M defined by

(4) G(z) := F p (r(1+ω)2̃(z), r(1+ω)2n+1(z)
)
,

for some p ∈ ∂� and ω : Sn
+
→ R. By construction, since 2n+1

= 0 on ∂Sn
+

,

∂6p,r,ω ⊂ ∂�.

Given p ∈ ∂� and ω : Sn
+
→ R, throughout this paper, the expression 6p,r,ω will

denote the hypersurface F p(r(1+ω)Sn
+
), while E p,r,ω will denote the set bounded

by 6p,r,ω and ∂�.

Notation. Any expression of the form L p(ω) denotes a linear combination of the
function ω together with its derivatives of order up to 2 with respect to the vector
fields2i . Similarly, L p(ω) will denote such a linear combination with first deriva-
tives. The coefficients of L p or L p might depend on r and p but, for all k ∈ N,
there exists a constant c > 0 independent of r ∈ (0, 1) and p ∈ ∂� such that

‖L p(ω)‖Ck,α(Sn
+)
≤ c ‖ω‖Ck+2,α(Sn

+)
, ‖L p(ω)‖Ck,α(Sn

+)
≤ c ‖ω‖Ck+1,α(Sn

+)
.

Given a ∈ N, an expression of the form Qa
p(ω) (respectively, Qa

p(ω)) will denote
a nonlinear operator in the function ω together with its 2i -derivatives of order up
to 2 (respectively, order 1). The coefficients of the Taylor expansion of Qa

p(ω)

in powers of ω and its partial derivatives might depend on r and p and, given
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k ∈N, there exists a constant c > 0 independent of r ∈ (0, 1) and p ∈M such that
Qa

p(0)= 0 and

‖Qa
p(ω1)− Qa

p(ω2)‖Ck,α(Sn
+)

≤ c
(
‖ω1‖Ck+2,α(Sn

+)
+‖ω2‖Ck+2,α(Sn

+)

)a−1
‖ω1−ω2‖Ck+2,α(Sn

+)
,

provided ‖ωi‖Ck+2,α(Sn
+)
≤ 1. Also

‖Qa
p(ω1)− Qa

p(ω2)‖Ck,α(Sn
+)

≤ c
(
‖ω1‖Ck+1,α(Sn

+)
+‖ω2‖Ck+1,α(Sn

+)

)a−1
‖ω1−ω2‖Ck+1,α(Sn

+)
,

provided ‖ωi‖Ck+2,α(Sn
+)
≤ 1. We also agree that any term denoted by Op(rd) is a

smooth function on Sn
+

that might depend on p but satisfies

‖Op(rd)‖Ck,α(Sn
+)
≤ c rd ,

for a constant c independent of p.

3. Mean curvature expansion of 6 p,r,ω

We now develop the expansion of the mean curvature H(p, r, ω) of a hypersurface
6p,r,ω in terms of r and ω. The proof is similar to the one in [Fall and Mahmoudi
2008], and we just sketch it for the reader’s convenience.

Let z 7→ G(z) parametrize 6p,r,ω as defined in (4).

Notation. With an abuse of notation, at the point p, we let

2 :=2 j E j +2
n+1 N∂� = 2̃+2n+1 N∂�, 2i := ∂zi2 j E j + ∂zi2n+1 N∂�,

while at the point G(z), we define the vector fields

ϒ :=2 j X j +2
n+1 Xn+1 = ϒ̃ +2

n+1 Xn+1, ϒi := ∂zi2 j X j + ∂z j2
n+1 Xn+1.

We also set
ω j := ∂z jω, ωi j := ∂zi ∂z jω.

From the notation, it is clear that the tangent space of 6p,r,ω is spanned by the
vector fields

(5) Z j = G∗(∂z j ) = r(1+ω)ϒ j + rω j ϒ, j = 1, . . . , n.

Letting g6i j := 〈Zi , Z j 〉 be the first fundamental form of 6p,r,ω(=6), we conclude
using Proposition A.1 that

(6) (1+ω)−2r−2g6i j = µ
2
+ 2 r 〈S(2̃ j ), 2̃i 〉2

n+1
+O(r2)+ r L(ω)+ Q(ω).
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3.1. The normal vector field. We expand the unit normal to 6p,r,ω. Define the
vector field

Ñ6 := −r ϒ +α j Z j .

It is the outer normal field (not necessarily unitary) along6p,r,ω if we can determine
α j so that its tangential components 〈Ñ6, Z j 〉 vanish. This leads to a linear system
for α j .

From (15)–(16) there follows the expansion

〈ϒ, Z j 〉 = rω j + 2r22n+1
〈S(2̃), 2̃ j 〉+O(r3)+ r2 L(ω)+ r2 Q(ω),

Using (6) and some algebraic calculations, one obtains

α j
〈Z j , Zi 〉 = r〈ϒ, Z j 〉(7)

= r2 (ωi + 2r2n+1
〈S(2̃), 2̃i 〉+O(r2)+ r L(ω)+ Q(ω)

)
;

hence straightforward computations imply that

αk
〈2i ,2k〉 = ωi + 2r2n+1

〈S(2̃), 2̃i 〉+O(r2)+ r L(ω)+ Q(ω).

Also using (7), we have

〈Ñ6, Ñ6〉 = r2
〈ϒ,ϒ〉− 2rαk

〈Zk, ϒ〉+αlαk〈Zk, Zl〉

= r2(1+ 2r2n+1
〈S(2̃), 2̃〉+O(r2)+ r L(ω)+ Q(ω))−αlαk〈Zk, Zl〉

= r2(1+ 2r2n+1
〈S(2̃), 2̃〉+O(r2)+ r L(ω)+ Q(ω)).

From this we deduce that

|Ñ6|−1
= r−1 (1− r2n+1

〈S(2̃), 2̃〉+O(r2)+ r L(ω)+ Q(ω)
)
.

Therefore the unit normal can be expanded as

N6 =
Ñ6
|Ñ6|

=−
(
1−r2n+1

〈S(2̃), 2̃〉
)
ϒ+αk Zk+

(
O(r2)+r L(ω)+Q(ω)

)
α

Xα.

3.2. The second fundamental form. We turn to the expansion of the coefficients
of the second fundamental form.

By definition ∇Zi Z j ' DZ j/dzi , whence we readily get the expansions

r−1
∇Zi Z j = ωi jϒ +ω jϒi +ωiϒ j + (1+ω)ϒi j + r2αi 2

β
j∇Xα Xβ

+
(
O(r2)+ r L(ω)+ Q(ω)

)
α

Xα,
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so using (15)–(16), we get

r−1
〈N6,∇Zi Z j 〉 =− (1+ω)

(
1−r2n+1

〈S(2̃), 2̃〉
)
〈ϒi j , ϒ〉−ωi j+α

k
〈ϒi j , ϒk〉

+r
(
2n+1
〈S(2̃i ), 2̃ j 〉−2

n+1
i 〈S(2̃), 2̃ j 〉−2

n+1
j 〈S(2̃), 2̃i 〉

)
+O(r2)+r L(ω)+Q(ω).

Observing that

〈ϒi j , ϒ〉 = 〈2i j ,2〉+ 2r2n+1
〈S(2̃), 2̃i j 〉+O(r2)+ r L(ω)+ Q(ω),

〈ϒi j , ϒk〉 = 〈2i j ,2k〉+O(r)+ r L(ω)+ Q(ω),

we obtain with a little work:

Proposition 3.1. The second fundamental form of the 6p,r,ω has the expansion

r−1
〈N6,∇Zi Z j 〉 = −

(
1+ω−r2n+1

〈S(2̃), 2̃〉
)
〈2i j ,2〉

−
(
ωi j+2r2n+1

〈S(2̃), 2̃i j 〉
)
+αk
〈2i j ,2k〉

+r
(
2n+1
〈S(2̃i ), 2̃ j 〉−2

n+1
i 〈S(2̃), 2̃ j 〉−2

n+1
j 〈S(2̃), 2̃i 〉

)
+O(r2)+r L(ω)+Q(ω).

Let H(p, r, ω) be the mean curvature of the hypersurface 6p,r,ω. Contracting
with the metric, (6), and using also Lemma 2.3, we have:

Proposition 3.2. In the notation above, we have

r H(p, r, ω)= n− (1Sn
+
ω+ nω)+ r2n+1((n+ 3)〈S(2̃), 2̃〉− 〈S(Ei ), Ei 〉

)
+O(r2)+ r L(ω)+ Q(ω)

in 6p,r,ω and

〈N6p,r,ω
∂6p,r,ω

, N ∂�
∂6p,r,ω

〉 = −
∂ω

∂η
+ r2 L(ω)+ Q(ω) on ∂6p,r,ω,

where η := −N∂� is the outer unit normal to ∂Sn
+

and N A
B is the normal of B in A.

Proof. We first determine N ∂�
∂6p,r,ω

. Fix a parametrization s 7→2(s) ∈ Sn−1
= ∂Bn

of the unit sphere. Noting that 2(2(s))=2(s), we see that the mapping

s 7→ G(s) := f p(r(1+ω)2(s))= F p(r(1+ω)2(s), 0)

parametrizes ∂6p,r,ω ⊂ ∂� and hence its tangent space is spanned by

Z i = r(1+ω)ϒ i + r∂siωϒ, i = 1, . . . , n− 1,
where

ϒ :=2
j
Y j , ϒ i := ∂si2

j
Y j .

Therefore, setting

(8) Ñ ∂�
∂6p,r,ω

=−r ϒ +βk Z k,
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we need only to find βk , k = 1, . . . , n so that it is orthogonal to Z i . This can be
found in [Pacard and Xu 2009, Lemma 2.1] and one has

(9) βk
〈Z k, Z i 〉 = r∂siω

while r−2
〈Z k, Z i 〉 = 〈2k,2i 〉

(
1+O(r2)+ r2L(ω)+ Q(ω)

)
and |Ñ ∂�

∂6p,r,ω
|
−1
=

r−1(1+ Q(ω)).
We now determine N6p,r,ω

∂6p,r,ω
. To this aim, we denote by ν the unit outer normal

to the unit disc Bn and similarly as we have expanded Ñ ∂�
∂6p,r,ω

, we let

Ñ6
∂6 = G∗(∂ν)

∣∣
∂Bn

1
+ γ k Z k =−r (1+ω)N∂�+ r ∂νωϒ̃

∣∣
∂Bn

1
+ γ k Z k

=−r (1+ω)N∂�+ r ∂νωϒ + γ k Z k .

Here, we have used that ∂ν2̃|∂Bn
1
=0 and ∂ν2n+1

|∂Bn
1
=−1. Noting that 〈N∂�, Z j 〉

vanishes and 〈ϒ, Z j 〉 = r ω j , we see that Ñ6
∂6 ∈ T6p,r,ω is normal to ∂6p,r,ω if

γ k
〈Z k, Z j 〉 = r2ω j∂νω.

We also deduce that |Ñ6
∂6|
−1
= r−1 (1+ Q(ω)).

Collecting these with the fact that 〈N6
∂6, N ∂�

∂6 〉 = 0 when ω = 0, we obtain

〈N6
∂6, N ∂�

∂6 〉 = −
∂ω
∂η
+ r2 L(ω)+ Q2(ω) on ∂6p,r,ω,

because ∂νω =
∂ω
∂η

(since µ= 1). �

4. Proof of Theorem 1.2 and expansions of the isoperimetric profile I�

P. Bérard and D. Meyer [1982, Appendix C] have shown by a localization argument
that the isoperimetric profile of a compact Riemannian manifold asymptotically
approaches that of Rn+1. V. Bayle and C. Rosales [2005, Proposition 2.1] proved
that the relative isoperimetric profile of a domain � of a Riemannian manifold
behaves like the profile of the half space Rn+1

+ . Precisely, with

I (r) := I�(|r Bn+1
+
|)= min

E⊂�
|E |g=|r Bn+1

+ |

Pg(E, �),

I+(r) := IRn+1
+

(|r Bn+1
+
|)= P(r Bn+1,Rn+1

+
),

they proved:

Proposition 4.1. For any ε > 0, there exists r0(ε) > 0 such that

(1− ε)I+(r)≤ I (r)≤ (1+ ε)I+(r), whenever r ≤ r0.

Notice that from this upper bound, an isoperimetric region with small volume
must touch the boundary (perpendicularly) because otherwise it would contradict
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Bérard and Meyer’s lower bound. Moreover this upper bound will help after
suitable scaling together with the Heintze–Karcher inequality to obtain a uniform
bound for the mean curvature of the minimizing hypersurface trapping a small
volume; see [Morgan and Johnson 2000, Section 2].

We start by proving the following regularity result which were obtained in
[Morgan and Johnson 2000] and under weaker assumptions in [Nardulli 2006]
in compact Riemannian manifolds.

Lemma 4.2. There exists r0 > 0 such that if r ∈ (0, r0) and E ⊂� is any set such
that Pg(E, �)= I (r), there exist p ∈ ∂� and ωp,r

: Sn
+
→ R such that

∂E ∩�= F p(r(1+ ωp,r Sn
+))

with ‖ωp,r
‖C2,α(Sn

+)
+‖ωp,r

‖C1,α(Sn
+)
→ 0 as r→ 0.

Proof. Let E j ⊂ � such that Pg(E j , �)= I (r j ), r j → 0 as j → +∞. Define
� j := (1/r j )� and E ′j := (1/r j )E j , so |E ′j |g j = |B

n+1
+ | and Pg j (E

′

j , � j ) =

(1/rn
j )Pg(E j , �)≤ c′ I+(1).

Following [Morgan and Johnson 2000, Section 2] with the help of Proposition
4.1, we may assume that there exists a constant R > 0 such that

diamg j (E
′

j )≤ R

and since ∂E ′j intersects ∂� j , then

sup
e∈∂E j

distg j (e, ∂� j )≤ diamg j (E
′

j )≤ R.

We can let p j ∈ ∂� j and U j ⊂ Rn+1
+ be such that E ′j = F j (U j ), where the map

F j : γ j Bn+1
+ → � j is defined by F j ( · ) := (1/r j )F p j (r j ( · )) and γ j → ∞ as

j→∞.
For j fixed and sufficiently large, let h j := (F j )∗(g j ) be the metric induced by

F j on Rn+1
+ . Then U j minimizes the perimeter Ph j ( · , γ j Bn+1

+ ) in (γ j Bn+1
+ , h j )

among sets enclosing its volume |U j |h j = |B
n+1
+ | and also intersects ∂Rn+1

+ =

Rn
×{0} perpendicularly.
Now since h j is converging to the Euclidean metric, we get diam(U j ) ≤ c for

every large j . So Ph j (U j ,Rn+1
+ )≤ c, which implies that P(U j ,Rn+1

+ )≤ c. Hence
by compactness there exists U ⊂Rn+1

+ such that D1U j
∗⇀D1U . Furthermore by the

trace theorem,

1U j |Rn×{0}
L1

−→ 1U |Rn×{0}.

Now to see that U is a minimizer, we take V ⊂Rn+1 such that |V | = |Bn+1
+ | and

define c j → 1 such that c j |V |h j = |B
n+1
+ | (this is possible since h j too converges



246 MOUHAMED MOUSTAPHA FALL

to the Euclidean metric). But then we have

Ph j (U j ,Rn+1
+
)≤ cn/(n+1)

j Ph j (V,Rn+1
+
)

and this, together with the semicontinuity of the perimeter, implies that

P(U,Rn+1
+
)≤ P(V,Rn+1

+
).

We conclude that U is a minimizer in Rn+1
+ among sets that enclose the volume

|Bn+1
+ |; therefore U is a half-ball. Finally, again by results from [Morgan and

Johnson 2000, Section 2], we have smooth convergence because mean curvatures
are bounded. Hence we may assume that there exists ωp j ,r j ∈ C2,α(Sn

+
) such that

(10) 6 j := ∂U j ∩Rn+1
+
= (1+ ωp j ,r j ) Sn

+

with ‖ωp j ,r j‖C2,α(Sn
+)

tending to zero as j→∞.
We now estimate the free boundary, Hn(∂6 j ), by slicing with hyperplanes

Rn
×{0} + hN∂� with h ∈ R. For terminology, we refer the reader to [Morgan

1988]. In the following, with an abuse of notation, we will call 6 j the integer
rectifiable current associated to the set 6 j . We define m j (h) by

m j (h) :=Hn(6 j ∩ {d < h})= P(U j , {d j < h}) for 0< h < 1
2 ,

where Rn+1
3 x 7→ d(x) = xn+1 is the distance function from ∂Rn+1

+ = Rn
× {0}.

For h ≥ 0 we consider the slice

〈6 j , d, h+ = (∂6 j ) x {d > h}− ∂(6 j x {d > h}).

We deduce that 〈6 j , d, 0+〉 = ∂6 j . From [Morgan 1988, Section 4.11, (3)], we
then get

Hn−1(〈6 j , d, 0+〉)≤ Lip(d) lim inf
h↘0

m j (h)
h
= lim inf

h↘0

m j (h)
h

,

the equality being a consequence of Lip(d) = 1. Since m j (h) is increasing the
same argument yields, for L1 a.e. h > 0,

Hn−1(〈6 j , d, h+〉)≤ m′j (h).

By (10) and Lemma A.3,

m j (h)= P(U j , {d < h})=Hn((1+ ωp j ,r j ) Sn
+
∩ {d < h})

≤ h (1+ O(r j ))Hn−1(〈6 j , d, h+〉)≤ h (1+ O(r j ))m′j (h).

Hence we get m j (h)≤ 2 h m′j (h), which is equivalent to(
m j (h)

h
+ 2 m j (h)

)′
≥ 0
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for every L1 a.e. 1
2 > h > 0. From this and the fact that m j is increasing we

conclude that

Hn−1(∂6 j )≤Hn(6 j x {d < h})
(1

h
+ 2

)
for every h ∈ (0, 1

2).

From this together with Lemma A.3 we have

Hn−1(∂6 j )≤ cHn(6 j )≤ c̃ for any large j.

Consequently, 6 j is an integral current, and by compactness [Morgan 1988, 5.5],
∂6 j converges weakly to ∂Sn

+
. Since mean curvatures of 6 j are bounded (see

also [Morgan and Johnson 2000, (2.4)]), C1,α convergence up to the free boundary
follows by [Grüter and Jost 1986]. Hence finally we can assume that ωp j ,r j ∈

C1,α(Sn
+) if j is sufficiently large with

∂E ′j ∩� j =
1
r j

F p j (r j (1+ ωp j ,r j ) Sn
+),

and ‖ωp j ,r j‖C2,α(Sn
+)
+‖ωp j ,r j‖C1,α(Sn

+)
→ 0 as r→ 0. �

Remark 4.3. When applying the first compactness result, namely D1U j
∗⇀D1U ,

we also have (by Rellich’s theorem) that

1U j

L1

−→ 1U .

Since U = Bn+1
+ , by [Nardulli 2006], ∂U j ∩Rn+1

+ can be written as a normal graph
over Sn

+
by a smooth function ωp j ,r j for which ‖ωp j ,r j‖C2,α(Sn

+)
→ 0 as r→ 0.

Note also that Ck,α regularity and estimates of ωp j ,r j can be obtained by a boot-
strap argument using Proposition 3.2, as in [Morgan and Johnson 2000; Nardulli
2006].

The following lemma shows the smoothness of the center of mass c(r, p, ω) ∈
∂� of the hypersurface 6p,r,ω := F p(r(1+ ω) Sn

+)) as a function in r, p and ω.
The proof can be obtained from [Nardulli 2007, Lemmas 1.3–1.4], with slight
modifications.

Lemma 4.4. There exists a smooth map c : R× ∂�×C2,α(Sn
+)→ ∂� such that∫

6p,r,ω

(Fc)−1(z) dvol6p,r,ω = 0.

Moreover there exists a smooth vector field X p,r,ω on Tp∂� such that

X p,0,ω =

∫
Sn
+

(1+ω)n 2̃
√
‖dω‖2+ (1+ω)2 dσ∫

Sn
+

(1+ω)n−1
√
‖dω‖2+ (1+ω)2 dσ

.

and c(r, p, ω)= exp∂�p (r X p,r,ω). (Here dω is the differential of ω.)
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According to Proposition 3.2, with H(p, r, ω) being the mean curvature of
6p,r,ω, we define T (p, r, · ) : C2,α(Sn

+)→ C0,α(Sn
+)

(11)
∫

Sn
+

T (p, r, ω)ω′ dσ :=
∫

Sn
+

r H(p, r, ω)ω′ dσ−
∮
∂Sn
+

〈N ∂�
∂6p,r,ω

, N6p,r,ω
∂6p,r,ω

〉ω′ ds,

for every ω′ ∈ L2.
Consider the eigenvalue problem

1Sn
+

u = λu in Sn
+
,

∂u
∂η
= 0 on ∂Sn

+
.

Letting
0= λ0 < λ1 ≤ λ2 ≤ · · · →∞

be the eigenvalues, up to a reflection, we know that λk = n + k − 1 and the
eigenspaces corresponding to λ0 = 0 and λ1 = n are

(12) 30 := span {1}, 31 := span {21, . . . ,2n
}.

We denote by 50 and 51 the L2 projections onto these spaces and we define

5 := Id−51−50, 5⊥1 :=50+5.

We recall that E p,r,ω is the set bounded by the hypersurface 6p,r,ω and ∂�.

Definition 4.5. A set E p,r,ω is called a pseudo-half-ball if 5 ◦ T (p, r, ω) ≡ 0, or
equivalently

51
⊥
◦ T (p, r, ω)≡ Const ∈ R,

where T (p, r, ω) is defined in (11).

Letting 4 ∈ Tp∂� be such that 51 ω = 〈4, 2̃〉, we get by Lemma 4.4

(13) c(r, p, ω)= p+
|Sn
+
|

n+ 1
r 4+ r2

{L p(ω)+O(r)+ Q p(ω)}
αEα.

From the expansion of the volume of the sets E p,r,ω (Lemma A.4), we define

8(p, r, ω) :=r−n−1
|E p,r,ω|g−|Bn+1

+
|=

∫
Sn
+

ω dσ+O(r)+
∫

Sn
+

(
O(r) ω+Q̂ p(ω)

)
dσ.

It turns out that

8(p, 0, 0)= 0,
∂8(p, 0, 0)

∂ω
[u] =50 u.

Now, we can associate to any hypersurface 6p,r,ω the smooth mapping

9 : ∂�× (0, 1)×C2,α(Sn
+)→ Tp∂�×5C0,α(Sn

+)×R,

9(p, r, ω) :=
(

n+ 1
|Sn
+|

X p,r,ω, 5 ◦ T (p, r, ω), −n8(p, r, ω)
)
.
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Lemma 4.6. There exist r0> 0 and c0> 0 such that for any p ∈ ∂� and r ∈ (0, r0),
there exists a unique smooth ωp,r

∈ C2,α(Sn
+) with

‖ωp,r
‖C2,α(Sn

+)
≤ c0r0

such that 9(p, r, ωp,r )= (0, 0, 0), namely

c(r, p, ωp,r )= p, 51
⊥
◦ T (p, r, ωp,r ) ∈ R and |E p,r,ωp,r |g = |r Bn+1

+
|

for every r ∈ (0, r0).

Proof. We make the identification Ck,α(Sn
+) ≡ Tp∂�×5Ck,α(Sn

+)×R. Any u ∈
Ck,α(Sn

+) has a decomposition u = 〈4, 2̃〉+5 u+ u0 = 〈4, 2̃〉+w.
It is easy to see that 9(p, 0, 0)= (0, 0, 0) while〈
∂9
∂ω
(p, 0, 0)[u], u′

〉
=

∫
Sn
+

∇Sn
+
w∇Sn

+
w′− nww′ dσ +

∫
Sn
+

〈4, 2̃〉〈4′, 2̃〉 dσ.

Since ∂9
∂ω (p, 0, 0) is an isomorphism from C2,α(Sn

+) in to C0,α(Sn
+), the lemma

follows by the implicit function theorem. �

By choosing r0 small enough in Lemma 4.6, we may assume that the hypersur-
faces 6p,r,ωp,r are embedded in � for any r ∈ (0, r0), since ‖ωp,r

‖C1,α(Sn
+)
→ 0 as

r0→ 0. For simplicity, we will call E p,r := E p,r,ωp,r the sets bounded by 6p,r,ωp,r

and ∂�.
The preceding lemma yields, for any fixed r ∈ (0, r0), a manifold of pseudo-

half-balls diffeomorphic to ∂� and having volume |r Bn+1
+ | equal to

Cr := {E p,r,ωp,r ⊂� : 9(p, r, ωp,r )= (0, 0, 0), ‖ωp,r
‖C2,α(Sn

+)
≤ c0r0, p ∈ ∂�}.

Lemma 4.7. If r�1, then

I (r)= inf
E∈Cr

Pg(E, �)= inf
p∈∂�

Pg(E p,r , �),

where E p,r , p ∈ ∂�, ranges over the elements of Cr .

Proof. Let E be a solution to the isoperimetric problem with |E |g = |r Bn+1
+ |. We

have to check that E belongs to Cr if r is small enough. Assume that r�1. Lemma
4.2 implies that ∂E ∩�= Fq

(
r(1+ uq,r )Sn

+

)
for some q ∈ ∂� and ‖uq,r

‖C2,α(Sn
+)

approaching 0 as r→ 0.
Let p ∈ ∂� be the center of mass of ∂E . By (13),

distg(p, q)≤ c
(
r2
+ r ‖uq,r

‖C2,α(Sn
+)

)
so if r�1, we can find v(p, r) with ‖v(p, r)‖C2,α(Sn

+)
→ 0 as r → 0 such that

∂E ∩� = 6 p,r,v(p,r). Since p is the center of mass, X p,r,v(p,r) = 0. From the
mean curvature expansions, we get 5 ◦ T (p, r, v(p, r)) = 0 because the mean
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curvature of ∂E is constant and ∂E intersects ∂� perpendicularly. Consequently
9(p, r, v(p, r))= (0, 0, 0). We conclude that E ∈ Cr if r is small enough. �

Lemma 4.8. For any E p,r ∈ Cr , we have

Pg
(
E p,r , �

)
= P

(
r Bn+1,Rn+1

+

)
−

n
n+ 2

|Bn|

|Bn+1
+ |

H∂�(p) |r Bn+1
+
| + Op(|r Bn+1

+
|
(n+2)/(n+1)),

where Op(ρ) is smooth and tends to zero as ρ→ 0 uniformly in p.

Proof. Let E p,r ∈Cr . Differentiating8(p, r, ωp,r )=0 with respect to r , we deduce

50ω
p,r
=

∫
Sn
+

ωp,r dσ =− r
n+2
〈Sp(Ei ), Ei 〉

∫
Sn
+

2n+1dσ + Op(r2).

Together with Lemma A.3, this gives

r−nPg(E p,r ,�)

=P(Bn+1,Rn+1
+
)+r

∫
Sn
+

(
〈Sp(Ei ),Ei 〉−〈Sp(2̃),2̃〉

)
2n+1dσ+nr

∫
Sn
+

ω
p
0 dσ+Op(r2)

=P(Bn+1,Rn+1
+
)+

2r
n+2
〈Sp(Ei ),Ei 〉

∫
Sn
+

2n+1dσ−
∫

Sn
+

〈Sp(2̃),2̃〉2
n+1dσ+Op(r2).

Recall that H∂�(p)=−
1
n
〈Sp(Ei ), Ei 〉. Moreover since∫

Sn
+

〈Sp(2̃), 2̃〉2
n+1 dσ = 〈Sp(Ei ), E j 〉

∫
Sn
+

2i2 j2n+1 dσ

and observing that
∫

Sn
+

2i2 j2n+1 dσ = 0 if i 6= j , we deduce that

Pg(E p,r , �)= P(r Bn+1,Rn+1
+
)− cn H∂�(p) |r Bn+1

+
| + Op(|r Bn+1

+
|
(n+2)/(n+1)),

with

cn =
n

|Bn+1
+ |

∫
Sn
+

(
2

n+2
− (21)2

)
2n+1 dσ =

n
n+ 2

|Bn|

|Bn+1
+ |

.

We have used equalities

(14)
∫

Sn
+

2n+1 dσ =
Area Sn−1

n
= |Bn

|,

∫
Sn
+

(2i )22n+1 dσ=
Area Sn−1

n(n+ 2)
. �

The proof of Theorem 1.2 is finalized by the following:

Lemma 4.9. Let rk be a sequence tending to 0 and let Ek ⊂ � satisfy |Ek |g =

|rk Bn+1
+ | and Pg(Ek, �) = I (rk). Let pk ∈ ∂� be the center of mass of ∂Ek , and

suppose pk converges to a point p ∈ ∂�. Then

H∂�(p)= max
q∈∂�

H∂�(q).
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Proof. If k is large enough, Ek = E pk ,rk ∈ Crk and also by Lemma 4.7 we have that

Pg(E pk ,rk , �)= I (rk)= min
q∈∂�

Pg(Eq,rk , �)

where E p,rk , p ∈ ∂�, denote the elements of Crk . Now by Lemma 4.8, we have

−H∂�(pk)+ O(pk, rk)= min
q∈∂�

(−H∂�(q)+ O(q, rk))

with |O(pk, rk)| → 0 and supq∈∂� |O(q, rk)| → 0 when k tends to infinity. The
lemma then follows by taking k to infinity. �

Appendix A: Expansions for the area and enclosed volume

Consider a hypersurface ∂E p,r,ω =6p,r,ω. Recall that the mapping

z 7→ G(z)= F p (r(1+ω)2̃(z), r(1+ω)2n+1(z)
)

(see (4) and (5)) parametrizes 6p,r,ω and its tangent space is spanned by the vector
fields

Z j = G∗(∂z j ) = r(1+ω)ϒ j + rω j ϒ, j = 1, . . . , n.

At the point G(z), Proposition 2.2 yields

〈X i ,X j 〉 = δi j+2r(1+ω)〈S(ϒ̃i ),ϒ̃ j 〉2
n+1
+

1
3r2(1+ω)2〈Rp(2̃,2̃i )2̃,2̃ j 〉(15)

+
(
〈RM

p (N∂�, 2̃i )N∂�, 2̃ j 〉+ 〈S(ϒ̃i ), S(ϒ̃ j )〉
)
(2n+1)2

+O(r3)+ r3L(ω)+ r3 Q(ω),

〈X i , Xn+1〉 = O(r3)+ r3L(ω)+ r3 Q(ω), 〈Xn+1, Xn+1〉 = 1.(16)

Letting g6p,r,ω
i j := 〈Zi , Z j 〉, we then get the first fundamental form of 6p,r,ω.

Proposition A.1.

(1+ω)−2r−2g6p,r,ω
i j

= µ2δi j +
(
2ω j 〈S(ϒ̃), ϒ̃i 〉+ 2ωi 〈S(ϒ̃), ϒ̃ j 〉+ 2(1+ω)〈S(ϒ̃ j ), ϒ̃i 〉

)
r2n+1

+ ωiω j +
1
3〈Rp(2̃, 2̃i )2̃, 2̃ j 〉r2

+〈S(ϒ̃ j ), S(ϒ̃i )〉r2(2n+1)2

+ (2n+1)2〈RM
p (N∂�, 2̃i )N∂�, 2̃i 〉r2

+O(r3)+ r2L(ω)+ r Q2(ω)+ Q3(ω).

Using this formula we can deduce the expansion of the volume form.
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Lemma A.2. Under the notation above, the volume form expands as

rn
√

det g6p,r,ω =

µn
+ r2n+1µn−2

〈S(ϒ̃i ), ϒ̃i 〉+ nωµn

+ r2n+1µn−2(3(n+ 1)ω〈S(ϒ̃i ), ϒ̃i 〉+ 2ωi 〈ϒ̃, ϒ̃〉
)

+
1
2r2(2n+1)2µn−2(

〈S(ϒ̃i ), S(ϒ̃i )〉+µ
−2
|〈S(ϒ̃i ), ϒ̃i 〉|

2
−2µ−2

|〈S(ϒ̃i ), ϒ̃ j 〉|
2)

+
1
6r2µn−2

〈Rp(2̃, 2̃i )2̃, 2̃i 〉+
1
2r2(2n+1)2µn−2

〈RM
p (N∂�, 2̃i )N∂�, 2̃i 〉

+
1
2µ

n−2(ω2
i + n(n− 1)µ2ω2)

+O(r3)+ r2L(ω)+ r Q2(ω)+ Q3(ω).

Observe that

(17) 〈S(Yk), Yl〉
∣∣

f p(r(1+ω)2̃)

= 〈S(Ek), El〉+ 〈T (2̃, Ek), El〉+O(r2)+ r L(ω)+ Q(ω),

where T (Yi , Yk)=∇Yi∇Yk N∂�. In fact we have

Yi 〈S(Yk), Yl〉 = 〈T (Yi , Yk), Yl〉+ 〈∇Yk N∂�,∇Yi Yl〉.

By the parallel transport of the vector fields Y j with respect to the connection ∇∂�

of ∂�, we have ∇∂�Yi
Yl
∣∣

p = 0. Since ∇Yi Yl = ∇
∂�
Yi

Yl − 〈S(Yi ), Yl〉N∂�, it follows
that 〈∇Yk N∂�,∇Yi Yl〉

∣∣
p = 0.

Lemma A.3. The area of the hypersurface 6p,r,ω has the following expansion:

r−n A(6p,r,ω)

= P(Bn+1,Rn+1
+ )+r

∫
Sn
+

(
〈S(Ei ), Ei 〉−〈S(2̃), 2̃〉

)
2n+1 dσ+n

∫
Sn
+

ω dσ

+3r(n+1)
∫

Sn
+

(
〈S(Ei ), Ei 〉−〈S(2̃), 2̃〉

)
2n+1ω dσ

+2r
∫

Sn
+

2n+1
〈S(2̃),∇Snω)〉 dσ

+
1
2r2

∫
Sn
+

((
〈S(Ei ), S(Ei )〉−〈S(2̃), S(2̃)〉

)
+
(
〈S(Ei ), Ei 〉−〈S(2̃), 2̃〉

)2
)
(2n+1)2 dσ

−
1
2r2

∫
Sn
+

(
|〈S(2̃), 2̃〉|2−2|〈S(Ei ), Ei 〉|

2
+|〈S(E j ), S(Ei )〉|

2
)

dσ

−
1
6r2

∫
Sn
+

Ricp(2̃, 2̃) dσ

−
1
2r2

∫
Sn
+

(
RicM

p (2̃, 2̃)+〈R
M
p (N∂�, 2̃)N∂�, 2̃〉

)
(2n+1)2 dσ

+
1
2

∫
Sn
+

(
|∇Snω|2+n(n−1)ω2

)
dσ+Op(r3)+

∫
Sn
+

(
r2L(ω)+r Q2(ω)+Q3(ω)

)
dσ.
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Use Proposition 2.2 and (17) to have the volume form of BM(p, ρ) in M for ρ
small:

ρ−n
√

det gi j = 1+ρ2n+1 (
〈S(Ei ), Ei 〉+ρ〈T (2̃, Ei ), Ei 〉

)
+

1
2ρ

2
〈RM

p (N∂�, Ei )N∂�, Ei 〉+
1
6ρ

2
〈Rp(2̃, Ei )2̃, Ei 〉

+ρ2(2n+1)2〈RM
p (N∂�, Ei )N∂�, Ei 〉+

1
2ρ

2(2n+1)2〈S(Ei ), S(Ei )〉

+
1
8ρ

2(2n+1)2|〈S(Ei),E j 〉|
2
−

1
4ρ

2(2n+1)2 |〈S(Ei),Ek〉|
2
+O(ρ3).

Integration over the set ρ ≤ r(1+ω) gives the expansion of the volume bounded
by 6p,ω,r and ∂�.

Lemma A.4. The following expansion holds:

r−n−1
|E(p, r, ω)|g

=
1

n+1
P(Bn+1,Rn+1

+
)+

r
n+2
〈S(Ei ), Ei 〉

∫
Sn
+

2n+1 dσ+
∫

Sn
+

ω dσ

+
r2

n+3

(1
8
|〈S(Ei ), Ei 〉|

2
+

1
2〈S(Ei ), S(Ei )〉−

1
4 |〈S(Ei ), E j 〉|

2
) ∫

Sn
+

(2n+1)2 dσ

+−
r2

6(n+3)

∫
Sn
+

Ricp(2̃, 2̃) dσ− r2

2(n+3)
RicM

p (N∂�, N∂�)
∫

Sn
+

(2n+1)2 dσ

+r〈S(Ei ), Ei 〉

∫
Sn
+

2n+1ω dσ+ n
2

∫
Sn
+

ω2 dσ+Op(r3)

+

∫
Sn
+

(
O(r2)ω+O(r)Q̂2(ω)+ Q̂3(ω)

)
dσ,

where Q̂a(ω) is a polynomial in w of degree at least a, with smooth coefficients
depending on p,2 and maybe on r but uniformly bounded by a constant depending
only on �.

Appendix B: Existence of orthogonally intersecting
hemispheres of constant mean curvature centered on ∂ B

Let E be an open smooth subset of� and 6 := ∂E∩�. Assume that the boundary
of ∂6 is nonempty and is contained in ∂�. From the first variation of area (see for
instance [Ros and Vergasta 1995]), E is a critical point for the perimeter functional
under variations that keep the volume invariant if and only if

nH6 ≡ const in 6 and 〈N6
∂6, N ∂�

∂6 〉g = 0 in ∂6,

where for B⊂ A, the expression N A
B denotes the unit outer normal of B in A while

H6 is the mean curvature of 6.
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We have seen in Section 4 that solutions Er to the isoperimetric problem trapping
a volume |r Bn+1

+ | have mean curvatures H∂Er blowing up and in fact H∂Er ∼ n/r .
Moreover their boundaries are normal graphs over a hemisphere centered at some
point in ∂�. It is therefore natural to study the existence of disk-type solutions to
the problem

(18) H6 ≡
n
r

in 6, ∂6 ⊂ ∂� and 〈N6
∂6, N ∂�

∂6 〉g = 0 on ∂6.

Proposition B.1. There exist r0 > 0 and a smooth function f : (0, r0)× ∂�→ R

such that for every r ∈ (0, r0), if p is a critical point of f (r, · ) then (18) admits a
solution 6p,r which is a normal graph over F p(r Sn

+
). Furthermore

‖ f (r, · )− H∂�‖C1(∂�) ≤ c r,

for some positive constant c.

Let us describe the proof of this. We have to recall that we look for stationary
sets with a given profile for the total energy functional

Er (E)= Pg(E, �)+
n
r
|E |g.

The set Zr := {F p(r Bn+1
+ ), p ∈ ∂�} is a manifold of approximate solutions for

Er . Indeed, by Lemma A.3 and Lemma A.4,

Er (F p(r Bn+1
+

))= O(r).

Due to the invariance by translations when ∂�= Rn is “flat”, the linearized mean
curvature operator together with the orthogonality conditions (see Proposition 3.2)
may have small (possibly zero) eigenvalues, so we cannot invert it to apply a fixed
point argument to solve the problem. However we will perturb Zr to a manifold
Z̃r of critical points for E modulo n Lagrange-multipliers. The second step is to
show that in fact Z̃r is a natural constraint for E, namely a critical point of E|Z̃r

is
also stationary for E. For that we use an argument of Kapouleas [1991] which was
successfully employed in [Pacard and Xu 2009] to obtain constant mean curvature
spheres in Riemannian manifolds.

This method is also closely related to variational-perturbative methods intro-
duced by Ambrosetti and Badiale [1998] and subsequently used with success to
get existence and multiplicity results for a wide class of variational problems in
some perturbative settings. We refer to [Ambrosetti and Malchiodi 2006] for more
details and related applications.

At this point, the reader may wish to review Proposition 3.2.
Define

〈L0(u), u′〉 :=
∫

Sn
+

(∇Sn
+

u∇Sn
+

u′− nuu′) dσ.
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Since the kernel of this operator is 31 (see (12)), by the Fredholm theorem there
exists a unique ωp

∈ C2,α(Sn
+
) such thatL0ω =2

n+1
(
(n+ 3)〈S(2̃), 2̃〉− 〈S(Ei ), Ei 〉

)
in Sn
+
,

∂ω
∂η
= 0 on ∂Sn

+
,

because of the evenness of the right hand side. Moreover ωp satisfies

(19) n
∫

Sn
+

ωp dσ =
∫

Sn
+

2n+1((n+ 3)〈S(2̃), 2̃〉− 〈S(Ei ), Ei 〉
)

dσ.

Fixed point argument.

Lemma B.2. for every p ∈ ∂� and r small, there exit a unique ω̂p,r and a vector
field 4p,r on Tp∂� such that

(20)

{
r H(p, r, rωp

+ ω̂)= n in S+n ,

〈N6
∂6, N ∂�

∂6 〉 = 〈4p,r , 2̃〉 on Sn−1.

Proof. We recall that 51 is the L2 projection on 31, the space spanned by 2i ,
i = 1, . . . , n. For any v ∈ L2(Sn

+
), we decompose it as

v = ω̂+〈4, 2̃〉 = ω1+ω0+〈4, 2̃〉,

where50ω=ω0=
∫

Sn
+

ω dσ and ω̂=51
⊥ v. Recalling the definition of T in (11),

we define

Lp,r : C
2,α(Sn

+)→ C0,α(Sn
+)

by setting

〈Lp,rv, v
′
〉 :=

〈
∂T (r, p, rωp

+ω)

∂ω
(p, r, 0)[v], v′

〉
−

∮
Sn−1
〈4, 2̃〉〈4′, 2̃〉 ds,

for all v′ ∈ L2. By Proposition 3.2,

(Lp,rv, v
′)=

∫
Sn
+

(∇Sn ω̂∇Sn ω̂′− nω̂ω̂′) dσ −
∮

Sn−1
〈4, 2̃〉〈4′, 2̃〉 ds

+ r
∫

Sn
+

v′L(ω̂) dσ + r
∮

Sn−1
v′L(ω̂) ds.

Since
∫

Sn
+

|∇ω1|
2 dσ ≥ 2(n+ 1)

∫
Sn
+

|ω1|
2 dσ , it is easy to see that

5◦Lp,r ≥
1
2
+or (1), 50 ◦Lp,r ≤−n+or (1), 51 ◦Lp,r ≤−

|Sn
+
|

n+ 1
+or (1),
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where or (1) is a function in r (maybe depending on p) which tends to zero (uni-
formly in p) as r→ 0. From this, we deduce that Lp,r is uniformly invertible and
there exists a constant independent of p and r such that

||L−1
p,r ||L2 ≤ C for any p ∈ ∂�, r�1.

Now the system (20) is equivalent to the fixed point equation

v = (Lp,r )
−1 {Op(r2)+ Q p(ω̂)

}
,

where Q2(ω̂) is the quadratic part of the mapping T defined in (11). By elliptic
regularity theory, in a small ball of radius cr2 in 51

⊥C2,α(Sn
+)× Tp∂�, the above

equation has a unique solution (ω̂p,r , 4p,r ) such that (20) is satisfied. �

Since the implicit function theorem also applies, one has the smoothness of
p 7→ ωp,r and p 7→ 4p,r ∈ Tp∂�. Moreover differentiating the mean curvature
equation in p, using standard elliptic regularity theory, we can deduce that

‖ω( · ),r‖C2,α×C1(∂�)+‖4( · ),r‖C1(∂�) ≤ c r2

for some constant c > 0 independent of r .

Variational argument. By Lemma B.2, fixing r > 0 small, for any p ∈ ∂�, we
have a unique hypersurface 6p,r :=6p,r,ωp,r which is embedded because the C1,α

bound (up to the boundary) of ωp,r
:= rωp

+ ω̂p,r tends to zero as r → 0. This
now yields for fixed r > 0 a manifold Z̃r of sets E p,r

⊂ �, p ∈ ∂�, bounded by
6p,r and ∂� which is homeomorphic to ∂�. We have to show that Z̃r is a natural
constraint for E. For that we define the reduced functional ϕr : ∂�→ R by

(21) ϕr (p)= E(E p,r )= Pg(E p,r , �)−
n
r
|E p,r
|g,

for any E p,r
∈ Z̃r .

Lemma B.3. Let ϕr be given by (21). There exists r0(�) > 0 such that for any
r ∈ (0, r0), if p is a critical point of ϕr then 4p,r = 0.

Proof. Let p be a critical point of ϕr . Then for any vector field 4 on Tp∂�,

dϕr (p)[4] = 0.

If q := exp∂�p (t4), then for t sufficiently small the surface 6q,r is a graph over
6p,r for some smooth function wp,r,4,t with variation vector field ζp,r,4 in TpM

satisfying

ζp,r,4 :=
∂
∂t
wp,r,4,t

∣∣∣
t=0

N ∂�
∂6 on ∂6p,r ⊂ ∂�,

where N ∂�
∂6 is the normal of ∂6p,r in ∂�.
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It is easy to see that for any parallel transport, in ∂�, Z along geodesics issued
from p of 4 we have the estimate

‖ζp,r,4− Z‖ ≤ cr‖4‖ on ∂6p,r .

Now the first variation of area and volume yield

0= dϕr (p)[4],

0=
∫
6p,r

(
H6p,r −

n
r

)
〈ζp,r,4, N6

∂6〉 dσ +
∮
∂6p,r

〈ζp,r,4, N6
∂6〉 ds.

By construction,

H6p,r =
n
r

in 6p,r and 〈N6
∂6, N ∂�

∂6 〉 = 〈4p,r , 2̃〉 on ∂6p,r

thus ∮
∂6p,r

〈ζp,r,4, N ∂�
∂6 〉〈4p,r , 2̃〉 ds = 0.

We have

〈ζp,r,4, N ∂�
∂6 〉 = −〈Z , ϒ̃〉+ 〈ζp,r,4− Z , N ∂�

∂6 〉+ 〈Z , N ∂�
∂6 + ϒ̃〉 on ∂6p,r .

The expansions of the metric together with the normal N ∂�
∂6 (see (8) and (9)) show

that
N ∂�
∂6 + ϒ̃ = O(r) while ϒ̃ = 2̃(1+ O(r)).

Therefore we have the estimates

|〈ζp,r,4, N ∂�
∂6 〉+ 〈4, 2̃〉| ≤ cr‖4‖.

This implies, also by Hölder inequality, that∮
∂6p,r

〈4p,r , 2̃〉〈4, 2̃〉 ds ≤ cr‖4‖
∮
∂6p,r

〈4p,r , 2̃〉 ds

≤ cr‖4‖
(∮

∂6p,r

ds
)1/2(∮

∂6p,r

|〈4p,r , 2̃〉|
2 ds

)1/2

.

Using the expansion of the metric of small perturbed geodesic sphere (see [Pacard
and Xu 2009, Lemma 2.1]) we find that∮

∂6p,r

〈4p,r , 2̃〉〈4, 2̃〉 ds ≤ cr‖4‖r (n−1)/2
(∮

∂6p,r

|〈4p,r , 2̃〉|
2 ds

)1/2

,

while
1
2

Area(Sn−1)rn−1
‖4‖2 ≤ n

∮
∂6p,r

|〈4, 2̃〉|2 ds.
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Hence we have∮
∂6p,r

〈4p,r , 2̃〉〈4, 2̃〉 ds ≤ cr
(∮

∂6p,r

|〈4, 2̃〉|2 ds
)1/2(∮

∂6p,r

|〈4p,r , 2̃〉|
2 ds

)1/2

.

And, finally setting 4=4p,r , we obtain∮
∂6p,r

|〈4p,r , 2̃〉|
2 ds ≤ cr

∮
∂6p,r

|〈4p,r , 2̃〉|
2 ds.

Consequently 4p,r = 0 for r small. �

Using Lemmas A.3 and A.4 in Appendix A, we get

r−nPg(E p,r , �)= P
(
Bn+1,Rn+1

+

)
+ r

∫
Sn
+

(
〈S(Ei ), Ei 〉− 〈S(2̃), 2̃〉

)
2n+1 dσ

+n
∫

Sn
+

ω dσ + Op(r2),

r−1−n
|E p,r |g =

1
n+1

P
(
Bn+1,Rn+1

+

)
+

r
n+2
〈S(Ei ), Ei 〉

∫
Sn
+

2n+1 dσ

+

∫
Sn
+

ω dσ + Op(r2).

This now gives (recalling (14))

r−n ϕr (p)= r−n Er (E p,r )

=
1

n+1
P(Bn+1,Rn+1

+
)

+r
∫

Sn
+

( 2
n+2
〈S(Ei ), Ei 〉− 〈S(2̃), 2̃〉

)
2n+1dσ + Op(r2)

=
1

n+1
P(Bn+1,Rn+1

+
)−

n |Bn
|

(n+2)
r H∂�(p)+ Op(r2).

We end the proof of Proposition B.1 by setting

f (r, p) := −(n+2)
rn|Bn|

(
r−nϕ(p)− 1

n+1
P(Bn+1,Rn+1

+
)
)
= H∂�(p)+ Op(r).

Using (19), we also get precise expansions of the area of the of constant mean
curvature hypersurfaces we have constructed as well as the volume of the domain
they enclose.

Corollary B.4. For any E p,r
∈ Z̃r ,

r−n Pg(E p,r , �)= P(Bn+1,Rn+1
+
)− n |Bn

| r H∂�(p)+ Op(r2),

r−n−1
|E p,r
|g = |Bn+1

+
| −

n+1
n+2

|Bn
| r H∂�(p)+ Op(r2).
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