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EXISTENCE AND CONCENTRATION OF BOUND STATES OF
NONLINEAR SCHRÖDINGER EQUATIONS WITH COMPACTLY

SUPPORTED AND COMPETING POTENTIALS

MINGWEN FEI AND HUICHENG YIN

We study the existence and concentration of solutions to the N-dimensional
nonlinear Schrödinger equation

−ε21uε + V (x)uε = K (x)|uε| p−1uε + Q(x)|uε|q−1uε

with uε(x) > 0 and uε ∈ H1(RN), where N ≥ 3, 1< q < p< (N+2)/(N−2),
and ε > 0 is sufficiently small. We take potential functions V (x) ∈ C∞0 (R

N)

with V (x) 6≡ 0 and V (x)≥ 0, and show that if K (x) and Q(x) are permitted
to be unbounded under some necessary restrictions, then a positive solution
uε(x) exists in H1(RN) when the corresponding ground energy function
G(x) has local minimum points. We establish the concentration property
of uε(x) as ε tends to zero. We have removed from some previous papers
the crucial restriction that the nonnegative potential function V (x) has a
positive lower bound or decays at infinity like (1+ |x|)−α with 0< α ≤ 2.

1. Introduction and statement of main results

This paper deals with the existence and concentration of solutions to the nonlinear
Schrödinger equation

(1-1)
{
−ε21uε + V (x)uε = K (x)|uε|p−1uε + Q(x)|uε|q−1uε for x ∈ RN ,

uε ∈ H 1(RN ) for uε(x) > 0,

where N ≥ 3, 1< q < p< (N +2)/(N −2), and ε > 0 is sufficiently small. Such
solutions are called bound states in [Ambrosetti et al. 2006] and elsewhere.

Equation (1-1) has been studied extensively under various assumptions on the
potential function V (x) with positive lower bound and the nonlinear exponents p
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and q . See for example [Ambrosetti et al. 2003; 2004; Byeon and Wang 2003; Cao
and Peng 2006; Cingolani and Lazzo 2000; del Pino and Felmer 1996; Ding and
Tanaka 2003; Grossi 2002; Gui 1996; Oh 1990; Rabinowitz 1992; Wang 1993;
Wang and Zeng 1997; Cingolani 2003; Floer and Weinstein 1986; Gidas et al.
1981; Kwong 1989; Lions 1984a; 1984b; Ni 1982]. In particular, due to the non-
linear terms K (x)|uε|p−1uε or K (x)|uε|p−1uε+Q(x)|uε|q−1uε, the concentration
of uε(x) can happen at some points when ε→0; in the list above, see the references
listed before [Cingolani 2003]. In these works, it is usually assumed that there
exists a positive constant v0 such that

(1-2) V (x)≥ v0 for |x | � 1.

This means that V (x) has a positive lower bound at infinity.
Recently, Ambrosetti and coauthors [2005; 2007; 2006] considered a case in

which V (x) may decay to zero at infinity. They assumed that V (x) is smooth and
satisfies

(1-3) a
1+|x |α

≤ V (x)≤ A in RN ,

where a, A and α are positive constants, with 0 < α ≤ 2. For such situations,
under Q(x) ≡ 0 and some restrictions on K (x), they showed in [2005; 2006]
that (1-1) has positive H 1(RN ) solutions. Furthermore, by introducing the ground
energy function G(x)≡ V θ (x)K−2/(p−1)(x) with θ = (p+1)/(p−1)−N/2, they
established in [2006] the concentration of uε at any stable critical point of G(x)
and in [2005] at a global minimum point of G(x) under more general hypotheses
on G(x).

Very recently, Yin and Zhang [2009] extended these results to the case that V (x)
is nonnegative but not identically zero, and established the existence of a bound
state uε of the equation −ε21uε + V (x)uε = K (x)|uε|p−1uε under some sharp
conditions on the unbounded nonnegative K (x) in terms of different decay rates
of V (x) at infinity. However, they did not study the concentration property of uε.

This paper concerns two naturally arising questions, which are also posed in
[Ambrosetti and Malchiodi 2007]: If V (x) is smooth, nonnegative, and not iden-
tically zero, (that is, the assumptions (1-2) and (1-3) fail), does a bound state of
(1-1) exist? And if one does, where is the concentration point of uε(x) as ε→ 0?
As usual, some restrictions on K (x), Q(x) and N are required:

(H1) V (x), K (x) and Q(x) are smooth on RN , both V (x) and K (x) are non-
negative, and V (x) is not identically zero.

(H2) There exists a smooth bounded domain 3 of RN on whose closure V (x) and
K (x) are both positive, and 0 < c0 ≡ infx∈3 G(x) < infx∈∂3 G(x), where
G(x) is the ground energy function introduced in [Wang and Zeng 1997]
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(this will be illustrated in Section 2 below), which is positive in 3 in the
sense described in the proof of [Wang and Zeng 1997, Lemma 2.6].

(H3) Suppose N ≥ 5 and 1 < q < p < (N + 2)/(N − 2). Suppose also there
exist positive constants k1 and k2 and constants β1 < (p−1)(N −2)−2 and
β2 < (q − 1)(N − 2)− 2 such that

0≤ K (x)≤ k1(1+ |x |)β1 and |Q(x)| ≤ k2(1+ |x |)β2 in RN .

Theorem 1.1. For small ε > 0, Equation (1-1) has at least one positive bound
state uε(x) under assumptions (H1)–(H3),

Remark 1.2. In the general case, (H2) is hard to verify directly since G(x) is not
given explicitly, as pointed out in [Wang and Zeng 1997]. However, if Q(x) ≡ 0,
then (H2) can be easily checked using the explicit formula for G(x).

Remark 1.3. From (H3), if p satisfies (p − 1)(N − 2) − 2 > 0 and q satisfies
(q − 1)(N − 2)− 2> 0, then it is easy to see that unbounded K (x) and Q(x) can
be permitted. On the other hand, if 1 < p, q < N/(N − 2), then K (x) and Q(x)
should be forced to tend to zero at infinity.

Remark 1.4. The fundamental solution of the N -dimensional Laplacian operator
is CN/|x |N−2, where CN > 0 is a suitable constant. Then in order to guarantee that∫
|x |≥1(CN/|x |N−2)2dx <∞ and that uε ∈ L2(RN ), it is necessary to assume N ≥ 5

in Theorem 1.1; we note that if V (x) ≈ 0 for large |x |, then the properties of the
linear part−ε21uε+V (x)uε of (1-1) are similar to those of the Laplacian−ε21uε
for large |x |. On the other hand, the assumption on β1 < (p − 1)(N − 2)− 2 in
(H3) is nearly optimal for the existence of a bound state uε(x) to (1-1) in the case
of Q(x)≡ 0, as has been shown in [Yin and Zhang 2009, Remark 1.2].

Theorem 1.5. Under assumptions (H1)–(H3), if there exists a unique point x0 ∈3

such that G(x0) = c0 ≡ infx∈3 G(x), then there exists a positive constant C > 0
independent of ε such that for any fixed δ > 0 and small ε, we have

1
C
≤ max
|x−x0|≤δ

uε(x)≤ C and uε(x)→ 0 uniformly for |x − x0| ≥ δ as ε→ 0.

Remark 1.6. Whereas Theorem 1.5 describes the concentration of uε(x) when
the ground energy function G(x) has a unique minimum point in 3, Theorem 5.5
describes the concentration when G(x) has at least one local minimum point in 3.

Now we comment on the proofs of Theorems 1.1 and 1.5.
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To prove Theorem 1.1, we first modify the nonlinear term of Equation (1-1)
outside 3 to

fε(x, uε)=min
{

K (x)(u+ε )
p
+ 2Q+(x)(u+ε )

q ,
ε3

1+|x |θ0
u+ε ,

ε
1+|x |N

}
−min

{
|Q(x)|(u+ε )

q ,
ε3

1+|x |θ0
u+ε ,

ε
1+|x |N

}
,

where θ0 > 2 is a constant to be chosen during the proof. We modify this term
for three reasons: First, we hope that fε(x, uε) coincides with the original non-
linear term for positive uε. Since Q(x) can change sign, we arrange the terms
K (x)(u+ε )

p
+ 2Q+(x)(u+ε )

q and |Q(x)|(u+ε )
q in fε(x, uε) so that fε(x, uε) is a

difference of two positive terms. Second, as in [Yin and Zhang 2009], we put
the term ε3/(1+ |x |θ0)u+ε in fε(x, uε) so that the corresponding functional Iε of
the modified equation −ε21uε + V (x)uε = gε(x, uε) will be well defined in the
weighted Sobolev space

Eε ≡ {u ∈ D1,2(RN ) :
∫

RN (ε
2
|∇u|2+ V (x)|u|2)dx <∞}

with D1,2(RN )={u∈ L2N/(N−2)(RN ) :∇u∈ L2(RN )}; this modification also makes
Iε satisfy the Palais–Smale condition and preserve the mountain-pass geometry
provided that ε is small; see Section 2. Third, we put the term ε/(1+ |x |N ) in
fε(x, uε) so that the mountain-pass solution uε of the modified equation can be
controlled from above by a function decaying suitably outside of 3, and so that
uε(x) decays as |x | →∞. From these, we can respectively conclude that

and

K (x)(u+ε )
p
+ 2Q+(x)(u+ε )

q
≤

ε3

1+|x |θ0
uε, |Q(x)|(u+ε )

q
≤

ε3

1+|x |θ0
uε

K (x)(u+ε )
p
+ 2Q+(x)(u+ε )

q
≤

ε
1+|x |N

, |Q(x)|(u+ε )
q
≤

ε
1+|x |N

for x outside3, and thus that fε(x, uε)≡K (x)(u+ε )
p
+Q(x)(u+ε )

q . Such modifica-
tion of the nonlinear term of nonlinear Schrödinger equations has been done before
in [Ambrosetti et al. 2006; 2003; 2004; Bonheure and Van Schaftingen 2008; del
Pino and Felmer 1996; Ding and Tanaka 2003; Floer and Weinstein 1986; Gui
1996; Yin and Zhang 2009]; however, these papers deal with different potentials
and nonlinear terms, so their modifications differ.

Next, we derive a decay estimate for the solution uε of the modified equation. To
this end, as in [del Pino and Felmer 1996; Wang 1993; Wang and Zeng 1997], we
will establish a concentration-compactness result and then show that the integral

ε−N
(

1
2 q

∫
|x−ξε|>ερ

(ε2
|∇uε|2+ V (x)u2

ε)dx +α p
q

∫
{x :|x−ξε|>ερ}∩3

K (x)u p+1
ε dx

)
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is small for suitable ξε ∈3 and some positive constant ρ. Here, we have introduced
abbreviations for some recurring quantities:

1
2 p :=

(1
2
−

1
p+1

)
and α p

q :=

( 1
q+1

−
1

p+1

)
.

From this integral then follows the pointwise decay property of uε at infinity. In the
proof, we must analyze the measure sequence µuε corresponding to some suitable
scaling of uε, in order to show that µuε is uniformly compact with center ξε, which
is near some local minimum point of ground energy function G(ξ) as ε→0. These
results, together with some delicate estimates, complete the proof of Theorem 1.1.
Some techniques in [del Pino and Felmer 1996; Wang 1993; Wang and Zeng 1997;
Yin and Zhang 2009] — for instance, the truncation of the nonlinearity and the
estimates of the concentration-compactness of µuε — play important roles in our
paper, although our analysis is much more involved due to the compact support of
V (x) and the appearance of a second nonlinear term Q(x)|uε|q−1uε in (1-1).

To establish the concentration property of uε in Theorem 1.5, we need to analyze

ε−N
(

1
2 q

∫
|x−xε|>ερ1

(ε2
|∇uε|2+ V (x)u2

ε)dx +α p
q

∫
{x :|x−xε|>ερ1}∩3

K (x)u p+1
ε dx

)
for sufficiently small ε and a suitable positive constant ρ1, where xε is the maximum
point of uε in RN . This analysis will yield a uniform positive lower bound of uε
near xε via the weak Harnack inequality, thus completing the proof.

Our paper is organized as follows. In Section 2, we modify the nonlinear term
of (1-1) outside3 and analyze in detail the resulting equation−ε21uε+V (x)uε=
gε(x, uε) for a suitably truncated function gε(x, uε), and establish existence of uε
by using the mountain-pass lemma. In Section 3, we first state Proposition 3.1,
which illustrates the compactness of measures related to the mountain-pass criti-
cal points of the modified equation, and use it derive an integral decay estimate
inspired [Ambrosetti et al. 2005, by Lemma 17]; we further use the weak Harnack
inequality to derive a pointwise decay estimate of uε. We then complete the proof
of Theorem 1.1. In Section 4, we prove Proposition 3.1. Section 5 completes the
proof of Theorem 1.5. The modified function gε(x, uε) is shown to be Lipschitz
in the variable uε in the appendix.

Notation. Br (x0) denotes the ball centered at x0 with the radius r .
For a set A⊂RN , write Aδ ={x ∈RN

: dist(x, A)≤ δ} and Aε={ε−1x : x ∈ A},
where ε and δ are suitably small positive constants.

We denote by C,C1, . . . generic positive constants depending only on V (x),
K (x), Q(x), p, and q.

We denote by O(1) and o(1) quantities that are respectively bounded and van-
ishing as, unless otherwise stated, ε→ 0.
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2. Existence of critical points for a modified nonlinear equation

First we recall some well-known facts. For V (ξ), K (ξ) > 0 with ξ ∈3, consider
the system

(2-1)


−1u(x)+ V (ξ)u(x)= K (ξ)u p(x)+ Q(ξ)uq(x), x ∈ RN ,

u ∈ H 1(RN ), u(x) > 0,

lim|x |→∞ u(x)= 0.

The functional associated to (2-1) is defined as

(2-2) I ξ (u)= 1
2

∫
RN
|∇u|2dx + 1

2 V (ξ)
∫

RN
|u|2dx

−
1

p+1
K (ξ)

∫
RN
|u|p+1dx − 1

q+1
Q(ξ)

∫
RN
|u|q+1dx .

In the terminology of [Wang and Zeng 1997], the function

(2-3) G(ξ)= inf
u∈Mξ

I ξ (u)

is the ground energy function of (2-1), where Mξ is the Nehari manifold with

(2-4) Mξ
=

{
u ∈ H 1(RN ) \ {0} :

∫
RN
|∇u|2dx + V (ξ)

∫
RN
|u|2dx

= K (ξ)
∫

RN
|u|p+1dx + Q(ξ)

∫
RN
|u|q+1dx

}
.

For more about G(ξ), see [Cingolani and Lazzo 2000; Wang and Zeng 1997].
By [Gidas et al. 1981; Kwong 1989], Equation (2-1) has up to translation a

unique positive H 1(RN ) solution ω(x) = ω(V (ξ), K (ξ), Q(ξ); x), which is not
only a mountain-pass critical point of the functional (2-2) but also is spherically
symmetric and decays exponentially at infinity. In this case, G(ξ)= I ξ (ω(x)).

Let Eε be the class

Eε =
{

u ∈ D1,2(RN ) :

∫
RN
(ε2
|∇u|2+ V (x)|u|2)dx <∞

}
of weighted Sobolev spaces with D1,2(RN )={u ∈ L2N/(N−2)(RN ) : ∇u ∈ L2(RN )}.
Define the norm of u ∈ Eε by ‖u‖ε = (

∫
RN (ε

2
|∇u|2+ V (x)|u|2)dx)1/2.

Lemma 2.1. Assume that (H1) and (H2) hold for each ε ∈ (0, 1]. Then there exists
a positive constant C1 independent of ε such that, for u ∈ Eε,

(2-5)

∫
3

K (x)|u|p+1dx ≤ C1ε
−N (p−1)/2

‖u‖p+1
ε ,∫

3

|Q(x)||u|q+1dx ≤ C1ε
−N (q−1)/2

‖u‖q+1
ε .
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Proof. The proof uses the Sobolev embedding theorem and the positivity of V (x)
in 3. Here we omit it, but see the proof of [Yin and Zhang 2009, Lemma 2.1]. �

To prove Theorem 1.1, we must modify (1-1) and then look for a solution to the
modified equation; this method is often used in the study of the nonlinear elliptic
equations. See for example [Gilbarg and Trudinger 1983, Chapter 12].

To this end, we define a function fε : Rn
×R→ R by

(2-6) fε(x, ξ)=min
{

K (x)(ξ+)p
+ 2Q+(x)(ξ+)q , ε3

1+|x |θ0
ξ+,

ε
1+|x |N

}
−min

{
|Q(x)|(ξ+)q , ε3

1+|x |θ0
ξ+,

ε
1+|x |N

}
,

where ξ+ =max{ξ, 0}, and θ0 > 2 will be chosen later.
From Lemma A.1, we know that fε(x, ξ) satisfies the global Lipschitz condition

(2-7) | fε(x, ξ)− fε(x, η)| ≤
(p+ q)ε3

1+ |x |θ0
|ξ − η| for ξ, η ∈ R.

Set gε(x, ξ)= χ3(x)(K (x)(ξ
+)p
+ Q(x)(ξ+)q)+ (1−χ3(x)) fε(x, ξ), where

χ3(x) is the characteristic function of the set 3. By (2-7), it is easy to see that
gε(x, ξ) is Lipschitz continuous in the variable ξ .

We now consider a new nonlinear equation

(2-8) −ε21u+ V (x)u = gε(x, u) for x ∈ RN ,

which has corresponding functional

Iε(u)= 1
2‖u‖

2
ε −

1
p+1

∫
3

K (x)(u+)p+1dx

−
1

q+1

∫
3

Q(x)(u+)q+1dx −
∫

RN \3

Fε(x, u)dx,

where Fε(x, ξ)= (1−χ3(x))
∫ ξ

0 fε(x, τ )dτ .
For u ∈ Eε, a direct computation yields

(2-9)

∣∣∣∫
RN \3

Fε(x, u)dx
∣∣∣≤ ∫

RN \3

ε3

1+|x |θ0
u2dx

≤ Cε3
(∫

RN \3

|u|2N/(N−2)dx
)(N−2)/N

≤ Cε3
∫

RN
|∇u|2dx ≤ Cε‖u‖2ε,

where we used that θ0 > 2. It thus follows from (2-5) and (2-9) that Iε(u) is well
defined on Eε, and Iε ∈ C1(Eε,R).

Next we verify that Iε of (2-8) satisfies the Palais–Smale condition.
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Lemma 2.2. For small ε>0, if {un}⊂ Eε is a sequence such that Iε(un) is bounded
and I ′ε(un)→ 0 as n→∞, then {un} has a convergent subsequence.

Proof. Similar to (2-9), we have

(2-10)
∣∣∣∫

RN \3

fε(x, u)udx
∣∣∣≤ Cε‖u‖2ε.

Since Iε(un) is bounded and I ′ε(un)→ 0, we have

(2-11)

Iε(un)=
1
2‖un‖

2
ε−

1
p+1

∫
3

K (x)(u+n )
p+1dx− 1

q+1

∫
3

Q(x)(u+n )
q+1dx

−

∫
RN \3

Fε(x, un)dx = O(1),

I ′ε(un)un = ‖un‖
2
ε−

∫
3

K (x)(u+n )
p+1dx−

∫
3

Q(x)(u+n )
q+1dx

−

∫
RN \3

fε(x, un)undx = o(1)‖un‖ε.

Here O(1) and o(1) are bounded and vanishing as n→∞, respectively. Substi-
tuting (2-9) and (2-10) into (2-11) and eliminating the term

∫
3 Q(x)(u+n )

q+1dx
yields

1
2 q‖un‖

2
ε +α

p
q

∫
3

K (x)(u+n )
p+1dx + O(1)ε‖un‖

2
ε = o(1)‖un‖ε + O(1).

Then (1/2 − 1/(q + 1))‖un‖
2
ε + O(1)ε‖un‖

2
ε ≤ o(1)‖un‖ε + O(1), because

p > q > 1. This leads to the boundedness of {un} in Eε.
Now Eε ↪→D1,2(RN ) ↪→ H 1

loc(R
N ), where ↪→ denotes continuous embedding,

so the boundedness of {un} in Eε implies that there exists u0 ∈ Eε satisfying, after
passing to a subsequence if necessary,

un ⇀ u0 weakly in Eε,(2-12)

un→ u0 strongly in L t
loc(R

N )(2-13)

for 2≤ t < 2N/(N − 2).
Next we show ‖un‖ε→‖u0‖ε as n→∞, which with (2-12) leads to the strong

convergence of {un} in Eε.
By I ′ε(un)u0→ 0 and (2-12), we arrive at

(2-14) o(1)=
∫

RN
(∇un · ∇u0+ V (x)unu0)dx −

∫
3

K (x)(u+n )
pu0dx

−

∫
3

Q(x)(u+n )
qu0dx −

∫
RN \3

fε(x, un)u0dx .
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This implies

(2-15) ‖u0‖
2
ε −

∫
3

K (x)(u+n )
pu0dx −

∫
3

Q(x)(u+n )
qu0dx

−

∫
RN \3

fε(x, un)u0dx = o(1).

In addition, from (2-11) and the boundedness of {un}, we have

(2-16) ‖un‖
2
ε −

∫
3

K (x)(u+n )
p+1dx −

∫
3

Q(x)(u+n )
q+1dx

−

∫
RN \3

fε(x, un)undx = o(1).

On the other hand, using (2-13), we find

(2-17)
lim

n→∞

∫
3

K (x)(u+n )
p+1dx = lim

n→∞

∫
3

K (x)(u+n )
pu0dx,

lim
n→∞

∫
3

Q(x)(u+n )
q+1dx = lim

n→∞

∫
3

Q(x)(u+n )
qu0dx,

and for any fixed large R > 0 (without losing generality, we assume 3⊂ BR(0)),

(2-18) lim
n→∞

∫
BR(0)\3

fε(x, un)undx = lim
n→∞

∫
BR(0)\3

fε(x, un)u0dx .

Thus, to conclude that ‖un‖ε → ‖u0‖ε, it follows from (2-15)–(2-18) that we
need only prove that for any δ > 0, there exists R > 0 such that for all n

(2-19)
∣∣∣∫

RN \BR(0)
fε(x, un)u0dx

∣∣∣< δ and
∣∣∣∫

RN \BR(0)
fε(x, un)undx

∣∣∣< δ.
In fact, it suffices to check the first inequality in (2-19) since the second one is

similar. As in the proof of (2-9), we have

(2-20)

∣∣∣∫
RN \BR

fε(x, un)u0dx
∣∣∣≤ C

R(θ0−2)/2

∫
RN \BR

ε3

1+|x |θ0+2/2 |un||u0|dx

≤
Cε

R(θ0−2)/2 ‖un‖ε‖u0‖ε→ 0 as R→∞.

The last estimate follows from the choice θ0 > 2 and the boundedness of {un}. �

We now prove that Iε has the mountain-pass geometry. Let ε > 0 be small. By
(2-5) and (2-9), there is a number r > 0 such that

Iε(u)≥ 1
2‖u‖

2
ε −Cε−N (p−1)/2

‖u‖p+1
ε −Cε−N (q−1)/2

‖u‖q+1
ε −Cε‖u‖2ε

≥
1
4‖u‖

2
ε for ‖u‖ε ≤ r.
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By choosing a nontrivial nonnegative smooth function ϕ(x) with support in 3,
we find that

Iε(tϕ)= 1
2 t2
‖ϕ‖2ε −

t p+1

p+1

∫
3

K (x)ϕ p+1dx − tq+1

q+1

∫
3

Q(x)ϕq+1dx

goes to −∞ as t →+∞. Therefore Iε has the mountain-pass geometry. Hence,
by the standard theorem, we have this:

Lemma 2.3. Under the assumptions (H1)–(H3), for small ε > 0, the modified
functional Iε of (2-8) has a nontrivial critical point uε ∈ Eε with level

cε = inf
γ∈0ε

max
0≤t≤1

Iε(γ (t)),

where 0ε = {γ ∈ C([0, 1], Eε) : γ (0)= 0, Iε(γ (1)) < 0}.

Remark 2.4. Since gε(x, ξ) is Lipschitz continuous in ξ for fixed x , it follows
from second order elliptic regularity theory that uε is a strong solution of (2-8).
One can also show that uε > 0, as follows. Suppose first I ′ε(uε)u

−
ε = 0, with

u−ε = max{−uε, 0}. Then
∫

RN (ε
2
|∇u−ε |

2
+ V (x)|u−ε |

2)dx = 0 and also u−ε = 0.
Thus, we find uε ≥ 0. On the other hand, in Section 3 we will show that uε satisfies
(1-1), which can be reformulated as

−ε21uε +
(
V (x)+ Q−(x)|uε|q−1)uε = K (x)|uε|p−1uε + Q+(x)|uε|q−1uε ≥ 0.

From this, together with uε ≥ 0 and uε 6≡ 0, we can obtain uε(x) > 0 by using the
strong maximum principle of second order elliptic equations.

In the following lemma, we obtain an upper bound on cε, so that we can later
estimate

ε−N inf
u∈Mε

(
1
2 p‖u‖

2
ε +α

p
q

∫
3

K (x)(u+)p+1dx
)
,

where Mε = {u ∈ Eε \ {0} : I ′ε(u)u = ‖u‖
2
ε −

∫
RN gε(x, u)udx = 0}. This will help

prove Proposition 3.1, which will then play crucial role in obtaining the decay of uε
needed for the proof of Theorem 1.1.

Lemma 2.5. Under the hypotheses (H1)–(H3), for small ε > 0 we have

cε ≤ (c0+ o(1))εN for small ε > 0,

where c0 is the constant defined in (H2).

Proof. For ξ ∈ 3, choose R > 0 such that BR(ξ) ⊂ 3. Define a smooth cutoff
function η : R+→ R+ such that η(t)= 1 if 0 ≤ t ≤ R/4 and η(t)= 0 if t ≥ R/2,
with |η′(t)| ≤ 8/R. Set

wε(x)= η(|x − ξ |)ω((x − ξ)/ε),
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where ω(x) = ω(V (ξ), K (ξ), Q(ξ); x) is the unique positive H 1(RN ) solution
of (2-1) that is spherically symmetric about the origin. Since wε is compactly
supported in 3, we find Fε(x, twε)= 0 for all t ≥ 0, and there exists a T > 0 large
enough that Iε(Twε) < 0. This implies that the path γε(t)= {tTwε : t ∈ [0, 1]} is
an element of 0ε that satisfies cε ≤max0≤t≤1 Iε(γε(t)). Recalling that V (x), K (x)
and Q(x) are smooth functions and ω decays exponentially at infinity, we arrive at∫

RN

(
|∇(η(ε|y|)ω(y))|2+ V (ξ + εy)|η(ε|y|)ω(y)|2

− |∇ω(y)|2− V (ξ)ω2(y)
)
dy = o(1),∫

RN

(
K (ξ + εy)|η(ε|y|)ω(y)|p+1

− K (ξ)ωp+1(y)
)
dy = o(1),∫

RN

(
Q(ξ + εy)|η(ε|y|)ω(y)|q+1

− Q(ξ)ωq+1(y)
)
dy = o(1).

Hence, by the change of variable y = (x − ξ)/ε, we have for 0≤ t ≤ 1

Iε(tTwε)=
(tT )2

2

∫
RN

(
ε2
|∇wε|

2
+ V (x)w2

ε

)
dx −

(tT )p+1

p+ 1

∫
3

K (x)w p+1
ε dx

−
(tT )q+1

q + 1

∫
3

Q(x)wq+1
ε dx

=
(tT )2

2
εN
∫

RN

(
|∇(η(ε|y|)ω(y))|2+ V (ξ + εy)|η(ε|y|)ω(y)|2

)
dx

−
(tT )p+1

p+ 1
εN
∫

RN
K (ξ + εy)|η(ε|y|)ω(y)|p+1dy

−
(tT )q+1

q + 1
εN
∫

RN
Q(ξ + εy)|η(ε|y|)ω(y)|q+1dy

= εN
(
(tT )2

2

∫
RN
(|∇ω|2+ V (ξ)ω2)dx −

(tT )p+1

p+ 1

∫
RN

K (ξ)ωp+1dy

−
(tT )q+1

q + 1

∫
RN

Q(ξ)ωq+1dy+ o(1)
)
.

As in the argument of [Wang and Zeng 1997, Lemma 2.1], we get

max
0≤t≤1

(
(tT )2

2

∫
RN
(|∇ω|2+ V (ξ)ω2)dx −

(tT )p+1

p+ 1

∫
RN

K (ξ)ωp+1dy

−
(tT )q+1

q + 1

∫
RN

Q(ξ)ωq+1dy
)
= G(ξ).

So max0≤t≤1 Iε(γε(t)) = max0≤t≤1 Iε(tTwε) = εN (G(ξ) + o(1)). Since ξ is
arbitrary and the smallness of ε is independent of ξ , the proof is completed. �
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For ε > 0, the solution manifold of (2-8) is

(2-21) Mε =

{
u ∈ Eε \{0} : ‖u‖2ε =

∫
3

K (x)(u+)p+1dx+
∫
3

Q(x)(u+)q+1dx

+

∫
RN \3

fε(x, u)udx
}
.

Next we estimate ε−N infu∈Mε(
1
2 q‖u‖

2
ε+α

p
q
∫
3 K (x)(u+)p+1dx) as in [del Pino

and Felmer 1996; Wang and Zeng 1997; Yin and Zhang 2009].

Lemma 2.6. For small ε > 0, there exists a positive constant c1 such that

c1 ≤ ε
−N inf

u∈Mε

(
1
2 q‖u‖

2
ε +α

p
q

∫
3

K (x)(u+)p+1dx
)

≤ ε−N
(

1
2 q‖uε‖

2
ε +α

p
q

∫
3

K (x)(u+ε )
p+1dx

)
≤ c0+ o(1).

Proof. By (2-5) and (2-10), for u ∈Mε, we have

ε−N
‖u‖2ε = ε

−N
∫
3

K (x)(u+)p+1dx + ε−N
∫
3

Q(x)(u+)q+1dx

+ ε−N
∫

RN \3

fε(x, u)udx

≤ Cε−N (p+1)/2
‖u‖p+1

ε +Cε−N (q+1)/2
‖u‖q+1

ε + o(1)ε−N
‖u‖2ε

= C(ε−N
‖u‖2ε)

(p+1)/2
+C(ε−N

‖u‖2ε)
(q+1)/2

+ o(1)ε−N
‖u‖2ε.

Because p > 1 and q > 1, this means that there exists a positive number C
independent of ε such that ε−N

‖u‖2ε ≥ C for u ∈Mε. Thus we obtain the lemma’s
first inequality.

It follows from (2-9), (2-10) and (2-21) that

Iε(uε)= 1
2 q‖uε‖

2
ε +α

p
q

∫
3

K (x)(u+ε )
p+1dx

+
1

q+1

∫
RN \3

fε(x, uε)uεdx −
∫

RN \3

Fε(x, uε)dx

= (1+ o(1))
(

1
2 q‖uε‖

2
ε +α

p
q

∫
3

K (x)(u+ε )
p+1dx

)
.

This together with Lemma 2.5 yields

ε−N
(

1
2 q‖uε‖

2
ε +α

p
q

∫
3

K (x)(u+ε )
p+1dx

)
= (1+ o(1)) ε−N Iε(uε)≤ c0+ o(1),

completing the proof. �



BOUND STATES OF A NONLINEAR SCHRÖDINGER EQUATION 273

3. Decay estimates and the proof of Theorem 1.1

Let {uε} be the solutions obtained in Lemma 2.3. In Section 4, we will prove this:

Proposition 3.1. There is a sequence {ξε} ⊂3 such that for any ν > 0 there exist
ε1(ν), ρ1(ν) > 0 such that

(3-1) ε−N
(

1
2 q

∫
RN \Bερ1(ν)(ξε)

(ε2
|∇uε|2+ V (x)u2

ε)dx

+α p
q

∫
(RN \Bερ1(ν)(ξε))∩3

K (x)u p+1
ε dx

)
< ν

and

(3-2) dist(ξε,M) < ν

whenever ε < ε1(ν), where M = {ξ : G(ξ)= c0}.

For later use, we introduce two fixed positive numbers K0 > 128 and c> 0 such
that c2

≥128K 2
0/(d

2
0 V1), where d0=dist(∂3,M)>0 and V1=

1
2 minx∈3 V (x)>0.

Set

ν0 =min
{

d0

K0
,

q − 1
2(q + 1)

(16C1)
−2/(p−1),

q − 1
2(q + 1)

(16C1)
−2/(q−1)

}
,

where C1 is defined in (2-5).
Take ε2=min{ε1(ν0), d0/(K0ρ1(ν0)), (ln 2)/c}, where ε1(ν0) and ρ1(ν0) are the

functions whose existence is ensured by Proposition 3.1. From now on, we assume
ε < ε2 and ν < ν0 in (3-1).

It follows from (3-2) that for ε < ε2 and ν = ν0

(3-3) dist(ξε, ∂3) > 1
2 d0 and ερ1(ν0) < d0/K0.

Define �n,ε = RN
\ BRn,ε(ξε) with Rn,ε = ecεn , and let ñ > n̂ satisfy

(3-4) Rn̂−1,ε < d0/K0 ≤ Rn̂,ε and Rñ+2,ε ≤ d0/2< Rñ+3,ε.

By the second inequality of (3-3), we get Rn,ε ≥ Rn̂,ε ≥ d0/K0 > ερ1(ν0) for
n ≥ n̂ and ε < ε2, and this also yields

(3-5) �n,ε ∩ Bερ1(ν0)(ξε)=∅.

Let χn,ε(x) be smooth cutoff functions such that χn,ε(x) = 0 in BRn,ε(ξε) and
χn,ε(x)= 1 in �n+1,ε, with 0≤ χn,ε ≤ 1 and |∇χn,ε| ≤ 2/(Rn+1,ε − Rn,ε).

Lemma 3.2. Under assumptions (H1), (H2), ε < ε2 and n̂ ≤ n ≤ ñ, we have

(3-6)
∫

RN
An,εdx ≤ 1

2

∫
�n,ε

(
ε2
|∇uε|2+ V (x)u2

ε

)
dx,

where An,ε(x)= ε2
|∇(χn,εuε)|2+ V (x)(χn,εuε)2.
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Proof. Straightforward computation gives Rn+1,ε − Rn,ε ≥ cεRn+1,ε/2 for ε < ε2.
This yields

ε2
|∇χn,ε|

2
≤

4ε2

|Rn+1,ε−Rn,ε|
2 ≤

16
c2 R2

n+1,ε
.

From the choice of c, for ε < ε2 and n̂ ≤ n ≤ ñ, we arrive at

128
c2 R2

n+1,ε
≤

128
128K 2

0

d2
0 V1
·

d2
0

K 2
0

= V1 ≤ V (x) for x ∈ {x : Rn,ε ≤ |x − ξε|< Rn+1,ε}.

Note that ∇χn,ε is supported in {x : Rn,ε ≤ |x − ξε|< Rn+1,ε}. Then for ε < ε2

and n̂ ≤ n ≤ ñ, we obtain from the last two inequalities that

(3-7) ε2
|∇χn,ε|

2
≤

1
8 V (x) in RN .

Multiplying (2-8) by χ2
n,εuε yields

∫
RN An,εdx = I + II+ III, where

I =
∫
�n,ε

ε2
|∇χn,ε|

2u2
εdx,(3-8)

II =
∫
3∩�n,ε

χ2
n,εK (x)(u+ε )

p+1dx +
∫
3∩�n,ε

χ2
n,εQ(x)(u+ε )

q+1dx,(3-9)

III =
∫
(RN \3)∩�n,ε

fε(x, uε)χ2
n,εuεdx .(3-10)

By (3-7), we have

|I | ≤ 1
8

∫
�n,ε

V (x)u2
εdx .

For |II|, we only need to consider the case 3∩�n,ε 6= ∅. In this case, there is
a set 6n,ε such that 3 ⊂ 6n,ε ⊂ 3r0 = {x : dist(x,3) ≤ r0}, and 6n,ε ∩�n,ε has
the uniform cone property, where r0 > 0 is a small constant such that V (x) ≥ V1

for x ∈32r0 .
By (2-5), we have

(3-11)
∫
3∩�n,ε

K (x)(u+ε )
p+1dx ≤

∫
6n,ε∩�n,ε

K (x)|uε|p+1dx

≤ C1ε
−(N (p−1))/2

(∫
6n,ε∩�n,ε

(ε2
|∇uε|2+ V (x)u2

ε)dx
)(p+1)/2

and∫
3∩�n,ε

|Q(x)|(u+ε )
q+1dx

≤ C1ε
−N (q−1)/2

(∫
6n,ε∩�n,ε

(
ε2
|∇uε|2+ V (x)u2

ε

)
dx
)(q+1)/2

.
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In addition, by using (3-5), we get 6n,ε ∩�n,ε ⊂ RN
\ Bερ1(ν0)(ξε) for ε < ε2

and n ≥ n̂. Thus, it follows from (3-1) and the definition of ν0 that

|II| ≤
(

C1ε
−N (p−1)/2

(∫
RN \Bερ1(ν0)(ξε)

(ε2
|∇uε|2+ V (x)u2

ε)dx
)(p−1)/2

+C1ε
−N (q−1)/2

(∫
RN \Bερ1(ν0)(ξε)

(ε2
|∇uε|2+ V (x)u2

ε)dx
)(q−1)/2)

×

∫
6n,ε∩�n,ε

(ε2
|∇uε|2+ V (x)u2

ε)dx

≤
1
8

∫
�n,ε

(ε2
|∇uε|2+ V (x)u2

ε)dx .

Finally, we estimate |III|. Similar to the proof of (2-9), for ε < ε2, we have

|III| ≤
∫
�n,ε

2ε3

1+|x |θ0
u2
εdx ≤ 1

8

∫
�n,ε

(
ε2
|∇uε|2+ V (x)u2

ε

)
dx .

The lemma then follow from our estimates for I, II and III. �

Lemma 3.3. Under the assumptions of Lemma 3.2, for small ε < ε2, we have∫
RN
|∇(χñ,εuε)|2dx ≤ CεN−22− ln 2/(cε).

Proof. By (3-6), we have∫
RN

An,εdx ≤ 1
2

∫
�n,ε

(ε2
|∇uε|2+ V (x)u2

ε)dx ≤ 1
2

∫
RN

An−1,εdx .

Iterating the above process and applying (3-5), (3-6) and (3-1), we have for
small ε

(3-12)

∫
RN

Añ,εdx ≤
( 1

2

)ñ−n̂
∫

RN
An̂,εdx

≤
( 1

2

)ñ−n̂+1
∫
�n̂,ε

(
ε2
|∇uε|2+ V (x)u2

ε

)
dx

≤
( 1

2

)ñ−n̂+1
∫

RN \Bερ1(ν0)(ξε)

(ε2
|∇uε|2+ V (x)u2

ε)dx

≤ CεN (1
2

)ñ−n̂
≤ CεN 2− ln 2/(cε).

From this, we have∫
RN
|∇(χñ,εuε)|2dx ≤ ε−2

∫
RN

Añ,εdx ≤ CεN−22− ln 2/(cε). �

Lemma 3.4. Under the assumptions of Lemma 3.2, we have

(3-13) uε(x)≤ C2− ln 2/(2cε) for x ∈ RN such that |x − ξε| ≥ d0/2.
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Proof. By (2-8), we see vε(x)= uε(εx) is a classical solution of the equation

(3-14) −1vε+V (εx)vε = χε(x)(K (εx)v p
ε +Q(εx)vq

ε )+(1−χε(x)) fε(εx, vε),

where χε is a characteristic function of 3ε = {ε−1x : x ∈3}. Let

cε(x)= χε(x)
(
K (εx)v p−1

ε (x)+ Q(εx)vq−1
ε (x)

)
+ (1−χε(x))

2ε3

1+|εx |θ0
.

Then vε ∈ H 1
loc(R

N ) is a nonnegative weak subsolution of 1v + cε(x)v = 0.
Choosing s ∈ (N/2, 2N/((p−1)(N −2))), we see by Lemma 2.6 and θ0 > 2 that
cε(x) ∈ Ls(RN ) and

‖cε(x)‖Ls ≤ ‖χε(x)K (εx)v p−1
ε ‖Ls

+‖χε(x)Q(εx)vq−1
ε ‖Ls +

∥∥∥(1−χε(x)) 2ε3

1+|εx |θ0

∥∥∥
Ls

≤ C
(∫

3ε
(|∇vε|

2
+ |vε|

2)dx
)(p−1)/2

+C
(∫

3ε
(|∇vε|

2
+ |vε|

2)dx
)(q−1)/2

+Cε3−N/s
(∫

RN \3

1
(1+|y|θ0)s

dy
)1/s

≤ C
(
ε−N

∫
3

(ε2
|∇uε|2+ V (y)|uε|2)dy

)(p−1)/2

+C
(
ε−N

∫
3

(ε2
|∇uε|2+ V (y)|uε|2)dy

)(q−1)/2
+C,

which is less than or equal to C . Here C is positive and independent of ε, that is,
the norm ‖cε(x)‖Ls is uniformly bounded in ε. By [Gilbarg and Trudinger 1983,
Theorem 8.17 and page 193], there is a constant C depending only on d0, the
dimension N , and the Ls bound of cε(x), such that for z ∈ RN

(3-15) vε(z)≤ C
(∫

Bcd0 (z)
v2∗
ε (y)dy

)1/2∗

, where 2∗ = 2N
N−2

.

We note that Bεcd0(x)⊂�ñ+1,ε for x ∈RN with |x−ξε| ≥ d0/2 and for small ε.
This, together with (3-15) and Lemma 3.3, yields

uε(x)= vε(ε−1x)≤ C
(∫

Bcd0 (ε
−1x)

v2∗
ε (y)dy

)1/2∗

= C
(
ε−N

∫
Bεcd0 (x)

u2∗
ε (z)dz

)1/2∗

≤ Cε−(N−2)/2
(∫

RN
(χñ,εuε)2

∗

(z)dz
)1/2∗

≤ Cε−(N−2)/2
(∫

RN
|∇(χñ,εuε)|2(z)dz

)1/2
≤ C2− ln 2/(2cε). �
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Remark 3.5. By Lemma 3.4, for any fixed constant θ ≥ 1, there exists an ε0

depending on θ such that uε(x)≤ εθ for |x − ξε| ≥ d0/2 whenever ε < ε0.

Proof of Theorem 1.1. It follows from the assumption (H3) that there exist some
positive constants σ0, θ0, θ1, θ2 such that

(3-16)

β1 < pσ0− N , N − 9
4 < σ0 < N − 2,

2< θ0 < (p− 1)σ0−β1, θ0 < (p− θ1)σ0−β1,

4+ 2(p− θ1)≤ (θ1− 1)θ2. θ1 > 1,

As in [Yin and Zhang 2009], we define the comparison function

U (x)= 1/|x − ξε|σ0 in |x − ξε| ≥ d0/2.

It is easy to see that Z(x)=U (x)− ε2uε(x)≥ 0 on |x− ξε| = d0/2 for small ε.
Since vε(x)= uε(εx) vanishes at infinity by (3-15), so does Z(x).

On the other hand, using the expression for gε(x, u) and noting σ0 < N − 2,
we can conclude from (2-8) and Remark 3.5 for |x − ξε| > d0/2 and sufficiently
small ε that

1Z =1U − ε21uε

= σ0(σ0+ 2− N ) 1
|x−ξε|σ0+2 − V (x)uε + gε(x, uε)

≤ σ0(σ0+ 2− N ) 1
|x−ξε|σ0+2 +χ3(x)ε+ (1−χ3(x))

2ε
1+|x |N

≤ 0.

Thus, by the maximum principle we deduce that uε ≤U/ε2 in |x − ξε|> d0/2.
This and the uniform boundedness of ξε imply

(3-17) uε(x)≤
1

ε2|x−ξε|σ0
≤

C
ε2(1+|x |σ0)

in RN
\3.

Next we verify that uε actually solves Equation (1-1).
Indeed, it follows from (H3), Remark 3.5 and (3-17) that for small ε

(3-18)
K (x)u p

ε ≤ k1(1+ |x |β1)
( C
ε2(1+|x |σ0)

)p−θ1
ε(θ1−1)θ2uε

≤
ε3

2(1+|x |θ0)
uε in RN

\3.

Similarly, by (H3), Remark 3.5, (3-16), and (3-17), we obtain for small ε that

(3-19)
2|Q(x)|uq

ε ≤
ε3

2(1+|x |θ0)
uε, K (x)u p

ε ≤
ε

2(1+|x |N )
,

2|Q(x)|uq
ε ≤

ε
2(1+|x |N )

for x ∈ RN
\3.
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Therefore gε(x, u) ≡ K (x)u p
+ Q(x)uq in RN

\3 and uε solves (1-1). Since
N − 9/4< σ0, the estimate (3-17) leads to uε ∈ L2(RN ) for N ≥ 5. �

4. The proof of Proposition 3.1.

Although the strategy is somewhat similar to that in [del Pino and Felmer 1996] or
[Wang 1993; Wang and Zeng 1997; Yin and Zhang 2009], the appearance of the
second nonlinear term Q(x)|u|q−1u in (1-1) and the compact support of V (x) will
make the analysis more involved.

Given u ∈ Mε as defined in (2-21) for any domain � ⊂ RN , we define the
measure µu by

(4-1)

µu(�)= ε
−N
(

1
2 q

∫
ε�

(ε2
|∇u|2+V (x)|u|2)dx+α p

q

∫
ε�∩3

K (x)(u+)p+1dx
)

=
1
2 q

∫
�

(|∇u(εx)|2+V (εx)|u(εx)|2)dx

+α p
q

∫
�∩ε−13

K (εx)(u+(εx))p+1dx,

where ε�= {εx : x ∈�} and ε−13= {ε−1x : x ∈3}.
By Lemma 2.6, we have 0< c1 ≤ infu∈Mε µu(R

N )≤ c0+o(1). This means that
there exists a subsequence εn→0 as n→∞, a sequence un ∈Mεn , and b1∈[c1, c0]

such that

(4-2) lim
n→∞

µn(R
N )= lim inf

ε→0
inf

u∈Mε

µu(R
N )= b1,

where µn stands for µun .
Let vn(x)= un(εnx). It follows from (2-10) and (4-2) that vn satisfies

(4-3) lim
n→∞

(
1
2 p

∫
3n

K (εnx)(v+n )
p+1dx + 1

2 q

∫
3n

Q(εnx)(v+n )
q+1dx

)
= b1,

where 3n
= {ε−1

n x : x ∈3}.
By the concentration-compactness lemma of P. L. Lions [1984a, Lemma I.1],
{µn} satisfies up to a subsequence one of three mutually exclusive possibilities:

(i) Vanishing: For all ρ > 0,

(4-4) lim
n→∞

sup
ξ∈RN

∫
Bρ(ξ)

dµn = 0.

(ii) Dichotomy: There exist b2 ∈ (0, b1) such that for any ν > 0, there exist ρ > 0,
{ζn} ⊂ RN and ρn→+∞ with

(4-5)
∣∣∣∫

Bρ(ζn)

dµn − b2

∣∣∣≤ ν, ∫
Bρn (ζn)\Bρ(ζn)

dµn ≤ ν,
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and

(4-6)
∣∣∣∫

RN \Bρn (ζn)

dµn − (b1− b2)
∣∣∣≤ ν.

(iii) Compactness: There exists a sequence {ζn} ⊂ RN such that for any ν > 0,
there exists ρ > 0 such that

(4-7)
∫

Bρ(ζn)

dµn ≥ b1− ν.

Lemma 4.1. For small ε > 0, the vanishing property (i) does not occur.

Proof. First, we show that there is a positive integer m independent of ε such that

(4-8)

∫
3

K (x)(u+)p+1dx ≤ mC1

(2(q+1)
q−1

)(p−1)/2
sup
ξ∈3

(µu(B1(ε
−1ξ)))(p−1)/2

‖u‖2ε,

∫
3

|Q(x)|(u+)q+1dx ≤ mC1

(2(q+1)
q−1

)(p−1)/2
sup
ξ∈3

(µu(B1(ε
−1ξ)))(q−1)/2

‖u‖2ε,

for u ∈Mε, where C1 is the constant given in Lemma 2.1, and ε < r0, where r0 > 0
is a small constant such that V (x)≥ V1 for x ∈32r0 .

It suffices to prove the first inequality. By (2-5) and the definition of µu , we
have for any ξ ∈3,∫

Bε(ξ)
K (x)|u|p+1dx ≤ C1ε

−N (p−1)/2
(∫

Bε(ξ)
(ε2
|∇u|2+ V (x)|u|2)dx

)(p+1)/2

≤ C1

(2(q + 1)
q − 1

)(p−1)/2
(µu(B1(ε

−1ξ)))(p−1)/2
∫

Bε(ξ)
(ε2
|∇u|2+ V (x)|u|2)dx .

Covering3 by a family of balls with radius ε so that any point of3 is contained
in at most m balls of the family (the integer m is only related to the dimension N
[Lions 1984a]) and summing the last inequality over this family of balls, we get∫
3

K (x)(u+)p+1dx ≤ mC1

(2(q + 1)
q − 1

)(p−1)/2
sup
ξ∈3

(µu(B1(ε
−1ξ)))(p−1)/2

×

∫
3r0

(
ε2
|∇u|2+ V (x)|u|2

)
dx .

This means that (4-8) is true.
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Then combining (2-10) with (4-8) yields for u ∈Mε

‖u‖2ε ≤ mC1

(2(q + 1)
q − 1

)(p−1)/2

×

(
sup
ξ∈3

(µu(B1(ε
−1ξ)))(p−1)/2

‖u‖2ε+ sup
ξ∈3

(µu(B1(ε
−1ξ)))(q−1)/2

‖u‖2ε
)
+Cε‖u‖2ε.

Note ‖u‖ε 6= 0 for u ∈Mε. Then there exists a constant C > 0 such that

(4-9) sup
ξ∈3

µu(B1(ε
−1ξ))≥ C > 0

for ε sufficiently small. In particular, supξ∈3 µn(B1(ε
−1
n ξ)) ≥ C > 0 holds for

large n in (4-2). Thus, vanishing is not possible. �

Lemma 4.2. For small ε > 0, the dichotomy property (ii) does not occur.

Proof. Suppose to the contrary that the dichotomy property (ii) does occur. We
now prove the following claim:

Claim. For any ν as in (ii), there exists an integer N1(ν) such that

(4-10) dist(εnζn,3)≤ r0 for n > N1(ν).

If (4-10) is false, then up to a subsequence, dist(εnζn,3)≥ r0 for all n.
Let L be an integer satisfying L > 2(b1− b2)(3V1+ 8)/(V1ν), where here and

below V1 =
1
2 minx∈3 V (x). Choose large N2 ∈ N such that εn(L + ρ) < r0 for

n > N2. Then for n > N2, we have Bρ(ζn)∩3
n
L =∅ and εn3

n
L ⊂3r0 , where we

put3n
i ={y ∈RN

: dist(ε−1
n 3, y)≤ i} for i = 1, 2, . . . , L . Thus, by (4-5) and (4-6),

we get∫
3n

L

dµn ≤

∫
RN \Bρ(ζn)

dµn ≤

∫
Bρn (ζn)\Bρ(ζn)

dµn +

∫
RN \Bρn (ζn)

dµn ≤ b1− b2+ 2ν ≤ 2(b1− b2).

Thus there is an integer l satisfying 1≤ l ≤ L such that

(4-11)
∫

Hn

dµn ≤
2(b1− b2)

L
, where Hn =3

n
l \3

n
l−1.

Let ηn be smooth cutoff functions such that ηn=1 in3n
l−1 and ηn=0 in RN

\3n
l ,

with 0≤ ηn ≤ 1 and |∇ηn| ≤ 2. Set φn = ηnvn . A simple computation yields

|∇φn|
2
= |vn∇ηn + ηn∇vn|

2
≤ 2|∇vn|

2
+ 8|vn|

2.
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Note that εn Hn ⊂ 3r0 for n > N2. Then it follows from the estimate above,
(4-11), and the choice of L that

(4-12)

1
2 q

∫
Hn

(|∇φn|
2
+ V (εnx)|φn|

2)dx

≤
1
2 q

( 8
V1
+ 3

) ∫
Hn

(|∇vn|
2
+ V (εnx)|vn|

2)dx

≤

( 8
V1
+ 3

)2(b1− b2)

L
≤ ν.

Combining (4-6) with (4-11) and (4-12) yields

(4-13) 1
2 q

∫
RN

(
|∇φn|

2
+ V (εnx)|φn|

2)dx +α p
q

∫
3n

K (εnx)(φ+)p+1dx

≤ b1− b2+ 3ν.

In addition, by (2-10), (4-13) and (4-3), we have for large n

(4-14) 1
2 q

∣∣∣∫
RN \3n

fεn (εnx, φn)φndx
∣∣∣≤ Cεn(b1− b2+ 3ν) < ν,

and

(4-15) 1
2 p

∫
3n

K (εnx)(φ+n )
p+1dx + 1

2 q

∫
3n

Q(εnx)(φ+n )
q+1dx ≥ b1− ν.

It follows from ν < b2/5 and (4-13)–(4-15) that

(4-16)
∫

RN
(|∇φn|

2
+ V (εnx)|φn|

2)dx <
∫
3n

K (εnx)(φ+n )
p+1dx

+

∫
3n

Q(εnx)(φ+n )
q+1dx +

∫
RN \3n

fεn (εnx, φn)φndx .

Let θn > 0 such that θnφn(x/εn) ∈Mεn ; Note that φn 6≡ 0 by (4-15). Then, as in
[Wang and Zeng 1997], we can choose

(4-17) 0< θn < 1.

Indeed, if we set

(4-18)

Fn(t)≡ Iε ′n(tφn(x/εn))tφn(x/εn)

= t2
‖φn(x/εn)‖

2
ε−t p+1

∫
3

K (x)(φ+n (x/εn))
p+1dx

−tq+1
∫
3

Q(x)(φ+n (x/εn))
q+1dx

−

∫
RN \3

fεn (x, tφn(x/εn))tφn(x/εn)dx,
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then it follows from (4-16) that Fn(1) < 0. On the other hand, it is easy see that
Fn(t) > 0 for t � 1. Thus, there exists 0 < θn < 1 such that Fn(θn) = 0, that is,
θnφn(x/εn) ∈Mεn .

Thus, by the definition of b1 in (4-2) and by (4-17) and (4-13), we get for large n

b1− 2ν

≤
1
2 qθ

2
n

∫
RN
(|∇φn|

2
+ V (εnx)|φn|

2)dx +α p
q θ

p+1
n

∫
3n

K (εnx)(φ+)p+1dx

< 1
2 q

∫
RN
(|∇φn|

2
+ V (εnx)|φn|

2)dx +α p
q

∫
3n

K (εnx)(φ+)p+1dx

≤ b1− b2+ 3ν.

However, this contradicts that ν < b2/5, so (4-10) is proved.
Using (4-10), we can finish the proof of Lemma 4.2. By the hypothesis of

dichotomy, for each positive integer k satisfying 1/k <min{(b1−b2)/2, b2/5, r0},
there exist ρk > 0, a sequence {ζ k

n } ⊂RN and a limit ρk
n→∞ as n→∞ such that

(4-5) and (4-6) hold. Thus, it follows from (4-10) that there exists N1(k) such that
dist(εnζ

k
n ,3)≤ r0 for n > N1(k).

Choose N2(k) > N1(k) such that εN2(k)(ρ
k
+1) < 1/k < r0 and ρk

+1<ρk
N2(k).

For convenience, we now write simply εN2(k) = εk .
Set Dk = Dk,1 \ Dk,2 with Dk,1 = Bρk+1(ζ

k
N2(k)) and Dk,2 = Bρk (ζ k

N2(k)). Then
we get εk Dk ⊂32r0 , and we conclude from (4-5) that

(4-19)
∫

Dk

dµk ≤ 1/k.

Let ηk be smooth cutoff functions such that ηk=1 in Dk,2 and ηk=0 in RN
\Dk,1,

with 0 ≤ ηk ≤ 1 and |∇ηk | ≤ 2. Write φ1
k = ηkvk and φ2

k = (1− ηk)vk , where
vk = vN2(k).

Arguing as in the proof of (4-12) and taking into account (4-19), we get

1
2 q

∫
Dk

(|∇(φ1
k )|

2
+ V (εk x)|φ1

k |
2)dx +α p

q

∫
Dk
⋂
3k

K (εk x)((φ1
k )
+)p+1dx

≤

( 8
V1
+ 4

) ∫
Dk

dµk ≤
1
k

( 8
V1
+ 4

)
,

where 3k
= ε−1

k 3.
Combining this with (4-5) leads to∣∣∣1

2 q

∫
RN
(|∇φ1

k |
2
+ V (εk x)|φ1

k |
2)dx +α p

q

∫
3k

K (εk x)((φ1
k )
+)p+1dx − b2

∣∣∣
≤

1
k

( 8
V1
+ 4

)
+

1
k
=

1
k

( 8
V1
+ 5

)
.
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Letting k→∞, we obtain

(4-20) 1
2 q

∫
RN
(|∇(φ1

k )|
2
+ V (εk x)|φ1

k |
2)dx +α p

q

∫
3k

K (εk x)((φ1
k )
+)p+1dx

→ b2 > 0.

Analogously, we have when k→∞

(4-21) 1
2 q

∫
RN
(|∇(φ2

k )|
2
+ V (εk x)|φ2

k |
2)dx +α p

q

∫
3k

K (εk x)((φ2
k )
+)p+1dx

→ b1− b2 > 0.

In addition, by (2-5) and (4-19), we have

1
2 p

∫
3k∩Dk

K (εk x)(v+k )
p+1dx + 1

2 q

∫
3k∩Dk

Q(εk x)(v+k )
q+1dx

≤ C
(( 1

k

)(p+1)/2
+
( 1

k

)(q+1)/2)
→ 0 as k→∞.

This together with (4-3) yields

(4-22) lim
k→∞

(
1
2 p

∫
3k\Dk

K (εk x)(v+k )
p+1dx+ 1

2 q

∫
3k\Dk

Q(εk x)(v+k )
q+1dx

)
=b1.

We note that

1
2 p

∫
3k\Dk

K (εk x)(v+k )
p+1dx + 1

2 q

∫
3k\Dk

Q(εk x)(v+k )
q+1dx

=
1
2 p

∫
3k∩Dk,2

K (εk x)((φ1
k )
+)p+1dx + 1

2 q

∫
3k∩Dk,2

Q(εk x)((φ1
k )
+)q+1dx

+
1
2 p

∫
3k
∩(RN

\Dk,1)

K (εk x)((φ2
k )
+)p+1dx + 1

2 q

∫
3k
∩(RN

\Dk,1)

Q(εk x)((φ2
k )
+)q+1dx .

By this, by (4-3) and (4-22), and by passing to a subsequence if necessary, we
see there exists a constant b3 such that as k→∞,

1
2 p

∫
3k∩Dk,2

K (εk x)((φ1
k )
+)p+1dx + 1

2 q

∫
3k∩Dk,2

Q(εk x)((φ1
k )
+)q+1dx→ b3

and

1
2 p

∫
3k
∩(RN

\Dk,1)

K (εk x)((φ2
k )
+)p+1dx + 1

2 q

∫
3k
∩(RN

\Dk,1)

Q(εk x)((φ2
k )
+)q+1dx→ b1− b3.

Thus, we further obtain

(4-23) 1
2 p

∫
3k

K (εk x)((φλk )
+)p+1dx + 1

2 q

∫
3k

Q(εk x)((φλk )
+)q+1dx

→

{
b3 if λ= 1,
b1− b3 if λ= 2,
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Taking into account (2-10), (4-20), and (4-21) yields for λ= 1, 2

(4-24)

1
2 q

∣∣∣∫
RN \3k

fεk (εk x, φλk )φ
λ
k dx

∣∣∣
=

1
2 qε
−N
k

∣∣∣∫
RN \3

fk(y, φλk (y/εk))φ
λ
k (y/εk)dy

∣∣∣
≤ Cεk × ε

−N
k

∫
RN \3

(ε2
k |∇φ

λ
k (y/εk)|

2
+ V (y)|φλk (y/εk)|

2)dy

= Cεk

∫
RN \3k

(|∇φλk (x)|
2
+ V (εk x)|φλk (x)|

2)dx→ 0 as k→∞.

Therefore by (4-20), (4-21), (4-23), and (4-24), we arrive at

(4-25)
∫

RN
(|∇(φλk )|

2
+ V (εk x)|φλk |

2)dx −
∫
3k

K (εk x)((φλk )
+)p+1dx

−

∫
3k

Q(εk x)((φλk )
+)q+1dx −

∫
RN \3k

fεk (εk x, φλk )φ
λ
k dx

→
2(q + 1)

q − 1
×

{
(b2− b3) if λ= 1,
(b3− b2) if λ= 2,

For λ= 1, 2, let θλk > 0 such that θλk φ
λ
k (x/εk) ∈Mεk . We claim that

(4-26) 0< θλk ≤ 1+ o(1),

for at least one λ, where the quantity o(1)→ 0 as k→∞.
Indeed, it follows from (4-25) that if b2 < b3, then for large k enough∫

RN
(|∇(φ1

k )|
2
+ V (εk x)|φ1

k |
2)dx

<

∫
3k

K (εk x)((φ1
k )
+)p+1dx+

∫
3k

Q(εk x)((φ1
k )
+)q+1dx+

∫
RN \3k

fεk (εk x, φ1
k )φ

1
k dx .

Analogously to the proof of (4-17), we get 0 < θ1
k < 1. Then (4-26) holds for

λ= 1. If b2 > b3, then by the same reasoning, we find that (4-26) holds for λ= 2.
If b2 = b3, as in [Wang and Zeng 1997, page 650], we will show (4-26) by way

of contradiction: Without loss of generality, we assume that limk→∞ θ
1
k = θ0 > 1

up to a subsequence.
Set

Ak :=

∫
3k

K (εk x)((φ1
k )
+)p+1dx and Bk :=

∫
3k

Q(εk x)((φ1
k )
+)q+1dx .
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We now claim that up to a subsequence, limk→∞(Ak + Bk) > 0. Otherwise, it
follows from (4-25) that

0≤ lim
k→∞

∫
RN
(|∇(φ1

k )|
2
+ V (εk x)|φ1

k |
2)dx = lim

k→∞
(Ak + Bk)≤ 0,

which implies limk→∞ Ak = limk→∞ Bk = 0 by (2-5), contradicting (4-20). Thus
limk→∞(Ak + Bk) > 0. On the other hand, by the fact θ1

k φ
1
k (x/εk) ∈ Mεk and by

(2-10), we get

lim
k→∞

(∫
RN
(|∇(φ1

k )|
2
+ V (εk x)|φ1

k |
2)dx − θ p−1

k Ak − θ
q−1
k Bk

)
= 0.

This and (4-25) yield

0= lim
k→∞

(∫
RN
(|∇(φ1

k )|
2
+ V (εk x)|φ1

k |
2)dx − (Ak + Bk)

)
= lim

k→∞
(θ

p−1
k Ak − θ

q−1
k Bk − (Ak + Bk))

≥ lim
k→∞

(θ
q−1
k Ak − θ

q−1
k Bk − (Ak + Bk))

≥ lim
k→∞

((θ
q−1
k − 1)(Ak + Bk))= (θ

q−1
0 − 1) lim

k→∞
(Ak + Bk)

and θ0 ≤ 1, which contradict that θ0 > 1. Thus we prove (4-26).
Without loss of generality, suppose (4-26) holds for λ= 1. From the definition

of b1 and (4-26), we get

b1+ o(1)≤ 1
2 q(θ

1
k )

2
∫

RN
(|∇(φ1

k )|
2
+ V (εk x)|φ1

k |
2)dx +α p

q (θ
1
k )

p+1 Ak + o(1)

≤
1
2 q

∫
RN
(|∇(φ1

k )|
2
+ V (εk x)|φ1

k |
2)dx +α p

q Ak + o(1)

= b2+ o(1),

which leads to a contradiction with b2 ∈ (0, b1). We obtain a similar contradiction
in the case λ= 2. Thus, the possibility of dichotomy cannot occur. �

By Lemma 4.1 and Lemma 4.2, we conclude that {µn} is tight. That is, there
exist {ζn} ⊂ RN such that (4-7) holds.

Lemma 4.3. We have b1 = c0. In addition, up to a subsequence, εnζn→ ξ0 ∈ M.

Proof. Let C1 be the constant in (2-5). It follows from (4-2) and (4-7) that there
exists a constant ρ0 > 0 and a subsequence {ζn} ⊂ RN such that for large n

(4-27)
∫

RN \Bρ0 (ζn)

dµn ≤
1
2 q min

{( b1

4C1
1
2 p

)2/(p+1)
,

( b1

4C1
1
2 q

)2/(q+1)}
.
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First we claim

(4-28) dist(εnζn,3)→ 0 as n→∞.

If not, there is a positive number δ such that dist(εnζn,3) ≥ δ holds up to a sub-
sequence for all n. Then Bρ0(ζn) ∩3

n
= ∅ provided n is large enough, where

3n
= {ε−1

n x : x ∈ 3}. Then
∫
3n dµn is less than or equal to than the left side

of (4-27). This fact and (2-5) yield

1
2 p

∫
3n

K (εnx)(v+n )
p+1dx + 1

2 q

∫
3n

Q(εnx)(v+n )
q+1dx ≤ 1

2 b1.

However, this is inconsistent with (4-3). Thus, the assertion (4-28) is true.
By (4-28), we can extract a subsequence of {εnζn} (written the same for sim-

plicity) such that

(4-29) εnζn→ ξ0 ∈ 3̄,

where 3̄ is the closure of 3.
Set wn(x)= v+n (x + ζn). By (4-2), we know that {wn} is bounded in D1,2(RN ),

then, up to a subsequence, there exists w0 ∈ D1,2(RN ) such that

wn ⇀w0 weakly in D1,2(RN ),

wn→ w0 strongly in L p+1
loc (R

N ) and Lq+1
loc (R

N ),

wn→ w0 almost everywhere in RN .

Applying Fatou’s lemma and (4-2) yields

(4-30)

∫
RN
(|∇w0|

2
+ V (ξ0)w

2
0)dx

≤ lim inf
n→∞

∫
RN
|∇wn|

2dx + lim inf
n→∞

∫
RN

V (εnx + εnζn)w
2
ndx

≤ lim inf
n→∞

∫
RN
(|∇wn|

2
+ V (εnx + εnζn)w

2
n)dx <∞.

By (4-29), we get V (ξ0)> V1> 0, so it follows from (4-30) that w0 ∈ H 1(RN ). By
the Sobolev embedding theorem, we get w0(x) ∈ L p+1(RN ) ∩ Lq+1(RN ). Also,
given ρ > 0, we get

(4-31)

lim
n→∞

∫
Bρ(0)

K (εnx + εnζn)w
p+1
n dx = K (ξ0)

∫
Bρ(0)

w
p+1
0 dx,

lim
n→∞

∫
Bρ(0)

Q(εnx + εnζn)w
q+1
n dx = Q(ξ0)

∫
Bρ(0)

w
q+1
0 dx .

Let
6n := {ε

−1
n x − ζn : x ∈3} and �n := {ε

−1
n x − ζn : x ∈3r0}.
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We have 6n ⊂�n ⊂ {ε
−1
n x : x ∈32r0} for large n. For any ν > 0, the compactness

of {µn} implies that there exists ρ = ρ(ν) > 0 such that

(4-32)
∫
�n\Bρ(0)

(|∇wn|
2
+ V (εnx + εnζn)w

2
n)dx

≤

∫
RN \Bρ(0)

(|∇wn|
2
+ V (εnx + εnζn)w

2
n)dx ≤

2(q + 1)
q − 1

ν.

By (4-29), there is an integer N3(ν) with Bρ(0)⊂�n and dist(Bρ(0), ∂�n) > 1
for n > N3(ν); hence �n \ Bρ(0) has the uniform cone property. This, together
with (2-5) and (4-32), yields for n > N3(ν)

(4-33)

∫
6n\Bρ(0)

K (εnx + εnζn)w
p+1
n (x)dx

≤

∫
�n\Bρ(0)

K (εnx + εnζn)w
p+1
n (x)dx ≤ C1

(2(q + 1)
q − 1

ν

)(p+1)/2
,∫

6n\Bρ(0)
|Q(εnx + εnζn)|w

q+1
n (x)dx ≤ C1

(2(q + 1)
q − 1

ν

)(q+1)/2
.

From (4-31) and (4-33), we obtain

(4-34) lim
n→∞

(∫
6n

K (εnx + εnζn)w
p+1
n dx +

∫
6n

Q(εnx + εnζn)w
q+1
n dx

)
= K (ξ0)

∫
RN
w

p+1
0 dx + Q(ξ0)

∫
RN
w

q+1
0 dx,

which with (4-3) implies w0 6= 0.
Noting un ∈Mεn and using (4-30), we then have

(4-35)

K (ξ0)

∫
RN
w

p+1
0 dx + Q(ξ0)

∫
RN
w

q+1
0 dx

≥ lim inf
n→∞

∫
RN
(|∇wn|

2
+ V (εnx + εnζn)w

2
n)dx

≥

∫
RN

(
|∇w0|

2
+ V (ξ0)w

2
0
)

dx .

Now choose θ > 0 such that θw0 ∈Mξ0 , where Mξ0 is defined in (2-4). Then it
follows from (4-35) that θ ≤ 1. By using the definitions of b1 and c0, (4-30) and
(4-31), the first inequality in (4-33), and Lemma 2.6, we see that

c0 ≤ G(ξ0)

≡ inf
u∈Mξ0

(
1
2 q

∫
RN
(|∇u|2+ V (ξ0)u2)dx +α p

q K (ξ0)

∫
RN
|u|p+1dx

)
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≤
1
2 q

∫
RN
(|∇(θw0)|

2
+ V (ξ0)(θw0)

2)dx +α p
q K (ξ0)

∫
RN
(θw0)

p+1dx

≤
1
2 q

∫
RN
(|∇w0|

2
+ V (ξ0)w

2
0)dx +α p

q K (ξ0)

∫
RN
w

p+1
0 dx

≤ lim inf
n→∞

(
1
2 q

∫
RN
(|∇wn|

2
+ V (εnx + εnζn)w

2
n)dx

+α p
q

∫
6n

K (εnx + εnζn)w
p+1
n dx

)
≤ b1 ≤ c0.

Then this yields b1 = c0 and G(ξ0)= c0, which implies ξ0 ∈ M . �

Proof of Proposition 3.1. For small ε, by (4-9) there exist a positive constant C
and ξε ∈3 such that

(4-36) µuε(B1(ε
−1ξε)) > C,

where uε is the mountain-pass critical point of the modified (2-8), which is obtained
in Lemma 2.3. We note that {ξε} will be chosen as the sequence in Proposition 3.1.

First we prove (3-1). If this is not true, then there exist a constant ν0 > 0 and
limits εn→ 0 and ρn→∞ as n→∞ such that

(4-37)
∫

RN \Bρn (ε
−1
n ξεn )

dµn ≥ ν0 > 0,

where µn is the measure corresponding to uεn .
By Lemma 2.6, (4-2) and Lemma 4.3, we have up to a subsequence

(4-38) lim
n→∞

µn(R
N )= c0.

By the arguments used to prove Lemmas 4.1 and 4.2, we conclude from (4-36)
and (4-37) that {µn} is compact. However, as we discuss next, two exhaustive
cases in P. L. Lions’s concentration-compactness lemma show that {µn} cannot be
compact.

Choose a subsequence {ζn} ⊂ RN , and fix ρ > 0.

Case 1. The set Bρ(ζn)
⋂

B1(ε
−1
n ξεn ) is empty. Then RN

\ Bρ(ζn) ⊃ B1(ε
−1
n ξεn ),

and it follows from (4-36) that µn(R
N
\ Bρ(ζn))≥ µn(B1(ε

−1ξεn )) > C .

Case 2. The set Bρ(ζn)
⋂

B1(ε
−1
n ξεn ) is not empty. Then dist(ζn, ε

−1
n ξεn )≤ 1+ ρ.

Note that ρn→∞ as n→∞; thus Bρ(ζn)⊂ Bρn (ε
−1
n ξεn ) for large n. This together

with (4-37) yields µn(R
N
\ Bρ(ζn))≥ µn(R

N
\ Bρn (ε

−1
n ξεn )) ≥ ν0.

Thus, there exists a positive constant C̃ such that µn(R
N
\ Bρ(ζn)) ≥ C̃ > 0.

This obviously implies {µn} is not compact, a contradiction that proves (3-1).
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Next we prove (3-2). If (3-2) is not true, there is a sequence εn→ 0 as n→∞
and a positive constant ν0 such that

(4-39) dist(ξεn ,M)≥ ν0.

Let µn be the measure corresponding to uεn . By the argument above, {µn}

is compact. Repeating the argument that proved Lemma 4.3, up to a subsequence
there exists a sequence {ζn}⊂RN such thatµn is concentrated in some ball centered
at ζn and εnζn → ξ0 ∈ M as n→∞. The compactness of {µn} and (4-36) imply
that there is a positive number ρ0 independent of n such that |ζn − ε

−1
n ξεn | < ρ0

(otherwise, for large n, we have µn(R
N
\ Bρ(ζn)) ≥ µn(B1(ε

−1
n ζn)) ≥ C , which

contradicts the compactness of {µn}). Hence |εnζn − ξεn |< εnρ0→ 0 as n→∞,
and therefore ξεn → ξ0 ∈ M . This contradicts (4-39), proving (3-2). �

5. The concentration of the bound state uε(x)

We note that uε(x) vanishes at infinity, so maxRN uε exists.

Lemma 5.1. For small ε > 0, there exists a positive constant C independent of ε
such that maxRN uε ≥ C.

Proof. By (2-10) and uε ∈Mε, we arrive at

‖uε‖2ε =
∫
3

K (x)u p+1
ε dx +

∫
3

Q(x)uq+1
ε dx +

∫
RN \3

fε(x, uε)uεdx

≤ (max uε)p−1
∫
3

K (x)u2
εdx + (max uε)q−1

∫
3

|Q(x)|u2
εdx + o(1)‖uε‖2ε

≤ C(max uε)p−1
‖uε‖2ε +C(max uε)q−1

‖uε‖2ε + o(1)‖uε‖2ε.

Because p > 1 and q > 1, this means there is a positive number C independent
of ε such that Lemma 5.1 holds. �

Remark 5.2. Suppose uε(x) obtains its maximum at the point x = xε, that is,
maxRN uε(x) = uε(xε). Then by Remark 3.5, we get |xε − ξε| ≤ d0/2 for ε small
enough, where ξε is given in Proposition 3.1.

Lemma 5.3. Let xε be the maximum point of uε(x). For any ν > 0, there exist
ε(ν) > 0 and ρ(ν) > 0 such that

(5-1) ε−N
(

1
2 q

∫
RN \Bερ(ν)(xε)

(
ε2
|∇uε|2+ V (x)u2

ε

)
dx

+α p
q

∫
(RN \Bερ(ν)(xε))∩3

K (x)u p+1
ε dx

)
< ν

and

(5-2) dist(xε,M) < ν
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whenever ε < ε(ν), where M = {ξ : C(ξ)= c0}.

Proof. Firstly, we prove (5-1). Suppose it is not true. Then there exists a constant
ν0 > 0 and limits εn→ 0 and ρn→∞ as n→∞ such that

(5-3)
∫

RN \Bρn (ε
−1
n xεn )

dµn ≥ ν0 > 0,

where µn is the measure corresponding to uεn , which is defined in (4-1).
We claim that

(5-4) µn(B1(εn
−1xεn ))≥ C > 0,

where C is a positive constant independent of n.
Let vn = uεn (εnx). Then for large n (5-4) is equivalent to

(5-5) 1
2 q

∫
B1(ε

−1
n xεn )

(|∇vn|
2
+ V (εnx)v2

n)dx +α p
q

∫
B1(ε

−1
n xεn )

K (εnx)v p+1
n dx ≥ C.

By q < p and the nonnegativity of K (x), we may prove (5-4) and (5-5) by
showing that

(5-6)
∫

B1(ε
−1
n xεn )

(|∇vn|
2
+ v2

n)dx ≥ C.

Since vn ≥ 0, vn is a weak H 1 subsolution of 1v+ cn(x)v = 0 in the domain
ε−1

n 3, where cn(x)=K (εnx)v p−1
n (x)+Q(εnx)vq−1

n (x) and cn(x)∈ Ls(ε−1
n 3)with

s ∈ (N/2, 2N/((p−1)(N−2))). Also, ‖cn(x)‖Ls(ε−1
n 3) is uniformly bounded with

respect to n, as shown the proof of Lemma 3.4.
By [Gilbarg and Trudinger 1983, Theorem 8.17 and page 193], there is a positive

constant C depending only on the dimension N and the Ls(ε−1
n 3) bound of cn(x),

such that

(5-7) v2
n(ε
−1
n xεn )≤ C

∫
B1(ε

−1
n xεn )

v2
n(y)dy ≤ C

∫
B1(ε

−1
n xεn )

(|∇vn|
2
+ v2

n)dy.

Note that vn(ε
−1
n xεn )= uεn (xεn )=max uεn . Then by Lemma 5.1 and (5-7), we

get (5-6), which proves (5-4).
By Lemma 2.6, (4-2) and Lemma 4.3, the set {µn} satisfies (4-38) up to a sub-

sequence. Then by the argument of Lemmas 4.1 and 4.2, the set {µn} is compact.
However, by (5-3), (5-4) and the method that proved Proposition 3.1, we conclude
that {µn} cannot be compact. This contradiction proves (5-1).

On the other hand, we can prove (5-2) by arguing as in the proof of (3-2). �

Lemma 5.4. For any ν > 0, there exist R(ν)> 0 and ε0(ν)> 0 such that uε(x)≤ ν
for ε ≤ ε0(ν) and |x − xε| ≥ εR(ν).
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Proof. By (2-8), we know that wε(x)= uε(εx + xε) is a classical solution of

(5-8) −1wε + V (εx + xε)wε = χε(x)K (εx + xε)w p
ε +χε(x)Q(εx + xε)wq

ε

+ (1−χε(x)) fε(εx + xε, wε),

where χε is the characteristic function of Aε = {(x − xε)/ε : x ∈3}.
Let

cε(x)= χε(x)K (εx + xε)w p−1
ε (x)+χε(x)Q(εx + xε)wq−1

ε (x)

+ (1−χε(x))
2ε3

1+|εx+xε|θ0
.

Then wε ∈ H 1(RN ) is a nonnegative weak subsolution of 1w + cε(x)w = 0.
Choosing s ∈ (N/2, 2N/((p − 1)(N − 2))) and using the argument that proved
Lemma 3.4, we have cε(x) ∈ Ls(RN ) and ‖cε(x)‖Ls is uniformly bounded with
respect to small ε.

Choose a fixed constant d > 0. Then Bd/2(x) ⊂ RN
\ Bρ(ν)(0) holds for any

ν > 0 and x ∈ RN
\ Bρ(ν)+d(0), where ρ(ν) is the constant given in Lemma 5.3.

Let η(x) be a smooth cutoff function such that η(x)= 0 in Bρ(ν)(0) and η(x)= 1
in RN

\ Bρ(ν)+d/2(0), with 0 ≤ η(x) ≤ 1 and |∇η| ≤ 4/d . By [Gilbarg and
Trudinger 1983, Theorem 8.17 and page 193], the Sobolev embedding theorem,
(2-5) and (5-1), there is a positive constant C depending only on d, the dimension N
and the Ls bound of cε such that for small ε and x ∈ RN

\ Bρ(ν)+d ,

wε(x)≤ C
(∫

Bd/2(x)
w2∗
ε (y)dy

)1/2∗

≤ C
(∫

RN
(ηwε)

2∗(y)dy
)1/2∗

≤ C
(∫

RN
|∇(ηwε)|

2(y)dy
)1/2

≤ C
(∫

RN
η2(y)|∇wε|2(y)+ |∇η|2(y)w2

ε(y)dy
)1/2

≤ C
(∫

RN \Bρ(ν)(0)
|∇wε|

2(y)+
∫

Bρ(ν)+d/2(0)\Bρ(ν)(0)

16
d2w

2
ε(y)dy

)1/2

≤ C
(∫

RN \Bρ(ν)(0)
|∇wε|

2(y)+
∫

Bρ(ν)+d/2(0)\Bρ(ν)(0)
V (εx + xε)w2

ε(y)dy
)1/2

≤ C
(∫

RN \Bρ(ν)(0)
|∇wε|

2(y)+
∫

RN \Bρ(ν)(0)
V (εx + xε)w2

ε(y)dy
)1/2

= C
(
ε−N

∫
RN \Bερ(ν)(xε)

(ε2
|∇uε|2+ V (x)u2

ε)dx
)1/2
≤ Cν1/2.

Set R(ν)= ρ(ν)+d. Then we get wε(x)≤ ν for |x | ≥ R(ν) and small ε. Noting
uε(x)= wε((x − xε)/ε) then finishes the proof. �
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Theorem 5.5. For each sequence ε′n such that ε′n → 0 as n →∞, there exists a
subsequence {εn} ⊂ {ε

′
n} such that un(x) ≡ uεn (x) concentrates at some minimum

point x0 of G(x) in3 as εn→ 0, that is, there exists a positive constant C > 0 such
that for any δ > 0 and large n,

(5-9) 1/C ≤ max
|x−x0|≤δ

un ≤ C

and

(5-10) un(x)→ 0 as n→+∞ uniformly with respect to x for |x − x0| ≥ δ.

In particular, if M = {x ∈3 : G(x) = c0} consists of only one point x0 in 3, then
all bound states uε concentrate at the point x0 as ε→ 0.

Proof. By (5-2), for each sequence {ε′n}, there exists a subsequence {εn} such that
{xn} ≡ {xεn } converges to a minimum point x0 of G(x) in 3 as n→+∞, where
xn satisfies un(xn)=max un(x). Given δ > 0, we can choose n large enough that∣∣∣ x − xn

εn

∣∣∣= ∣∣∣ x − x0+ x0− xn

εn

∣∣∣≥ ∣∣∣ x − x0

εn

∣∣∣− ∣∣∣ x0− xn

εn

∣∣∣> δ
εn
−

δ
2εn
=

δ
2εn

> R(ν)

for any ν > 0 and |x − x0| ≥ δ, where R(ν) is the constant given in Lemma 5.4.
This, together with Lemma 5.4, yields uε(x)≤ ν and thus (5-10).

By Lemma 5.1 and (5-10), we deduce maxRN un =max|x−x0|≤δ un , and the first
inequality of (5-9) holds. We now show the second. In fact, by the procedure
leading to (5-7) and the last inequality of Lemma 2.6, we have

max
RN

uε = vε(ε−1xε)≤ C
(∫

B1(ε−1xε)
v2
ε (y)dy

)1/2
≤ C

(∫
B1(ε−1xε)

(|∇vε|
2
+ v2

ε )dy
)1/2

= C
(
ε−N

∫
Bε(xε)

(ε2
|∇uε|2+ |uε|2)dx

)1/2

≤ C
(
ε−N

∫
3

(ε2
|∇uε|2+ V (x)|uε|2)dx

)1/2
≤ C.

Thus Theorem 5.5 is proved. �

Proof of Theorem 1.5. This is an immediate corollary of Theorem 5.5. �

Appendix

Here we prove (2-7).

Lemma A.1. Let

hε(x, ξ)=min
{

K (x)(ξ+)p
+ 2Q+(x)(ξ+)q , ε3

1+|x |θ0
ξ+,

ε
1+|x |N

}
,

jε(x, ξ)=min
{
|Q(x)|(ξ+)q , ε3

1+|x |θ0
ξ+,

ε
1+|x |N

}
.
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Then

|hε(x, ξ)− hε(x, η)| ≤
pε3

1+ |x |θ0
|ξ − η| for ξ, η ∈ R,(A-1)

| jε(x, ξ)− jε(x, η)| ≤
qε3

1+ |x |θ0
|ξ − η| for ξ, η ∈ R.(A-2)

Proof. We only prove (A-1). Because |ξ+−η+| ≤ |ξ−η|, it suffices to show (A-1)
for ξ, η ≥ 0. We note that (A-1) obviously holds for ξ = η, and hε(x, ξ) is not
decreasing for ξ ≥ 0. So we can assume ξ > η ≥ 0 without loss of generality. We
now treat various cases and subcases.

Case I: η = 0. In this case,

0≤ hε(x, ξ)− hε(x, η)= hε(x, ξ)≤
ε3

1+|x |θ0
ξ <

pε3

1+|x |θ0
(ξ − η).

Case II: η > 0.

Case II.1: hε(x, ξ) = K (x)ξ p
+ 2Q+(x)ξq . Then, because ξ > η, we have

hε(x, η) = K (x)ηp
+ 2Q+(x)ηq . It follows from the definition of hε(x, ξ) and

a direct computation that hε(x, ξ)− hε(x, η) < pε3(ξ − η)/(1+ |x |θ0).

Case II.2: hε(x, ξ)= ε3ξ/(1+ |x |θ0). By ξ > η, we have

hε(x, η)= K (x)ηp
+ 2Q+(x)ηq or hε(x, η)= ε3η/(1+ |x |θ0).

Case II.2.i: hε(x, η) = K (x)ηp
+ 2Q+(x)ηq . Denote by w the unique positive

solution of ε3/(1+ |x |θ0) = K (x)w p−1
+ 2Q+(x)wq−1; at this time, K (x) 6= 0

or Q+(x) 6= 0 by the definition of hε(x, ξ). Then it follows from η ≤ w ≤ ξ that
hε(x, w)= K (x)w p

+ 2Q+(x)wq
= ε3w/(1+ |x |θ0). Thus

hε(x, ξ)− hε(x, η)= hε(x, ξ)− hε(x, w)+ hε(x, w)− hε(x, η)

=
ε3

1+|x |θ0
(ξ −w)+ K (x)(w p

− ηp)+ 2Q+(x)(wq
− ηq)

=
ε3

1+|x |θ0
(ξ −w)+ pK (x)ζ1

p−1(w− η)+ 2q Q+(x)ζ2
q−1(w− η)

(where η ≤ ζ1, ζ2 ≤ w)

≤
ε3

1+|x |θ0
(ξ −w)+ p(K (x)w p−1

+ 2Q+(x)wq−1)(w− η)

=
ε3

1+|x |θ0
(ξ −w)+

pε3

1+ |x |θ0
(w− η)≤

pε3

1+ |x |θ0
(ξ − η).

Case II.2.ii: hε(x, η)= ε3η/(1+|x |θ0). It follows from a direct computation that

hε(x, ξ)− hε(x, η)= ε3(ξ − η)/(1+ |x |θ0) < pε3(ξ − η)/(1+ |x |θ0).
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Case II.3: hε(x, ξ)= ε/(1+ |x |N ). In this case, hε(x, η) is either

K (x)ηp
+ 2Q+(x)ηq or ε3η/(1+ |x |θ0) or ε/(1+ |x |N ).

Case II.3.i: hε(x, η) = K (x)ηp
+ 2Q+(x)ηq . If ξ ≥ w, with w as in Case II.2.i,

then we have

hε(x, ξ)− hε(x, η)=
ε

1+|x |N
− (K (x)ηp

+ 2Q+(x)ηq)

≤
ε3

1+|x |θ0
ξ − (K (x)ηp

+ 2Q+(x)ηq)

=
ε3

1+|x |θ0
(ξ −w)+ K (x)(w p

− ηp)+ 2Q+(x)(wq
− ηq)

=
ε3

1+|x |θ0
(ξ −w)+ pK (x)ζ1

p−1(w− η)+ 2q Q+(x)ζ2
q−1(w− η)

(where η ≤ ζ1, ζ2 ≤ w)

≤
ε3

1+|x |θ0
(ξ −w)+ p[K (x)w p−1

+ 2Q+(x)wq−1
](w− η)

=
ε3

1+|x |θ0
(ξ −w)+

pε3

1+ |x |θ0
(w− η)≤

pε3

1+ |x |θ0
(ξ − η).

If ξ < w, then ε/(1+|x |N )≤ K (x)ξ p
+ 2Q+(x)ξq

≤ ε3/(1+|x |θ0)ξ. A direct
computation yields

hε(x, ξ)− hε(x, η)=
ε

1+|x |N
− (K (x)ηp

+ 2Q+(x)ηq)

≤ (K (x)ξ p
+ 2Q+(x)ξq)− (K (x)ηp

+ 2Q+(x)ηq)

= K (x)(ξ p
− ηp)+ 2Q+(x)(ξq

− ηq)

= pK (x)ζ1
p−1(ξ − η)+ 2q Q+(x)ζ2

q−1(ξ − η) (where η ≤ ζ1, ζ2 ≤ ξ )

≤ p(K (x)ξ p−1
+ 2Q+(x)ξq−1)(ξ − η)

≤
pε3

1+ |x |θ0
(ξ − η).

Case II.3.ii: hε(x, η)= ε3η/(1+|x |θ0). It follows from the definition of hε(x, η)
and a direct computation that

hε(x, ξ)−hε(x, η)=
ε

1+|x |N
−

ε3

1+|x |θ0
η≤

ε3

1+ |x |θ0
(ξ −η) <

pε3

1+ |x |θ0
(ξ −η).

Case II.3.iii: hε(x, η)= ε/(1+ |x |N ). We have

hε(x, ξ)− hε(x, η)= 0< pε3(ξ − η)/(1+ |x |θ0).

Combining all the cases above yields (A-1). �
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