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Let Lσ (g) be the twisted loop algebra of a simple complex Lie algebra g

with nontrivial diagram automorphism σ . Although the category Fσ of
finite-dimensional representations of Lσ (g) is not semisimple, it can be writ-
ten as a sum of indecomposable subcategories (the blocks of the category).
To describe these summands, we introduce the twisted spectral characters
for Lσ (g). These are certain equivalence classes of the spectral characters
defined by Chari and Moura for an untwisted loop algebra L(g), which
were used to provide a description of the blocks of finite-dimensional rep-
resentations of L(g). Here we adapt this decomposition to parametrize and
describe the blocks of Fσ via the twisted spectral characters.

Introduction

In this paper we study the category Fσ of finite-dimensional representations of
a twisted loop algebra Lσ (g), where g is a simple complex Lie algebra and σ
a diagram automorphism of g. While there is extensive literature on the corre-
sponding category F of finite-dimensional representations of the untwisted loop
algebras L(g)— see for example [Chari et al. 2008; Chari and Loktev 2006; Chari
and Moura 2004; Chari and Pressley 2001; Fourier and Littelmann 2007] — until
recently the treatment of Fσ has been neglected, though the simple objects of the
category of graded modules for Lσ (g)were described in [Chari and Pressley 1988].

The simple objects of Fσ were described in [Chari et al. 2008]. However, it
is not a semisimple category, as there exist objects that are indecomposable but
reducible. However we can still write any object uniquely as a direct sum of inde-
composables (all objects are finite-dimensional); thus the category Fσ has a decom-
position into indecomposable abelian subcategories. In such a decomposition, each
indecomposable object will lie in a unique indecomposable abelian subcategory,
although such a subcategory may contain many nonisomorphic indecomposables.
In this case, when complete reducibility is not at hand, it is natural to search for
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a description of the decomposition of the category. This is a familiar and useful
strategy in the BGG category O, for example, where the blocks are parametrized by
central characters of the universal enveloping algebra of g. When the category of
representations is semisimple (as is the case, for example, for the finite-dimensional
representations of g), the blocks are parametrized by the isomorphism classes of
simple objects.

Some features of the category Fσ can be understood in terms of the correspond-
ing category F of finite-dimensional representations of L(g). In particular, any
simple object of Fσ can be realized by restricting the action of L(g) on a suitable
simple object of V in F to the subalgebra Lσ (g). The isomorphism classes of sim-
ple objects of F were classified in [Chari and Pressley 2001], and this classification
was used recently in [Chari et al. 2008] to provide the corresponding classification
of simple objects in Fσ . There the relationship between the irreducibles in F and
in Fσ is understood using the diagram automorphism σ used in the construction
of Lσ (g): This automorphism induces a folding on the monoid of Drinfeld polyno-
mials of g (this is the map r constructed in Section 2.4 below), the result of which is
a monoid of polynomials that parametrizes the irreducible modules (equivalently,
the twisted Weyl modules) of Lσ (g).

The blocks of the category F have been described as well. For a simple complex
Lie algebra g, we will denote by P the weight lattice of g and by Q the root lattice
of g. Chari and Moura [2004] showed that the blocks of F are parametrized by the
spectral characters of L(g); these are finitely supported functions χ : C×→ P/Q.
The set of all such χ forms an additive monoid, denoted by 4. The main result of
this paper is to show that the methods used in [Chari et al. 2008] to parametrize the
simple objects in F can be extended to parametrize the blocks of Fσ . The diagram
automorphism σ is used to construct an equivalence relation on 4, and we show
that the blocks of Fσ are parametrized by the corresponding equivalence classes
of spectral characters.

This paper is organized as follows. In Sections 1 and 2, we review the main
results concerning the Weyl modules for the algebras L(g) and Lσ (g) given in
[Chari and Pressley 2001] and [Chari et al. 2008]. These are certain maximal finite-
dimensional highest weight (in an appropriate sense, described below) modules
for the loop algebras. They are in bijective correspondence with the irreducible
modules, whose classification plays an important role in the proof of the main
theorem. In Section 3, we first review the block decomposition of the category F

by spectral characters carried out in [Chari and Moura 2004]. Then, after defining
an equivalence relation ∼σ on the monoid4, we show that the equivalence classes
of spectral characters parametrize the blocks of Fσ . This is done in two steps: We
show that every indecomposable module must have a twisted spectral character,
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and that any two irreducible modules sharing the same twisted spectral character
must lie in the same indecomposable abelian subcategory.

1. The untwisted loop algebras and the modules W(π)

1.1. Preliminaries. Throughout the paper C and C× respectively denote the set
of complex and nonzero complex numbers, and Z and Z+ the sets of integers and
nonnegative integers. Given a Lie algebra a, we denote by U(a) the universal
enveloping algebra of a and by L(a) the loop algebra of a. Specifically, we have

L(a)= a⊗C[t, t−1
],

with commutator given by

[x ⊗ tr , y⊗ t s
] = [x, y]⊗ tr+s for x, y ∈ a, r, s ∈ Z.

We identify a with the subalgebra a⊗ 1 of L(a).
Let g be any finite-dimensional complex simple Lie algebra and h a Cartan

subalgebra of g. Let W be the corresponding Weyl group, and w0 the longest
element of W . Let R be the set of roots of g with respect to h. Let I be an index
set for a set of simple roots (and hence also for the fundamental weights). Let R+

be the set of positive roots. Let Q+ and P+ be the Z+ span of the simple roots and
fundamental weights, respectively. Let θ be the highest root in R+, and let

P = P+ ∪−P+ and Q = Q+ ∪−Q+.

Note P contains Q as a sublattice. Let π : P→ P/Q be the canonical projection,
and define a partial order ≥ on P by setting λ ≥ µ if λ−µ ∈ Q+. We will write
λ > µ if λ≥ µ and λ 6= µ.

Let gα be the root space corresponding to α ∈ R. We have g = n− ⊕ h⊕ n+

and n± =
⊕

α∈R+ g±α. Make x±α , hα for α ∈ R+ a Chevalley basis for g, and set
x±i = x±αi

and hi = hαi for i ∈ I . In particular, [x+i , x−i ] = hi and [hi , x±i ] = ±2x±i
for i ∈ I .

We collect here some properties of a representation of a Lie algebra on a finite-
dimensional complex vector space. If V is a representation of a complex Lie
algebra a and V = V0 ⊇ V1 ⊇ V2 ⊇ · · · is a filtration of submodules of V , we
will refer to a quotient module Vi/Vi+1 as an a-constituent (or just a constituent,
if the algebra is understood) of V . If each constituent of a filtration is a simple
a-module, we say that the filtration is a composition series. Although composition
series are not unique, the Jordan–Hölder theorem guarantees that V has a unique
list (up to isomorphism and reordering) of simple constituents. The number of such
simple constituents (counting multiplicities) is the length of the module V .
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1.2. Representations of a simple complex Lie algebra. If g is a simple complex
Lie algebra and V is a finite-dimensional representation of g, we can write

V =
⊕
µ∈h∗

Vµ, where Vµ = {v ∈ V : h . v = µ(h)v for all h ∈ h}.

Set wt(V ) = {µ ∈ h∗ : Vµ 6= 0}. It is well known that Vµ 6= 0 implies µ ∈ P and
wµ ∈wt(V ) for all w ∈W , and that V is isomorphic to a direct sum of irreducible
representations; that is, the category of finite-dimensional representations of g

is semisimple. The set of isomorphism classes of irreducible finite-dimensional
g-modules is in bijection with P+. For any λ ∈ P+, let V (λ) be an element of
the corresponding isomorphism class. Then V (λ) is generated by an element vλ
satisfying the relations

(1-1) n+ . vλ = 0, h . vλ = λ(h)vλ, (x−i )
λ(hi )+1 . vλ = 0.

The following facts are well known. See for example [Bourbaki 2002].

Proposition 1.3. Let V be a finite-dimensional representation of g.

(i) For all w ∈W and µ ∈ P , we have dim(Vµ)= dim(Vwµ).

(ii) Let V (λ)∗ be the representation of g dual to V (λ). Then V (λ)∗ ∼= V (−w0λ).

Proposition 1.4. Let λ,µ ∈ P+, and consider g as a g-module via the adjoint
representation.

(i) If Homg(g⊗ V (µ), V (λ)) 6= 0, then λ−µ ∈ Q.

(ii) [Chari and Moura 2004, Proposition 1.2] If λ − µ ∈ Q, then there exists a
sequence of weights µl ∈ P+ for l = 0, . . . ,m such that

(a) µ0 = µ and µm = λ, and
(b) Homg(g⊗ V (µl), V (µl+1)) 6= 0 for all 0≤ l ≤ m.

Proof. We give the proof of (i). Since g is semisimple, we have

Homg(g⊗ V (µ), V (λ)) 6= 0 implies Homg(V (λ), g⊗ V (µ)) 6= 0.

Let φ be a nonzero element of Homg(V (λ), g⊗V (µ)), and v+ a highest weight
vector in V (λ). Then φ(v+) is a weight vector in g⊗ V (µ), and we must have
φ(v+) 6= 0. Therefore λ=β+µ−η, where β ∈ R and η∈ Q+; hence λ−µ∈ Q. �

1.5. The monoid P. Let P be the monoid of I -tuples π = (π1, . . . , πn) of poly-
nomials, in an indeterminate u with constant term one, with multiplication being
defined componentwise. For i ∈ I , λ ∈ P+, and a ∈ C×, define

πλ,a =
(
(1− au)λ(hi )

)
∈ P.
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Clearly any π ∈ P can be written uniquely as a product

(1-2) π =
∏̀
k=1

πλi ,ai ,

for some λ1, . . . , λ` ∈ P+\ {0} and distinct elements a1, . . . , a` ∈ C×. We call the
scalars ai the coordinates of π, and the factorization (1-2) the standard decompo-
sition of π. Define a map P→ P+ by π 7→ λπ =

∑
i∈I deg(πi )ωi .

1.6. The modules W(π) and V (π).

Definition 1.7. An L(g)-module V is `-highest weight (loop-highest weight) if
there exists v+ ∈ V such that

V = U(L(g)) . v+, L(n+) . v+ = 0, L(h) . v+ = Cv.

For an `-highest weight L(g)-module V and λ ∈ h∗, we set

Vλ = {v ∈ V : h . v = λ(h)v for all h ∈ h} and V+λ = {v ∈ Vλ : L(n+) . v = 0}.

The g-modules W (π) we now define are the Weyl modules for g, first introduced
and studied in [Chari and Pressley 2001].

Definition 1.8. Let π ∈ P with standard decomposition π =
∏`

k=1 πλi ,ai , and Jπ
the left ideal of U(L(g)) generated by the elements

L(n+), (x−i )
λπ(hi )+1, h⊗ tr

−
∑`

i=1 ar
i λi (h)

for all h⊗ tk
∈ L(h) and i ∈ I . Then we define the left L(g)-module W (π) as

W (π)= U(L(g))
/

Jπ.

Let wπ be the image of 1 under the canonical projection U(L(g))→W (π).

Proposition 1.9 [Chari and Pressley 2001, Propositions 2.1 and 3.1].

(i) W (π) has a unique irreducible quotient, every finite-dimensional irreducible
L(g)-module occurs as such a quotient, and for π 6= π′ the irreducible quo-
tients of W (π) and W (π′) are nonisomorphic. Therefore the isomorphism
classes of simple L(g)-modules are in bijection with P.

(ii) Given π ∈ P with standard decomposition
∏`

k=1 πλi ,ai , we have an isomor-
phism W (π)∼=

⊗`
k=1 W (πλi ,ai ) of L(g)-modules.

(iii) Let V be any finite-dimensional `-highest weight L(g)-module generated by
an element v satisfying

L(n+) . v = 0 and L(h) . v = Cv.

Then V is a quotient of W (π) for some π ∈ P.
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We denote by V (π) an element of the isomorphism class of simple L(g)-modules
corresponding to π ∈ P.

2. The twisted algebras Lσ (g) and the modules W(πσ )

2.1. Here we review the construction of the twisted loop algebra Lσ (g); for further
details, see [Kac 1990]. This begins with a diagram automorphism σ of g, which is
a Lie algebra automorphism induced by a bijection σ : I→ I that preserves all edge
relations (and directions, where they occur) on the Dynkin diagram of g. One can
verify by inspection that the only types for which such a nontrivial automorphism
occurs are the types An, Dn or E6, and so we assume from here on that g is of one
of these types. In all types but D4 there is a unique nontrivial automorphism of
order 2, while for type D4 there are exactly two nontrivial automorphisms (up to
relabeling of the nodes of the Dynkin diagram): one of order two and one of order
three. We let m be the order of σ , and let G be the cyclic group with elements σ ε

for 0≤ ε ≤m−1. For i ∈ I , we denote by Gi the stabilizer of i in G. We also fix
a primitive m-th root of unity ζ . The automorphism σ induces a permutation of R
given by σ :

∑
i∈I niαi 7→

∑
i∈I niασ(i), and we have

σ(gα)= gσ(α), σ (h)= h, σ (n±)= n±,

g=

m−1⊕
ε=0

gε, where gε = {x ∈ g : σ(x)= ζ εx}.

We also denote by σ the automorphism of C× given by σ : a 7→ ζa.
Given any subalgebra a of g that is preserved by σ , set aε = gε ∩ a. It is

known that g0 is a simple Lie algebra, h0 is a Cartan subalgebra of g0, and gε is an
irreducible representation of g0 for all 0≤ ε ≤ m− 1. Also,

n± ∩ g0 = n±0 =
⊕
α∈R+0

(g0)
±α
,

where we denote by R0 the set of roots of the Lie algebra g0; the sets I0, P±0 and
so on are defined similarly. The set I0 is in bijection with the set of σ -orbits of I .

Suppose that {yi : i ∈ I } is one of the sets {hi : i ∈ I }, {x+i : i ∈ I } or {x−i : i ∈ I },
and assume that i 6= n if g is of type A2n . For 0 ≤ ε ≤ m − 1, define subsets
{yi,ε : i ∈ I0} of gε by yi,ε = |Gi |

−1∑m−1
j=0 ζ

jε yσ j (i).
If g is of type A2n , then we set

hn,0 = 2(hn + hn+1), x±n,0 =
√

2(x±n + x±n+1),

hn,1 = hn − hn+1, x±n,1 =−
√

2(x±n − x±n+1), y±n,1 =∓
1
4 [x
±

n,0, x±n,1].

Then {x±i,0, hi,0}i∈I0 is a Chevalley basis for g0, so {hi,0}i∈I0 is a basis of h0.
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The subset P+σ of P+0 is defined as1

P+σ =
{
λ ∈ P+0 such that λ(hn,0) ∈ 2Z if g is of type A2n ,
P+0 otherwise,

and we regard λ ∈ P+σ as an element of P+ by

λ(hi )=


λ(hi,0) if i ∈ I0 and g is not of type A2n ,
0 if i /∈ I0 and g is not of type A2n ,
(1− δi,n/2)λ(hi,0) if g is of type A2n .

Given λ=
∑

i∈I miωi ∈ P+ and 0≤ ε ≤ m− 1, define elements λ(ε) ∈ P+σ by

if m = 2 and g is not of type A2n , λ(0)=
∑

i∈I0
miωi ,

λ(1)=
∑

i∈I0:σ(i) 6=i mσ(i)ωi ;

if m = 2 and g is of type A2n , λ(0)=
∑

i∈I0
(1+ δi,n)miωi ,

λ(1)=
∑

i∈I0:σ(i) 6=i (1+ δσ(i),n)mσ(i)ωi ;

if m = 3, λ(0)= m1ω1+m2ω2,

λ(1)= m3ω1,

λ(2)= m4ω1.

2.2. Let σ̃ : L(g)→ L(g) be the automorphism defined by linearly extending

σ̃ (x ⊗ tk)= ζ kσ(x)⊗ tk for x ∈ g and k ∈ Z.

Then σ̃ is of order m and we let Lσ (g) be the subalgebra of fixed points of σ̃ .
Clearly,

Lσ (g)∼=
m−1⊕
ε=0

gε ⊗ tm−εC[tm, t−m
].

If a is any Lie subalgebra of g, we set Lσ (a)= L(a)∩ Lσ (g).

2.3. The monoid Pσ . Let Pσ be the monoid of I0-tuples πσ = (πi )i∈I0 of poly-
nomials in an indeterminate u with constant term one, with multiplication being
defined componentwise. Let ( · , · ) be the form on h∗0 induced by the Killing form

1When g is of type A2n , the role of λ in the representation theory of Lσ (g) is subject to an unusual
constraint. If V is some `-highest weight module generated by v+ ∈ V+λ , the element y−n,1 ⊗ t of
Lσ (g) must act nilpotently on v+. The sl2-subalgebra corresponding to this generator is

sl2 ∼=
〈
y±n,1⊗ t∓1, 1

2 hn,0⊗ 1
〉
⊆ Lσ (g).

Therefore the usual sl2 theory requires λ(hn,0/2) ∈ Z. This constraint motivates the definition of
P+σ given above.
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of g0, normalized so that (θ0, θ0) = 2. Now define elements πσi,a , πσλ,a ∈ Pσ as
follows: For i ∈ I0, a ∈ C×, λ ∈ P+0 , and g not of type A2n , set

πσi,a = ((1− a(αi ,αi )u)δi j : j ∈ I0), πσλ,a =
∏
i∈I0

(
πσi,a

)λ(hi ) .

For i ∈ I0, a ∈ C×, λ ∈ P+σ , and g of type A2n , set

πσi,a = ((1− au)δi j : j ∈ I0), πσλ,a =
∏
i∈I0

(
πσi,a

)(1− 1
2 δi,n)λ(hi ) .

Define a map P+σ → P+σ by

λπσ =

{∑
i∈I0
(degπi )ωi if g is not of type A2n,∑

i∈I0
(1+ δi,n)(degπi )ωi if g is of type A2n .

It is clear that any πσ ∈ Pσ can be written (nonuniquely) as a product

πσ =
∏̀
k=1

m−1∏
ε=0

πσλk,ε ,ζ εak
,

where a= (a1, . . . , a`) and am have distinct coordinates, that is, am
i 6= am

j for i 6= j .
We call any such expression a standard decomposition of πσ .

2.4. The map r : P → Pσ . Given π ∈ P with a standard factorization π =∏`
k=1 πλk ,ak , define a map

r : P→ Pσ , π 7→
∏̀
k=1

m−1∏
ε=0

πσλk(ε),ζ εak

(recall the definition of λk(ε) given in Section 2.1). For any π ∈ P, we have
λr(π) =

∑m−1
ε=0 λπ(ε). Note that r is well defined (since the choice of the (λk, ak)

is unique), and set r−1(πσ )= {π ∈ P : r(π)= πσ }.

Lemma 2.5. (i) Let λ ∈ P+σ and a ∈ C×. Then

r−1(πσλ,a)=


{
πλ+η,a π−σ(η),−a : η ∈ (P+− λ)∩ P−

}
if m = 2;{

πλ+η1+η2,a π−σ 2(η1),ζa π−σ(η2),ζ 2a :

η1, η2 ∈ P−, (η1+ η2) ∈ P+− λ
}

if m = 3.

(ii) Let m = 2, and let πσ =
∏k

i=1 π
σ
λi,0,ai

πσλi,1,−ai
be a standard factorization of

πσ ∈ Pσ for λi,ε ∈ P+0 . Then

r−1(πσ )=

k∏
i=1

{
π(λi,0)+ηi ,ai π(λi,1)−σ(ηi ),−ai : ηi ∈ (P+− (λi,0))∩ (P−+ σ(λi,1))

}
.
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(iii) Let m = 3, and let πσ =
∏k

i=1 π
σ
λi,0,ai

πσλi,1,ζai
πσ
λi,2,ζ 2ai

be a standard factor-
ization of πσ ∈ Pσ for λi,ε ∈ P+0 . Then

r−1(πσ )=

k∏
i=1

{
π(λi,0)+ηi+νi ,ai π(λi,1)−σ 2(ηi ),ζai π(λi,2)−σ(νi ),ζ 2ai :

ηi + νi ∈ P+− (λi,0), σ
2(ηi ) ∈ P−+ (λi,1),

σ (νi ) ∈ P−+ (λi,2)
}
,

where the product of sets written in (ii) and (iii) is the set of all products.

Proof. The statements will be proved only for m = 3. The proof for the remaining
cases when m = 2 is simpler and uniform. The proof begins with the following
identity,2 whose verification is routine (we regard λ,µ, γ ∈ P+σ as elements of P+

via the embedding I0 ⊆ I as in Section 2.1): For λ,µ, γ ∈ P+σ , and η, ν ∈ P such
that

(η+ ν) ∈ P+− λ, σ 2(η) ∈ P−+µ, σ(ν) ∈ P−+ γ,

we have

(2-1) r(πλ+η+ν,a πµ−σ 2(η),ζa πγ−σ(ν),ζ 2a)= π
σ
λ,a π

σ
µ,ζa π

σ
γ,ζ 2a .

Now we will prove the m = 3 case of the identity for r−1(πσλ,a) given in part (i).
The containment ⊇ is immediate from identity (2-1) by taking µ = γ = 0 and
η = η1 and ν = η2. For the opposite containment, let

π =
∏̀
k=1

πρk ,ak πµk ,ζak πγk ,ζ 2ak ∈ r−1(πσλ,a).

Then we must have ρk = µk = γk = 0 for all k such that a3
k 6= a3, and so without

loss of generality, π = πρ,a πµ,ζa πγ,ζ 2a . Then

r(π)= πσρ(0)+µ(2)+γ (1),a π
σ
ρ(1)+µ(0)+γ (2),ζa π

σ
ρ(2)+µ(1)+γ (0),ζ 2a .

The condition π ∈ r−1(πσλ,a) then forces ρ = λ−σ(µ)−σ 2(γ ). Therefore π is of
the form πλ+η1+η2,a πσ 2(η1),ζa π−σ(η2),ζ 2a , where η1 = −σ(µ) and η2 = −σ

2(γ ),
and the proof of part (i) is complete.

We continue with the proof of (iii). From the description of r−1(πσ ) given in
[Chari et al. 2008, Lemma 3.5], it follows that r−1 is multiplicative in that

r−1(πσ1 π
σ
2 )= r−1(πσ1 )r

−1(πσ2 ),

2The corresponding statement for the cases m = 2 is as follows: For m = 2, λ,µ ∈ P+σ , and
η ∈ (P+− λ)∩ (P−+ σ(µ)), we have r(πλ+η,a πµ−σ(η),−a)= π

σ
λ,a π

σ
µ,−a .
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where the product of the sets r−1(πσ1 )r
−1(πσ2 ) is the set of products. Therefore it

suffices to prove (iii) for k = 1, and the result will now follow from the inclusion

(2-2) r−1(πσλ,a)r
−1(πσµ,ζa)r

−1(πσγ,ζ 2a)

⊆
{
πλ+η+ν,a πµ−σ 2(η),ζa πγ−σ(ν),ζ 2a :

η+ ν ∈ (P+− λ), η ∈ (P−+ σ 2(µ)), ν ∈ (P−+ σ(γ ))
}
.

To prove this, let ηi , νi ∈ P+ for i = 0, 1, 2 be such that

π0 = πλ+η0+ν0,a π−σ 2(η0),ζa π−σ(ν0),ζ 2a ∈ r−1(πσλ,a),

π1 = πµ+η1+ν1,ζa π−σ 1(η1),ζ 2a π−σ(ν1),a ∈ r−1(πσµ,ζa),

π2 = πγ+η2+ν2,ζ 2a π−σ 2(η2),a π−σ(ν2),ζa ∈ r−1(πσγ,ζ 2a).

Then π0 π1 π2 is equal to

πλ+η0+ν0−σ(ν1)−σ 2(η2),a πµ+η1+ν1−σ 2(η0)−σ(ν2),ζa πγ+η2+ν2−σ 2(η1)−σ(ν0),ζ 2a

= πλ+η′+ν′,a πµ−σ 2(η′),ζa πγ−σ(ν′),ζ 2a,

where

η′ = η0+ σ
2(ν2)− σ(η1)− σ(ν1) and ν ′ = ν0+ σ(η1)− σ

2(η2)− σ
2(ν2),

and it is easily verified that λ+ η′+ ν ′, µ− σ 2(η′), γ − σ(ν ′) ∈ P+.
From the inclusion (2-2) we conclude that

r−1(πσλ,a π
σ
µ,ζa π

σ
γ,ζ 2a)

⊆
{
πλ+η+ν,a πµ−σ 2(η),ζa πγ−σ(ν),ζ 2a :

η+ ν ∈ (P+− λ), η ∈ (P−+ σ 2(µ)), ν ∈ (P−+ σ(γ ))
}
,

and part (iii) is established. �

Corollary 2.6. If m = 2 and π = πλ,a πµ,−a ∈ P, then

r−1(r(π))=
{
πλ+η,a πµ−σ(η),−a : η ∈ (P+− λ))∩ (P−+ σ(µ))

}
.

If m = 3 and π = πλ,a πµ,ζa πγ,ζ 2a ∈ P, then

r−1(r(π))=
{
πλ+η+ν,a πµ−σ 2(η),ζa πγ−σ(ν),ζ 2a :

(η+ ν) ∈ P+− λ, σ 2(η) ∈ P−+µ, σ(ν) ∈ P−+ γ
}
.

2.7. The modules W(πσ ) and V (πσ ).

Definition 2.8. An Lσ (g)-module V is `-highest weight if there exists v+∈V such
that

V = U(Lσ (g)) . v+, Lσ (n+) . v+ = 0, Lσ (h) . v+ = Cv.
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For an `-highest weight Lσ (g)-module V and λ ∈ h∗0, we set

Vλ = {v ∈ V : h . v = λ(h)v for all h ∈ h0} and V+λ = {v ∈ Vλ : Lσ (n+) . v = 0}.

Definition 2.9 (the Weyl modules W (πσ )). Let πσ ∈ Pσ with a standard factor-
ization πσ =

∏`
k=1

∏m−1
ε=0 π

σ
λk,ε ,ζ εak

. For g not of type A2n , let Jπσ be the left ideal
in U(Lσ (g)) generated by the elements

Lσ (n+), (x−i )
λπσ (hi )+1, (hi,ε ⊗ tmk−ε)−

∑`
j=1 λ j (hi,0)amk−ε

j ,

for all h⊗ tk
∈ Lσ (h) and i ∈ I0. For g of type A2n , let Jπσ be the ideal generated

by the elements

Lσ (n+), (x−i )
λπσ (hi )+1, (hi,ε ⊗ tmk−ε)−

∑`
j=1(1−

1
2δi,n)λ j (hi,ε)amk−ε

j

for all h⊗ tk
∈ Lσ (h) and i ∈ I0. Then we define the left Lσ (g)-module W (πσ ) as

W (πσ )= U(Lσ (g))
/

Jπσ .

Let wπσ be the image of 1 under the canonical projection U(Lσ (g))→W (πσ ).

Since Lσ (g) is a subalgebra of L(g), any L(g)-module V is an Lσ (g)-module via
restriction, that is, Lσ (g) ↪→ L(g)→ End(V ). We will denote this restriction to an
Lσ (g)-action by V |Lσ (g). If two L(g)-modules V and W are isomorphic as Lσ (g)-
modules, we will write V ∼=Lσ (g) W . The next two propositions concern the Weyl
modules and their irreducible quotients. Proposition 2.10 is the twisted analogue
of Proposition 1.9, while Proposition 2.11 describes the relationship between the
untwisted and twisted modules.

Proposition 2.10 [Chari et al. 2008, Theorem 2]. (i) For any πσ ∈Pσ , the mod-
ule W (πσ ) has a unique irreducible quotient, which we will denote by V (πσ ),
and each irreducible Lσ (g)-module occurs as such a quotient.

(ii) Let V be any finite-dimensional `-highest weight Lσ (g)-module generated by
an element v satisfying Lσ (n+) . v = 0 and Lσ (g) . v = Cv. Then V is a
quotient of W (πσ ) for some πσ ∈ Pσ .

(iii) Let πσ =
∏`

k=1
∏m−1
ε=0 π

σ
λk,ε ,ζ εak

be a standard decomposition of πσ ∈ Pσ . As
Lσ (g)-modules, we have

W (πσ )∼=
⊗̀
k=1

W
( m−1∏
ε=0

πσλk,ε ,ζ εak

)
.

Let PAsym be the subset of P consisting of π ∈ P such that, given the standard
decomposition π =

∏
πλi ,ai , we have am

i 6= am
j for i 6= j . For any subset S of P,

let SAsym = S ∩PAsym. The role played by PAsym is described in the following
proposition.
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Proposition 2.11 [Chari et al. 2008, Propositions 4.1, 4.3 and 4.5]. Let πσ ∈ Pσ

and π ∈ r−1(πσ )Asym.

(i) W (π)|Lσ (g) ∼=W (πσ ) and V (π)|Lσ (g) ∼= V (πσ ).

(ii) Denote the representations W (π) of L(g) and W (πσ ) of Lσ (g) by

L(g)
φπ // End(W (π)) and Lσ (g)

φπσ // End(W (πσ )),

respectively. Then there exist ideals Iπ ⊆ L(g) and Iπσ ⊆ Lσ (g) such that

(a) the Lie algebra homomorphism φπσ factors through Lσ (g)/Iπσ , giving a
representation

Lσ (g)/Iπσ
φπσ // End(W (πσ )).

(b) There exists a Lie algebra isomorphism λ : L(g)/Iπ ∼−→ Lσ (g)/Iπσ , giving
the following diagram of Lie algebra homomorphisms:

(2-3)

L(g)

p
����

Lσ (g)
φπσ //

pσ
����

End(W (πσ ))

L(g)/Iπ
λ // Lσ (g)/Iπσ

φπσ

77

Here p and pσ are the canonical projections.
(c) Let W (πσ )L(g) denote the action of L(g) on W (πσ ) given (as in diagram

(2-3)) by the composition

x ⊗ tr .w := φπσ ◦ λ ◦ p(x ⊗ tr ) . w

where w ∈ W (πσ ) and x ⊗ tr
∈ L(g). Then W (πσ )L(g) ∼= W (π) and

V (πσ )L(g) ∼= V (π) as L(g)-modules.

Remarks. First, it is clear from the diagram (2-3) that the action of L(g) on
W (πσ )— and hence the isomorphism W (πσ )L(g) ∼= W (π)— depends upon the
isomorphism λ : L(g)/Iπ ∼−→ Lσ (g)/Iπσ . So the expression W (πσ )L(g) by itself
is ambiguous: W (πσ ) has, up to isomorphism, as many L(g)-module structures
(and hence is isomorphic to as many L(g)-Weyl modules) as there are elements
π ∈ r−1(πσ )Asym, the isomorphisms being determined by λ. For this reason, when
needed we will write W (πσ )L(g) ∼=W (π) to specify which L(g)-module structure
we have chosen for W (πσ ). Several times we will speak of fixing an L(g)-action
on some Lσ (g)-module; by this we mean making a choice of an isomorphism
λ : Iπ→ Iπσ such that W (πσ )L(g) ∼=W (π).
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Second, if we have the isomorphism W (πσ )L(g) ∼= W (π), then we also have
W (πσ )L(g)|Lσ (g) ∼=W (πσ ). This follows from the commutativity of the diagram

L(g)

p
����

oo ? _ Lσ (g)
φπσ //

pσ
����

End(W (πσ )).

L(g)/Iπ
λ // Lσ (g)/Iπσ

φπσ

77

Finally, if W (πσ )L(g)∼=W (π), then the second remark above implies that a sub-
space U of W (πσ ) is an Lσ (g)-submodule if and only if it is an L(g)-submodule.

Lemma 2.12 [Chari and Moura 2004, Proposition 3.3]. Let V (π) be an irreducible
L(g)-constituent of W (πλ,a). Then π = πµ,a , where µ≤ λ.

Proposition 2.13. Let πσ =
∏m−1
ε=0 π

σ
λε ,ζ εa and πλ,a ∈ r−1(πσ )Asym. Then any ir-

reducible Lσ (g)-constituent of W (πσ ) is isomorphic to some V (πµ,a)|Lσ (g), where
µ≤ λ.

Proof. We fix an L(g)-action W (πσ )L(g) ∼= W (πλ,a). Let V be an irreducible
Lσ (g)-constituent of W (πσ ). Then VL(g) is isomorphic to an irreducible L(g)-
constituent of W (πλ,a). Therefore VL(g) ∼= V (πµ,a) for µ ≤ λ (by Lemma 2.12),
and so V ∼= (VL(g))|Lσ (g) ∼= V (πµ,a)|Lσ (g). �

3. Block decomposition of the category Fσ

3.1. Block decomposition of a category. Let a be any Lie algebra, and M the cate-
gory of its finite-dimensional representations. Then M is an abelian tensor category.
Any object in M can be written uniquely as a direct sum of indecomposables, and
we recall the following:

Definition 3.2. Two indecomposable objects V1, V2 ∈ M are linked, and written
V1 ∼ V2, if there do not exist subcategories M1,M2 such that M = M1 ⊕ M2,
V1 ∈ M1 and V2 ∈ M2. More generally, two objects U, V ∈ M are linked if every
indecomposable summand of U is linked to every indecomposable summand of V .
We will say that a single object V in M is linked if there exists some other object W
such that V ∼ W . The relation ∼ , when restricted to the collection of linked
objects,3 is an equivalence relation.

A block of M is an equivalence class of linked objects.

Proposition 3.3 [Etingof and Moura 2003, Proposition 1.1]. The category M has a
unique decomposition into a direct sum of indecomposable abelian subcategories,
that is, M=

⊕
α∈3 Mα.

3The relation ∼ of linkage is symmetric and transitive, but it is not reflexive. For example, if W1
and W2 are two objects in M that are not linked, then W =W1⊕W2 is not linked to itself; in fact W
is linked to nothing at all.
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In fact the indecomposable abelian subcategories of this decomposition consist
of the equivalence classes of linked objects. The goal of the rest of the paper is to
describe these blocks using data from the Lie algebra Lσ (g).

Definition 3.4. Let U, V ∈M be indecomposable. We say that U is strongly linked
to V if there exist indecomposable a-modules U1, . . . ,U`, with U1 =U , U` = V
and either Homa(Uk,Uk+1) 6= 0 or Homa(Uk+1,Uk) 6= 0 for all 1 ≤ k < `. We
extend this to all of M by saying that two modules U and V are strongly linked
if and only if every indecomposable summand of U is strongly linked to every
indecomposable summand of V .

Lemma 3.5 [Chari and Moura 2004, Lemma 2.2, Lemma 2.5]. (i) Suppose V1

and V2 are indecomposable objects in M. Then V1 ∼ V2 if and only if they
contain submodules Uk ⊆ Vk for k = 1, 2 with U1 ∼U2.

(ii) Two modules U, V ∈M are linked if and only if they are strongly linked.

Let F and Fσ be the category of finite-dimensional L(g)- and Lσ (g)-modules,
respectively. From here on we fix a Lie algebra g of type A, D or E6, although
any of the following results stated for untwisted loop algebras are true for the loop
algebra L(g) of any simple Lie algebra.

3.6. The blocks of the category F.

Definition 3.7 (the monoid 4). Let 4 be the set of all functions χ : C×→ P/Q
with finite support. Given λ ∈ P+ and a ∈ C×, let χλ,a ∈4 be defined by

χλ,a(z)= δa(z)λ,

where λ is the image of λ in P/Q and δa(z) is the characteristic function of a ∈C×.

Clearly 4 has the structure of an additive monoid under pointwise addition. For
π=

∏`
k=1 πλk ,ak ∈P, we set χπ :=

∑`
k=1 χλk ,ak . It is immediate from the definition

that the map π 7→ χπ is a monoid homomorphism (from a multiplicative monoid
to an additive monoid). The elements of 4 are the spectral characters of L(g).

Definition 3.8. We say that a module V ∈F has spectral character χ∈4 if χπi =χ

for every irreducible constituent V (πi ) of V . Let Fχ be the abelian subcategory
consisting of all modules V ∈ F with spectral character χ.

Theorem 1 [Chari and Moura 2004, Theorem 1 (main theorem)]. The blocks of
the category F are in bijective correspondence with the spectral characters χ ∈4.
In particular,

F=
⊕
χ∈4

Fχ,

and each Fχ is a block.
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3.9. The blocks of the category Fσ . Here we will define the twisted spectral char-
acters of the twisted loop algebra Lσ (g). These will be equivalence classes of
spectral characters under a certain equivalence relation ∼σ , defined below. First
we need several technical results.

The relation r(π) = πσ will be illustrated with the diagram π r
−→ πσ . We will

also write π1
r
←→ π2 if r(π1) = r(π2). If χπ1 = χπ2 , we will write π1 ∼χ π2.

This relation ∼χ is clearly an equivalence, and will be illustrated with the diagram
π1

χ
←→ π2.

Lemma 3.10. Let π,π′ ∈P, with π =
∏`

k=1 πλk ,ak . Then π′ ∼χ π if and only if π′

is of the form
π′ =

∏`
k=1 πλk+νk ,ak π̃,

where νk ∈ Q such that λk + νk ∈ P+ and π̃ ∈ P such that χπ̃ = 0.

Proof. Because χ is a monoid homomorphism, it suffices to prove the lemma in
the case `= 1, in which it states π=πλ,a . If λ∈ Q, then we take ν1= 0 and π̃= 1.
Now suppose λ 6∈ Q and χπ = χπ′ . Let us write π′ =

∏r
k=1 πµk ,bk

∏s
k=1 πγk ,ck ,

where all b j are pairwise distinct, µk 6∈ Q and γk ∈ Q. Then

χπ = χπ′ implies δa(z)λ=
r∑

k=1

δbk (z)µk .

Assume r > 1. Evaluating this expression at z= a forces b j = a for some 1≤ j ≤ r
and λ = µ j ; hence µ j − λ ∈ Q. Therefore µ j = λ+ ν for some ν ∈ Q. Next,
evaluating the equality at any z = bk with k 6= j gives us µk = 0; hence µk ∈ Q, a
contradiction. So we must have r = 1. Setting π̃ =

∏s
k=1 πγk ,ck , we have χπ̃ = 0

and πλ,a = πµ j ,b j π̃ = πλ+ν,a π̃, as desired. �

Definition 3.11. We define a relation ∼σ on 4 by saying χ1 ∼σ χ2 if there exist
πi ∈ P for i = 1, 2 such that χi = χπi and r(π1)= r(π2).

It is routine to show that χ1 ∼σ χ2 if and only if

(3-1)
m−1∑
ε=0

σ ε ◦χ1 ◦ σ
−ε
=

m−1∑
ε=0

σ ε ◦χ2 ◦ σ
−ε,

(where we regard σ as an automorphism of C× via a 7→ ζa and as an automorphism
of P/Q via ωi 7→ σ(ωi )) and therefore that ∼σ is an equivalence relation on 4.

Definition 3.12. The twisted spectral characters 4σ of Lσ (g), denoted 4σ , are the
equivalence classes of 4 with respect to the equivalence ∼σ , that is, 4σ =4/∼σ .
If πσ ∈Pσ , we define χπσ := χπ , where π ∈ r−1(πσ ). Using the relation (3-1), we
can see that the binary operation χ1 + χ2 = χ1+χ2 is well defined; hence 4σ is
an abelian monoid.
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Definition 3.13. We say that an Lσ (g)-module V has spectral character χ if, for
every irreducible Lσ (g)-constituent V (πσ ) of V , we have χπσ = χ. Let Fσ (χ) be
the abelian subcategory of all Lσ (g)-modules with spectral character χ.

The main result of this paper is the following theorem.

Theorem 2. The blocks of Fσ are in bijection with 4σ . In particular,

Fσ
=

⊕
χ∈4σ

Fσ (χ),

and each Fσ is a block.

The theorem follows from the next two propositions:

Proposition 3.14. Any two irreducible modules in Fσ (χ) are linked.

Proposition 3.15. Every indecomposable Lσ (g)-module has a twisted spectral
character.

3.16. Proof of Proposition 3.14.

Lemma 3.17. Let πλ,a ∈ P, and suppose π ∈ P such that χλ,a = χπ . Then there
exists some π̃ ∈ PAsym such that χπ̃ = χλ,a and r(π)= r(π̃).

Proof. Since πλ,a ∼χ π, by Lemma 3.10 π must be of the form

π = πλ+λ′,a

m−1∏
ε=1

πηε ,ζ εa
∏̀
i=1

m−1∏
ε=0

πνε,i ,ζ εbi ,

for λ′, ηε, νε,i ∈ Q, λ + λ′ ∈ P+, ηε, νε,i ∈ P+, and bm
i 6= bm

j 6= am for all
1≤ i 6= j ≤ `. Define

π̃ = πλ+λ′+
∑m−1
ε=1 σ

m−ε(ηε),a

∏̀
i=1

πν0,i+
∑m−1
ε=1 σ

m−ε(νε,i ),bi
.

Then π̃ ∈ PAsym, χπ̃ = χπλ,a and r(π)= r(π̃). �

Lemma 3.18. (i) Let π ∈ r−1(πσ )Asym. Then V (π)Lσ (g) ∈ Fσ (χπ).

(ii) Let V (πσ )∼= V (π)Lσ (g) and π ∈ r−1(πσ )Asym. Then V (πσ ) ∈ Fσ (χπ).

Proof. The lemma follows directly from the definitions. For the first, note that
χπσ = χπ , and V (π)Lσ (g) = V (r(π))= V (πσ ). The second is immediate from the
first. �

Proposition 3.19. For k = 1, 2, let V (πσk ) ∈ Fσ (χk) for some χk ∈4. Then

V (πσ1 )⊗ V (πσ2 ) ∈ Fσ (χ1+χ2).
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Proof. For k = 1, 2, let V (πσk ) ∈Fχk for some χk ∈4. Choose πi ∈ r−1(πσi )Asym;
therefore χi = χπi and (V (π1)⊗V (π2))Lσ (g)∼= V (πσ1 )⊗V (πσ2 ). Fix L(g)-actions

V (πσi )L(g) ∼= V (πi ) and (V (πσ1 )⊗ V (πσ2 ))L(g) ∼= V (π1)⊗ V (π2).

Let V be an irreducible Lσ (g)-constituent of V (πσ1 )⊗V (πσ2 ). Then VL(g) is some
irreducible L(g)-constituent V (π) of (V (πσ1 )⊗V (πσ2 ))L(g)∼= V (π1)⊗V (π2). We
know from the untwisted affine case that V (π) has spectral character χπ1+χπ2 (and
hence χπ = χπ1+χπ2), and V has character χπ = χπ1 +χπ2 = χπ1+χπ2 = χ1+χ2

by Lemma 3.18(ii). �

Corollary 3.20. For all χ1, χ2 ∈4, we have Fσ (χ1)⊗Fσ (χ2)⊆ Fσ (χ1+χ2).

Proposition 3.21. W (πσ ) ∈ Fσ (χπσ ).

Proof. By Corollary 3.20, it suffices to prove the claim when πσ =
∏m−1
ε=0 π

σ
λε ,ζ εa

for a ∈ C× and λε ∈ P+σ . Let πλ,a ∈ r−1(πσ )Asym, so that χπσ = χλ,a , and fix
an isomorphism W (πσ )L(g) ∼= W (πλ,a). Now let V = V (πσ1 ) be an irreducible
Lσ (g)-constituent of W (πσ ). We will show that χπσ = χπσ1 .

Now VL(g) is an irreducible L(g)-constituent of W (πσ )L(g) ∼= W (πλ,a). Since
W (πλ,a) ∈ Fχλ,a [Chari and Moura 2004, Lemma 5.1], VL(g) ∼= V (π1) for some
π1 ∈ P such that χπ1 = χλ,a . Since V (π1) is an irreducible L(g)-constituent of
W (πλ,a), it must be of the form V (πµ,a) for some µ≤λ [Chari and Pressley 2001,
Proposition 3.3]. Therefore V (πσ1 )= (V (π

σ
1 )L(g))Lσ (g) = V (π1)Lσ (g) = V (r(π1));

hence π1 ∈ r−1(πσ1 ).
Therefore χπσ1 = χπ1 = χπ = χπσ . �

The following proposition provides a strong linking between certain irreducible
Lσ (g)-modules.

Proposition 3.22. Let a ∈ C×, λε, µε ∈ P+σ , and let λ =
∑m−1

ε=0 σ
m−ε(λε) and

µ=
∑m−1

ε=0 σ
m−ε(µε), so that

πλ,a ∈ r−1
(m−1∏
ε=0

πσλε ,ζ εa

)
Asym

and πµ,a ∈ r−1
(m−1∏
ε=0

πσµε ,ζ εa

)
Asym

.

Assume there exists a nonzero homomorphism p : g⊗V (λ)→ V (µ) of g-modules.
The formula

(3-2) x ⊗ tk(v,w)= (ak xv, ak xw+ kak−1 p(x ⊗ v)),

defines an action of an Lσ (g)-module on V (λ)⊕ V (µ), where x ∈ gk , v ∈ V (λ)
and w ∈ V (µ). Denote this Lσ (g)-module by V (λ, µ, a). Then

0→ V
(m−1∏
ε=0

πσλε ,ζ εa

)
→ V (λ, µ, a)→ V

(m−1∏
ε=0

πσµε ,ζ εa

)
→ 0
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is a nonsplit short exact sequence of Lσ (g)-modules. If λ > µ, then there exists
a canonical surjective homomorphism W (

∏m−1
ε=0 π

σ
λε ,ζ εa)→ V (λ, µ, a) of Lσ (g)-

modules.

Proof. For brevity we will write

V
(m−1∏
ε=0

πσλε ,ζ εa

)
= V (r(πλ,a)) and V

(m−1∏
ε=0

πσµε ,ζ εa

)
= V (r(πµ,a)).

It is routine to check that (3-2) gives an Lσ (g)-action, and that the sequence is
exact. To prove that the sequence is nonsplit, assume that V (λ, µ, a) = W1⊕W2

is a nontrivial decomposition of V (λ, µ, a) into Lσ (g)-submodules. It is imme-
diate from its construction that the length of V (λ, µ, a) is 2, with constituents
V (r(πλ,a)) and V (r(πµ,a)). Therefore we can assume without loss of generality
that W1∼= V (r(πλ,a)). But it is clear from the description of the action of Lσ (g) on
V (λ, µ, a) that V (r(πλ,a)) is not a submodule of V (λ, µ, a). Therefore V (λ, µ, a)
must be indecomposable.

Let v+ be a highest-weight vector of V (r(πλ,a)). Then U(Lσ (g)) . (v+, 0) must
be isomorphic to V (r(πµ,a)) or V (λ, µ, a). If we assume that λ > µ, then by
weight considerations we cannot have U(Lσ (g)) .(v+, 0)∼= V (r(πµ,a)). Therefore
if λ > µ, then V (λ, µ, a) is cyclically generated by (v+, 0). Since this element is
also highest weight with Lσ (g)-weights given by r(πλ,a), it follows that V (λ, µ, a)
is a quotient of W (r(πλ,a)). �

Corollary 3.23. Let

πλ,a ∈ r−1(∏m−1
ε=0 π

σ
λε ,ζ εa

)
Asym and πµ,a ∈ r−1

(∏m−1
ε=0 π

σ
µε ,ζ εa

)
Asym

be as in the proposition, and assume that there exists a nonzero homomorphism
p : g⊗ V (λ)→ V (µ) of g-modules. Then the Lσ (g)-modules

V
(∏m−1

ε=0 π
σ
λε ,ζ εa

)
and V

(∏m−1
ε=0 π

σ
µε ,ζ εa

)
are strongly linked.

The following is [Chari and Moura 2004, Proposition 2.3]. We prove it here to
clarify the proof of the analogous statement for the twisted case.

Proposition 3.24. Any two irreducible L(g)-modules V (π1) and V (π2) belonging
to Cχ are strongly linked.

Proof. Since V (π1), V (π2) ∈ Cχ, there exist λi , µi ∈ P+, ai ∈ C for 1 ≤ i ≤ `
such that λi −µi ∈ Q, ai 6= a j and

π1 =
∏̀
i=1

πλi ,ai and π2 =
∏̀
i=1

πµi ,ai .
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Let us assume for simplicity here that `=2; the more general case extends straight-
forwardly. By Proposition 1.4(ii), there exist weight sequences {νi }

q
i=0 and {ηi }

r
i=0

with ν0 = λ1, νq = µ1, η0 = λ2 and ηq = µ2, such that

Homg(g⊗ V (νi ), V (νi+1)) 6= 0 and Homg(g⊗ V (η j ), V (η j+1)) 6= 0

for 0 ≤ i ≤ q − 1 and 0 ≤ j ≤ r − 1. Fix some i satisfying 1 ≤ i ≤ q . By
Proposition 1.4(i), either νi ≥ νi+1 or νi+1 ≥ νi . If νi ≥ νi+1, we can conclude by
[Chari and Moura 2004, Proposition 3.4] that V (πνi ,a1) and V (πνi+1,a1) are both
irreducible constituents of some quotient Mi of W (πνi ,a1).

If νi+1 ≥ νi , we use the isomorphism

Homg(g⊗ V (νi ), V (νi+1))∼= Homg(g⊗ V (νi+1)
∗, V (νi )

∗)

∼= Homg(g⊗ V (−w0(νi+1)), V (−w0(νi )))

to conclude that V (πνi ,a1) and V (πνi+1,a1) are both irreducible constituents of some
quotient Mi of W (πνi+1,a1).

We may now assume without loss that νi ≥ νi+1 for 0 ≤ i ≤ q − 1. For
such i , V (πνi ,a1)⊗V (πλ2,a2) and V (πνi+1,a1)⊗V (πλ2,a2) are simple constituents
of Mi ⊗V (πλ2,a2). This module, in turn, is a quotient of W (πνi ,a1)⊗W (πλ2,a2)

∼=

W (πνi ,a1 πλ2,a2) and is hence indecomposable. Therefore V (πνi ,a1)⊗ V (πλ2,a2)

and V (πνi+1,a1)⊗V (πλ2,a2) are strongly linked, and so V (πλ1,a1)⊗V (πλ2,a2) and
V (πµ1,a1)⊗ V (πλ2,a2) are strongly linked. To complete the proof, we show simi-
larly that V (πµ1,a1)⊗V (πλ2,a2) and V (πµ1,a1)⊗V (πµ2,a2) are strongly linked. �

Proposition 3.25. Let {λi }
`
i=1, {µi }

`
i=1 ⊆ P+ such that λi −µi ∈ Q for all i , and

suppose PAsym contains

π1 =
∏̀
i=1

πλi ,ai and π2 =
∏̀
i=1

πµi ,ai .

Then the Lσ (g)-modules V (r(π1)) and V (r(π2)) are strongly linked.

Proof. Again it suffices to prove the claim for `= 2. Since λ1−µ1 ∈ Q, by Propo-
sition 1.4(ii), there exists a sequence {νi }

q
i=0 ⊆ P+ with ν0 = λ1 and νq = µ1 such

that Homg(g⊗V (νi ), V (νi+1)) 6=0 for all 0≤ i ≤q−1. Fix some i . By Proposition
1.4(i), either νi ≥ νi+1 or νi+1 ≥ νi . In either case, V (r(πνi ,a1)) and V (r(πνi+1,a1))

are both simple constituents of an indecomposable module Mi , which is in turn a
quotient of W (r(πνi ,a1)) for νi ≥ νi+1 or W (r(πνi+1,a1)) for νi ≤ νi+1. We may
assume without loss that νi ≥ νi+1. Therefore V (r(πνi ,a1)) ⊗ V (r(πλ2,a2)) and
V (r(πνi+1,a1))⊗ V (r(πλ2,a2)) are both simple constituents of Mi ⊗ V (r(πλ2,a2)),
which is in turn a quotient of W (r(πνi ,a1))⊗W (r(πλ2,a2))

∼= W (r(πνi ,a1 πλ2,a2)),
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and hence is indecomposable. Therefore the modules

V (r(πλ1,a1))⊗ V (r(πλ2,a2))
∼= V (r(πλ1,a1 πλ2,a2)),

V (r(πµ1,a1))⊗ V (r(πλ2,a2))
∼= V (r(πµ1,a1 πλ2,a2))

are strongly linked. Similarly we can show that the modules V (r(πµ1,a1 πλ2,a2))

and V (r(πµ1,a1 πµ2,a2)) are strongly linked, completing the proof. �

Corollary 3.26. Let π ∈PAsym and χπ = 0. Then V (r(π)) is strongly linked to C.

Proof. The result follows from Proposition 3.25 and two observations. First, if
χπ = 0, then π is of the form

∏
πλi ,ai with λi ∈ Q ∩ P+. Second, V (r(πλ,a)) is

strongly linked to C for λ ∈ Q ∩ P+ and a ∈ C∗. �

Corollary 3.27. Any V (πσ1 ) and V (πσ2 ) belonging to Fσ (χ) are strongly linked.

Proof. Let πi ∈ r−1(πσi )Asym for i = 1, 2. Then we have

π1

r
~~

oo χ // π̃1

r   

π̃2

r~~

oo χ // π2

r   
πσ1 π̃σ πσ2 .

By Lemma 3.17, we can assume without loss that π̃1, π̃2 ∈PAsym. It suffices now
to show that V (πσ1 ) is strongly linked to V (π̃σ ).

Let

πσ1 =
∏̀
i=1

m−1∏
ε=0

πσλi,ε ,ζ εai
for am

i 6= am
j

be a factorization of πσ1 . Then we have π1 =
∏`

i=1 πλi ,ai for some λi ∈ P+, and
π̃1 =

∏`
i=1 πλi+λ

′

i ,ai π̃, where λ′i ∈ Q such that λi + λ
′

i ∈ P+, where χπ̃ = 0, and
where the coordinates {bi } of π̃ all satisfy bm

6= am . Furthermore

V (π̃σ )= V (r(π̃1))= V
(
r
(∏`

i=1 πλi+λ
′

i ,ai π̃
))
∼=

⊗̀
i=1

V (r(πλi+λ
′

i ,ai ))⊗ V (r(π̃)).

Since χπ̃ = 0, we can conclude from Proposition 3.25 and its corollary that the
modules ⊗̀

i=1

V (r(πλi+λ
′

i ,ai ))
∼=

⊗̀
i=1

V (r(πλi+λ
′

i ,ai ))⊗C,

⊗̀
i=1

V (r(πλi+λ
′

i ,ai ))⊗ V (r(π̃))∼= V (π̃σ )

are strongly linked, as are V (πσ1 )∼= V (r(π1)) and
⊗`

i=1 V (r(πλi+λ
′

i ,ai )). �
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3.28. Proof of Proposition 3.15. We first prove Lemma 3.30(ii), an important re-
sult concerning Ext1Lσ (g)(U, V ) for modules U, V ∈ Fσ : It says distinct spectral
characters have no nontrivial extensions. We’ll first need a lemma. In the following,
w0 is the longest element of the Weyl group of g, and for a standard decomposition
π =

∏`
i=1 πλi ,ai , we define π∗ =

∏`
i=1 π−w0λi ,ai . Then V (π)∗ ∼= V (π∗); this is

[Chari and Moura 2004], Proposition 3.2). Also it is easy to see that λπ =
∑`

i=1 λi .
For any irreducible Lσ (g)-module V (πσ ), let (πσ )∗ be the element of Pσ such that
V ((πσ )∗)∼= V (πσ )∗.

Lemma 3.29. (i) V (r(π))∗ ∼= V (r(π∗)).
(ii) λ(πσ )∗ = λπσ .

Proof. For any π ∈ P, we have V (π)∗ ∼= V (π∗). Therefore

V (r(π))∗ ∼= (V (π)|Lσ (g))∗ ∼= (V (π)∗)|Lσ (g) ∼= V (π∗)|Lσ (g) ∼= V (r(π∗)).

For the proof of (ii), let π ∈ r−1(πσ ). Then λπσ =
∑ε

i=0 λπ(ε). For g of type A, D
or E6, we have either −w0 = Id or −w0 = σ ; see for example [Bourbaki 2002].
In either case, for any λ ∈ P+ we have

∑m−1
ε=0 −w0λ(ε) =

∑m−1
ε=0 λ(ε). Also for

any λ,µ ∈ P+, we have (λ+µ)(ε) = λ(ε)+µ(ε) for 0 ≤ ε ≤ m − 1. Therefore
λ(πσ )∗ = λr(π∗) =

∑m−1
ε=0 λπ∗(ε)=

∑m−1
ε=0 λπ(ε)= λπσ , where for the first equality

we have used part (i) of the lemma. �

The proof of Lemma 3.30 is adapted from a proof in [Chari and Moura 2004].

Lemma 3.30. (i) Let U ∈ Fσ (χ), and let πσ ∈ Pσ such that χ 6= χπσ . Then
Ext1Lσ (g)(U, V (πσ ))= 0.

(ii) Assume V j ∈Fσ (χ j ) for j = 1, 2 and that χ1 6=χ2. Then Ext1Lσ (g)(V1, V2)= 0.

Proof. Since Ext1 preserves direct sums, to prove the lemma it suffices to consider
the case when U is indecomposable. Consider an extension

0→ V (πσ1 )−→ V −→U → 0.

We prove by induction on the length of U that this extension must be trivial. So
first suppose that U = V (πσ2 ) for some πσ2 ∈Pσ and that χπσ2 6=χπσ1 . Then we have

0→ V (πσ1 )
ι
−→ V

π
−→ V (πσ2 )−→ 0.

For the remainder of the proof, let λi = λπσi ∈ P+0 . We must have either

(1) λ2 < λ1, or

(2) λ1− λ2 /∈ (Q+0 −{0}).

If we are in case (1), then dualizing the exact sequence above takes us to

0→ V (πσ2 )
∗
−→ V ∗ −→ V (πσ1 )

∗
→ 0,
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which, by Lemma 3.29, takes us to case (2). Thus we can assume without loss that
we are in case (2). The exact sequence always splits as a sequence of g0-modules,
so we have

V ∼=g0 V (πσ1 )g0 ⊕ V (πσ2 )g0 .

Therefore Vλ2
∼= V (πσ1 )λ2 ⊕ V (πσ2 )λ2 . Since we are in case (2), we know that

λ2 /∈wt (V (πσ1 )), and therefore Vλ2
∼=V (πσ2 )λ2 . Hence Lσ (n+)Vλ2=0. On the other

hand, since Vλ2 maps onto V (πσ2 )λ2 , there must be some nonzero vector v ∈ Vλ2

with Lσ (h)-eigenvalue πσ2 . Therefore the submodule U(Lσ (g)) . v of V must be
a quotient of W (πσ2 ), and hence U(Lσ (g)) . v ∈ Fσ (χπσ2 ). If U(Lσ (g)) . v = V ,
then V has spectral character χπσ2 , but V (πσ1 ) is a submodule of V and χπσ2 6= χπσ1 .
Therefore U(Lσ (g)) . v must be a proper nontrivial submodule of V . But then
l(V )= 2 implies that either

U(Lσ (g)) . v ∼= V (πσ1 ) or U(Lσ (g)) . v ∼= V (πσ2 ),

and U(Lσ (g)) . v ∼= V (πσ2 ) since χπσ2 6= χπσ1 . Also ι(V (πσ1 ))∩U(Lσ (g)) . v = 0;
hence V ∼= V (πσ1 )⊕ V (πσ2 ), and the induction begins.

Now assume that U is indecomposable of length ≥ 1 and U ∈ Fσ (χ). Let
U1 be a proper nontrivial submodule of U and consider the short exact sequence
0→ U1 → U → U2 → 0, where U2 = U/U1. Since U belongs to Fσ (χ), so
does Ui . Then the induction hypothesis gives us Ext1Lσ (g)(Ui , V r(πσ1 )) = 0, and
the result follows by using the exact sequence

0→Ext1Lσ (g)(U2, V (πσ1 ))−→Ext1Lσ (g)(U, V (πσ1 ))−→Ext1Lσ (g)(U1, V (πσ1 ))→ 0.

Part (ii) is now immediate by using a similar induction on the length of V2. �

We now finish the proof of Proposition 3.15. Let V be an indecomposable
Lσ (g)-module. By an induction on the length of V , we will show that there exists
a χ ∈ 4 such that V ∈ Fσ (χ). If V is irreducible, the result is immediate. Now
assume V is reducible, and let V (πσ ) be an irreducible submodule of V ; let U =
V/V (πσ ). Then we have an extension 0→ V (πσ ) −→ V −→ U → 0. Now let
U =

⊕r
j=1 U j , where U j is indecomposable. Clearly l(U j ) < l(V ). Therefore the

induction hypothesis ensures that U j ∈ Fσ (χ j ) for some χ j ∈ 4 with 1 ≤ j ≤ r .
Now we would like to argue that χ j = χπσ for all j , for if so, then U j ∈ Fσ (χπσ )

for all j and hence U ∈ Fσ (χπσ ).
Suppose instead there is some j0 such that χ j0 6= χπσ . Then Lemma 3.30 gives

Ext1Lσ (g)(U, V (πσ ))∼=
r⊕

j=1

Ext1Lσ (g)(U j , V (πσ ))∼=
⊕
j 6= j0

Ext1Lσ (g)(U j , V (πσ )).
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That is, the sequence 0→ V (πσ )→ V →U→ 0 is equivalent to one of the form

0→ V (πσ )−→U j0 ⊕ V ′ −→U j0
⊕

j 6= j0 U j → 0,

where 0 → V (πσ ) → V ′ →
⊕

j 6= j0 U j → 0 is in
⊕

j 6= j0 Ext1Lσ (g)(U j , V (πσ )).
This contradicts the indecomposability of V . Hence χ j = χπσ for all 1 ≤ j ≤ r
and V ∈ Fσ (χπσ ).
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