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FLORENCE GOULI-ANDREOU AND EVAGGELIA MOUTAFI

We study the class of pseudosymmetric contact metric 3-manifolds satis-
fying Q& = p&, where p is a smooth function constant along the charac-
teristic flow. We classify the complete pseudosymmetric contact metric 3-
manifolds of constant type satisfying Q& = p&, where p is a smooth function,
and we also classify the complete («, u, v)-contact metric pseudosymmetric
3-manifolds of constant type.

1. Introduction

A Riemannian manifold (M"™, g) is said to be semisymmetric if its curvature ten-
sor R satisfies the condition R(X,Y) - R = 0 for all vector fields X,Y on M,
where the dot means that R(X, Y) acts as a derivation on R [Szabd 1982; 1985].
Semisymmetric Riemannian manifolds were first studied by E. Cartan. Obviously,
locally symmetric spaces (those with V R =0) are semisymmetric, but the converse
is not true, as was proved by H. Takagi [1972].

According to R. Deszcz [1992], a Riemannian manifold (M™, g) is pseudo-
symmetric if its curvature tensor R satisfies R(X,Y)-R=L((X AY)-R), where
L is a smooth function and the endomorphism field X A Y is defined by

(1-1) (XAY)Z=g(Y, 2)X —g(Z, X)Y

for all vectors fields X, Y, Z on M, and X A Y similarly acts as a derivation on R.

The condition R(X,Y)- R = L((X AY) - R) arose in the study of totally
umbilical submanifolds of semisymmetric manifolds, as well as in the study of
geodesic mappings of semisymmetric manifolds [Deszcz 1992]. If L is constant,
M is called a pseudosymmetric manifold of constant type. Obviously, pseudosym-
metric spaces generalize the semisymmetric ones where L = 0. In dimension 3,
the pseudosymmetry condition of constant type is equivalent to the condition that
the eigenvalues p1, pa, p3 of the Ricci tensor satisfy p; = p» (up to numeration)
and p3 = constant [Deprez et al. 1989; Kowalski and Sekizawa 1996b].
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Three-dimensional pseudosymmetric spaces of constant type have been studied
by O. Kowalski and M. Sekizawa [1996b; 1996a; 1997; 1998]. N. Hashimoto and
M. Sekizawa [2000] classified 3-dimensional conformally flat pseudosymmetric
spaces of constant type, while G. Calvaruso [2006] gave the complete classifica-
tion of conformally flat pseudosymmetric spaces of constant type for dimensions
greater than two. J. T. Cho and J. Inoguchi [2005] studied pseudosymmetric contact
homogeneous 3-manifolds. Finally, M. Belkhelfa, R. Deszcz and L. Verstraelen
[Belkhelfa et al. 2005] studied pseudosymmetric Sasakian space forms in arbitrary
dimension.

This article studies 3-dimensional pseudosymmetric contact metric manifolds,
and is organized as follows. In Section 2, we give some preliminaries on pseudo-
symmetric manifolds and contact manifolds as well. In Section 3, we give the
necessary conditions for a 3-dimensional contact metric manifold to be pseudo-
symmetric. In the remaining sections, we use the results of Section 3 to study
3-dimensional contact metric manifolds that satisfy one of the following:

e M is pseudosymmetric with Q& = p&, where p is a smooth function on M
constant along the characteristic flow.

o M is pseudosymmetric of constant type with Q&=p¢, where p a smooth func-
tion on M.

o M is pseudosymmetric of constant type and its curvature satisfies the (x, x, v)-
condition.

2. Preliminaries

Let (M™, g) for m > 3 be a connected Riemannian smooth manifold. We denote
by V the Levi-Civita connection of M™ and by R the corresponding Riemannian
curvature tensor with R(X, Y)Z =[Vy, Vy1Z — Vix | Z.

A Riemannian manifold (M™, g) for m > 3 was called pseudosymmetric by
R. Deszcz [1992] if at every point of M the curvature tensor satisfies

(R(X,Y) - R)(X1, X2, X3) = LI((X AY) - R)(X1, X2, X3))
or equivalently

(2-1) R(X,Y)(R(X1, X2)X3) — R(R(X, Y) X1, X2) X3
— R(X1, R(X, Y)X2) X3 — R(X1, X2)(R(X, Y)X3)
= L((X AY)(R(X1, X2)X3) — R(X AY) X1, X2) X3
— R(X1, (X AY)X2)X3— R(X1, X2)(X AY)X3))
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for all vectors fields X, Y, X, X», X3 on M, where X A Y is given by (1-1) and
L is a smooth function. For details and examples of pseudosymmetric manifolds,
see [Belkhelfa et al. 2002; Deszcz 1992].

A contact manifold is a smooth manifold M?"*! endowed with a global 1-form #
such that # A (dn)" # 0 everywhere. Then there is an underlying contact metric
structure (7, &£, ¢, g), where g is a Riemannian metric (the associated metric), ¢ is a
global tensor of type (1, 1), and ¢ is a unique global vector field (the characteristic
or Reeb vector field). These structure tensors satisfy

(2-2) ¢’ =—1+n®, n(X)=g(X, ), n&) =1,
dn(X,Y)=g(X,¢Y), g@X,¢Y)=2g(X,Y)—nX)nY).

The associated metrics can be constructed by the polarization of d# on the contact
subbundle defined by # = 0. Denoting by L the Lie differentiation, we define the
tensors

(2-3) h=3L:p, t=Leg, I=R(-, &
These tensors satisfy the formulas

$pE=hé=1£=0, no¢=noh=0, dn(, X) =0,
Trh =Trh¢ =0, Vyé = —¢pX —phX, hé = —h,
(2-4) hX =AX 1implies h¢X =—1¢pX,
Veh=¢ — ¢l —ph®, Pl —1 =2 +1%),
Vep =0, Trl = g(Q¢&, &) =2n — Trh>.

Now 7 = 0 (or equivalently 2 = 0) if and only if ¢ is Killing, and then M is
called K-contact. If the structure is normal, it is Sasakian. A K-contact structure
is Sasakian only in dimension 3, and this fails in higher dimensions. For details
about contact manifolds, see [Blair 2002].

Let (M, ¢, ¢, 5, g) be a 3-dimensional contact metric manifold. Let U be the
open subset of points p € M such that 4 # 0 in a neighborhood of p, and let Uy be
the open subset of points p € M such that # =0 in a neighborhood of p. Because &
is a smooth function on M, the set U U Uy is an open and dense subset of M ; thus a
property that is satisfied in UpU U is also satisfied in M. For any point p € U UUj,
there exists a local orthonormal basis {e, ¢e, £} of smooth eigenvectors of £ in a
neighborhood of p (a ¢-basis). On U, we put he = le, where 4 is a nonvanishing
smooth function that is supposed positive. From the third line of (2-4), we have
hgpe = —Age.
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Lemma 2.1 [Gouli-Andreou and Xenos 1998a]. On U we have

Vee = age, V.e = bge, Vgee = —cpe + (A —1)¢,
Vepe = —ae, Vepe =—be+ (1+1)E, Ve =ce,
Ve =0, V& ==+ )e, Vgel = (1= Ae,

where a is a smooth function and

b= %((qﬁe )+ A), with A=S(E, e),
(2-5)
= %((e J)+B), with B=S(, pe).

From Lemma 2.1 and the formula [X, Y] = VxY — Vy X we can prove that
le, pe] = Vepe — Vyoe = —be + cpe + 2¢,
(2-6) e, 1= Vel — Ve = —(a+ 4+ Dge,
[pe, &1 = Vgl — Vepe = (a — A+ D)e,
and from (1-1) we estimate
(enge)e=—ge, (endle=—C,  (pe N =de,
(enge)pe=e, (end)d=e, (pend)pe=—C,

while (X AY)Z =0 whenever X #Y £#Z # X and X, 7, Z € {e, e, &}.
By direct computations we calculate the nonvanishing independent components
of the Riemannian (1, 3) curvature tensor field R to be

2-7)

R, e) =—1e— Ze, R(e, pe)e = —Cpe — B,
R(&, pe)l = —Ze — Doe, R, e)pe=—Ke+ ZE,
(2-8) R(e, pe)é = Be — Age, R(&, pe)pe = He + DE,
R(,e)e=Kpe+ ¢, R(e, pe)pe = Ce + AL,
R, pe)e = —Hpe + Z¢E,

where
C=-b*—c+22—142a+(e-c)+ (e - b),
H=b(ZA—a—-1)+( c)+(¢e-a),

2.9) K=cA+a+1)+(-b)—(e-a),

I =-2a)—1>+1,
D=2al—2*+1,
Z=¢0.
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Setting X =e, Y = ¢e and Z = ¢ in the Jacobi identity [[ X, Y], Z]+[[Y, Z], X]+
[[Z, X], Y] =0 and using (2-6), we get
.10 bla+i+1)— (&)= (pe- 1) — (pe-a) =0,

cla—A+1)+(E-b)+(e-1)—(e-a)=0,

or equivalently A = H and B =K.
The components of the Ricci operator Q with respect to a ¢-basis are

Qe = (3r — 1+ 2> —2al)e + Zpe + AE,
(2-11) Qpe = Ze+ (3r — 1+ 2> +2a))pe + BE,
Q& = Ae+ Bope +2(1 — 22)¢,
where
(2-12) r=TrQ=2(1-22=b*—c*+2a+(e-c)+ (¢e-b)).
The relations (2-9) and (2-12) yield
(2-13) C=-b>—c+1*—1+2a+(e-c)+(pe-b) =21 -2+ 1r,
and the relation on the last line of (2-4) gives Trl = 2(1 — A2).
Definition 2.2 [Gouli-Andreou et al. 2008]. Let M3 be a 3-dimensional contact
metric manifold and h = Ah™ — Ah~ the spectral decomposition of 4 on U. If

Vi-xh™ X =[¢, BT X]

for all vector fields X on M? and all points of an open subset W of U, and if 4 =0
on the points of M?> that do not belong to W, then the manifold is said to be a
semi-K-contact manifold.

From Lemma 2.1 and the relations (2-6), the condition above leads to [&, e¢] =0
when X =e and to Vg.¢e =0 when X = ¢e. Hence on a semi-K-contact manifold,
we have a + 4 + 1 = ¢ = 0. If we apply the deformation

e— pe, ¢pe—e, ¢E— ¢ A—> -1, b—c, c—b,

the contact metric structure remains the same. Hence a 3-dimensional contact
metric manifold is semi-K-contactifa — A+ 1=5b=0.

Definition 2.3. In [Koufogiorgos et al. 2008], a («x, u, v)-contact metric manifold

is a contact metric manifold (M?>"+!, 5, &, ¢, g) on which the curvature tensor sat-

isfies for every X, Y € X (M) the condition

(2-14) R(X,Y)=x((Y)X —n(X)Y)+ u(n(Y)hX —n(X)hY)
FV()hX = n(X)$hY),
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where x, u, v are smooth functions on M. If v = 0, we have a generalized (x, u)-
contact metric manifold [Koufogiorgos and Tsichlias 2000], and if also x, u are
constants, then M is a contact metric (x, u)-space [Blair et al. 1995; Boeckx 2000].

In [Koufogiorgos et al. 2008], it was proved that for a (x, u, v)-contact metric
manifold M?"*! of dimension greater than 3, the functions x and u are constants
and v is the zero function; in [Koufogiorgos and Tsichlias 2000], this was proved
for generalized (i, u)-contact metric manifolds M>"*+! of dimension greater than 3.

Remark 2.4. If M3 = U, the case treated in [Gouli-Andreou and Xenos 1998b],
then Lemma 2.1 is expressed in a similar form with 4 = 0, e is a unit vector field
belonging to the contact distribution, and the functions A, B, D, H, I, K and Z
satisfy A=B=Z=H=K=0, I=D=1and C=r/2-2.

Proposition 2.5. In a 3-dimensional contact metric manifold, we have
(2-15) Qp=¢Q ifandonlyif &E-1=2bA—(pe-1)=2ci—(e-1)=ail=0.
Proof. The relations (2-11) by (2-2), (2-5), (2-9) and (2-13) yield
(Qp—pQ)e =2Ze+4alpe+ BE,
(Qp — ¢ Q)pe =4ate —2Z¢e — AL,
(Q¢ — Q)< = Be — Adpe,

from which the proposition follows. U

3. Pseudosymmetric contact metric 3-manifolds

Let (M, n,g,¢,&) be a contact metric 3-manifold. In case M = U, that is,
(&, n, @, g) is a Sasakian structure, then M is a pseudosymmetric space of constant
type [Cho and Inoguchi 2005]. Next, assume that U is not empty, and let {e, e, &}
be a ¢-basis as in Lemma 2.1.

Lemma 3.1. A contact metric 3-manifold (M, n, g, $, ) is pseudosymmetric if
and only if

[ B 2)+(—2ai—2+1)A = LA,
AE- )+ Qai—2*+1)B = LB,
(E-2)(Er+212=2)+AB = L(E-2),
©-b A2 | )P+ Qar— 22 +1)(~2ai~312+3 - Lr)
= L(—2aA—3A*+3—3r),
B —|(& D)+ (—2ai—2+1)2ai—322+3—1r)
= L(2aA—32*+3—1r),
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where L is the function in the pseudosymmetry definition (2-1).
Proof. Setting X1 =e, X, = ¢e and X3 =¢ in (2-1), we obtain
(R(X,Y)-R)(e, pe, &) = L((X AY) - R)(e, pe, &)).
First we set X = e and Y = ¢e. Then by virtue of (2-7) and (2-8), we obtain
(B(&- )+ (=2aA—22+1)A)e+ (A& - )+ (al— 2> +1)B)pe = L(Ae+ Be),

from which the first two equations of (3-1) follow at once.
Similarly, setting X = ¢pe, Y = ¢ we obtain

(A* =& - D+ (2az =22 +1)(=2a4 =312 +2 = 3r))e
+((f%)(%r+2’12_2)+’43)¢e:L((—Zafl—3/12+2—%r)e—{—(f-,{)gﬁe),

from which we get the next two equations of (3-1).
Finally, setting X = e and Y = ¢, we have

(B> = (& )P+ (—2a4 — 22+ 1)(2ai — 34> +2 — 1)) ge
+ ((€- D) (Er+24* =2)+ AB)e = L((2aZ — 3% +2 — Ir)pe + (¢ - Ve),

from which we obtain the last equation of (3-1). Using the equations (2-9) and
(2-13), the system (3-1) takes the convenient form

ZB+IA =LA,
ZA+DB = LB,
(3-2) ZC+AB=LZ,
A’—72+D(I—-C)=L(I-0),
B>~7*4+1(D—C)=L(D-C). O

Remark 3.2. If L =0, the manifold is semisymmetric and the system (3-2) is in
accordance with [Calvaruso and Perrone 2002, equations (3.1)—(3.5)].

Remark 3.3. If the manifold M3 is Sasakian and we work in a similar way, then
(3-2) is reduced to the equation (C — 1)(L — 1) = 0. Cho and Inoguchi [2005]
proved that M is a pseudosymmetric space of constant type. Hence, a Sasakian
3-manifold satisfying the condition R(X,Y) - R=L(X AY)-R) with L #1isa
space of constant scalar curvature r = 6, where L is some constant function on M?>.

Proposition 3.4. Let M3 be a 3-dimensional contact metric manifold satisfying
Q¢ = Q. Then M3 is a pseudosymmetric space of constant type.

Proof. Cho and Inoguchi [2005] have proved that contact metric 3-manifolds sat-
isfying Q¢ = ¢ Q are pseudosymmetric. We know from [Blair et al. 1990] that in
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these manifolds the Ricci operator has the form QX =a X+ f#(X)¢ or equivalently
the Ricci tensor is given by the equation

S=ag+pn®n,

where a = %(r —Trl) and f = %(3 Trl — r), and the functions of the ¢-sectional
curvature and Tr/ are constants. By [Koufogiorgos 1995], the ¢-sectional curvature
is given by r/2 — Trl. Hence in contact metric 3-manifolds with Q¢ = ¢ Q, the
function r =Tr Q is also constant; obviously the functions a and £ in the equations
above are constants as well. The manifold is quasi-Einstein and hence pseudo-
symmetric, and because S is constant it is pseudosymmetric of constant type, that
is, L is constant. O

Remark 3.5. In dimension 3, the pseudosymmetry condition is equivalent to the
Ricci-pseudosymmetry condition R(X, Y)-S=L((XAY)-S), so (3-2) is also valid
for the Ricci-pseudosymmetric contact metric 3-manifolds [Arslan et al. 1997].

4. Pseudosymmetric contact metric 3-manifolds with Q& = p& and p
constant in the direction of &

Theorem 4.1. Let M3 be a 3-dimensional pseudosymmetric contact metric mani-
fold such that Q& = p&, where p is a smooth function on M> constant along the
characteristic direction . Then there are at most six open subsets of M for which
their union is an open and dense subset inside of the closure of M> and each of
them as an open submanifold of M? is either

(a) a Sasakian manifold,
(b) flat,

(¢) locally isometric to one of the Lie groups SU(2) or SL(2, R) equipped with a
left invariant metric,

(d) pseudosymmetric of constant type L and of constant scalar curvature r equal
t02(1 — 2% +2a),

(e) semi-K contact with L = —3a* — 4a, or

(f) semi-K contact with L = a?.

Proof. We consider these next open subsets of M:

Up={peM:1=0 inaneighborhood of p},
U={peM:17#0 inaneighborhood of p},

where Uy U U is open and dense subset of M.
If M = Uy, then M is a pseudosymmetric space of constant type [Cho and
Inoguchi 2005]. Next, assume that U is not empty, and let {e, ¢e, £} be a ¢-basis.
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The assumption Q& = p¢ and (2-11) imply

(4-1) de- ) =2bA,
(4-2) e-l=2ch,
(4-3) p=2(1-2%,

where the smooth function p satisfies
(4-4) ¢-p=0.
From (2-10), (4-1) and (4-2), we have

(4-5) c=—(pe-a)+bla—1+1),
(4-6) E-b=(e-a)—c(A+a+1).

Under the conditions (4-1) and (4-2), the system (3-2) becomes

(C—L)Z =0,
(4-7) ~Z’+(D-L)YI—-C)=0,
~7Z*’+(U-L)(D-C)=0,

where Z, C, I, D are given by (2-9) and (2-13) and L is the smooth function of
the pseudosymmetry condition.
From equations (4-3) and (4-4) we can deduce everywhere in U that

(4-8) ¢-4=0.

Differentiating the equations (4-1) and (4-2) with respect to ¢ and ¢e respectively
and subtracting, we get

le, peld =2b(e- 1) +2A(e-b) —2c(pe - 1) —2A(¢pe - ¢),
or because of (2-6), (4-1), (4-2) and (4-8), we obtain
(4-9) e-b=¢ge-c.

Differentiating Equations (4-1) and (4-8) with respect to ¢ and ¢e respectively and
subtracting, we obtain [, ¢pe]d = 2A(¢ - b) or because of (2-6), (4-2) and (4-6)

(4-10) E-b=c(A—a—1),
4-11) e-a=2l.
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Differentiating (4-2) and (4-8) with respect to ¢ and e respectively and subtracting
we obtain [£, e]A =2A(¢ - ¢) or because of (2-6), (4-1) and (4-5)

(4-12) E-c=b(A4+a+1),
(4-13) ¢pe-a=—2bA.

Differentiating (4-11) and (4-13) with respect to ¢e and e respectively and sub-
tracting, we get

[pe, ela =2b(e-A) +2A(e-b) +2c(pe - 1)+ 2A(pe - ¢)
or because of (2-6), (4-1), (4-2), (4-9), (4-11) and (4-13)
(4-14) E-a=-2A(e-b) —2bcA
Under the condition (4-8) everywhere in U the system (4-7) becomes

{(I—C)(D—L) =0,
(D—C)(I—L)=0.

or equivalently

{(—Za/l — 202424 b*+c*—2a—(e-c)— (e -b))(2al—A>+1—-L)=0,
al—22242+b*+c*—2a—(e-c)— (pe-b))(—2al — 2> +1—-L)=0.
To study this system we consider the open subsets
V={pelU:2al—22424+b*+c*—2a—(e-c)—(pe-b)=0
in a neighborhood of p},

V/:{peU:2ai—2/12+2+b2+cz—2a_(e‘c)_(¢e'b)7'&0
in a neighborhood of p},

where V U V' is open and dense in the closure of U. We also have the equation
(—2aA =222 424 b*+c*—2a—(e-c) — (pe-b))(2al— 1> +1—L) =0.
Hence we consider the open subsets

Vi={peV:-2a0—2)2+2+b*+c*—2a—(e-c)— (pe-b) =0

in a neighborhood of p},
Vo={pe V:—2a/1—2/12+2+b2+62—20—(e'c)_(¢e'b)7é0

in a neighborhood of p},
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where the set V| U V; is open and dense in the closure of V. For V’, in which
—2al— 22+ 1—L =0, we consider the open subsets

Vi={peV' :=2al—222+24+b*+c*—2a—(e-c)— (pe-b) =0

in a neighborhood of p},
Vi={peV':=2a4—222+24+b"+c*—2a—(e-c) — (pe-b) #0

in a neighborhood of p},

where V3 U V4 is open and dense in the closure of V’. We describe the previous
sets more precisely as

Vi={peVCU: —2aA—222+2+b*+c*>—2a—(e-c)— (pe-b) =0,
200 =212 +24b*+c2—2a—(e-c)— (pe-b) =0
in a neighborhood of p},
Vao={peVCU:2al—2224+24+b>+c*—2a—(e-c)— (¢e-b) =0,
2a)—2*4+1-L=0
in a neighborhood of p},
Vs={peV' CU: =2aA—=2)24+2+b*>+c*—2a—(e-c)— (¢e-b) =0,
—2al—1*+1-L=0
in a neighborhood of p},
Va={peV CU:-2a2—1*+1-L=0,
2a)—2*>+1—L=0 in a neighborhood of p},

and the set | J V; is open and dense in the closure of U.
In V;, we have

—2a) =22 +24+b*+c* —2a—(e-c) — (pe-b) =0,

2a) =202 424 b*+c* —2a—(e-c) — (¢e-b) =0.
Subtracting these two equations we find that ¢ = 0 in V| C U. Hence we
conclude that the structure has the property Q¢ = ¢ Q (Proposition 2.5), that L is
constant (Proposition 3.4) and the classification results from [Blair et al. 1990] and

[Blair and Chen 1992] hold.
In V,, we have

2040 =222 +2+b*+c*—2a—(e-c)— (pe-b) =0,
—2a) =22 4+24b*+c*—2a—(e-¢)— (pe-b) #0,
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(hence a # 0) or equivalently

(4-15) 20\ =212 424+ b*+c*—2a—(e-c) — (¢pe-b) =0,
(4-16) 2a)—2*+1—L=0.

Differentiating (4-15) with respect to ¢ and using (4-8), (4-10), (4-12) and (4-14),
we obtain

(4-17) Ee-c+&-pe-b=—4bcA* +8bcl —4)%(e-b)+4(e-b).

Differentiating (4-10) and (4-12) with respect to ¢e and e respectively, we use
4-1), (4-2), (4-9), (4-11), (4-13), and adding we obtain

(4-18) pe-&-b+e-&-c=2A(e-b)+8bcA.
Subtract (4-17) and (4-18) and using (2-6), (4-9) and (4-14), we obtain

4-19) e-b=¢e-c=—bc,
(4-20) ¢-a=0.
Differentiating (4-20) and (4-13) with respect to ¢e and ¢ respectively and sub-

tracting, we obtain [¢e, {la = 2A(E - b), or because of (2-6), (4-10), (4-11) and
since 4 # 0 in U, we have

(4-21) cla—2+1)=0.

Differentiating (4-20) and (4-11) with respect to e and ¢ respectively and subtract-
ing, we obtain [£, e]la = 2A(¢ - ¢), or because of (2-6), (4-12), (4-13) and since
A #0in U, we have

(4-22) b(a+1+1)=0.

Differentiating (4-16) with respect to &, ¢e and e and using (4-1), (4-2), (4-8),
(4-11), (4-13) and (4-20) we obtain respectively

(4-23) ¢-L=0,
(4-24) pe- L =4dab) —8bi%,
(4-25) e-L=4acl.

To study the system (4-21) and (4-22), we consider the open subsets

G ={p € V5 : b =0 in a neighborhood of p},
G' = {p € V2: b #0 in a neighborhood of p},
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where G UG’ is open and dense in the closure of V,. Having also c(A—a—1) =0
we consider the open subsets

G| ={p € G :c =0 in a neighborhood of p},

G, ={p € G : ¢ # 0 in a neighborhood of p},
where G| U G, is open and dense in the closure of G. The set G’ (where b # 0 or
equivalently 4 +a + 1 = 0) is decomposed similarly as

G3; = {p € G’ : ¢ = 0 in a neighborhood of p},

G4 = {p € G': ¢ # 0 in a neighborhood of p},
where G3 U G4 is open and dense in the closure of G'. The sets G, G, G5 and
G4 are described more specifically as

G ={p € G C V,:b=c=0in aneighborhood of p},

Gy,={peGCV,:b=41—a—1=0in aneighborhood of p},

Gy={peG CVy:c=l+a+1=0in aneighborhood of p},

Gys={peG CVy:A+a+1=1—a—1=0in aneighborhood of p},
The set | G; is open and dense subset of V,. We have V, C U, where 4 # 0; hence
Gy =0.

In G, we have b =0 and ¢ = 0. From (4-1), (4-2), (4-8), (4-11), (4-13), (4-14),
(4-23), (4-24) and (4-25), we find that A, a and L are constant in G| with 4, a #0;
hence from (2-12) the scalar curvature r = 2(1 — A> + 2a) is also constant.

In G, we have b =0 and A —a — 1 = 0. Hence we have a semi-K contact
structure. Then (4-16) anda = A — 1 give L = (A — 1)> =a® #0.

In G3, we have c =0 and A +a + 1 = 0. Similarly, we have a semi-K contact
structure with L = —342 =21+ 1 = —3a? —4a, with a #0.

In V3,
(4-26) —2a) =222 4240 +c*—2a—(e-c)— (¢pe-b) =0,
(4-27) —2al—1*+1-L=0.

We similarly obtain the system of (4-21) and (4-22) with a # 0, while for the
function L, we have (4-23) as well as ¢pe - L = —4abl and e - L = —4ac) — 8cA>.
We consider the open subsets

G| ={p € V3:b=c =0 in a neighborhood of p},
G,={peVs;:b=1—a—1=0in aneighborhood of p},
Gy={peVs:c=7A+a+1=0in aneighborhood of p},
Gy={peVs:A+a+1=21—a—1=0inaneighborhood of p}.
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The set |J G/ is open and dense subset of V3. We have V3 C U, where 1 # 0;
hence G is empty.

In G/l, we have b = 0 and ¢ = 0. As in case of G, the functions 4, a, L and r
are constants.

In G’2, we have b =0 and A —a — 1 = 0. Hence we have a semi-K contact
structure with L = —34% +21 4+ 1 = —3a® —4a, with a # 0.

In G/3, we have c=0and 1 +a + 1 = 0. We have a semi-K contact structure
with L = (A4 1)2 =a? #0.

In V4 we have —2aA — A?>+1—L =0 and 2al — 2> 4+ 1 — L = 0. Subtracting
these two equations we obtain @ = 0 in V4 C U, and hence as in case of V| we
have the structure Q¢ = ¢ Q.

Finally, the sets Up, V; and V4, G| and G, G3 and G}, G, and GY satisfy the
structures a, b and c, d, e and f respectively of Theorem 4.1. O

5. Pseudosymmetric contact metric 3-manifolds
of constant type with Q& = pé

Theorem 5.1. Let M3 be a 3-dimensional pseudosymmetric contact metric man-
ifold of constant type such that Q& = p&, where p is a smooth function on M?.
Then p is constant. If M3 is also complete then it is either a Sasakian manifold
(meaning Trl =2) or locally isometric to one of the following Lie groups equipped
with a left invariant metric: SU(2); SO(3); SL(2, R); E(2), the rigid motions of
Euclidean 2-space; E(1, 1), the rigid motions of Minkowski 2-space; or O(1,2),
the Lorentz group of linear maps preserving the quadratic form t> — x> — y2.

Proof. We consider open subsets
Up={p € M : 2 =0 in a neighborhood of p},
U ={p e M:1+#0 in a neighborhood of p},

where Uy U U is open and dense subset of M.

If M = Uy, then it is a pseudosymmetric space of constant type; see [Cho and
Inoguchi 2005]. Next, assume that U is not empty, and let {e, ¢e, £} be a ¢-basis.
The assumption Q& = p¢ and (2-11) imply

(5-1) pe- A =2bl,
(5-2) e h=2cl,
(5-3) p=2(1-2%,

where p is a smooth function on M. From (2-10), (5-1) and (5-2) we have

(5-4) E-c=—(¢pe-a)+bla—A1+1),
(5-5) E-b=(e-a)—c(A+a+1).
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Under the conditions (5-1) and (5-2) the system (3-2) becomes
(C—L)Z=0,
(5-6) ~Z’+(D-L)YI—-C)=0,
~Z’+(I-L)(D-C)=0,

where Z, C, I and D are given by (2-9) and (2-13) and L is the constant of the
pseudosymmetry condition.

We work in the open subset U and suppose that there is a point p in U where
Z =¢ -1 #0. The function Z is smooth, so because of its continuity there is an
open neighborhood U; of p such that Uy C U and Z = ¢ - 1 # 0 everywhere in Uj.
From the first equation of (5-6), we get C = L in U, or equivalently

(5-7) (e-c)+(pe-b)y=L+b*+c*—2>+1-2a.

Differentiating (5-7) with respect to &, we get
Eoe-cHE-pe-b=2b( -b)+2c(E-c) =24 - 1) —2(¢ - a),

which because of (5-4) and (5-5) becomes

(5-8) E-e-c+E-pe-b=2b(e-a)—2c(pe-a)—24(E- 1) —2(E -a) — 4bci.

Next, we differentiate (5-4) and (5-5) with respect to e and ¢e, respectively. Adding
the results, we have

e-é-ct+pe-&-b=—e,pela—(a+ 1+ 1)(pe-c)+(a—A+1)(e-b)
—c(pe-a)+b(e-a)—4bcl.
Subtracting this from (5-8), we get
[, elc+ (&, pelb =b(e-a) —c(pe-a) —2(¢-a) —24(S - 2) + e, pela
+ @+ 2+ D(pe-c)—(a— 2+ 1)(e-b),
or because of (2-6),
(@a+i+D(pe-c)+(A—a—1)(e-b)

=b(e-a)—c(pe-a)—2(¢-a) —2M(- 1) —b(e-a)
+c(pe-a)+2(¢-a)+(A+a+ D(ge-c)+ (A —a—1)(e-b).

Equivalently, A(¢ - A) = 0, and because we work in U; C U, we have ¢ - 4 =0,
which is a contradiction. Hence, we can deduce everywhere in U that

(5-9) &-A=0.
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Working as previously, we obtain the equations

(5-10) e-b=d¢e-c,
(5-11) E-b=c(A—a-—-1),
(5-12) e-a=2A,

(5-13) {-e=b(A+a+1),
(5-14) ¢e-a=—-2b1.

Under the condition (5-9) everywhere in U the system (5-6) becomes
[(1 —-O)(D-L)=0,
(D-C)I -L)=0,
or equivalently
{(—2611 — 2242402 +c*—2a—(e-c)— (pe-b))(2al— A2 +1—-L)=0,
Qal =222 42+b>4+c*—2a—(e-c) — (pe-b))(—2ai— 2> +1—L) =0.
To study this system, we consider (as previously) the open subsets
Vi={peU: —2a)—2)24+2+b*+c*—2a—(e-c) — (pe-b) =0,
2a) =202 +2+4b*+c*—2a—(e-¢)— (pe-b) =0
in a neighborhood of p},
Vo={pelU:2al—=2)24+2+b*>+c*—2a—(e-c)— (¢e-b) =0,

2a)—2*+1-L=0 in a neighborhood of p},
Vi={peU: —2a)—=2)24+2+b*>+c*—2a—(e-c)— (¢pe-b)=0,
—2aA—2*+1-L=0 in a neighborhood of p},

Vo={peU: —2a)—2*+1—-L=0, 2ai—2>+1—-L=0,
in a neighborhood of p}.
The set |J V; is open and dense in the closure of U. We shall prove that the

functions A and a are constants at V; fori =1, 2, 3, 4.
In V;, we have

—2a)\ =222 +24+b*+c*—2a—(e-c) — (pe-b) =0,

200 =222 42+ b>+c*>—2a—(e-c)— (¢pe-b) = 0.
Subtracting these two equations we can deduce that a = 0 in V| C U. Hence
from (5-12) and (5-14), we have ¢ = b = 0, and from (5-1) and (5-2), we have

¢e - A =e- 1 =0, which together with (5-9) give 1 = constant in V;. Moreover, if
we put a = b = ¢ = 0 in one of the equations of the set V;, we finally get 1> = 1.
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In Vz,
(5-15) 200 =212 424+ b*+c?—2a—(e-c) — (pe-b) =0,
(5-16) 2a)—2*+1—L=0.

Differentiating (5-16) with respect to &, ¢e and e and using (5-9), (5-12) and (5-14),
we obtain respectively

(5-17) E-a=0,
b(a—21)=0, ac=0.

Differentiating (5-12) and (5-17) with respect to ¢ and e respectively and subtract-
ing, we obtain [£, ela = 2A(¢ - ¢) or because of (2-6), (5-13) and (5-14)

(5-18) b(A+a+1)=0.

Similarly, differentiating (5-14) with respect to ¢ and (5-17) with respect to ¢e and
subtracting, we have [£, pela = —24(& - b) or because of (2-6), (5-11) and (5-12)

(5-19) c(h—a—1)=0.

We study the system of (5-18) and (5-19). As in the previous section, we consider
open subsets

G1={p € V2 : b =c =0 in a neighborhood of p},

G, ={p e Vo:b=/A1—a—1=0in aneighborhood of p},
Gy={peVo:c=1+4+a+1=0in aneighborhood of p},
Gi={peVa:A+a+1=1—a—1=0inaneighborhood of p},

The set | G; is open and dense subset of V,. We have V, C U where 4 # 0; hence
G4 is empty.

In G, we have b =0 and ¢ = 0. From (5-1) and (5-2) we can conclude ¢e -4 =
e - A = 0, which together with (5-9) implies 4 is constant in G;. Similarly from
(5-12), (5-14) and (5-17), a is constant.

In G,, we have b =0 and 41 —a — 1 = 0. The second of these together with
(5-16) gives J2—214+1—L =0. If we assume e - 1 # 0, we differentiate this
equation twice with respect to e, and we obtain e - A = 0, which contradicts our
assumption. Hence, e - 4 = 0 (and ¢ = 0) and (5-1) gives ¢e - A =0, or finally 4 is
constant in G, and a = A — 1 is also constant.

In G3, we have c =0 and A+a+1=0. The first equation gives e- 1 =0 by (5-2),
while the second together with (5-16) gives —312 —21+1— L = 0. Differentiating
this equation with respect to ¢e, we get (34 + 1)(¢e - 1) = 0. Suppose there is a
point p € G3 at which ¢e - A # 0. Then, there is a neighborhood F of p in which
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¢e - 1 # 0. In that neighborhood we must have 4 = —1/3 by the last equation;
hence ¢e - 1 =0, a contradiction. Thus ¢e - 1 = 0 everywhere in G3, which gives
b=0. In G3, wenotethat £ - 1 = ¢pe- 1L =¢ -1 =0, so 4 is constant in G3.
Obviously a is also constant because @ = —4 — 1. Moreover, if we putb =c =0
and a = —4 — 1 in (5-15), we get 12 = 1.

We have proved that A is constant at every G; for i = 1, 2,3, while the set
G1UG,UGj3 is an open and dense subset of V,; hence 4 is constant in V; and the
equations b(a —24) = 0 and ac = 0 are satisfied because b = ¢ = 0.

In V3,

(5-20) —2a) =222 42+4b*+c*—2a—(e-c)— (¢pe-b) =0,
(5-21) —2ai—1*+1—-L=0.

Working as we did for the set V,, we get again the first equation of (5-17), and
ab=0 and c(a+24)=0
and the system of (5-18) and (5-19). We similarly consider the open subsets

G| ={p € V3:b=c =0 in a neighborhood of p},
Gy,={peV3:b=A1—a—1=0 in aneighborhood of p},

Gy ={pe€Vs:c=21+a+1=0inaneighborhood of p},
Gy,={peVs:A+a+1=2—a—1=0in aneighborhood of p},

The set | J G/ is open and dense subset of V3. We have V3 C U where 4 # 0;
hence G/, is empty.

In G’l, we have b = 0 and ¢ = 0. From (5-1) and (5-2), we can conclude
¢e - A =e- L =0, which together with (5-9) implies 4 is constant in G|. From
(5-12), (5-14) and (5-17) we obtain that a constant in G/.

In G/, we have b = 0 and A —a — 1 = 0. The first equation gives ¢e - 1 =0
from (5-1), while the second together with (5-21) gives —34> +21+1—L = 0.
Differentiating this equation with respect to ¢, we get (—31+1)(e-1) =0. Suppose
that there is a point p € G at which e- A # 0. Then, there is a neighborhood F’ of
p in which e- 4 # 0. In that neighborhood we must have from the last equation that
A=1/3 and e- A =0, a contradiction. Hence e - A = 0 everywhere in G’,, which
gives ¢ = 0. In G}, we note that £ - L =¢e- A =e-1 =0, so 1 is constant in G.
Obviously a is also constant because a = 4 — 1. Moreover, if we put b=c =0 and
a=7—1in (5-20) we get 1> =1.

In G, we have ¢ =0 and 4 +a + 1 = 0. The second equation together with
(5-21) gives A24+21+1—L =0. Assuming ¢e- A # 0, we differentiate this equation
twice with respect to ¢e and obtain ¢e - A = 0, a contradiction. Thus, ¢ge -1 =0
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everywhere in G, which gives b = 0. From (5-2), we get e - A = 0. We note that
{-A=¢e-A=e-1=0,s0 A is constant in G} and obviously soisa = -4 — 1.

We have proved that 4 is constant in every G; for i = 1,2,3 while the set
G| UG/, UG/, is open and dense in the closure of V3; hence 4 is constant at V3 and
the equations ab = 0 and c(a + 24) = 0 are satisfied because b = ¢ = 0.

In V4, we have 2al — 2>+ 1—L =0and —2al — A%> + 1 — L = 0. Subtracting
these two equations, we can deduce that ¢ = 0 in V4 C U. Hence from (5-12) and
(5-14), we have ¢ = b = 0, and from (5-1) and (5-2), we have e - A =e -1 =0,
which together with (5-9) implies 4 is constant in V4. Moreover, if we puta =0
in one of the equations of the set V4, we finally obtain 12 =1—L > 0.

We have proved that 4 is constant in every V; fori = 1,2, 3,4. The set V; U
Vo U V3 UV, is open and dense inside of the closure of U; hence 4 is constant at U
and because of (5-3) the function p is constant at U. Finally if the manifold M 3is
complete, we may use the main theorem of [Koufogiorgos 1995] to complete the
proof. U

6. Pseudosymmetric («, i, v)-contact metric
3-manifolds of constant type

Theorem 6.1. A 3-dimensional (k, u,v)-contact metric pseudosymmetric man-
ifold of constant type is either a Sasakian manifold or a (x, u)-contact metric
manifold. In the second case, if M? is also complete, then it is locally isometric
to one of the following Lie groups equipped with a left invariant metric: SU(2);
SO(@3); SL(2, R); E(2), the rigid motions of Euclidean 2-space; E(1, 1), the rigid
motions of Minkowski 2-space; or O (1, 2), the Lorentz group consisting of linear
transformations preserving the quadratic form t> — x> — y?).

Proof. We work as in the previous section. If M = Uy, then (&, 7, ¢, g) is a Sasakian
structure that is a pseudosymmetric space of constant type with x =1, x4 € R and
h = 0. Next, assume that U is not empty, and let {e, ¢e, {} be a ¢-basis. From
(2-14) we can calculate these components of the Riemannian curvature tensor:

R, e)¢ = —(k+Au)e — Avge, R(e, pe)¢ =0,
R(E, pe)l = —Ave — (k — Au)de.
By virtue of (2-8), we can conclude that
(6-1) A=B=0, Z=4, D=x—4iu, [I=x+1ipu,

and hence the system (3-2) gives again the system (5-6). First we get Z=¢-A=0o0r
equivalently v =0 and then that 1, a are constants. Finally from (2-9) and (6-1) we
have ¥ = 1 — A% and u = —2a, and from the main theorem of [Koufogiorgos 1995]
and [Boeckx 2000, Theorem 3], we can complete the proof. O
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