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SCOTT AND SWARUP’S REGULAR NEIGHBORHOOD
AS A TREE OF CYLINDERS

VINCENT GUIRARDEL AND GILBERT LEVITT

Let G be a finitely presented group. Scott and Swarup have constructed a
canonical splitting of G that encloses all almost invariant sets over virtually
polycyclic subgroups of a given length. We give an alternative construction
of this regular neighborhood by showing that it is the tree of cylinders of a
JSJ splitting.

1. Introduction

Scott and Swarup [2003] have constructed a canonical graph of groups decomposi-
tion (or splitting) of a finitely presented group G; this splitting encloses all almost
invariant sets over virtually polycyclic subgroups of a given length n (the VPCn

groups), and in particular over virtually cyclic subgroups for n = 1.
Almost invariant sets generalize splittings: Whereas a splitting is analogous to

an embedded codimension-one submanifold of a manifold M , an almost invariant
set is analogous to an immersed codimension-one submanifold.

Two splittings are compatible if they have a common refinement, in that both
can be obtained from the refinement by collapsing some edges. For example,
two splittings induced by disjoint embedded codimension-one submanifolds are
compatible.

Enclosing is a generalization of this notion to almost invariant sets: Take, in
the analogy above, two codimension-one submanifolds F1 and F2 of M with F1

immersed and F2 embedded. Then F1 is enclosed in a connected component of
M \ F2 if one can isotope F1 into this component.

Scott and Swarup’s construction is called the regular neighborhood of all almost
invariant sets over VPCn subgroups. This is analogous to the topological regular
neighborhood of a finite union of (nondisjoint) immersed codimension-one sub-
manifolds: It defines a splitting that encloses the initial submanifolds.

One main virtue of their splitting is that it is canonical: It is invariant under
automorphisms of G. Because of this, it is often quite different from usual JSJ
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splittings, which are unique only up to deformation. There the canonical object is
the JSJ deformation space [Forester 2003; Guirardel and Levitt 2009].

The main reason for this rigidity is that the regular neighborhood is defined in
terms of enclosing. Enclosing, like compatibility of splittings, is more rigid than
domination, which is the basis for usual JSJ theory. For instance, any two splittings
in Culler–Vogtmann’s outer space dominate each other, but they are compatible if
and only if they lie in a common simplex.

We have shown a general construction producing a canonical splitting Tc from a
canonical deformation space: the tree of cylinders [Guirardel and Levitt 2008]. It
also enjoys strong compatibility properties. In this paper, we show that the splitting
constructed by Scott and Swarup is a subdivision of the tree of cylinders of the usual
JSJ deformation space.

More precisely, let TJ be the Bass–Serre tree of a JSJ splitting of G over VPCn

groups, as constructed for instance in [Dunwoody and Sageev 1999]. To construct
the tree of cylinders, say that two edges are in the same cylinder if their stabilizers
are commensurable. Cylinders are subtrees, and the tree Tc dual to the covering of
TJ by cylinders is the tree of cylinders of TJ ; see [Guirardel and Levitt 2008] or
Section 2b below.

Theorem 4.1. Let G be a finitely presented group, and let n ≥ 1. Assume that
G does not split over a VPCn−1 subgroup, and that G is not VPCn+1. Let TJ be
a JSJ tree of G over VPCn subgroups, and let Tc be its tree of cylinders for the
commensurability relation.

Then the Bass–Serre tree of Scott and Swarup’s regular neighborhood of all
almost invariant subsets over VPCn subgroups is equivariantly isomorphic to a
subdivision of Tc.

This gives a new proof that this regular neighborhood is a tree. Deriving the
regular neighborhood from a JSJ splitting, instead of building it from an abstract
betweenness relation, seems to greatly simplify the construction, by completely
avoiding the notion of good or good-enough position for almost invariant subsets.

There are two ingredients in our approach, to be found in Sections 3 and 4.
(Section 2 recalls basic material about trees of cylinders, almost invariant sets,
cross-connected components, and regular neighborhoods.)

The first ingredient is a general fact about almost invariant sets that are based
on a given tree T . Consider any simplicial tree T with an action of G. Any edge
e separates T into two half-trees, and this defines almost invariant sets Ze and Z∗e
(see Section 3a). The collection B(T ) of almost invariant subsets based on T is
then defined by taking Boolean combinations of such sets Ze.

Following Scott and Swarup, one defines cross-connected components of B(T )
by using crossing of almost invariant sets. The set of cross-connected components
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is then endowed with a betweenness relation that allows one to construct a bipartite
graph RN(B(T )) associated to B(T ). This is the regular neighborhood of B(T );
see Definition 2.2.

Theorem 3.3. Let G be a finitely generated group, and T a tree with a minimal
action of G. Assume that no two groups commensurable to edge stabilizers are
contained in each other with infinite index.

Then the regular neighborhood RN(B(T )) is equivariantly isomorphic to a
subdivision of Tc, the tree of cylinders of T for the commensurability relation;
in particular, RN(B(T )) is a tree.

The hypothesis about edge stabilizers holds in particular if all edge stabilizers
of T are VPCn for a fixed n.

This theorem remains true if one enlarges B(T ) to B(T )∪QH(T ) by including
almost invariant sets enclosed by quadratically hanging vertices of T . Geometri-
cally, such a vertex is associated to a fiber bundle over a 2-dimensional orbifold O.
Any simple closed curve on O gives a way to blow up T by creating new edges
and therefore new almost invariant sets. These sets are in QH(T ), as well as those
associated to immersed curves on O. Under the same hypotheses as Theorem 3.3,
we show in Theorem 3.11 that the regular neighborhood RN(B(T )∪QH(T )) also
is a subdivision of Tc.

The second ingredient, specific to the VPCn case, is due to (but not explic-
itly stated by) Scott and Swarup [2003]. We believe it is worth emphasizing this
statement, as it gives a very useful description of almost invariant sets over VPCn

subgroups in terms of a JSJ splitting TJ . In plain words, it says that any almost
invariant set over a VPCn subgroup is either dual to a curve in a QH subgroup, or
is a Boolean combination of almost invariant sets dual to half-trees of TJ .

Theorem 4.2 [Dunwoody and Swenson 2000; Scott and Swarup 2003]. Let G and
TJ be as in Theorem 4.1.

For any almost invariant subset X over a VPCn subgroup, the equivalence class
[X ] belongs to B(TJ )∪QH(TJ ).

Theorem 4.2 is essentially another take on the proof of Scott and Swarup’s
[2003, Theorem 8.2], and makes a crucial use of algebraic torus theorems of
[Dunwoody and Swenson 2000; Dunwoody and Roller 1993]. We give a proof
in Section 4.

Theorem 4.1 is a direct consequence of Theorems 4.2 and 3.11.

2. Preliminaries

Let G be a fixed finitely generated group, which, in Section 4, is finitely presented.
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2a. Trees. If 0 is a graph, we denote by V (0) its set of vertices and by E(0) its
set of (closed) nonoriented edges.

A tree always means a simplicial tree T on which G acts without inversions.
Given a family E of subgroups of G, an E-tree is a tree whose edge stabilizers
belong to E. We denote by Gv or Ge the stabilizer of a vertex v or an edge e.

Given a subtree A, we denote by prA the projection onto A, mapping x to the
point of A closest to x . If A and B are disjoint, or intersect in at most one point,
then prA(B) is a single point, and we define the bridge between A and B as the
segment joining prA(B) to prB(A).

A tree T is nontrivial if there is no global fixed point, and minimal if there is no
proper G-invariant subtree.

An element or a subgroup of G is elliptic in T if it has a global fixed point.
An element that is not elliptic is hyperbolic. It has an axis on which it acts as a
translation. If T is minimal, then it is the union of all translation axes of elements
of G. In particular, if Y ⊂ T is a subtree, then any connected component of T \Y
is unbounded.

A subgroup A consisting only of elliptic elements fixes a point if it is finitely
generated, a point or an end in general. If a finitely generated subgroup A is not
elliptic, there is a unique minimal A-invariant subtree.

A tree T dominates a tree T ′ if there is an equivariant map f : T → T ′. Equiv-
alently, any subgroup that is elliptic in T is also elliptic in T ′. Having the same
elliptic subgroups is an equivalence relation on the set of trees, and the equivalence
classes are called deformation spaces; see [Forester 2002; Guirardel and Levitt
2007] for details.

2b. Trees of cylinders. Two subgroups A and B of G are commensurable if A∩B
has finite index in both A and B.

Definition 2.1. We fix a conjugacy-invariant family E of subgroups of G such that

• any subgroup A commensurable with some B ∈ E lies in E, and

• if A, B ∈ E are such that A ⊂ B, then [B : A]<∞.

An E-tree is a tree whose edge stabilizers belong to E.

For instance, E may consist of all subgroups of G that are virtually Zn for some
fixed n, or all subgroups that are virtually polycyclic of Hirsch length exactly n.

In [Guirardel and Levitt 2008], we associated a tree of cylinders Tc to any E-
tree T , as follows. Two (nonoriented) edges of T are equivalent if their stabilizers
are commensurable. A cylinder of T is an equivalence class Y . We identify Y with
the union of its edges, which is a subtree of T .

Two distinct cylinders meet in at most one point. One can then define the tree
of cylinders of T as the tree Tc dual to the covering of T by its cylinders, as in
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[Guirardel 2004, Definition 4.8]. Formally, Tc is the bipartite tree with vertex set
V (Tc)= V0(Tc)t V1(Tc) defined as follows:

(1) V0(Tc) is the set of vertices x of T belonging to (at least) two distinct cylinders;

(2) V1(Tc) is the set of cylinders Y of T ;

(3) there is an edge ε = (x, Y ) between x ∈ V0(Tc) and Y ∈ V1(Tc) if and only
if x (viewed as a vertex of T ) belongs to Y (viewed as a subtree of T ).

Alternatively, one can define the boundary ∂Y of a cylinder Y as the set of vertices
of Y belonging to another cylinder, and obtain Tc from T by replacing each cylinder
by the cone on its boundary.

All edges of a cylinder Y have commensurable stabilizers, and we denote by
C ⊂ E the corresponding commensurability class. We sometimes view V1(Tc) as
a set of commensurability classes.

2c. Almost invariant subsets. Given a subgroup H ⊂ G, consider the action of
H on G by left multiplication. A subset X ⊂ G is H-finite if it is contained in
the union of finitely many H -orbits. Two subsets X and Y are equivalent if their
symmetric difference X + Y is H -finite. We denote by [X ] the equivalence class
of X , and by X∗ the complement of X .

An H-almost invariant subset (or an almost invariant subset over H ) is a subset
X ⊂ G that is invariant under the (left) action of H and equivalent to the right-
translate Xs for all s ∈ G. An H -almost invariant subset X is nontrivial if neither
X nor its complement X∗ is H -finite. Given H <G, the set of equivalence classes
of H -almost invariant subsets is a Boolean algebra BH for the usual operations.

If H contains H ′ with finite index, then any H -almost invariant subset X is also
H ′-almost invariant. Furthermore, two sets X and Y are equivalent over H ′ if and
only if they are equivalent over H . It follows that, given a commensurability class
C of subgroups of G, the set of equivalence classes of almost invariant subsets over
subgroups in C is a Boolean algebra BC.

Two almost invariant subsets X over H and Y over K are equivalent if their
symmetric difference X+Y is H -finite. By [Scott and Swarup 2003, Remark 2.9],
this is a symmetric relation: X + Y is H -finite if and only if it is K -finite. If X
and Y are nontrivial, equivalence implies that H and K are commensurable.

The algebras BC are thus disjoint, except for the (trivial) equivalence classes of
∅ and G that belong to every BC. We denote by B the union of the algebras BC. It
is the set of equivalence classes of all almost invariant sets, but it is not a Boolean
algebra in general. There is a natural action of G on B induced by left translation
(or conjugation).

2d. Cross-connected components and regular neighborhoods. Let X be an H -
almost invariant subset, and Y a K -almost invariant subset. One says that X
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crosses Y , or the pair {X, X∗} crosses {Y, Y ∗}, if none of the four sets X (∗)
∩ Y (∗)

is H -finite (we denote by X (∗)
∩Y (∗) the four possible intersections X ∩Y , X∗∩Y ,

X ∩ Y ∗, and X∗ ∩ Y ∗). By [Scott 1998], this is a symmetric relation. Note that X
and Y do not cross if they are equivalent, and that crossing depends only on the
equivalence classes of X and Y . Following [Scott and Swarup 2003], we will say
that X (∗)

∩ Y (∗) is small if it is H -finite (or equivalently K -finite).
Now let X be a subset of B. Let X be the set of nontrivial unordered pairs
{[X ], [X∗]} for [X ] ∈ X. A cross-connected component (CCC) of X is an equiv-
alence class C for the equivalence relation generated on X by crossing. We often
say that X , rather than {[X ], [X∗]}, belongs to C , or represents C . We denote by H

the set of cross-connected components of X.
Given three distinct cross-connected components C1,C2,C3, we say that C2 is

between C1 and C3 if there are representatives X i of Ci satisfying X1 ⊂ X2 ⊂ X3.
A star is a subset 6 ⊂H containing at least two elements, and maximal for the

property that, given C,C ′ ∈ 6, no C ′′ ∈H is between C and C ′. We denote by S

the set of stars.

Definition 2.2. Let X⊂B be a collection of almost invariant sets. Its regular neigh-
borhood RN(X) is the bipartite graph whose vertex set is HtS (a vertex is either
a cross-connected component or a star), and whose edges are pairs (C, 6)∈H×S

with C ∈6. If X is G-invariant, then G acts on RN(X) .

This definition is motivated by the following remark, whose proof we leave to
the reader.

Remark 2.3. Let T be any simplicial tree. Suppose that H⊂ T meets any closed
edge in a nonempty finite set. Define betweenness in H by C2 ∈ [C1,C3] ⊂ T .
Then the bipartite graph defined as above is isomorphic to a subdivision of T .

In the situation of Scott and Swarup [2003], a main result is that RN(X) is a
tree. We will reprove this fact by identifying RN(X) with a subdivision of the tree
of cylinders.

3. Regular neighborhoods as trees of cylinders

Now we fix a family E as in Definition 2.1. It is stable under commensurability,
and a group of E cannot contain another with infinite index. Let T be an E-tree.

In Section 3a, we define the set B(T ) of almost invariant sets based on T , and we
state the main result, Theorem 3.3: The regular neighborhood RN(B(T )) of B(T )
is up to subdivision the tree of cylinders Tc. In Section 3b, we represent elements of
B(T ) by special subforests of T . We then study the cross-connected components
of B(T ). We prove Theorem 3.3 in Section 3d by constructing a map8 from the set
of cross-connected components to Tc. In Section 3e we generalize Theorem 3.3 to
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Theorem 3.11 by including almost invariant sets enclosed by quadratically hanging
vertices of T .

3a. Almost invariant sets based on a tree. We fix a basepoint v0 ∈ V (T ). If e
is an edge of T , we denote by e̊ the open edge. Let Te and T ∗e be the connected
components of T \ e̊. The set of g ∈ G such that gv0 ∈ Te (respectively gv0 ∈ T ∗e )
is an almost invariant set Ze (respectively Z∗e ) over Ge. Up to equivalence, it is
independent of v0. When we need to distinguish between Ze and Z∗e , we orient e
and declare that the terminal vertex of e belongs to Te.

Now consider a cylinder Y ⊂T and the corresponding commensurability class C.
Any Boolean combination of the Ze for e ∈ E(Y ) is an almost invariant set over
some subgroup H ∈ C.

Definition 3.1. Given a cylinder Y , associated to a commensurability class C, the
Boolean algebra of almost invariant subsets based on Y is the subalgebra BC(T )
of BC generated by the classes [Ze] for e ∈ E(Y ).

The set of almost invariant subsets based on T is the union B(T )=
⋃

C BC(T ),
a subset of B=

⋃
C BC; just like B, it is a union of Boolean algebras but not itself

a Boolean algebra.

Proposition 3.2. Let T and T ′ be minimal E-trees. Then B(T ) = B(T ′) if and
only if T and T ′ belong to the same deformation space.

More precisely, T dominates T ′ if and only if B(T ′)⊂B(T ).

Proof. Suppose T dominates T ′. After subdividing T (this does not change B(T )),
we may assume that there is an equivariant map f : T → T ′ sending every edge to
a vertex or an edge. We claim that, given e′ ∈ E(T ′), there are only finitely many
edges ei ∈ E(T ) such that f (ei )= e′. To see this, we may restrict to a G-orbit of
edges of T , since there are finitely many such orbits. If e and ge both map onto e′,
then g ∈Ge′ . Because of the hypotheses on E, the stabilizer Ge is contained in Ge′

with finite index. The claim follows.
Choose basepoints v ∈ T and v′ = f (v) ∈ T ′. Then Ze′ (defined using v′) is a

Boolean combination of the sets Zei (defined using v), so B(T ′)⊂B(T ).
Conversely, assume B(T ′)⊂B(T ). Let K ⊂G be a subgroup elliptic in T . We

show that it is also elliptic in T ′.
If not, we can find an edge e′ = [v′, w′] ⊂ T ′, and sequences gn ∈ G and

kn ∈ K , such that the sequences gnv
′ and gnknv

′ have no bounded subsequence,
and e′ ⊂ [gnv

′, gnknv
′
] for all n. (If K contains a hyperbolic element k, we choose

e′ on its axis, and we define gn = k−n and kn = k2n; if K fixes an end ω, we want
g−1

n e′ ⊂ [v′, knv
′
], so we choose e′ and gn such that all edges g−1

n e′ are contained
on a ray ρ going out to ω, and then we choose kn .) Defining Ze′ using the vertex v′

and a suitable orientation of e′, we have gn ∈ Ze′ and gnkn /∈ Ze′ .
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Using a vertex of T fixed by K to define the almost invariant sets Ze, we see
that any element of B(T ) is represented by an almost invariant set X satisfying
X K = X . In particular, since B(T ′)⊂B(T ), there exist finite sets F1 and F2 such
that Z = (Ze′ \ Ge′F1) ∪ Ge′F2 is K -invariant on the right. For every n, one has
gnkn ∈Ge′F2 (if gn, gnkn ∈ Z ) or gn ∈Ge′F1 (if not), so one of the sequences gnknv

′

or gnv
′ has a bounded subsequence (because Ge′ is elliptic), a contradiction. �

Remark. The only fact used in the proof is that no edge stabilizer of T has infinite
index in an edge stabilizer of T ′.

Theorem 3.3. Let T be a minimal E-tree, with E as in Definition 2.1, and Tc its
tree of cylinders for the commensurability relation. Let X = B(T ) be the set of
almost invariant subsets based on T .

Then RN(X) is equivariantly isomorphic to a subdivision of Tc.

By Proposition 3.2, and [Guirardel and Levitt 2008, Theorem 1], RN(X) and Tc

only depend on the deformation space of T .
To prove the version of Theorem 3.3 stated in the introduction, one takes E to

be the family of subgroups commensurable to an edge stabilizer of T .
The theorem will be proved in the next three subsections. We always fix a base

vertex v0 ∈ T .

3b. Special forests. Let S and S′ be subsets of V (T ). We say that S and S′ are
equivalent if their symmetric difference is finite; we say S is trivial if it is equivalent
to ∅ or V (T ).

The coboundary δS is the set of edges having one endpoint in S and one in S∗

(the complement of S in V (T )). We shall be interested in sets S with finite
coboundary. Since δ(S ∩ S′)⊂ δS ∪ δS′, they form a Boolean algebra.

We also view such an S as a subforest of T , by including all edges whose end-
points are both in S; we can then consider the (connected) components of S. The
set of edges of T is partitioned into edges in S, edges in S∗, and edges in δS= δS∗.
Note that S is equivalent to the set of endpoints of its edges. In particular, S is finite
(as a set of vertices) if and only if it contains finitely many edges.

We say that S is a special forest based on a cylinder Y if δS = {e1, . . . , en} is
finite and contained in Y . If nonempty, S contains at least one vertex of Y . Each
component of S (viewed as a subforest) is a component of T \{e̊1, . . . , e̊n}, and S∗

is the union of the other components of T \ {e̊1, . . . , e̊n}.
We define BY as the Boolean algebra of equivalence classes of special forests

based on Y .
Given a special forest S based on Y , we define X S = {g | gv0 ∈ S}. It is

an almost invariant set over H =
⋂

e∈δS Ge, a subgroup of G belonging to the
commensurability class C associated to Y ; we denote its equivalence class by [X S].
Every element of B(T ) may be represented in this form. More precisely:
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Lemma 3.4. Let Y be a cylinder associated to a commensurability class C. Then
the map S 7→ [X S] induces an isomorphism of Boolean algebras between BY

and BC(T ).

Proof. It is easy to check that S 7→ [X S] is a morphism of Boolean algebras. It is
onto because the set Te used to define the almost invariant set Ze is a special forest
(based on the cylinder containing e). It remains to determine the “kernel”, namely
to show that X S is H -finite if and only if S is finite (where H denotes any group
in C).

First suppose that S is finite. Then S is contained in Y since it contains any
connected component of T \ Y that it intersects. Since δS is finite, no vertex x
of S has infinite valence in T . In particular, for each vertex x ∈ S, the group Gx is
commensurable with H . It follows that {g ∈ G | g .v0 = x} is H -finite, and X S is
H -finite.

If S is infinite, one of its components is infinite, and by minimality of T there
exists a hyperbolic element g ∈ G such that gnv0 ∈ S for all n ≥ 0. Thus gn

∈ X S

for n ≥ 0. If X S is H -finite, one can find a sequence ni going to infinity, and
hi ∈ H , such that gni = hi gn0 . Since H is elliptic in T , the sequence hi gn0v0 is
bounded, a contradiction. �

Lemma 3.5. Let S and S′ be special forests.

(1) If S and S′ are infinite and based on distinct cylinders, and if S ∩ S′ is finite,
then S ∩ S′ =∅.

(2) If X S crosses X S′ , then S and S′ are based on the same cylinder.

(3) X S ∩ X S′ is small if and only if S ∩ S′ is finite.

Proof. For part (1), assume that S and S′ are infinite and based on Y 6= Y ′, and
that S ∩ S′ is finite. Let [u, u′] be the bridge between Y and Y ′ (with u = u′ if Y
and Y ′ intersect in a point). Since u and u′ lie in more than one cylinder, they have
infinite valence in T .

Assume first that u∈ S. Then S contains all components of T \{u}, except finitely
many of them (which intersect Y ). In particular, S contains Y ′. If S′ contains u′,
it contains u by the same argument, and S ∩ S′ contains infinitely many edges
incident on u, a contradiction. If S′ does not contain u′, it is contained in S, also a
contradiction.

We may therefore assume u /∈ S and u′ /∈ S′. It follows that S (respectively S′) is
contained in the union of the components of T \ {u} (respectively T \ {u′}) which
intersect Y (respectively Y ′), so S and S′ are disjoint.

Part (2) is a consequence of [Scott and Swarup 2003, Proposition 13.5], but here
is a direct argument. Assume that S and S′ are based on Y 6= Y ′, and let [u, u′]
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be as above. Up to replacing S and S′ by their complements, we have u /∈ S and
u′ /∈ S′. The argument above shows that S ∩ S′ =∅, so X S does not cross X S′ .

For part (3), first suppose that S ∩ S′ is finite. If, say, S is finite, then X S is
H -finite by Lemma 3.4, so X S ∩ X S′ is small. Assume therefore that S and S′ are
infinite. If they are based on distinct cylinders, then X S ∩ X S′ = ∅ by part (1). If
they are based on the same cylinder, then S ∩ S′ is itself a finite special forest, so
X S ∩ X S′ = X S∩S′ is small by Lemma 3.4. Conversely, if S ∩ S′ is infinite, one
shows that X S ∩ X S′ is not H -finite as in the proof of Lemma 3.4, using g such
that gnv ∈ S ∩ S′ for all n ≥ 0. �

Remark 3.6. If S and S′ are infinite and X S ∩ X S′ is small, then S and S′ are
equivalent to disjoint special forests. This follows from the lemma if they are
based on distinct cylinders. If not, one replaces S′ by S′ ∩ S∗.

3c. Peripheral cross-connected components. Theorem 3.3 is trivial if T is a line,
so we can assume that each vertex of T has valence at least 3 (we now allow G
to act with inversions). We need to understand cross-connected components. By
Lemma 3.5(2), every such component is based on a cylinder, so we focus on a
given Y . We first define peripheral special forests and almost invariant sets.

Recall that ∂Y is the set of vertices of Y that belong to another cylinder. Let
v ∈ ∂Y be a vertex whose valence in Y is finite. Let e1, . . . , en be the edges of Y
containing v, oriented towards v. Let Sv,Y = Te1 ∩ · · · ∩ Ten (recall that Te denotes
the component of T \ e̊ containing the terminal point of e). It is a subtree satisfying
Sv,Y ∩ Y = {v}, with coboundary δSv,Y = {e1, . . . , en}. We say that Sv,Y , and any
special forest equivalent to it, is peripheral (but S∗v,Y is not peripheral in general).

We denote by Xv,Y the almost invariant set corresponding to Sv,Y , and we say
that X is peripheral if it is equivalent to some Xv,Y . Both Sv,Y and S∗v,Y are infinite,
so Xv,Y is nontrivial by Lemma 3.4.

We claim that Cv,Y = {{[Xv,Y ], [X∗v,Y ]}} is a complete cross-connected compo-
nent of B(T ), called a peripheral CCC. Indeed, assume that Xv,Y crosses some X S .
Then S is based on Y by Lemma 3.5, but since Sv,Y contains no edge of Y , it is
contained in SX or S∗X , which prevents crossing.

Note that if Cv,Y = Cv′,Y ′ , then Y = Y ′ (because an H -almost invariant subset
determines the commensurability class of H ), and v= v′ except when Y is a single
edge vv′, in which case Xv,Y = X∗v′,Y .

Lemma 3.7. Let Y be a cylinder. There is at most one nonperipheral cross-
connected component CY based on Y . There is exactly one if and only if |∂Y | 6=2, 3.

Proof. The proof is in three parts.
We first claim that, given any infinite connected nonperipheral special forest S

based on Y , there is an edge e ⊂ S ∩ Y such that both connected components of
S \ {e̊} are infinite.
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Assume there is no such e. Then S ∩ Y is locally finite: Given v ∈ S, all but
finitely many components of S \ {v} are infinite, so infinitely many edges incident
on v satisfy the claim if v has infinite valence in S ∩ Y .

Since S is infinite and nonperipheral, S∩Y is not reduced to a single point. We
orient every edge e of S ∩ Y so that S ∩ Te is infinite and S ∩ T ∗e is finite. If a
vertex v of S∩Y is terminal in every edge of S∩Y that contains it, S is peripheral.
We may therefore find an infinite ray ρ ⊂ S ∩ Y consisting of positively oriented
edges. Since every vertex of T has valence ≥ 3, every vertex of ρ is the projection
onto ρ of an edge of δS, contradicting the finiteness of δS. This proves the claim.

Secondly, to show that there is at most one nonperipheral cross-connected com-
ponent, we fix two nontrivial forests S and S′ based on Y , and we show that X S

and X S′ are in the same CCC if they do not belong to peripheral CCCs. We can
assume that X S ∩ X S′ is small, and by Remark 3.6 that S ∩ S′ is empty. We may
also assume that every component of S and S′ is infinite.

Since S is not peripheral, it contains two disjoint infinite special forests S1 and S2

based on Y : This is clear if S has several components, and follows from the claim
otherwise. Construct S′1 and S′2 similarly. Then X S1∪X S′1 crosses both X S and X S′ ,
so X S and X S′ are in the same cross-connected component.

Finally, we discuss the existence of CY . If |∂Y |≥4, choose v1, . . . , v4 ∈ ∂Y , and
consider edges e1, e2, e3 of Y such that each vi belongs to a different component
Si of T \ {e̊1, e̊2, e̊3}. These components are infinite because vi ∈ ∂Y , and X S1∪S2

belongs to a nonperipheral CCC.
If ∂Y is empty, then Y = T and existence is clear. If ∂Y is nonempty, minimality

of T implies that Y is the convex hull of ∂Y (replacing every cylinder by the
convex hull of its boundary yields an invariant subtree). From this we deduce that
|∂Y | 6= 1, and every CCC based on Y is peripheral if |∂Y | equals 2 or 3. There is
one peripheral CCC if |∂Y |= 2 (that is, Y is a single edge) and three if |∂Y |= 3. �

Remark 3.8. The proof shows that, if |∂Y | ≥ 4, then for all u 6= v in ∂Y , the
nonperipheral CCC is represented by a special forest S such that u ∈ S and v ∈ S∗.

3d. Proof of Theorem 3.3. From now on we assume that T has more than one
cylinder; otherwise there is exactly one cross-connected component, and both
RN(X) and Tc are points.

It will be helpful to distinguish between a cylinder Y ⊂ T or a point η ∈ ∂Y ,
and the corresponding vertex of Tc. We therefore denote by Yc or ηc the vertex of
Tc corresponding to Y or η.

Recall that H denotes the set of cross-connected components of X = B(T ).
Consider the map 8 :H→ Tc defined as follows:

• If C = CY is a nonperipheral CCC, then 8(C)= Yc ∈ V1(Tc).
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• If C =Cv,Y is peripheral, and #∂Y ≥ 3, then8(C) is the midpoint of the edge
ε = (vc, Yc) of Tc.

• If #∂Y = 2, and C is the peripheral CCC based on Y , then 8(C)= Yc.

In all cases, the distance between 8(C) and Yc is at most 1/2. If C is peripheral,
8(C) has valence 2 in Tc.

Clearly, 8 is one-to-one. By Remark 2.3, it now suffices to show that the image
of 8 meets every closed edge, and 8 preserves betweenness: For C1,C2,C3 ∈H,
C2 is between C1 and C3 if and only if 8(C2) ∈ [8(C1),8(C3)].

The first fact is clear because 8(H) contains all vertices Yc ∈ V1(Tc) with
|∂Y | 6= 3 and the three points at distance 1/2 from Yc if |∂Y | = 3. To control
betweenness, we need a couple of technical lemmas.

If S is a nontrivial special forest, we denote by [[S]] the cross-connected com-
ponent represented by the almost invariant set X S .

Let Y ⊂ T be a cylinder. We denote by prY : T → Y the projection. If Y ′ is
another cylinder, then prY (Y

′) is a single point. This point belongs to two cylinders
and hence defines a vertex of V0(Tc) that is at distance 1 from Yc on the segment
of Tc joining Yc to Y ′c.

Let Y be a cylinder with |∂Y | ≥ 4. For each nontrivial special forest S′ that
is either based on some Y ′ 6= Y , or based on Y and peripheral, we define a point
ηY (S′)∈Y ⊂T as follows. If S′ is based on Y ′ 6=Y , we define ηY (S′) to be prY (Y

′).
If S′ is equivalent to some Sv,Y , we define ηY (S′)= v; note that in this case ηY (S′∗)
is not defined.

Lemma 3.9. Let Y be a cylinder with |∂Y | ≥ 4. Consider two nontrivial special
forests S, S′ with [[S′]] 6= CY and [[S]] = CY , and assume S′ ⊂ S.

Then η = ηY (S′) ∈ Y is defined, η ∈ S, and S′ contains an equivalent subforest
S′′ with S′′ ⊂ pr−1

Y ({η})⊂ S.
Moreover, 8([[S′]]) lies in the connected component of Tc \ {Yc} containing ηc.

Proof. Let Y ′ be the cylinder on which S′ is based.
If Y ′ = Y , then S′∗ is not peripheral, so S′ is peripheral. Thus η is defined, and

S′ is equivalent to its subforest S′′ = SY,η. Then S′′ = pr−1
Y ({η}) ⊂ S. In this case

8([[S′]]) is the midpoint of the edge (ηc, Yc) of Tc.
Assume that Y ′ 6= Y . Then η = prY (Y

′) ∈ S; otherwise Y ′ would be disjoint
from S and hence from S′, a contradiction. It follows that pr−1

Y ({η})⊂ S. If η ∈ S′,
then S′ contains the complement of pr−1

Y ({η}), so S = T , a contradiction. Thus
η /∈ S′ and therefore S′ ⊂ pr−1

Y ({η}). The “moreover” is clear in this case since ηc

is between Yc and Y ′c, and 8([[S′]]) is at distance ≤ 1/2 from Y ′c. �

Lemma 3.10. Let S = SY,u be peripheral, and let S′ be a nontrivial special forest
with [[S′]] 6= [[S]]. Recall that uc is the vertex of Tc associated to u.
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(1) If S′ ⊂ S, then 8([[S′]]) belongs to the component of Tc \ {8([[S]])} that
contains uc.

(2) If S ⊂ S′, then 8([[S′]]) belongs to the component of Tc \ {8([[S]])} that does
not contain uc.

Proof. If S′ ⊂ S, then S′ is based on some Y ′ 6= Y . Since S′ ⊂ S = pr−1
Y ({u}), we

have Y ′ ⊂ pr−1
Y ({u}) and uc is between Yc and Y ′c in Tc. The result follows since

8([[S]]) is 1/2-close to Yc and 8([[S′]]) is 1/2-close to Y ′c.
If S ⊂ S′ and Y 6= Y ′, we have prY (Y

′) 6= u because S′ 6= T , and the lemma
follows. If Y = Y ′, the lemma is immediate. �

We can now show that 8 preserves betweenness. Consider three distinct cross-
connected components C1,C2,C3 ∈ H. Let Y2 be the cylinder on which C2 is
based. Note that |∂Y2| ≥ 4 if C2 is nonperipheral.

First assume that C2 is between C1 and C3. By definition, there exist almost
invariant subsets X i representing Ci such that X1 ⊂ X2 ⊂ X3. By Lemma 3.4,
one can find special forests Si with [X Si ] = [X i ]. By Remark 3.6, since the Ci are
distinct, one can assume S1 ⊂ S2 ⊂ S3 (if necessary, replace S2 by S2 ∩ S3, and
then S1 by S1 ∩ S2 ∩ S3).

If S2 is peripheral, 8(C1) and8(C3) are in distinct components of Tc \{8(C2)}

by Lemma 3.10, so 8(C2) ∈ [8(C1),8(C3)]. If S∗2 is peripheral, we apply the
same argument using S∗3 ⊂ S∗2 ⊂ S∗1 .

Assume therefore that C2 is nonperipheral. Lemma 3.9 implies that the points
η1 = ηY2(S1) and η3 = ηY2(S

∗

3 ) are defined, and η1 ∈ S2 and η3 ∈ S∗2 . In particular,
we have η1 6= η3. By the “moreover”, we get 8(C2) ∈ [8(C1),8(C3)] since
8(C2)= (Y2)c.

Now assume that C2 is not between C1 and C3, and choose Si with [[Si ]] = Ci .
By Remark 3.6, we may assume that for each i ∈ {1, 3} some inclusion S(∗)

i ⊂ S(∗)

2
holds. Since C2 is not between C1 and C3, we may assume after changing Si to S∗i
if needed that S1 ⊂ S2 and S3 ⊂ S2.

If S2 or S∗2 is peripheral, Lemma 3.10 implies that 8(C1) and 8(C3) lie in
the same connected component of Tc \ {8(C2)}, so 8(C2) is not between 8(C1)

and 8(C3).
Assume therefore that C2 is nonperipheral. Lemma 3.9 says that the points

η1= ηY2(S1) and η3= ηY2(S3) are defined, and we may assume Si ⊂ pr−1
Y2
({ηi }). If

η1 = η3, then 8(C2) does not lie between 8(C1) and 8(C3) by the “moreover” of
Lemma 3.9. If η1 6= η3, consider S̃2 with [[S̃2]] = C2 such that η1 ∈ S̃2 and η3 ∈ S̃∗2
(it exists by Remark 3.8). Then S1 ⊂ pr−1

Y2
(η1) ⊂ S̃2 and S3 ⊂ pr−1

Y2
(η3) ⊂ S̃∗2 , so

C2 lies between C1 and C3, a contradiction.
This ends the proof of Theorem 3.3. �
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3e. Quadratically hanging vertices. We say that a vertex stabilizer Gv of T is
a QH-subgroup if there is an exact sequence 1 → F → Gv

π
→ 6 → 1, where

6 = π1(O) is a hyperbolic 2-orbifold group and every incident edge group Ge is
peripheral: It is contained with finite index in the preimage by π of a boundary
subgroup B = π1(C), with C a boundary component of O. We say that v is a
QH-vertex of T .

We now define almost invariant sets based on v. They will be included in our
description of the regular neighborhood.

We view 6 as a convex cocompact Fuchsian group acting on H2. Let H be any
nonperipheral maximal two-ended subgroup of 6 (represented by an immersed
curve or 1-suborbifold). Let γ be the geodesic invariant by H . It separates H2 into
two half-spaces P±, which may be interchanged by certain elements of H .

Let H 0 be the stabilizer of P+, which has index at most 2 in H , and let x0 be a
basepoint. We define an H 0-almost invariant set X ⊂ 6 as the set of g ∈ 6 such
that gx0 ∈ P+. (If H is the fundamental group of a two-sided simple closed curve
on O, there is a one-edge splitting of 6 over H , and X is a Ze as in Section 3a.)

The preimage of X in Gv is an almost invariant set Xv over the preimage H0

of H 0. We extend it to an almost invariant set X of G as follows. Let S′ be the set
of vertices u 6=v of T such that, denoting by e the initial edge of the segment [v, u],
the geodesic of H2 invariant under Ge ⊂ Gv lies in P+; note that it lies in either
P+ or P−. Then X is the union of Xv with the set of g /∈ Gv such that gv ∈ S′.

Starting from H , we have thus constructed an almost invariant set X , which is
well defined up to equivalence and complementation (because of the choices of
x0 and P±). We say that X is a QH-almost invariant subset based on v. We let
QHv(T ) be the set of equivalence classes of QH-almost invariant subsets obtained
from v as above (varying H ), and we let QH(T ) be the union of all QHv(T )when v
ranges over all QH-vertices of T .

Theorem 3.11. With E and T as in Theorem 3.3, let X̂ = B(T ) ∪QH(T ). Then
RN(X̂) is isomorphic to a subdivision of Tc.

Proof. The proof is similar to that of Theorem 3.3.
If X is a QH-almost invariant subset as constructed above, we call S = S′ ∪ {v}

the QH-forest associated to X . We say that it is based on v. The coboundary of S
is infinite, but all its edges contain v. We may therefore view S as a subtree of T
(the union of v with certain components of T \ {v}). It is a union of cylinders. We
let S∗ = (T \ S)∪ {v}, so that S ∩ S∗ = {v}.

Note that S cannot contain a peripheral special forest Sv,Y , with Y a cylinder
containing v (this is because the subgroup H ⊂6 was chosen nonperipheral).

Conversely, given a QH-forest S, one can recover H0, which is the stabilizer of S,
and the equivalence class of X . In other words, there is a bijection between QHv(T )
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and the set of QH-forests based on v. We denote by X S the almost invariant set X
corresponding to S (it is well defined up to equivalence). Note that X S is not a
subset of {g ∈ G | gv ∈ S}, and these sets have the same intersection with G \Gv.

The following fact is analogous to Lemma 3.5.

Lemma 3.12. Let S be a QH-forest based on v. Let S′ be a nontrivial special
forest, or a QH-forest based on v′ 6= v.

(1) X S ∩ X S′ is small if and only if S ∩ S′ =∅.

(2) X S and X S′ do not cross.

Proof. When S′ is a special forest, we use v as a basepoint to define X S′ as the set
{g | gv ∈ S′}. Beware that X S is properly contained in {g | gv ∈ S}.

We claim that if S′ is a special forest with v /∈ S′ and S∩S′ 6=∅, then X S′ ⊂ X S .
Let Y ′ be the cylinder on which S′ is based. Since each connected component of
S′ contains a point in Y ′, there is a point w 6= v in S ∩ Y ′. Since S is a union of
cylinders, S contains Y ′. All connected components of S′ therefore contain a point
of S and so are contained in S \ {v} since v /∈ S′. We deduce X S′ ⊂ X S .

We now prove (1). If S ∩ S′ = ∅, then X S ∩ X S′ = ∅. We assume S ∩ S′ 6= ∅,
and we show that X S ∩ X S′ is not small. If S′ is a QH-forest, then v ∈ S′ or v′ ∈ S.
If for instance v ∈ S′, then X S∩X S′ is not small because it contains X S∩Gv. Now
assume that S′ is a special forest. If v ∈ S′, the same argument applies, so assume
that v /∈ S′. The claim implies X S′ ⊂ X S , so X S ∩ X S′ is not small.

To prove (2), first consider the case where S′ is a QH-forest. Up to changing S
and S′ to S∗ or S′∗, one can assume S ∩ S′ = ∅, so X S does not cross X S′ . If S′

is a special forest, we can assume v /∈ S′ by changing S′ to S′∗. By the claim, X S

does not cross X S′ . �

The lemma implies that no element of QH(T ) crosses an element of B(T ), and
elements of QHv(T ) do not cross elements of QHv′(T ) for v 6= v′.

Since QHv(T ) is a cross-connected component, the set Ĥ of cross-connected
components of B(T )∪QH(T ) is therefore the set of cross-connected components
of B(T ), together with one new cross-connected component QHv(T ) for each QH-
vertex v.

One extends the map8 defined in the proof of Theorem 3.3 to a map 8̂ : Ĥ→Tc

by sending QHv(T ) to v (viewed as a vertex of V0(Tc) since a QH-vertex belongs
to infinitely many cylinders). We need to prove that 8̂ preserves betweenness.

Lemmas 3.9 and 3.10 extend immediately to the case where S′ is a QH-forest:
one just needs to define ηY (S′)= prY (v

′) for S′ based on v′, so that v′ plays the role
of Y ′ in the proofs. (In the proof of Lemma 3.9, the assertion that η /∈ S′ should
be replaced by the fact that S′ ∩ Y contains no edge; this holds since otherwise S′

would contain Y .) This allows to prove that, if C2 is not a component QHv(T ),
then8(C2) is between8(C1) and8(C3) if and only if C2 lies between C1 and C3.
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To treat the case when C2 = QHv(T ), we need a cylinder-valued projection ηv.
Let Y be a cylinder or a QH-vertex distinct from v. We define ηv(Y ) as the cylinder
of T containing the initial edge of [v, x] for any x ∈ Y different from v. Equiv-
alently, ηv(Y ) is Y if v ∈ Y , the cylinder containing the initial edge of the bridge
joining x to Y otherwise.

If v lies in a cylinder Y 0, denote by η−1
v (Y

0) the union of cylinders Y such that
ηv(Y ) = Y 0. Equivalently, this is the set of points x ∈ T such that x = v or [x, v]
contains an edge of Y 0.

As before, [[S]] denotes the cross-connected component represented by X S .

Lemma 3.13. Let S be a QH-forest based on v. Let S′ be a nontrivial special
forest, or a QH-forest based on v′ 6= v. Let Y ′ be the cylinder or QH-vertex on
which S′ is based, and let Y ′0 = ηv(Y ′).

If S′ ⊂ S, then S′ ⊂ η−1
v (Y

′0)⊂ S.
Moreover, 8([[S′]]) and Y ′0c lie in the same component of Tc \ {8([[S]])}.

We leave the proof of this lemma to the reader.
Assume now that S1 ⊂ S2 ⊂ S3 with [[Si ]] =Ci and S2 based on v. For i = 1, 3,

let Y 0
i = ηv(Yi ). Then S1 ⊂ η

−1
v (Y

0
1 ) ⊂ S2 and S∗3 ⊂ η

−1
v (Y

0
3 ) ⊂ S∗2 . In particular,

Y 0
1 6=Y 0

3 . Since (Y 0
1 )c and (Y 0

3 )c are neighbors of vc, they lie in distinct components
of Tc \ {8(C2)}. By Lemma 3.13, so do 8([[S1]]) and 8([[S3]]).

Conversely, assume that C2 does not lie between C1 and C3, and consider S1⊂ S2

and S3 ⊂ S2 with [[Si ]] = Ci . For i = 1, 3, let Y 0
i be as above. If Y 0

1 = Y 0
3 , then

8(C2) is not between 8(C1) and 8(C3) by Lemma 3.13, and we are done. If
Y 0

1 6= Y 0
3 , these cylinders correspond to distinct peripheral subgroups of Gv, with

invariant geodesics γ1 6= γ3. There exists a nonperipheral group H ⊂ 6, as in the
beginning of this subsection, whose invariant geodesic separates γ1 and γ3. Let
S′2 be the associated QH-forest. Then [[S′2]] = C2 and, up to complementation,
η−1
v (Y

0
1 )⊂ S′2 and η−1

v (Y
0
3 )⊂ S′2

∗. It follows that S1 ⊂ S′2 and S∗3 ⊂ S′2
∗, so C2 lies

between C1 and C3, contradicting our assumptions. �

4. The regular neighborhood of Scott and Swarup

A group is VPCn if some finite index subgroup is polycyclic of Hirsch length n. For
instance, VPC0 groups are finite groups, VPC1 groups are virtually cyclic groups,
and VPC2 groups are virtually Z2 (but not all VPCn groups are virtually abelian
for n ≥ 3).

Fix n ≥ 1. We assume that G is finitely presented and does not split over a
VPCn−1 subgroup. We also assume that G itself is not VPCn+1. All trees we
consider here are assumed to have VPCn edge stabilizers.

A subgroup H ⊂ G is universally elliptic if it is elliptic in every tree. A tree is
universally elliptic if all its edge stabilizers are.
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A tree is a JSJ tree (over VPCn subgroups) if it is universally elliptic, and max-
imal for this property: it dominates every universally elliptic tree. JSJ trees exist
(because G is finitely presented) and belong to the same deformation space, called
the JSJ deformation space; see [Guirardel and Levitt 2009].

A vertex stabilizer Gv of a JSJ tree is flexible if it is not VPCn and is not univer-
sally elliptic. It follows from [Dunwoody and Sageev 1999] that a flexible vertex
stabilizer is a QH-subgroup, as defined in Section 3e: There is an exact sequence
1→ F→Gv→6→1, where6=π1(O) is the fundamental group of a hyperbolic
2-orbifold, F is VPCn−1, and every incident edge group Ge is peripheral. Note
that the QH-almost invariant subsets X constructed in Section 3e are over VPCn

subgroups.
We can now describe the regular neighborhood of all almost invariant subsets

of G over VPCn subgroups as a tree of cylinders.

Theorem 4.1. Let G be a finitely presented group, and let n ≥ 1. Assume that G
does not split over a VPCn−1 subgroup and that G is not VPCn+1. Let T be a JSJ
tree over VPCn subgroups, and let Tc be its tree of cylinders for the commensura-
bility relation.

Then Scott and Swarup’s regular neighborhood of all almost invariant subsets
over VPCn subgroups is equivariantly isomorphic to a subdivision of Tc.

This is immediate from Theorem 3.11 and Theorem 4.2, which says one can read
any almost invariant set over a VPCn subgroup in a JSJ tree T , and which follows
from [Dunwoody and Swenson 2000] and [Scott and Swarup 2003, Theorem 8.2].

Theorem 4.2. Let G and T be as above.
For any almost invariant subset X over a VPCn subgroup, the equivalence class
[X ] belongs to B(T )∪QH(T ).

Proof. We essentially follow the proof by Scott and Swarup [2003],1 and we adopt
their definitions. All trees considered here have VPCn edge stabilizers.

Let X be a nontrivial almost invariant subset over a VPCn subgroup H . We first
consider the case where X crosses strongly some other almost invariant subset.
Then by [Dunwoody and Swenson 2000, Proposition 4.11], H is contained as a
nonperipheral subgroup in a QH-vertex stabilizer W of some tree T ′. When acting
on T , the group W fixes a QH-vertex v∈T ; see [Guirardel and Levitt 2009, Remark
7.20].

Note that H is not peripheral in Gv, because it is not peripheral in W . Since
(G, H) only has 2 coends [2003, Proposition 13.8], there are (up to equivalence)
only two almost invariant subsets over subgroups commensurable with H (namely
X and X∗), and therefore [X ] ∈ QHv(T ).

1From here on, [2003] refers to [Scott and Swarup 2003].
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From now on, we assume that X crosses strongly no other almost invariant sub-
set over a VPCn subgroup. Then, by [Dunwoody and Roller 1993] and [Dunwoody
and Swenson 2000, Section 3], there is a nontrivial tree T0 with one orbit of edges
and an edge stabilizer H0 commensurable with H .

Since X crosses strongly no other almost invariant set, H and H0 are universally
elliptic; see [Guirardel 2005, Lemme 11.3]. In particular, T dominates T0. It
follows that there is an edge of T with stabilizer contained in H0 (necessarily with
finite index). This edge is contained in a cylinder Y associated to the commensu-
rability class of H .

The main case is when T has no edge e such that Ze crosses X . (See Section 3a
for the definition of Ze.) The following lemma implies that X is enclosed in some
vertex v of T .

Lemma 4.3. Suppose G is finitely generated. Let X ⊂ G be a nontrivial almost
invariant set over a finitely generated subgroup H. Let T be a tree with an action
of G. If X crosses no Ze, then X is enclosed in some vertex v ∈ T .

Proof. The argument follows a part of the proof of [2003, Proposition 5.7].
Given two almost invariant subsets, we use the notation X ≥ Y when Y ∩ X∗ is

small. The noncrossing hypothesis says that each edge e of T may be oriented so
that Ze ≥ X or Ze ≥ X∗. If one can choose both orientations for some e, then X is
equivalent to Ze, so X is enclosed in both endpoints of e and we are done.

We orient each edge of T in this manner. We color the edge blue or red according
to whether Ze ≥ X or Ze ≥ X∗. No edge can have both colors. If e is an oriented
edge, and if e′ lies in T ∗e , then e′ is oriented towards e, so that Ze ⊂ Ze′ , and e′ has
the same color as e. In particular, given a vertex v, either all edges containing v
are oriented towards v, or there exists exactly one edge containing v and oriented
away from v, and all edges containing v have the same color.

If v is as in the first case, X is enclosed in v by definition. If there is no such v,
then all edges have the same color and are oriented towards an end of T . By [2003,
Lemma 2.31], G is contained in the R-neighborhood of X for some R > 0, so X
is trivial, a contradiction. �

Let v be a vertex of T enclosing X . In particular, H ⊂Gv. The set Xv = X∩Gv

is an H -almost invariant subset of Gv (note that Gv is finitely generated). By
[2003, Lemma 4.14], there is a subtree S ⊂ T containing v, with S \{v} a union of
components of T \ {v}, such that X is equivalent to Xv ∪ {g | g .v ∈ S \ {v}}.

Lemma 4.4. The H-almost invariant subset Xv of Gv is trivial.

Proof. Otherwise, by [Dunwoody and Roller 1993; Dunwoody and Swenson 2000],
there is a Gv-tree T1 with one orbit of edges and an edge stabilizer H1 commen-
surable with H , and an edge e1 ⊂ T1, such that Ze1 lies up to equivalence in the
Boolean algebra generated by the orbit of Xv under the commensurator of H in Gv.
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Note that Ge is elliptic in T1 for each edge e of T incident to v: By symmetry of
strong crossing [2003, Proposition 13.3], Ge does not cross strongly any translate
of X , and thus does not cross strongly Ze1 , so Ge is elliptic in T1 [Guirardel 2005,
lemme 11.3]. This ellipticity allows us to refine T by creating new edges with
stabilizer conjugate to H1. Since H1 is universally elliptic, this contradicts the
maximality of the JSJ tree T . �

After replacing X by an equivalent almost invariant subset or its complement,
and possibly changing S to (T \ S)∪ {v}, we can assume that X = {g | g .v /∈ S}.
Recall that Y is the cylinder defined by the commensurability class of H .

Lemma 4.5. The coboundary δS, consisting of edges vw with w /∈ S, is a finite set
of edges of Y .

This implies that [X ] ∈B(T ), ending the proof when X crosses no Ze.

Proof of Lemma 4.5. Let E be the set of edges of δS, oriented so that X =
⊔

e∈E Ze

(we use v as a basepoint to define Ze). Let A be a finite generating system of G
such that, for all a ∈ A, the open segment (av, v) does not meet the orbit of v.
One can construct such a generating system from any finite generating system by
iteratively replacing {a} by the pair {g, g−1a} if (av, v) contains some g .v.

Let 0 be the Cayley graph of (G, A). For any subset Z ⊂ G, denote by δZ the
set of edges of 0 having one endpoint in Z and the other endpoint in G \Z . By our
choice of A, no edge joins a vertex of Ze to a vertex of Ze′ for e 6= e′. It follows
that δX =

⊔
e∈E δZe.

Since δX is H -finite, the set δZe is H -finite for each e ∈ E , and E is contained
in a finite union of H -orbits. Let e ∈ E . Since δZe is Ge-invariant and H -finite,
Ge∩H has finite index in Ge. Since Ge and H are both VPCn , they are commen-
surable, so the H -orbit of e is finite. It follows that E ⊂ Y and that E is finite. �

We now turn to the case when X crosses some of the Ze. For each e ∈ E(T ),
the intersection number i(Ze, X) is finite [Scott 1998], which means that there are
only finitely many edges e′ in the orbit of e such that Ze′ crosses X . Since T/G is
finite, let e1, e−1

1 , e2, e−1
2 , . . . , en, e−1

n be the finite set of oriented edges e such that
Ze crosses X , where we denote by e 7→ e−1 the orientation-reversing involution.
Note that ei ⊂ Y by [2003, Proposition 13.5]. Now X is a finite union of sets of the
form X ′ = X ∩ Ze±1

1
∩ · · · ∩ Ze±1

n
. Since X ′ does not cross any Ze, its equivalence

class lies in B(T ) by the argument above and so does [X ]. �
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