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Let G be a simply connected Poisson–Lie group and g its Lie bialgebra.
Suppose that g is a group Lie bialgebra. This means that there is an action
of a discrete group 0 on G deforming the Poisson structure into cobound-
ary equivalent ones. This induces the existence of a Poisson–Hopf algebra
structure on the direct sum over 0 of formal functions on G, with Poisson
structures translated by 0. A quantization of this algebra can be obtained
by taking the linear dual of a quantization of the 0 Lie bialgebra g, which is
the infinitesimal of a0 Poisson–Lie group. In this paper we find out an inter-
esting structure on the dual Lie group G∗. We prove that we can construct
a stack of Poisson–Hopf algebras and prove the existence of the associated
deformation quantization of it. This stack can be viewed as the function
algebra on “the formal Poisson group” dual to the original 0 Poisson–Lie
group. To quantize this stack, we apply Drinfeld functors to quantization of
the associated 0 Lie bialgebra.

Introduction

In this paper, we study examples of Poisson–Hopf stacks and their quantization.
Enriquez and Halbout [2008] considered quantization of a 0 Lie bialgebra (LBA).
As an outcome, they constructed a functor from the category of 0 Lie bialgebra to
the category of 0 quantized universal enveloping algebras (QUE). Our goal here
is to study the objects dual to 0 Lie bialgebras and their quantizations.

There are two kinds of duality map we can apply to a 0 Lie bialgebra: One is
to consider the algebra of functions on G. We obtain a direct sum

⊕
γ∈0 Oγ of

formal functions on G, with Poisson structures translated by 0. When 0 is not a
finite group, the coproduct 1 maps Oγ to an infinite sum. In general,

⊕
γ∈0 Oγ is a

Poisson algebra but does not have a Hopf algebra structure because an infinite sum
appears in the coproduct. Nevertheless, we will still call

⊕
γ∈0 Oγ a 0 Poisson–

Hopf algebra. (We do have a collection of Poisson algebras and Poisson morphisms
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1γ,γ′ : Oγγ′→ Oγ ⊗ Oγ′ that satisfy coassociativity rules). A quantization of such
a 0 Poisson–Hopf algebra defines the function algebra on a 0 quantum group. We
refer to [Majid and Soı̆bel’man 1994] for examples of quantum Weyl groups, and
[Enriquez and Halbout 2008] for quantization in the general case.

In this paper, we apply a duality map different from the function dual above. We
study the structures on the dual group G∗ by applying the Drinfeld functor to a 0
universal enveloping algebra. We discover a stack of Poisson formal series Hopf
algebras (PFSHA as defined in Section 1) dual to a 0 Lie bialgebra; this duality is
similar to the one between Lie bialgebras and Poisson–Lie groups. Then we study
deformation quantization of this stack. We construct the deformation quantization
by applying the Drinfeld functor to a 0 quantized universal enveloping algebra, and
obtain a stack of quantized formal series Hopf algebras (QFSHA). We summarize
our results in a commutative diagram:

0-LBA
EH //

OO

≈

��

0-QUE
OO

Dr

��
0-PFSHA

Quant // 0-QFSHA

Let 0 be a discrete group, G a simply connected Lie group and g its Lie algebra.
Suppose that g is a 0 Lie bialgebra (or equivalently that G is a 0 Poisson group),
that is, a Lie algebra (g, µg) together with a Lie cobracket δe, an action of 0,
θ :0→Aut(g, µg) and f :0→

∧2(g) a map satisfying compatibility rules such that
0 acts on the double. Precise definitions and equivalent categories corresponding
to these objects will be recalled in Section 1. Examples of 0 Lie bialgebras arise
when G is a Poisson–Lie group with Lie bialgebra (g, µg, δg), and 0 ⊂ G is a
discrete subgroup. Another example is when g is a Kac–Moody Lie algebra g, and
0 is a covering of the Weyl group of g. In the latter case, a quantization was given
[Majid and Soı̆bel’man 1994]. Quantization of a general 0 Lie bialgebra was done
in [Enriquez and Halbout 2008], as we will review in Section 1.

What structure does one get on the corresponding dual groups? Considering the
function algebra of a formal group, we get a trivial stack of Poisson–Hopf algebras.
In Section 3, we prove that we get a nontrivial stack of Poisson algebras of functions
on the formal Poisson–Lie group G∗ dual to a 0 Poisson–Lie group G. To do so,
we will construct “lifts” of the elements ( f (γ))γ∈0 in the function algebra on G∗.
In Section 2, we recall basic definitions of stacks and explain our main results.

In Section 4, we construct quantization of these nontrivial Poisson–Hopf stacks.
To do so we use quantization [Enriquez and Halbout 2008] of a 0 Lie bialgebra.
To deduce from it a quantization of a nontrivial Poisson–Hopf stack, we use the
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Drinfeld functor and prove that quantization of the elements ( f (γ))γ∈0 can be made
“admissible”, that is, they will give quantizations of the corresponding “lifts”.

Finally, in Section 5, we give an explicit example corresponding to the case
where G is a simple Lie group and 0 is a covering of the corresponding Weyl
group. In this case, quantization of Majid and Soı̆bel’man [1994] will lead to an
explicit quantization of the nontrivial Poisson–Hopf stack.

Our results fit very well within Bressler, Gorokhovsky, Nest and Tsygan’s frame-
work [Bressler et al. 2007] of deformation quantization of gerbes. On one hand,
our results provide interesting examples of quantization of stacks; on the other,
the problems we deal with in this paper are more special and complicated because
we need to treat Hopf algebra structure. In [Kirillov and Reshetikhin 1990] and
[Soı̆bel’man 1991] quantum Weyl groups are used to study R-matrices, and we
hope that the results in this paper will shed a light on the general 0 R-matrices.

1. 0 Lie bialgebras and equivalent categories

We recall some results of [Enriquez and Halbout 2008].

0 Lie algebras. A group Lie algebra is a triple (0, g, θg), where 0 is a group, g

is a Lie algebra and θg : 0→ Aut(g) is a group morphism. It is the infinitesimal
version of a 0 action on a group G. Group Lie algebras form a category.

If 0 is a discrete group, a 0 Lie algebra is a pair (g, θg) such that (0, g, θg) is a
group Lie algebra. 0 Lie algebras form a subcategory of group Lie algebras. Such
a 0 Lie algebra will be said to be the infinitesimal of a 0 group G.

A group cocommutative bialgebra is a triple (0,U, i), where 0 is a group, U is a
cocommutative bialgebra, U =

⊕
γ∈0Uγ is a decomposition of U and i :k0→U is

a bialgebra morphism, such that UγUγ′ ⊂Uγγ′ , 1U (Uγ)⊂U⊗2
γ and i is compatible

with the 0 grading.
We then define a 0 cocommutative bialgebra as a pair (U, i) such that (0,U, i)

is a group cocommutative bialgebra. 0 cocommutative bialgebras form a category.
The category of group (or 0) cocommutative bialgebras contains as a full sub-

category the category of group (respectively 0) universal enveloping algebras,
where (U, 0, i) satisfies the additional requirement that Ue is a universal envelop-
ing algebra.

Let O be a commutative algebra (in a symmetric monoidal category S) with a
decomposition O=

⊕
γ∈0 Oγ . Suppose that OγOγ′ = 0 for γ 6= γ′ and that we have

algebra morphisms

1γ′γ′′ : Oγ′γ′′→ Oγ′ ⊗Oγ′′, η : k→ Oe, ε : Oe→ k

satisfying axioms such that these morphisms add up to a bialgebra structure on O

when 0 is finite. Then we define a group commutative bialgebra (in a symmetric



102 GILLES HALBOUT AND XIANG TANG

monoidal category S) as a triple (0,O, j), where 0 is a group and j : O→ k0 is a
morphism of commutative algebras compatible with the 0 gradings and the maps
1γ′γ′′ on both sides. We define 0 commutative bialgebras as above.

Define the category of group (or 0) formal series Hopf (FSH) algebras as a
full subcategory of the category of group (respectively 0) commutative bialgebras
in S = {provector spaces} by the condition that Oe (or equivalently, each Oγ) is a
formal series algebra. Such an FSH algebra corresponds to functions on the formal
dual group of a 0 group G.

Proposition 1.1 [Enriquez and Halbout 2008]. (1) We have (anti)equivalences of
categories

{group Lie algebras} ↔ {group universal enveloping algebras}

↔ {group FHS algebras},

where the last map is an antiequivalence.

(2) If 0 is a group, these (anti)equivalences restrict to

{0-Lie algebras} ↔ {0-universal enveloping algebras} ↔ {0-FHS algebras}.

We denote the 0 universal enveloping algebra corresponding to a 0 Lie algebra
(0, g, θg) as U (g)o0. It is isomorphic to U (g)⊗k0 as a vector space. If we denote
by x 7→ [x] and γ 7→ [γ] the natural maps g→U (g)o0 and 0→U (g)o0, then
the bialgebra structure of U (g)o0 is given by

[γ][x][γ−1
] = [θγ(x)], [γ][γ′] = [γγ′], 1([γ])= [γ]⊗ [γ],

[x][x ′] − [x ′][x] = [[x, x ′]], [e] = 1, 1([x])= [x]⊗ 1+ 1⊗[x].

When 0 is finite, the corresponding 0 FSH algebra is then (U (g)o k0)∗, and
in general, this is

⊕
γ∈0(U (g)⊗kγ)∗.

0 Lie bialgebras.

Definition 1.2. A group Lie bialgebra is a 5-uple (0, g, θg, δg, f ), where (0, g, θg)
is a group Lie algebra, δg : g→

∧2(g) is1 such that (g, δg) is a Lie bialgebra, and
f : 0→

∧2(g) is a map γ 7→ fγ such that

(a)
∧2(θγ) ◦ δ ◦ θ

−1
γ (x)= δ(x)+ [ fγ, x ⊗ 1+ 1⊗ x] for any x ∈ g,

(b) fγγ′ = fγ +
∧2(θγ)( fγ′),

(c) (δ⊗ id)( fγ)+ [ f 1,3
γ , f 2,3

γ ] + cyclic permutations= 0.

1We view
∧2(V ) as a subspace of V⊗2.
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Group Lie bialgebras form a category. When 0 is fixed, one defines the category
of 0 Lie bialgebras as above.

A co-Poisson structure on a group cocommutative bialgebra (0,U, i) is a co-
Poisson structure δU : A→

∧2(U ) such that δU (Uγ)⊂
∧2(Uγ). Co-Poisson group

cocommutative bialgebras form a category.
Co-Poisson group universal enveloping algebras form a full subcategory of the

latter category. One defines the full subcategories of co-Poisson 0 cocommutative
bialgebras and co-Poisson 0 enveloping algebras as above.

A Poisson structure on a group commutative bialgebra (0,O, j) is a Poisson
bialgebra structure { · , · } :

∧2(O)→ O such that {Oγ,Oγ} ⊂ Oγ and {Oγ,Oγ′} = 0
if γ 6= γ′. Poisson group bialgebras form a category, and Poisson group FSH
algebras form a full subcategory when S = {provector spaces}. One defines the
full subcategories of Poisson 0 bialgebras and Poisson 0 FSH algebras as above.

Example. Let G be a Poisson–Lie (for example, algebraic) group, and let 0 ⊂ G
be a subgroup (which we view as an abstract group). We define θγ :=Ad(γ), where
Ad :G→AutLie(g) is the adjoint action. If P :G→

∧2(g) is the Poisson bivector
satisfying P(gg′) = P(g′)+

∧2(Ad(g′))(P(g)), then we set fγ := −P(γ). Then
(g, 0, f ) is a 0 Lie bialgebra.

Example. Let (g, rg) be a quasitriangular Lie bialgebra and let θ : 0→Aut(g, tg)
be an action of 0 on g by Lie algebra automorphisms preserving tg := rg + r2,1

g .
If we set fγ := θ⊗2

γ (r) − r , then (g, θ, f ) is a 0 Lie bialgebra (we call this a
quasitriangular 0 Lie bialgebra). For example, g is a Kac–Moody Lie algebra, and
0 = W̃ is a covering of the Weyl group of g; see [Majid and Soı̆bel’man 1994].

Proposition 1.3 [Enriquez and Halbout 2008]. (1) We have category (anti)equi-
valences

{group bialgebras} ↔ {co-Poisson group universal enveloping algebras}

↔ {Poisson group FSH algebras}.

(2) The (anti)equivalences above restrict to category (anti)equivalences

{0-bialgebras} ↔ {co-Poisson 0 universal enveloping algebras}

↔ {Poisson 0 FSH algebras}.

If (g, θg, δg) is a 0 Lie bialgebra, then the co-Poisson structure on U :=U (g)o0
is given by δU ([x])= [δg(x)] and δU ([γ])=−[ fγ]([γ]⊗[γ]). Here we also denote
by x 7→ [x] the natural map

∧2(g)→
∧2(U (g)o0).

Quantization of 0 Lie bialgebras. In a symmetric monoidal category S, let a 0
graded bialgebra be a bialgebra A (in S) equipped with a grading A =

⊕
γ∈0 Aγ ,

such that AγAγ′ ⊂ Aγγ′ and 1A(Aγ)⊂ A⊗2
γ .
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Assume that A is a 0 graded bialgebra in the category of topologically free
k[[h̄]]-modules and that A is quasicocommutative in that A0 := A/h̄ A is cocom-
mutative. Then we get a co-Poisson structure on A0. It is 0 graded in that
δA0((A0)γ) ⊂

∧2((A0)γ). We therefore get a classical limit functor, class, from
{0-graded quasicocommutative bialgebras} to {0-graded co-Poisson bialgebras}.

Definition 1.4. A quantization functor for 0 Lie bialgebras is a functor

{co-Poisson 0 universal enveloping algebras}

→ {0-graded quasicocommutative bialgebras},

which is right inverse to class.

Assume that (g, θ, f ) is a 0 Lie bialgebra. Let (Ue, ∗ ,1e) be the Etingof–
Kazhdan quantization of (g, δ); we will denote the multiplication by me. We get
this from [Enriquez and Halbout 2008]:

Proposition 1.5. There exist sets (Fγ,γγ′)γ,γ′∈0 of elements in U⊗2, with Fγ,γγ′ =
1+ h̄ f1+O(h̄2) and Alt(f1) =

∧2(θγ)( fγ′), sets (vγ,γγ′,γγ′γ′′)γ,γ′,γ′′∈0 of elements
in 1+ h̄2U , sets (Uγ,mγ,1γ)γ∈0 of bialgebras, and sets (iγ,γγ′)γ,γ′∈0 of algebra
morphisms from (Uγ,mγ) to (Uγγ′,mγγ′), such that

• 1γ = i⊗2
e,γ ◦Ad(Fe,γ) ◦1e ◦ i−1

e,γ ,

• (Fe,γ ⊗ 1) ∗ (1e⊗ id)(Fe,γ)= (1⊗Fe,γ) ∗ (id⊗1e)(Fe,γ),

• Fe,γγ′ = v⊗2
e,γ,γγ′ ∗ (i

⊗2
e,γ)
−1(Fγ,γγ′) ∗Fe,γ ∗1e(ve,γ,γγ′)

−1,

• ie,γγ′ = iγ,γγ′ ◦ ie,γ ◦Ad(v−1
e,γ,γγ′),

• ve,γγ′,γγ′γ′′ ∗ ve,γ,γγ′ = ve,γ,γγ′γ′′ ∗ i−1
e,γ(vγ,γγ′,γγ′γ′′).

Here to make the formulas shorter we have chosen to write the above equations
with e being the unit of the group 0; however, the formulas are still valid if we
replace e by any other element of the group and multiply γ, γγ′ and γγ′γ′′ on the
left by this element.

We then get a quantization of the 0 Lie bialgebra by setting U = S(g)⊗k0[[h̄]]
and putting [x |γ] := x ⊗ γ and [x ⊗ x ′ |γ, γ′] := (x ⊗ γ)⊗ (x ′⊗ γ′) ∈U⊗2.

There are unique linear maps m :U⊗2
→U and 1 :U →U⊗2 such that

m : [x |γ][x ′ |γ′] 7→ [x ∗ i−1
e,γ(θγ(x

′)) ∗ v−1
e,γ,γγ′ |γγ

′
],

1 : [x |γ] 7→ [1e(x) ∗F−1
e,γ |γ, γ].

The unit for U is [1|e], and the counit is the map [x |γ] 7→ δγ,eε(x).

Proposition 1.6 [Enriquez and Halbout 2008]. This defines a bialgebra structure
on U , quantizing the co-Poisson bialgebra structure induced by (g, θ, f ).
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2. Stacks and main results

It is well known that the semiclassical limit of a quantum group is a Poisson–
Lie group. In this paper, we attempt to answer, What is the semiclassical limit
corresponding to a “0 coboundary quantum group”? We hope to say that this
semiclassical object is a “stack” of Poisson–Lie groups G∗ over the classifying
stack B0 of the group 0. Toward this, we construct a stack of Poisson–Hopf
algebras over the groupoid 0o 0 (a transformation groupoid associated to the 0
right action on 0) and also a quantization of such a stack. Because of the existence
of the twisted cocycle, we expect that such an algebroid stack is not trivial. We
also hope that our construction will eventually lead to a complete description of
the semiclassical limit of a 0-coboundary quantum group.

Definition 2.1. A stack on M is

• an open cover of M =
⋃

Ui ,

• a sheaf of rings Ai on every Ui ,

• an isomorphism of sheaves of rings Gi j : A j |Ui∩U j → Ai |Ui∩U j for every i, j ,

• an invertible element ci jk ∈ Ai |Ui∩U j∩Uk for every i, j, k satisfying
(1) Gi j G jk = Ad(ci jk)Gik and
(2) ci jkcikl = Gi j (c jkl)ci jl for every i, j, k, l.

If two such data (U ′i , A′i ,G ′i j , c′i jk) and (U ′′i , A′′i ,G ′′i j , c′′i jk) are given on M , an
isomorphism between them is

• an open cover M =
⋃

Ui refining both {U ′i } and {U ′′i },

• isomorphisms Hi : A′i → A′′i on Ui , and

• invertible elements bi j of A′i |Ui∩U j such that

(1) G ′′i j = Hi Ad(bi j )G ′i j H−1
j and

(2) H−1
i (c′′i jk)= bi j G ′i j (b jk)ci jkb−1

ik .

Inspired by Definition 2.1, we define a stack over a discrete groupoid. Let G be
a discrete groupoid with its unit space G0.

Definition 2.2. A stack on G consists of

• a collection of rings Ax on every point x of G0,

• an isomorphism of sheaves of rings Tg : At (g)→ As(g) for every arrow g ∈G,
where s, t are the source and target maps of G, and

• an invertible element cg1,g2 ∈ As(g1) for every pair of composable arrows in G

such that
(1) Tg1 ◦Tg2 =Ad(cg1,g2)Tg1g2 , where by Ad(cg1,g2) we mean the conjugation

operator on As(g1) associated to the invertible element cg1,g2 , and



106 GILLES HALBOUT AND XIANG TANG

(2) cg1,g2cg1g2,g3 = Tg1(cg2,g3)cg1,g2g3 for every triple of composable arrows
g1, g2, g3 in G.

One can generalize the equivalence between stacks of Definition 2.1, but we
omit the details here.

Our main result will involve the notion of a stack of Poisson–Hopf algebras.

Definition 2.3. A stack of Poisson–Hopf algebras over a discrete groupoid G is

• a collection Ax of Poisson–Hopf algebras (Ax ,mx ,1x , { · , · }x)x∈G0 ,

• a Poisson morphism Tg : At (g)→ As(g) for g ∈G, and

• an invertible element cg1,g2 ∈ As(g1) for every pair of composable arrows in G

such that

(1) Tg1 ◦Tg2 =Ad(cg1,g2)Tg1g2 , where by Ad(cg1,g2), we mean the conjugation
operator on As(g1) associated to the invertible element cg1,g2 , and

(2) cg1,g2cg1g2,g3 = Tg1(cg2,g3)cg1,g2g3 for every triple of composable arrows
g1, g2, g3.

In what follows, we consider the groupoid 0o0 defined by the action of 0 on
0 itself by right multiplication. As 0 is discrete, 0o0 is a discrete groupoid. We
will use (γ, γγ′) to denote an arrow in 0o0 mapping from γ to γγ′. The product
of a pair of composable arrows (γ, γγ′) and (γγ′, γγ′γ′′) in 0 o 0 is (γ, γγ′γ′′).
For our main results, we associate an Poisson–Hopf algebra OG∗γ to each point γ in
the unit space of 0o0, and we will prove the existence of a stack of Poisson–Hopf
algebras over the groupoid 0o0.

Theorem 2.4. Associated to a coboundary Lie bialgebra (0, g, θg, δg, f ), there is
a stack of Poisson–Hopf algebras over the groupoid 0o0.

To be compatible with the result of Proposition 1.5, we will mainly prove the
following results.

• There is a set (OG∗γ )γ∈0 of Poisson–Hopf algebras (OG∗γ ,mγ,1γ, { · , · }γ)γ∈0.

• Associated to each arrow (γ, γγ′) in 0o0, there is a Poisson morphism jγ,γγ′
from OG∗γ to OG∗γγ′ .

• Associated to a pair of composable arrows (γ, γγ′) and (γγ′, γγ′γ′′) in 0o0,
there is an element uγ,γγ′,γγ′γ′′ of OG∗γ satisfying relations

(1) jγ,γγ′γ′′ = jγγ′,γγ′γ′′ ◦ jγ,γγ′ ◦ Ad?γ (u
−1
γ,γγ′,γγ′γ′′), where Ad?γ (u

−1
γ,γγ′,γγ′γ′′)

is the conjugation operator associated to u−1
γ,γγ′,γγ′γ′′ with respect to the

Baker–Campbell–Hausdorff product ?γ , and
(2) uγ,γγ′γ′′,γγ′γ′′γ′′′ ?γ uγ,γγ′,γγ′γ′′ = uγ,γγ′,γγ′γ′′γ′′′ ?γ j−1

γ,γγ′(uγγ′,γγ′γ′′,γγ′γ′′γ′′′).
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With the above data ((OG∗γ ,mγ,1γ, { · , · }γ)γ∈0, jγ,γγ′, uγ,γγ′,γγ′γ′′), if we define
Tγ,γγ′ : OG∗γγ′→ OG∗γ by Tγ,γγ′ = j−1

γ,γγ′ and c(γ,γγ′),(γγ′,γγ′γ′′) ∈ OG∗γ to be u−1
γ,γγ′,γγ′γ′′ ,

then we can easily check that we do obtain a stack of Poisson–Hopf algebras over
0o0 satisfying Definition 2.2.

We will then prove the existence of a stack of Hopf algebras quantizing this
stack of Poisson–Hopf algebras:

Theorem 2.5. There is a stack of Hopf algebras quantizing the stack of Poisson–
Hopf algebras over 0 o 0 defined in Theorem 2.4. Namely, we have a collection
of the following data:2

• (Aγ, ∗γ)γ∈0, which are deformation quantizations3 of the Poisson algebras
(OG∗γ , { · , · }γ)γ∈0,

• algebra morphisms iγ,γγ′ : Aγ→ Aγγ′ , and

• elements vγ,γγ′,γγ′γ′′ of Aγ such that evγ,γγ′,γγ′γ′′ := exp(vγ,γγ′,γγ′γ′′/h̄) satisfy
relations
(1) iγ,γγ′γ′′ = iγγ′,γγ′γ′′ ◦ iγ,γγ′ ◦Ad(ev−1

γ,γγ′,γγ′γ′′) and
(2) evγ,γγ′γ′′,γγ′γ′′γ′′′∗γevγ,γγ′,γγ′γ′′=evγ,γγ′,γγ′γ′′γ′′′∗γ i−1

γ,γγ′(evγγ′,γγ′γ′′,γγ′γ′′γ′′′).

From our setup in this section, one can see that the facts that 0 is a group and
that we have a transformation groupoid 0o0 are not crucial in our construction.
It is natural to expect a more general theory for quantization of a G-coboundary
Lie bialgebras with G a discrete groupoid or even just category.

3. A stack of Poisson bialgebras of functions on the formal group G∗

Let (g, θg, δg, f ) be a 0 Lie bialgebra. In this section we will construct a stack of
Poisson bialgebras of functions on a formal Poisson group G∗.

Notations. Let (g, δ) be a Lie bialgebra. Let (U (g),10, δ) be its corresponding
cocommutative co-Poisson bialgebra, which can be seen as the dual of the function
algebra of the formal Poisson–Lie group G corresponding to (g, δ). In the same
way, we will define OG∗ as the commutative Poisson–Hopf algebra of functions
of the formal Poisson–Lie group G∗ corresponding to the dual Lie bialgebra g∗.
We define by mG∗ ⊂ OG∗ the maximal ideal of this ring. If k is an integer ≥ 1,
we denote by O(G∗)k the ring of formal functions on (G∗)k , by m(G∗)k its maximal
ideal, and by mi

(G∗)k the i-th power of this ideal.
If f, g ∈m2

(G∗)k , then the series

f ? g = f + g+ 1
2{ f, g}+ · · · + Bn( f, g)+ · · ·

2Similarly to what we did for Theorem 2.4, we will take the inverse of iγ,γγ′ and evγ,γγ′,γγ′γ′′ to
construct the corresponding data for the stack of Hopf algebras.

3Deformation quantization here means that Aγ/h̄Aγ = OG∗γ , and 1
h̄ [ · , · ]∗γ = { · , · }γ + O(h̄).
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is convergent, where
∑

i≥1 Bi (x, y) is the Baker–Campbell–Hausdorff (BCH) se-
ries specialized to the Poisson bracket of m2

(G∗)k . The ? product defines a group
structure on m2

(G∗)k .
A useful technical lemma was proved in [Enriquez et al. 2003, page 2477]

for mg∗ and is still true for mG∗ :

Lemma 3.1. For any k ≥ 1 and n ≥ 2, f, h ∈m2
(G∗)k and g ∈mn

(G∗)k , one has

f ? (h+ g)= f ? h+ g and ( f + g) ? h = f ? h+ g modulo mn+1
(G∗)k .

When (g, θg, δg, f ) is a 0 Lie bialgebra we thus get a collection of Lie bialge-
bras and so a collection (OG∗γ ,mγ,1γ, { · , · }γ)γ∈0 of Poisson bialgebras. We will
denote by ?γ the corresponding BCH products.

“Lifts” and functional equations. We will now construct “lifts” f̃γ,γγ′ ∈ m⊗̂2
G∗ of

the elements
∧2(θγ)( fγ′), γ, γ′ ∈ 0 that will satisfy similar relation as Fγ,γγ′ in

Proposition 1.5. The proof in this subsection is a direct generalization of the results
in [Enriquez and Halbout 2007], and some parts are transcribed almost verbatim.

If f ∈ O⊗̂n
G∗ and P1, . . . , Pm are disjoint subsets of {1, . . . ,m}, one defines

f P1,...,Pn using the coproduct of OG∗ :

Definition 3.2. If I1, . . . , Im are disjoint ordered subsets of {1, . . . , n}, (U,1) is
a Hopf algebra, and a ∈U⊗m , we define

a I1,...,In = σI1,...,Im ◦ (1
|I1|⊗ · · ·⊗1|In |)(a),

with 1(1) = id, 1(2) =1, and 1(n+1)
= (id⊗n−1

⊗1) ◦1(n). Here

σI1,...,Im :U
⊗
∑

i |Ii |→U⊗n

is the morphism corresponding to the map {1, . . . ,
∑

i |Ii |} → {1, . . . , n} taking
(1, . . . , |I1|) to I1, (|I1| + 1, . . . , |I1| + |I2|) to I2, and so on.

When U is cocommutative, this definition depends only on the underlying sets
I1, . . . , Im .

Proposition 3.3. Let γ, γ′ be in 0. Then there exists f̃γ,γγ′ in m⊗̂2
G∗ , the image of

which in g⊗2 under the square of the projection mG∗ → mG∗/m
2
G∗ = g equals∧2(θγ)( fγ′), and such that

(1) ( f̃γ,γγ′ ⊗ 1) ?γ (1γ ⊗ id)( f̃γ,γγ′)= (1⊗ f̃γ,γγ′) ?γ (id⊗1γ)( f̃γ,γγ′).

The element f̃γ,γγ′ is unique up to the action of m2
G∗ by λ· f̃ =λ1?γλ

2?γ f̃ ?γ(−λ)12.
We will call f̃ a twist for 1γ .
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Proof. Let us construct f̃γ,γγ′ by induction, by constructing a convergent sequence
f̃ N
∈m⊗̂2

G∗ (N ≥ 2) satisfying (1) in m⊗̂3
G∗/(m

⊗̂3
G∗ ∩mN

(G∗)3), where mN
(G∗)3 is the N -th

power of m(G∗)3 . When N = 3, we take f̃ 2 to be any lift of
∧2(θγ)( fγ′) to m⊗̂2

G∗ ;
then (1) is automatically satisfied.

Let N be an integer no less than 3; assume that we have constructed f̃ N in m⊗̂2
G∗

satisfying (1) in m⊗̂3
G∗/(m

⊗̂3
G∗∩mN

(G∗)3). Set αN
1,2,3 := f̃ N

1,2?γ f̃ N
12,3− f̃ N

2,3?γ f̃ N
1,23. Then

αN
1,2,3 belongs to m⊗̂3

G∗ ∩mN
(G∗)3 , and in m⊗̂4

G∗/(m
⊗̂4
G∗ ∩mN+1

(G∗)4), we have the equalities

αN
12,3,4 = f̃ N

1,2 ?γ α
N
12,3,4 = f̃ N

1,2 ?γ f̃ N
12,3 ?γ f̃ N

123,4− f̃ N
1,2 ?γ f̃ N

3,4 ?γ f̃ N
12,34

= αN
1,2,3+ f̃ N

2,3 ?γ f̃ N
1,23 ?γ f̃ N

123,4− f̃ N
3,4 ?γ f̃ N

1,2 ?γ f̃ N
12,34

(using Lemma 3.1)

= αN
1,2,3+ f̃ N

2,3 ?γ f̃ N
1,23 ? f̃ N

123,4− f̃ N
3,4 ? ( f̃ N

2,34 ?γ f̃ N
1,234+α

N
1,2,34)

(using Lemma 3.1 and the definition of αN
1,2,34)

= αN
1,2,3+ f̃ N

2,3 ?γ (α
N
1,23,4+ f̃ N

23,4 ?γ f̃ N
1,234)

−αN
1,2,34− f̃ N

3,4 ?γ f̃ N
2,34 ?γ f̃ N

1,234

(using the definition of αN
1,23,4 and Lemma 3.1)

= αN
1,2,3+α

N
1,23,4+ ( f̃ N

3,4 ?γ f̃ N
2,34+α

N
2,3,4) ?γ f̃ N

1,234

−αN
1,2,34− f̃ N

3,4 ?γ f̃ N
2,34 ?γ f̃ N

1,234

(using the definition of αN
2,3,4 and Lemma 3.1)

= αN
1,2,3+α

N
1,23,4−α

N
1,2,34+α

N
2,3,4 (using Lemma 3.1).

Let us denote by αN the image of αN in (m⊗̂3
g∗ ∩ mN

(g∗)3
)/(m⊗̂3

g∗ ∩ mN+1
(g∗)3

) =

(S>0(g)⊗3)N . Then we get

αN
12,3,4+α

N
1,2,34 = α

N
1,2,3+α

N
1,23,4+α

N
2,3,4,

meaning that α is a cocycle for the subcomplex (S>0(g)⊗·, d) of the co-Hochschild
complex. By using [Drinfeld 1989, Proposition 3.11], one proves that the k-th
cohomology group of this subcomplex is

∧k(g), and that the antisymmetrization
map coincides with the canonical projection from the space of cocycles to the
cohomology group. For N = 3, the equations of Definition 1.2 imply Alt(α3)= 0,
and hence α3 is the coboundary of an element β

3
∈ (S>0(g)⊗2)3, and αN for N > 3

is the coboundary of an element βN
∈ (S>0(g)⊗2)N since the degree N part of the

cohomology vanishes. We then set f̃ N+1
:= f̃ N

+ βN , where βN
∈ m⊗̂2

G∗ ∩mN
(G∗)2

is a representative of βN . Then this f̃ N+1 satisfies (1) in m⊗̂3
G∗/(m

⊗̂3
G∗ ∩mN+1

(G∗)3).
The sequence ( f̃ N )N≥2 has a limit f̃ , which then satisfies (1).
The second part of the theorem can be proved in the same way or by analyzing

the choices for β
N

in the proof above. �
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Isomorphism of formal Poisson groups G∗γ ' G∗γγ′ .
Proposition 3.4. Let γ, γ′ ∈ 0 and let G∗γ and G∗γγ′ be the formal Poisson–Lie
groups associated to the corresponding Lie cobrackets. There exists an isomor-
phism of Poisson algebras jγ,γγ′ : OG∗γ ' OG∗γγ′ .

Proof. Let P :
∧2(OG∗γ )→OG∗γ be the Poisson bracket on OG∗γ corresponding to the

Lie–Poisson Poisson structure on G∗γ . Then (OG∗γ ,m0, P,1γ) is a Poisson formal
series Hopf (PFSH) algebra; it corresponds to the formal Poisson–Lie group G∗γ
equipped with its Lie–Poisson structure.

Set f̃ ?γ,γγ′1γ(a)= f̃γ,γγ′ ?γ 1γ(a) ?γ (− f̃γ,γγ′) for any a ∈ OG∗γ . It follows from
the fact that f̃γ,γγ′ satisfies Equation (1) that (OG∗γ ,m0, P, f̃ ?γ,γγ′1γ) is a PFSH
algebra.

Let us denote by PFSHA and LBA the categories of PSFH algebras and Lie bial-
gebras. We have a category equivalence c : PFSHA→ LBA, taking (O,m, P,1)
to the Lie bialgebra (c, µ, δ), where c :=m/m2 (here m⊂ O is the maximal ideal),
the Lie cobracket of c is induced by 1−12,1

: m→
∧2(m), and the Lie bracket

of c is induced by the Poisson bracket P :
∧2(m)→m. The inverse of the functor

c takes (c, µ, δ) to O= Ŝ(c) equipped with its usual product; 1 depends only on δ
and P depends on (µ, δ).

Then c restricts to a category equivalence cfd : PFSHAfd → LBAfd of sub-
categories of finite-dimensional objects (in the case of PFSH, we say that O is
finite-dimensional if and only if m/m2 is).

Let dual : LBAfd→ LBAfd be the duality functor. It is a category antiequiva-
lence; we have dual(g, µ, δ) = (g∗, δt , µt). Then dual ◦cfd : PFSHAfd→ LBAfd

is a category antiequivalence. Its inverse is the usual functor g 7→ U (g)∗. If G is
the formal Poisson–Lie group with Lie bialgebra g, one sets OG =U (g)∗.

Let us apply the functor c to (OG∗γ ,m0, P, f̃ ?γ,γγ′1γ). We obtain c=m/m2
= g;

the Lie bracket is unchanged with respect to the case f̃γ,γγ′ = 0, so it is the Lie
bracket of g; the Lie cobracket is δγγ′(x)= δγ+[

∧2(θγ)( fγ′), x⊗1+1⊗x] since the
reduction of f̃γ,γγ′ modulo (mG∗γ )

2
⊗̂mG∗γ+mG∗γ ⊗̂ (mG∗γ )

2 is equal to
∧2(θγ)( fγ′).

Then applying dual ◦cfd to (OG∗γ ,m0, P, f̃ ?γ,γγ′1γ), we obtain the Lie bialgebra
(g∗, δγγ′). So this PFSH algebra is isomorphic to the PFSH algebra of the formal
Poisson–Lie group G∗γγ′ . Let us call such a PFSH algebra morphism jγ,γγ′ .

In particular, the Poisson algebras OG∗γ and OG∗γγ′ are isomorphic. �

Remark 3.5. It is easy to check that the map g = mG∗γ/m
2
G∗γ
→ mG∗γγ′/m

2
G∗γγ′
= g

induced by the isomorphism jγ,γγ′ is the identity.

Remark 3.6. We have proved a result stronger than the existence of a Poisson
algebra morphism jγ,γγ′ : OG∗γ ' OG∗γγ′ . This morphism intertwines the coproducts
as

1γγ′ = j⊗2
γ,γγ′ ◦ f̃ ?γ,γγ′1γ ◦ j−1

γ,γγ′ .
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Composition of equivalences.

Lemma 3.7. For γ, γ′ in 0, the element ( j⊗2
γ,γγ′)

−1( f̃γγ′,γγ′γ′′) ?γ f̃γ,γγ′ is a solution
of the equation

(2) (g̃⊗ 1) ?γ (1γ ⊗ id)(g̃)= (1⊗ g̃) ?γ (id⊗1γ)(g̃).

Proof. One can check this directly. Notice that f̃γγ′,γγ′γ′′ is a twist for 1γγ′ . There-
fore ( j⊗2

γ,γγ′)
−1( f̃γγ′,γγ′γ′′) is a twist for

( j⊗2
γ,γγ′)

−1
◦1γγ′ ◦ jγ,γγ′ = f̃ ?γ,γγ′1γ.

Accordingly the element ( j⊗2
γ,γγ′)

−1( f̃γγ′,γγ′γ′′) ?γ f̃γ,γγ′ is a twist for 1γ . �

Note that the image of ( j⊗2
γ,γγ′)

−1( f̃γγ′,γγ′γ′′) ?γ f̃γ,γγ′ under the square of the
projection mG∗→mG∗/m

2
G∗ = g equals∧2(θγ)( fγ′)+

∧2(θγγ′)( fγ′′)=
∧2(θγ)( fγ′ +

∧2(θγ′)( fγ′′))=
∧2(θγ)( fγ′γ′′).

Thanks to Proposition 3.3, there exists an element uγ,γγ′,γγ′γ′′ in 1+m2
G∗ such that

f̃γ,γγ′γ′′ = u⊗2
γ,γγ′,γγ′γ′′ ?γ ( j⊗2

γ,γγ′)
−1( f̃γγ′,γγ′γ′′) ?γ f̃γ,γγ′ ?γ 1γ(uγ,γγ′,γγ′γ′′)−1.

Finally, in the previous section, we defined jγ,γγ′ , jγγ′,γγ′γ′′ and jγ,γγ′γ′′ such that

1γγ′γ′′ = j⊗2
γ,γγ′γ′′ ◦ f̃ ?γ,γγ′γ′′1γ ◦ j−1

γ,γγ′γ′′

= j⊗2
γ,γγ′γ′′

◦ (u⊗2
γ,γγ′,γγ′γ′′ ?γ ( j⊗2

γ,γγ′)
−1( f̃γγ′,γγ′γ′′) ?γ f̃γ,γγ′ ?γ 1γ(uγ,γγ′,γγ′γ′′)−1)?1γ

◦ j−1
γ,γγ′γ′′

= ( jγ,γγ′γ′′ ◦Ad?γ (uγ,γγ′,γγ′γ′′))
⊗2
◦ (( j⊗2

γ,γγ′)
−1( f̃γγ′,γγ′γ′′) ?γ f̃γ,γγ′)?1γ
◦ ( jγ,γγ′γ′′ ◦Ad?γ (uγ,γγ′,γγ′γ′′))

−1

= ( jγ,γγ′γ′′ ◦Ad?γ (uγ,γγ′,γγ′γ′′) ◦ j−1
γ,γγ′ ◦ j−1

γγ′,γγ′γ′′)
⊗2
◦1γγ′γ′′

◦ ( jγ,γγ′γ′′ ◦Ad?γ (uγ,γγ′,γγ′γ′′) ◦ j−1
γ,γγ′ ◦ j−1

γγ′,γγ′γ′′)
−1.

By the equivalence cfd between the category PFSHAfd and LBAfd, we get

jγ,γγ′γ′′ = jγγ′,γγ′γ′′ ◦ jγ,γγ′ ◦Ad?γ (u
−1
γ,γγ′,γγ′γ′′).

Cocycle relation for the uγ,γγ′,γγ′γ′′ .

Proposition 3.8. For any γ, γ′, γ′′, γ′′′ in 0, we have

uγ,γγ′γ′′,γγ′γ′′γ′′′ ?γ uγ,γγ′,γγ′γ′′ = uγ,γγ′,γγ′γ′′γ′′′ ?γ j−1
γ,γγ′(uγγ′,γγ′γ′′,γγ′γ′′γ′′′).
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Proof. To shorten the notation, we will write f̃1,2 for f̃γ,γγ′ , f̃2,3 for f̃γγ′,γγ′γ′′ and so
on, and the same for the j · ,· and the u · ,· ,· . We will omit the BCH product ?γ and
write ? for the product ?γγ′ ,10 for the coproduct1γ , and1 for the coproduct1γγ′ .
We will also write j ( · ) instead of j⊗2( · ) when no confusion is possible.

We have by definition f̃1,410u1,3,4 = u⊗2
1,3,4 j−1

1,3 ( f̃3,4) f̃1,3. Multiplying this on
the right by 10u1,2,3 and using the fact that f̃1,310u1,2,3 = u⊗2

1,2,3 j−1
1,2 ( f̃2,3) f̃1,2, we

get
f̃1,410u1,3,410u1,2,3 = u⊗2

1,3,4 j−1
1,3 ( f̃3,4)u⊗2

1,2,3 j−1
1,2 ( f̃2,3) f̃1,2.

Using now that j−1
1,3 ( · )u1,2,3 = u1,2,3 j−1

1,2 ◦ j−1
2,3 ( · ), we get

(3) f̃1,410u = u⊗2 j−1
1,2 ◦ j−1

2,3 ( f̃3,4) j−1
1,2 ( f̃2,3) f̃1,2,

where u = u1,3,4u1,2,3. On the other hand, we have

f̃2,4 ?1u2,3,4 = u⊗2
2,3,4 ? j−1

2,3 ( f̃3,4) ? f̃2,3.

Using the Poisson algebra morphism j1,2 and that j−1
1,2 ◦1= f̃1,210( j−1

1,2 ( · )) f̃ −1
1,2 ,

we get

(4) j−1
1,2 ( f̃2,4) f̃1,210( j−1

1,2 (u2,3,4)) f̃ −1
1,2 = j−1

1,2 (u
⊗2
2,3,4) j−1

1,2 ◦ j−1
2,3 ( f̃3,4) j−1

1,2 ( f̃2,3).

From f̃1,410u1,2,4 = u⊗2
1,2,4 j−1

1,2 ( f̃2,4) f̃1,2, using (4) we get

(5) f̃1,410(u′)= (u′)⊗2 j−1
1,2 ◦ j−1

2,3 ( f̃3,4) j−1
1,2 ( f̃2,3) f̃1,2,

where u′ = u1,2,4 j−1
1,2 (u2,3,4). Then (3) and (5) imply that if w = u(u′)−1, then

f̃1,410(w) = w f̃1,4, and so if w′ = j1,4(w), then 10(w
′) = w′. Recall that

w′ ∈ 1+m2
G∗ by similar properties of ui, j,k . Suppose that w′ 6= 1 and set i ≥ 2

the largest possible i such that w′ is in 1+mi
G∗ but not in 1+mi+1

G∗ . Let w′ be the
projection of w′ in mi

G∗/m
i+1
G∗ . The relation 10(w

′) = w′ implies that w′ is in g

and so in m1
G∗ which is a contradiction. Thus we have proved that w=w′ = 1 and

so that u = u′. �

4. Quantization

Duality of QUE and QFSH algebras. In this subsection, we recall some facts from
[Drinfeld 1987], whose proofs can be found in [Gavarini 2002]. Let us denote
by QUE the category of quantized universal enveloping (QUE) algebras and by
QFSH the category of quantized formal series Hopf (QFSH) algebras. We denote
by QUEfd and QFSHfd the subcategories corresponding to finite dimensional Lie
bialgebras.

We have contravariant functors

QUEfd→QFSHfd, U 7→U∗ and QFSHfd→QUEfd, O 7→ O◦.
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These functors are inverse to each other. Here U∗ is the full topological dual of U ,
that is, the space of all continuous (for the h̄-adic topology) K[[h̄]]-linear maps
U → K[[h̄]], and O◦ is the space of continuous K[[h̄]]-linear forms O→ K[[h̄]],
where O is equipped with the m-adic topology (here m⊂ O is the maximal ideal).

We also have covariant functors

QUE→QFSH, U 7→U ′ and QFSH→QUE, O 7→ O∨.

These functors are also inverse to each other. Here U ′ is a subalgebra of U , while
O∨ is the h̄-adic completion of

∑
k≥0 h̄−kmk

⊂ O[1/h̄].
We also have canonical isomorphisms (U ′)◦ ' (U∗)∨ and (O∨)∗ ' (O◦)′.
If a is a finite-dimensional Lie bialgebra and U =Uh̄(a) is a QUE algebra quan-

tizing a, then U∗ = OA,h̄ is a QFSH algebra quantizing the Poisson–Lie group A,
with Lie bialgebra a, and U ′=OA∗,h̄ is a QFSH algebra quantizing the Poisson–Lie
group A∗, with Lie bialgebra a∗. If now O= OA,h̄ is a QFSH algebra quantizing A,
then O◦ = Uh̄(a) is a QUE algebra quantizing a, and O∨ = Uh̄(a

∗) is a QFSH
algebra quantizing a∗.

We now compute these functors explicitly in the case of cocommutative QUE
and commutative QFSH algebras. If U =U (a)[[h̄]] with cocommutative coproduct
(where a is a Lie algebra), then U ′ is a completion of U (h̄a[[h̄]]); this is a flat
deformation of Ŝ(a) equipped with its linear Lie–Poisson structure. If G is a formal
group with function ring OG , then O := OG[[h̄]] is a QFSH algebra, and O∨ is
a commutative QUE algebra; it is a quantization of S(g∗), with a commutative
product, a cocommutative coproduct, and a co-Poisson structure induced by the
Lie bracket of g.

Proof that “twists” can be made admissible.

Definition 4.1. An element x in a QUE algebra U is admissible if x ∈ 1+ h̄U , and
if h̄ log x is in U ′ ⊂U .

In this subsection, we will prove that for γ, γ′ in 0, the twist Fγ,γγ′ defined in
Proposition 1.5 is twist equivalent to an admissible one.

Proposition 4.2. Let Fγ,γγ′ be the element in U⊗2 introduced in Proposition 1.5.
Then there exists elements bγ,γγ′ in U such that

bz
γ,γγ′Fγ,γγ′ := b⊗2

γ,γγ′Fγ,γγ′1γ(b
−1
γ,γγ′)

is admissible.

Proof. Let us denote F0=Fγ,γγ′ . We will follow the proof of [Enriquez and Halbout
2007, Proposition 5.2]. Let us construct b = bγ,γγ′ as a product · · · b2b1, where
bn ∈ 1+ h̄nU0, so that if Fn := bn · · · bz

1 F0, then h̄ log(Fn)∈U ′⊗̂2
0 + h̄n+2U ⊗̂2

0 ; here
U0 denotes the augmentation ideal.
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We have already h̄ log(F0) ∈ h̄2U ⊗̂2
0 .

Expand F0 = 1⊗2
+ h̄ f1+ · · · . Then Alt(f1) = r . Moreover, the coefficient of

h̄ in F1,2
0 F12,3

0 = F2,3
0 F1,23

0 yields d(f1) = 0, where d : U (g)⊗2
0 → U (g)⊗3

0 is the
co-Hochschild differential. It follows that f1 = r + d(a1) for some a1 ∈ U (g)0.
Then if we set b1 := exp(h̄a1) and F1 = bz

1 F0, we get F1 ∈ 1⊗2
+ h̄r + h̄2U ⊗̂2

0 .
Then h̄ log(F1) ∈ h̄2r + h̄3U ⊗̂2

0 ⊂U ′⊗̂2
0 + h̄3U ⊗̂3

0 .
Assume that for n ≥ 2, we have constructed b1, . . . , bn−1 such that

αn−1 := h̄ log(Fn−1) ∈U ′⊗̂2
0 + h̄n+1U ⊗̂2

0 .

Let us recall two technical lemmas from [Enriquez and Halbout 2007]:

Lemma 4.3. The quotient (U ′+h̄nU )/(U ′+h̄n+1U ) identifies with U (g)/U (g)≤n .
In the same way, the quotient (U ′⊗̂k

0 + h̄nU ⊗̂k
0 )/(U ′⊗̂k

0 + h̄n+1U ⊗̂k
0 ) identifies with

U (g)⊗k
0 /(U (g)⊗k

0 )≤n and the quotient (U ′⊗̂k
0 + h̄nU ⊗̂k

0 )g/(U ′⊗̂k
0 + h̄n+1U ⊗̂k

0 )g of
g-invariant subspaces identifies with (U (g)⊗k

0 )g/(U (g)⊗k
0 )

g
≤n .

Lemma 4.4. Assume that n ≥ 2. If f1, f2 ∈ (U ′0)
2
+ h̄n+1U0 and g, h ∈ h̄nU0, then

( f1+g) ?h̄ ( f2+h)= g+h modulo (U ′0)
2
+ h̄n+1U0, where ?h̄ is the CBH product

for the Lie bracket [a, b]h̄ = [a, b]/h̄.

Let us denote by α the image of the class of αn−1 in U (g)⊗2
0 /(U (g)⊗2

0 )≤n+1

under the isomorphism of this space with

(U ′⊗̂2
0 + h̄n+1U ⊗̂2

0 )/(U ′⊗̂2
0 + h̄n+2U ⊗̂2

0 )

(see Lemma 4.3). Let α∈U (g)⊗2
0 be a representative of α. Then αn−1=α

′
+h̄n+1α,

where α′ ∈U ′⊗̂2
0 + h̄n+2U ⊗̂2

0 . Then the twist equation gives

(−α′− h̄n+1α)1,23 ?h̄ (−α
′
− h̄n+1α)2,3 ?h̄ (α

′
+ h̄n+1α)1,2 ?h̄ (α

′
+ h̄n+1α)12,3

= 0.

By Lemma 4.4, the image of this equality in (U ⊗̂3
+h̄n+1U ′⊗̂3)/(U ⊗̂3

+h̄n+2U ′⊗̂3)'

U (g)⊗3/(U (g)⊗3)≤n+1 is d(α) = 0, where d is the co-Hochschild differential on
the quotient U (g)⊗ ·0 /(U (g)⊗ ·0 )≤n+1. Since n ≥ 2, the relevant cohomology group
vanishes, so α = d(β), where β ∈U (g)0/(U (g)0)≤n+1. Let β ∈U (g)0 be a repre-
sentative of β and set

bn := exp(h̄nβ), Fn := bz
n Fn−1, αn := h̄ log(Fn).

Then αn = (h̄n+1β)1?h̄ (h̄n+1β)2?h̄ αn−1?h̄ (−h̄n+1β)12. According to Lemma 4.4,
the image of αn in

(U ⊗̂2
0 + h̄n+1U ′⊗̂2

0 )/(U ⊗̂2
0 + h̄n+2U ′⊗̂2

0 )'U (g)⊗2
0 /(U (g)⊗2

0 )≤n+1

is α− d(β) = 0. So αn belongs to U ⊗̂2
0 + h̄n+2U ′⊗̂2

0 , as required. This proves the
induction step. �
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The proof of Theorem 2.5. Thanks to the previous subsection, we now know that
there exists an element bγ,γγ′ in U such that bz

γ,γγ′Fγ,γγ′ := b⊗2
γ,γγ′Fγ,γγ′1γ(b

−1
γ,γγ′)

is admissible. Let us define

F′γ,γγ′ = bz
γ,γγ′Fγ,γγ′, i′γ,γγ′ = iγ,γγ′ ◦Ad(b−1

γ,γγ′)

and
v′γ,γγ′,γγ′γ′′ = bγ,γγ′γ′′vγ,γγ′,γγ′γ′′ i−1

γ,γγ′(b
−1
γγ′,γγ′γ′′)b

−1
γ,γγ′ .

Clearly, F′γ,γγ′ , i′γ,γγ′ and v′γ,γγ′,γγ′γ′′ still satisfy the conclusion of Proposition 1.5.
Applying the functor QUE → QFSH explained on page 112 to the algebras

(Uγ,γ ,1γ), we get algebras (U ′γ, ∗γ,1γ), which are quantizations of the Poisson
algebras (OG∗γ , { · , · }γ). Since the twists F′γ,γγ′ are admissible, the algebra mor-
phisms i′γ,γγ′ restrict to the QFSH algebras U ′γ . Then Theorem 2.5 will follow
from this:

Proposition 4.5. The elements v′γ,γγ′,γγ′γ′′ are admissible.

Proof. Let us denote v= v′γ,γγ′,γγ′γ′′ . Suppose v is not admissible and let n be the
bigger i such that α0 := h̄ log(v)∈U0+ h̄n+1U0. By the assumption on v, we know
that n ≥ 2. Let us denote by α the image of the class of α0 in U (g)0/(U (g)0)≤n+1

under the isomorphism of this space with (U0 + h̄n+1U0)/(U0 + h̄n+2U0); see
Lemma 4.3. Let α ∈U (g)0 be a representative of α. Then α0 = α

′
+ h̄n+1α, where

α′ ∈U0+ h̄n+2U0. Let f , f ′ and f ′′ be respectively the h̄ logs of F′γ,γγ′ , F′γγ′,γγ′γ′′
and Fγ,γγ′γ′′ . Then the compatibility equation for composition of twists gives

f ′′ = (α′+ h̄n+1α)⊗2 ?h̄ i−1
γ,γγ′( f ′) ?h̄ f ?h̄ (−α

′
− h̄n+1α)12

= 0.

According to Lemma 4.4, the image of this equation in

(U ⊗̂2
+ h̄n+1U ′⊗̂2)/(U ⊗̂2

+ h̄n+2U ′⊗̂2)'U (g)⊗2/(U (g)⊗2)≤n+1

is d(α)= 0. So α ∈ g, which is a contradiction with n ≥ 2. �

5. Example of simple group with action of the Weyl group

Quantization of Majid and Soı̆bel’man. We start by briefly recalling Majid and
Soı̆bel’man’s approach [1994] to the quantum Weyl group. Let g be a complex sim-
ple Lie algebra, and let Uh̄(g) be the natural deformation of the universal envelop-
ing algebra U (g). Lustig [1990] and Soı̆bel’man [1991] first independently noticed
that a simple reflection w in the Weyl group W of g defines an automorphism αw
on Uh̄(g). Then one can extend Uh̄(g) by elements w with αw(g)=wgw−1 for all
simple reflections in W . The extended algebra is called the “quantum Weyl group”
and denoted by Ũh̄(g). In [Kirillov and Reshetikhin 1990] and [Soı̆bel’man 1991],
this algebra is used to construct explicit solutions to the Yang–Baxter equation.
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Majid and Soı̆bel’man also discovered the bicrossed product structure on Ũh̄(g).
For 1 ≤ i, j ≤ rank(g), let wi be simple reflections in W , and let t j be elements
in the maximal torus corresponding to φ j

(
−1 0

0 −1

)
with φ j : sl2 ↪→ g embedding to

the j-th vertex of the Dynkin diagram. Then define W̃ to be the group generated
by wi and t j , which is a covering of the Weyl group W with the kernel isomorphic
to the direct sum of k-copies of Z2, where k = rank(g). The quantum Weyl group
Ũh̄(g) is proved in [Majid and Soı̆bel’man 1994, Corollary 3.4] to be isomorphic
to the bicrossed product

kW̃ψ
FGα,χ Uh̄(g),

defined in terms of linear maps

α :Uh̄(g)⊗ kW̃ →Uq(g), a⊗wt 7→ t−1αw(a)t,

χ : kW̃ ⊗ kW̃ →Uh̄(g), w1t1⊗w2t2 7→ x−1,

ψ : kW̃ →Uh̄(g)⊗Uh̄(g), wt 7→ (w−1
⊗w−1)1w.

Here, x is an element in Uh̄(g) such that αw1w2(αw1 (t1)t2) = αw1t1αw2t2 Adx−1 with
x ∈Uh̄(g).

Proposition 5.1. The quantum Weyl group Ũh̄(g) is a quantization of the 0 = W̃
Lie bialgebra (g, [ · , · ], δ), where (g, [ · , · ], δ) is the Lie bialgebra structure on g

corresponding to the deformation Uh̄(g), and W̃ acts on g as the Weyl group (t acts
on g by adjoint action), and fγ =

∧2(γ) ◦ δ ◦ γ−1
− δ for γ ∈ W̃ .

Proof. Inspired by the above bicrossed product structure on Ũh̄(g), we introduce
the 0 quantized universal enveloping algebras for 0 = W̃ generated as follows:

• Set (Uh̄(g)γ,mγ,1γ) = (Uh̄(g),m,1γ), where m is the canonical multi-
plication on Uh̄(g) and 1γ = α( · , γ)⊗2

◦ Ad(ψ(γ)) ◦ 1 ◦ α−1( · , γ) with
1 the canonical coproduct on Uh̄(g).

• Define iγ,γγ′ : (Uh̄(g),mγ)→ (Uh̄(g),mγγ′) by ie,γ=α( · ⊗γ) :Uh̄(g)→Uh̄(g)

and iγ,γγ′ = ie,γ′ .

• Set Fe,γ ∈ Uh̄(g)
⊗2 equal to ψ(γ) and put Fγ,γγ′ = Fe,γ′ . By [Majid and

Soı̆bel’man 1994, Lemma 3.3], we have

Fe,wi t = ψ(wi )= e
1
2 h̄ Hi⊗Hi/(αi ,αi )(Ri )

−1
12 = 1+ h̄ f1+ O(h̄2)

for any reflection wi ∈W . (Here (Hi , X+i , X−i ) corresponds to the embedding
φi : sl2 ↪→ g for the i-th root αi with normal (αi , αi ).) Because the first order
part of e

1
2 h̄ Hi⊗Hi/(αi ,αi ) is symmetric, the antisymmetrization of f1 is equal to

the antisymmetrization of the first order term of (Ri )
−1
21 , which is equal to the

definition of fwi by the asymptotic expansion of Ri . This result extends to an
arbitrary element γ simply because wi generates W .
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• Set ve,γ,γγ′ = χ(γ, γγ
′) ∈ Uh̄(g)

⊗2. By the definition of χ(γ, γγ′), we can
choose v to be an element in 1+ h̄2Uh̄(g) because the α action is associative
up to the h̄-linear terms by [Kirillov and Reshetikhin 1990, Formula (13)] and
[Levendorskiı̆ and Soı̆bel’man 1990, Prop 1.4.10].

It is easy to check that the cocycle conditions for α, χ,ψ , and their compatibili-
ties are equivalent to the conditions for (Uh̄,m,1γ, iγ,γγ′, Fγ,γγ, vγ,γγ′,γγ′γ′′) to be
a 0 = W̃ quantized universal enveloping algebra. Therefore, the corresponding 0
quantized universal enveloping algebra is isomorphic to Ũh̄(g). �

Admissibility of the twists.

Corollary 5.2. The twists Fγ,γγ′ and vγ,γγ′,γγ′γ′′ defined in Proposition 5.1 are
admissible. Therefore, the quantum Weyl group defines a stack of formal series
Hopf algebras quantizing the corresponding stack of Poisson–Hopf algebras dual
to (W̃ , g, [ · , · ], δ, fγ).

Proof. We look at the formulas for Fe,wt . By the one for ψ , if wi is a simple
reflection, then Fe,wi t = e

1
2 h̄ Hi⊗Hi/(αi ,αi )(Ri )

−1
12 . Taking h̄ log on Fe,w, we have

h̄2 1
2 Hi ⊗ Hi/(αi , αi )+ h̄ log((Ri )

−1
12 ).

The first term is primitive as Hi is primitive, and the second term h̄ log((Ri )
−1
12 )

is primitive because h̄ log(Ri ) is primitive, which was proved in [Enriquez and
Halbout 2003, Theorem 0.1]. Therefore, we conclude that Fe,wi t is admissible
whenw is a simple reflection. This property extends to a general element γ directly
by products.

By Proposition 4.5, we also know that v is admissible because F is admissible.
We conclude the corollary by Theorem 2.5. �
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