Pacific Journal of Mathematics

TRANSITIVE ACTIONS AND EQUIVARIANT COHOMOLOGY AS AN UNSTABLE **A^{*}-ALGEBRA**

VOLKER HAUSCHILD

Volume 245 No. 1 March 2010

TRANSITIVE ACTIONS AND EQUIVARIANT COHOMOLOGY AS AN UNSTABLE A^{*}-ALGEBRA

VOLKER HAUSCHILD

A graded \mathbb{F}_p -algebra *A* with action of the Steenrod algebra \mathcal{A}^* is said to be Steenrod presentable if there is a polynomial ring $P = \mathbb{F}_p[u_1, \ldots, u_n]$ with an action of \mathcal{A}^* and an \mathcal{A}^* -invariant ideal $I \subset P$ such that $A = P/I$ and the induced action of A^* on P/I is the given one. It is shown that an action φ of a simple compact Lie group G on a homogeneous Kähler manifold $X = G/H$ has a Steenrod presentable equivariant cohomology for almost all primes *p* if and only if φ is conjugate to the standard action by left translation. Application to the case $H = T$ a maximal torus reproduces a former result of the author: namely, that every topological *G*-action on *G*/*T* is conjugate to the standard action by left translation with isotropy group a maximal torus.

1. Introduction

Suppose *X* to be a space, and let $A = H^*(X; \mathbb{F}_p)$ be its cohomology with coefficients in the prime field F*p*. Then on *A* there is an unstable action of the *p*-Steenrod a[lgebra](#page-9-0) \mathcal{A}^* . On t[he other han](#page-10-0)d, given a presentation $A = P/I$, for an ideal $I \subset P$ where *P* is the polynomial algebra $P = \mathbb{F}_p[h_1, \ldots, h_n]$, with deg $h_i = d_i$, one might ask whether the given action of \mathcal{A}^* is induced by an action of \mathcal{A}^* on the polynomial algebra that leaves the defining ideal stable. In the case $p \neq 2$ and d_i prime to p for all *i*, a necessary condition condition is given by a theorem of Adams and Wilkerson [1980]; see also [[Smith 1995,](#page-10-0) [Theor](#page-10-1)em 10.5.1]. In particular it follows from this theorem that the polynomial ring *P* must be the invariant ring

$$
P = \mathbb{F}_p[x_1, \ldots, x_n]^W, \quad \deg x_i = 2,
$$

where $W \subset GL(n, \mathbb{F}_p)$ is a finite group of order $d_1 \ldots d_n$ generated by pseudoreflections acting on $\mathbb{F}_p[x_1, \ldots, x_n] = \mathbb{F}_p[V]$ in the standard way [Smith 1995; 1997].

MSC2000: primary 57S10, 57S25; secondary 55S10.

Keywords: transitive actions, Steenrod algebra, equivariant cohomology, homogeneous Kähler manifolds.

This implies that the degrees *dⁱ* can only assume certain precise values, which are exactly the Weyl–Coxeter degrees of the group *W*; see for example [Smith 1995, p. 199].

In the following, we say that the \mathbb{F}_p -algebra *A* with an unstable action of \mathcal{A}^* is *Steenrod presentable* if there is a polynomial ring $P = \mathbb{F}_p[x_1, \ldots, x_n]^W$ with the standard action of the Steenrod algebra \mathcal{A}^* and an \mathcal{A}^* -stable ideal $I \subset P$ such that $A \cong P/I$ with the induced A^* -module structure.

As the main example of Steenrod presentable \mathbb{F}_p -algebras, we consider the cohomology of homogeneous spaces $X = G/H$, where $H \subset G$ is a closed connected maximal rank subgroup of a compact connected Lie group *G*. Then there is the standard fibration

$$
G/H \longrightarrow B_H \longrightarrow B_G,
$$

where B_K is the classifying space for the topological group *K*. If $H \subset G$ is a subgroup of maximal rank and if nor *G* neither *H* have *p*-torsion, the ring $H^*(G/H; \mathbb{F}_p)$ has a presentation

$$
H^*(G/H; \mathbb{F}_p) \cong \frac{H^*(B_H; \mathbb{F}_p)}{H^*_+(B_G; \mathbb{F}_p) \cdot H^*(B_H; \mathbb{F}_p)}
$$

such that the action of the Steenrod algebra \mathcal{A}^* on $H^*(G/H; \mathbb{F}_p)$ is induced by the standard action of \mathcal{A}^* on the ring $H^*(B_H; \mathbb{F}_p)$.

So, throughout this note we shall assume that $p \neq 2$ and that B_G and B_H do not have *p*-torsion for all primes to be considered.

Suppose a compact connected Lie group K is acting in a reasonable way on $X = G/H$. Then *X* is totally nonhomologous to zero in the fibration

$$
X \longrightarrow X_K \longrightarrow B_K,
$$

where $X_K = E_K \times_K X$ is the Borel construction. Write $H^*(X; \mathbb{F}_p) = P/I_0$, $P = \mathbb{F}_p[h_1, \ldots, h_n]$, where the ideal $I_0 \subset P$ is generated by a set g_1, \ldots, g_n of multiplicative generators of the invariant ring $R_G = H^*(B_G; \mathbb{F}_p) \subset H^*(B_H; \mathbb{F}_p)$. As can be shown in the same way as in the proof of [Hauschild 1986, Theorem 1.1], the equivariant cohomology H_K^* $K^*(X; \mathbb{F}_p) = H^*(X_K; \mathbb{F}_p)$ is a graded algebra over $R = H^*(B_K; \mathbb{F}_p)$, which can be written as H_K^* $K_K^*(X; \mathbb{F}_p) = P_R/I$, where $P_R = R \otimes P$ and *I* is an ideal generated by homogeneous elements of the form $1 \otimes g_j - r_j$, where the r_j are elements of the ideal $R_+ P_R$ generated by the augmentation ideal of *R*. On the ring $P_R = H^*(B_K; \mathbb{F}_p) \otimes_{\mathbb{F}_p} H^*(B_H; \mathbb{F}_p)$ there is the natural unstable A∗ -module structure and the equivariant cohomology is *Steenrod presentable* if *I* is stable under this \mathcal{A}^* -action inducing the given \mathcal{A}^* -action on the quotient. Moreover, since the isomorphism $H^*(X; \mathbb{F}_p) \cong H_K^*$ * $(K; \mathbb{F}_p)/H^*_+(B_K; \mathbb{F}_p)H^*_K$ $K^*(X; \mathbb{F}_p)$ is induced by the inclusion $i: X \to X_K$ of the fiber, the Steenrod presentation of

H ∗ $K^*(X; \mathbb{F}_p)$ induces the Steenrod presentation of $H^*(X; \mathbb{F}_p)$. For more information on Steenrod powers acting on equivariant cohomology, see [Allday and Puppe 1993; Quillen 1971].

2. Steenrod powers and rational cohomology

Observe that $X = G/H$ is now the fiber of two fibrations, and that in both fibrations it is totally nonhomologous to zero. Consequently there is the canonical epimorphism j^* : $H^*(B_H; \mathbb{F}_p) \to H^*(X; \mathbb{F}_p)$ induced by the inclusion $j: X \to B_H$ of the fiber. Moreover, let *i*^{*} be induced by the inclusion *i* : $X \rightarrow X_K$ of the fiber in the Borel fibration. Both maps commute of course with the respective A^* -module structures.

Observation 1. The equivariant cohomology $H_K^*(X; \mathbb{F}_p)$ is Steenrod presentable *if and only if there is a homomorphism* $J: H^*(B_H; \mathbb{F}_p) \to H_K^*$ $K^*(X; \mathbb{F}_p)$ *making the following diagram commute*:

Proof. Let π : $X_K \to B_K$ be the projection in the Borel fibration, and then consider the homomorphism $\pi^* \otimes J : H^*(B_K; \mathbb{F}_p) \otimes H^*(B_H; \mathbb{F}_p) \to H_K^*$ $K^*(X; \mathbb{F}_p)$. This map is surjective and commutes with the respective \mathcal{A}^* -actions. Let $I = \text{Ker}(\pi^* \otimes J)$; then H_K^* $K(K; \mathbb{F}_p) = (H^*(B_K; \mathbb{F}_p) \otimes H^*(B_H; \mathbb{F}_p))/I$ is a Steenrod presentation.

On the other hand, given a Steenrod presentation

$$
H_K^*(X; \mathbb{F}_p) = (H^*(B_K; \mathbb{F}_p) \otimes H^*(B_H; \mathbb{F}_p))/I,
$$

and $J: H^*(B_H; \mathbb{F}_p) \to H_K^*$ $_K^*(X; \mathbb{F}_p)$ given by

$$
H^*(B_H; \mathbb{F}_p) \ni \xi_H \mapsto 1 \otimes \xi_H \mod I,
$$

then *J* commutes with the \mathcal{A}^* -actions and $i^* \circ J = j^*$.

Let *X*, *X'* be spaces such that the rational cohomology rings $H^*(X; \mathbb{Q})$ and $H^*(X'; \mathbb{Q})$ are finitely generated as graded \mathbb{Q} -algebras. Then we have to define what it means for a homomorphism θ : $H^*(X; \mathbb{Q}) \leftarrow H^*(X; \mathbb{Q})$ to commute with Steenrod powers for almost all primes *p*. Let $y_1, \ldots, y_m \in H^*(X'; \mathbb{Q})$ be a set of multiplicative generators; similarly, let $x_1, \ldots, x_n \in H^*(X; \mathbb{Q})$ be a set of multiplicative generators. Then $\theta(y_i) = p_i(x_1, \dots, x_n) \in H^*(X; \mathbb{Q})$ are polynomials. Let Prime_{θ} be the (finite) subset of primes which appear as divisors of the denominators of the coefficients of the p_i . Then for all $p \notin \text{Prime}_{\theta}$ there are unique

homomorphisms θ_p , $\bar{\theta}_p$ which make the following diagram commute [Adams and Mahmud 1976]:

$$
H^*(X; \mathbb{Q}) \xleftarrow{\theta} H^*(X'; \mathbb{Q})
$$
\n
$$
H^*(X; \mathbb{Z}_{(p)}) \xleftarrow{\theta_p} H^*(X'; \mathbb{Z}_{(p)})
$$
\n
$$
H^*(X; \mathbb{F}_p) \xleftarrow{\overline{\theta_p}} H^*(X'; \mathbb{F}_p)
$$

Here the vertical maps are induced by the canonical maps $\mathbb{Z}_{(p)} \to \mathbb{Q}$ and $\mathbb{Z}_{(p)} \to \mathbb{F}_p$ respectively. We say that θ commutes with the Steenrod powers for almost all primes *p* if the $\bar{\theta}_p$ commute with Steenrod powers for $p \notin \text{Prime}_\theta$.

Definition 2. Let *K* be a compact Lie group acting on $X = G/H$. Then we say that the rational equivariant cohomology H_K^* $K(K; \mathbb{Q})$ is Steenrod presentable if there is a lifting *J* of the edge homomorphism *j* ∗

such that \bar{J}_p : $H^*(B_H; \mathbb{F}_p) \to H_K^*$ $K(K; \mathbb{F}_p)$ commute[s with](#page-10-3) Steenrod powers for almost all *p*.

A homogeneous space G/H such that rank $G = \text{rank } H$ is Kähler if and only if $H = Z(K)$ is the centralizer of a (not necessarily maximal) torus K, or, equivalently, if *H* is conjugate to an isotropy group of the adjoint representation [Besse 1987, Chapter 8].

Here is the main theorem of this article.

Theorem 3. Let G be a simple compact connected Lie group and $H \subset G$ be a *closed connected subgroup of maximal rank such that* $X = G/H$ *is Kähler and let G* act topologically on $X = G/H$. Then the following statements are equivalent.

- (i) *The equivariant cohomology* $H_G^*(X; \mathbb{Q})$ *is Steenrod presentable.*
- (ii) *The group G acts transitively on X with an isotropy group conjugate to K*, *where K is a maximal rank subgroup of G isomorphic to H by an automorphism of G which is inner with the possible exception of the even Spin groups.*
- (iii) *There is an isomorphism* $H_G^*(X; \mathbb{Q}) \cong R_H$ *as* R_G -algebras.

As a corollary, we recover an earlier result from [Hauschild 1985]. (See also [Hauschild 1986] and the introduction of [Hauschild 2006], where the uniqueness problem for locally smooth $SU(n + 1)$ -actions on $SU(n + 1)/S(U(n - 1) \times U(2))$ is considered.)

Theorem 4. Let G be a simple compact connected Lie group, and let $T \subset G$ be a *maximal torus. Let G act nontrivially on* $X = G/T$ *via* φ *. Then up to conjugacy,* ϕ *is the standard transitive G-action on X with isotropy group conjugate to T .*

Proof (for a proof using obstruction theory, see the Appendix). Write $H^*(B_T; \mathbb{Q}) =$ $\mathbb{Q}[x_1, \dots, x_n]$, deg $x_i = 2$. Let $R_G = H^*(B_G; \mathbb{Q})$ and write

$$
H_G^*(X; \mathbb{Q}) = \frac{R_G[X_1, \ldots, X_n]}{I}, \quad \text{deg } X_i = 2.
$$

Define $J(x_i) = \overline{X}_i$, where the \overline{X}_i is the class of X_i . Let *p* be a prime such that J_p and \bar{J}_p are defined.

The values of the Steenrod powers $\mathcal{P}^k(x_i)$ and $\mathcal{P}^k(\overline{X}_i)$ are completely determined by the ins[tability cond](#page-4-0)itions, that is, we have $\mathcal{P}^k(x_i) = x_i^p$ \int_{i}^{p} for $k = 1$ and $\mathcal{P}^{k}(x_i) = 0$ for $k > 1$. The same holds in H_G^* $G_G^*(X; \mathbb{F}_p)$; that is, $\mathcal{P}^k(\overline{X}_i) = \overline{X}_i^p$ \int_{i}^{p} for $k = 1$ and $\mathcal{P}^k(\overline{X}_i) = 0$ for $k > 1$. It follows that $\mathcal{P}^k \overline{J}_p(x_i) = \overline{J}_p \mathcal{P}^k(x_i)$ for all *i*. By simple induction using the Cartan rule, one gets the relation $\mathcal{P}^k \circ \overline{J}_p = \overline{J}_p \circ \mathcal{P}^k$ for all $k \geq 0$ and al[most all prime](#page-10-4)s p. So, the equivariant cohomology is Steenrod presentable and the result follows from Theorem 3.

3. A proof of the main theorem

The following definitions synthesize certain cohomological properties of symplectic manifolds and are taken from the paper [Allday 1998]. We consider cohomology with coefficients in a field \mathbb{Q} , with char $\mathbb{Q}=0$. As a coefficient field of cohomology, the symbol Q will be omitted in this paragraph.

Definition 5. Let *X* be a Poincaré duality space over $\mathbb Q$ with formal dimension $2n$.

- (i) The space X is said to be c-symplectic (that is, cohomologically symplectic) if there is $w \in H^2(X)$ such that $w^n \neq 0$.
- (ii) If *X* is c-symplectic, for $0 \le j \le n$, consider the map $w^j : H^{n-j}(X) \to$ *H*^{*n*+*j*}(*X*), defined as $a \mapsto w^{j}a$, for all $a \in H^{n-j}(X)$. Then *X* is said to satisfy the hard Lefschetz condition if w^j is an isomorphism for all *j*. In this case X is also said to be c -Kähler.

Let *X* be a c-symplectic space with $w \in H^2(X)$ as in the definition above. Let *G* be a compact connected Lie group acting on *X*. Then $g^*(w) = w$ for all $g \in G$. In this way any action of a compact connected Lie group on a c-symplectic space is considered to be a cohomologically symplectic action.

Definition 6. Let *X* be a c-symplectic space with c-symplectic class $w \in H^2(X)$. Let a torus *G* [act](#page-10-5) on *X*. The[n the action is said to be cohom](#page-10-6)ologically Hamiltonian (c-Hamiltonian) if $w \in \text{Im}\{i^* : H_G^2(X) \to H^2(X)\}$ [, whe](#page-10-7)re $i: X \to X_G$ is the inclusion of the fiber in the bundle $X_G \rightarrow B_G$.

The main reason we have restricted ourselves to homogeneous spaces *G*/*H* [with](#page-10-4) the Kähler property is the following result, which can be considered a generalization of a theorem of Atiyah [1983] (see also [Guillemin and Sternberg 1982; Audin 1991, Corollary 4.2.3]). For the definition of uniformity see [Allday and Puppe 1993, Definition 3.6.17]. For other consequences of the Kähler property, see [Allday et al. 2002].

Theorem 7 [\[Allday 1998\].](#page-10-7) Let the r-torus $G = T^r$ act on a closed c-symplectic *manifold X in an effective, uniform, c-Hamiltonian way. Then X^G has at least r* + 1 *connected components.*

The conditions of the theorem are always satisfied if *X* is totally nonhomologous to zero in the Borel fibration [Allday and Puppe 1993]. Let *G* be a torus and suppose *G* is acting on a c-symplectic manifold *X* with vanishing odd cohomology. As we have seen before, the equivariant cohomology can be written as H_G^* $G^*(X) =$ $R_G[h_1, \ldots, h_n]/I$ where $R_G = H^*(B_G)$ and the h_1, \ldots, h_n is a system of homogeneous multiplicative generators, *I* the defining ideal. Let $X^G = F_1 + F_2 + \cdots + F_s$ be the decomposition of the fixed space X^G into its connected components. Then for every α , $1 \le \alpha \le s$, we choose a point $p_{\alpha} \in F_{\alpha}$ and define a prime ideal P_{α} as the kernel of the composed homomorphism $R_G[h_1, \ldots, h_n] \to H_G^*$ $G^*(X) \to H_G^*$ $\bigcirc_{G}^*(p_\alpha) \cong R_G.$ Here the first homomorphism is the natural projection and the second is given by restricting equivariant cohomology classes to $E_G \times_G \{p_\alpha\}$. Then the radical of *I* is restricting equivariant cohomology classes to $E_G \times_G \{p_\alpha\}$. Then the radical of *I* is given by $\sqrt{I} = \bigcap_\alpha P_\alpha$. Moreover there is a natural bijection between the primary components of the ideal *I* and the connected components of *X ^G*. For more details on these standard facts on equivariant cohomology see [Allday and Puppe 1993; Hsiang 1975]. The following lemma is an immediate consequence of the result of Allday.

Lem[ma](#page-4-1) 8. [Let](#page-4-2) the r-torus $G = T^r$ act on a closed c-symplectic manifold X with *vanishing odd cohomology. Suppose G is acting on X in an effective*, *uniform*, *c*-Hamiltonian way. Then there exists a connected component F of X^G such that *the prime ideal* $P \subset R[h_1, \ldots, h_n]$ *belonging to F is of the kind* $P = (h_1 - \beta_1, \ldots, h_n)$ $h_n - \beta_n$) *with* $\beta_i \in R^{\deg h_i}$ *and some* $\beta_i \neq 0$ *.*

Proof of the main theorem. (i) \Rightarrow (ii): Let $R_G = H^*(B_G)$ and let $R_H = H^*(B_H) \cong$ $\mathbb{Q}[h_1, \ldots, h_n]$. Suppose H_G^* $G[*]_G(X) = (R_G \otimes_{\mathbb{Q}} R_H)/I_G$ to be a Steenrod presentation. Let $T \subset G$ be a maximal torus; then the equivariant cohomology of the induced *T*-action is given by H_T^* $T^*(X) \cong H_G^*$ $G(K) \otimes_{R_G} R_T$. Let $I_T \subset R_G \otimes_{\mathbb{Q}} R_T$ be the ideal

generated by I_G , that is, $I_T = I_G \cdot (R_T \otimes_{\mathbb{Q}} R_H)$; then H_T^* $T^*(X) \cong R_T[h_1, \ldots, h_n]/I_T$. By the previous lemma there is a connected component $F \subset X^T$ of the fixed set X^T such that the corresponding prime ideal has the form $P = (h_1 - \beta_1, \ldots, h_n - \beta_n)$ with $(\beta_1, \ldots, \beta_n) \neq 0$. In particular, the restriction homomorphism H_T^* $T^*(X) \to$ *H* ∗ $T^*(P) \cong R_T, p \in F$ is nontrivial. Let $G_p \subset G$ be the isotropy group of *p*. It follows from the commutativity of the diagram

$$
H_T^*(X) \longrightarrow H_T^*(\{p\}) \cong R_T
$$

\n
$$
\cup \qquad \qquad \cup \qquad \qquad \cup
$$

\n
$$
H_G^*(X) \longrightarrow H_G^*(G(p)) \cong R_{G_p}
$$

that the restriction homomorphism

$$
res_p: H^*_G(X) \to H^*_G(G(p)) \cong R_{G_p}
$$

must also be nontrivial. Let $U = G_p^o$ be the connected component of the unit element in G_p , and let $\eta: H^*(B_{G_p}) \to H^*(B_U)$ be the homomorphism induced by the inclusion $U \subset G_p$. Then consider the composition $\theta = \eta \circ \text{res}_p \circ J$

$$
\theta\colon H^*(B_H)\stackrel{J}{\longrightarrow}H^*_G(X)\stackrel{\text{res}_p}{\longrightarrow}H^*(B_{G_p})\stackrel{\eta}{\longrightarrow}H^*(B_U).
$$

It follows from the construction and the hypothesis that θ commutes with the Steenrod powers in A[∗] for almost all primes *p*. Let *LT* be the Lie algebra of the maximal torus *T*. Let $\Sigma \subset LT$ be the kernel of the projection $LT \rightarrow T$. After [Adams and Mahmud 1976, Theorem 1.5] there is an R-linear map $\phi: LT \rightarrow LT$ carrying $\Sigma \otimes \mathbb{Q}$ into $\Sigma \otimes \mathbb{Q}$ such that the following diagram is commutative.

$$
H^*(B_H) \xrightarrow{\theta} H^*(B_U)
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
H^*(B_T) \xrightarrow{\phi^*} H^*(B_T)
$$

Here ϕ^* is the graded ring homomorphism induced by the linear map ϕ . The existence of this map is a consequence of [Adams and Mahmud 1976, Lemma 1.2]. The vertical maps are the homomorphisms induced by the standard fibrations $B_T \rightarrow$ B_H and $B_T \rightarrow B_U$. It follows from our assumption that θ is nontrivial, which implies that ϕ^* is also nontrivial. Observe that the map θ induces exactly the homomorphism $\overline{\theta}$: $H^*(G/H) \to H^*(G/U)$ induced by the map $G/U \to G/G_p \cong$

 $G(p) \subset X = G/H$. This means that we have a commutative diagram

$$
H^*(X) \stackrel{\theta}{\longrightarrow} H^*(G/U)
$$

$$
H^*(B_H) \stackrel{\theta}{\longrightarrow} H^*(B_U)
$$

where the vertical maps are the edge homomorphisms for the fibrations $B_H \rightarrow B_G$ and $B_U \rightarrow B_G$, respectively. It follows that θ sends the ideal

$$
H^*_+(B_G)\cdot H^*(B_H)\subset H^*(B_H)
$$

generated by the invariants of the Weyl group in $H^*(B_H)$ into the ideal

$$
H^*_+(B_G)\cdot H^*(B_U)\subset H^*(B_U)
$$

generated by the same invariants in $H^*(B_U)$. Then ϕ^* sends the ideal

$$
H^*_+(B_G)\cdot H^*(B_T)\subset H^*(B_T)
$$

into the ideal

$$
H^*_+(B_G)\cdot H^*(B_T)\subset H^*(B_T),
$$

therefore inducing a graded and nontrivial homomorphism

$$
\overline{\phi^*} \colon H^*(G/T) \longrightarrow H^*(G/T).
$$

Since *G* is a simple Lie group we can apply [Hauschild 1985, Lemma 4.1]. Therefore $\overline{\phi^*}$ must be a surjective map and consequently must be an isomorphism. Now the commutative diagrams above induce a commutative diagram

$$
H^*(G/H) \stackrel{\overline{\theta}}{\longrightarrow} H^*(G/U)
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
H^*(G/T) \stackrel{\overline{\phi^*}}{\longrightarrow} H^*(G/T)
$$

where the vertical maps are the respective inclusions of invariants under the Weyl groups *WH*, *WU* respectively. It follows that the homomorphism $\overline{\theta}$ must be injective which implies [dimen](#page-10-9)sions $cd_{\mathbb{Q}}(X) \leq cd_{\mathbb{Q}}(G/U)$ for the respective rational cohomology. But G/H and G/U are closed oriented manifolds and therefore dim *X* \leq dim *G*/*U*, which implies dim *X* = dim *G*(*p*). It follows that *X* = *G*/*G*_{*p*}, that is, the action is transitive. Now *X* is 1-connected and therefore G_p must be connected, that is, $G_p = G_p^o = U$. It follows that $G/H = G/U$ and $\overline{\theta}$ is an isomorphism. By a theorem of Papadima [1986], the isomorphism $\overline{\phi^*}$ is induced by an automorphism of the root system of *G*. This implies that the root systems of the maximal rank subgroups *H* and *U* are conjugate by such an automorphism, and consequently, the groups *H* and *U* are conjugate by an automorphism which is inner with the possible exception of the Spin groups.

 (ii) ⇒ (i): We have $X_G = E_G \times_G G/U \cong E_G/U = B_U$. But $H \cong U$ and so $X_G \cong B_H$ and therefore H_G^* $E_G^*(X) \cong R_H$ as R_G -algebras.

 $(iii) \Rightarrow (i):$ Take $J = Id: R_H \rightarrow R_H$.

Appendix

Proof of Theorem 4 using obstruction theory. Let π : $X_G \rightarrow B_G$ be the projection, let $b \in B_G$, and let $X_b = \pi^{-1}(b) \subset X_G$ be the fiber over *b*. Let $i_b: X_b \to X_G$ be the corresponding inclusion. Then consider the extension problem

The obstruction to extend the inclusion *j* : $X_b \rightarrow B_T$ to a map *j'* : $X_G \rightarrow B_T$ is to be found in the group $H^3(X_G, X_b; \pi_2(B_T))$. Consider the following piece of the long exact cohomology sequence of the pair (X_G, X_b) .

$$
H^2(X_G; \mathbb{Z}) \to H^2(X_b; \mathbb{Z}) \to H^3(X_G, X_b; \mathbb{Z}) \to H^3(X_G, \mathbb{Z}) \to \dots
$$

Now the first arrow, induced by the inclusion of the fiber, is surjective whereas $H^{3}(X_{G}; \mathbb{Z}) = 0$. It follows $H^{3}(X_{G}, X_{b}; \mathbb{Z}) = 0$ and so $H^{3}(X_{G}, X_{b}; \mathbb{Z}^{n}) = 0$. We thus have a lifting $J = j'$ ^{*} which gives rise to the commutative diagram

By the definition of *J* as a [map induced geometrically, we](http://dx.doi.org/10.1007/BF01390132) conclude that H_G^* $_G^*(X; \mathbb{Q})$ [is Steenrod](http://www.ams.org/mathscinet-getitem?mr=54:11331) [presentable. U](http://www.emis.de/cgi-bin/MATH-item?0306.55019)sing the equivalence between (i) and (ii) in Theorem 3 and the standard fact that two [maximal tori are conjugate, th](http://dx.doi.org/10.2307/1971218)e result follows. \Box

References

[[]Adams and Mahmud 1976] J. F. Adams and Z. Mahmud, "Maps between classifying spaces", *Inv. Math.* 35 (1976), 1–41. MR 54 #11331 Zbl 0306.55019

[[]Adams and Wilkerson 1980] J. F. Adams and C. W. Wilkerson, "Finite *H*-spaces and algebras over the Steenrod algebra", *Ann. of Math.* (2) 111:1 (1980), 95–143. MR 81h:55006 Zbl 0404.55020

150 VOLKER HAUSCHILD

- [\[A](http://dx.doi.org/10.1090/S0002-9947-02-02968-9)llday 1998] C. Allday, "Notes [on the Localization T](http://dx.doi.org/10.1090/S0002-9947-02-02968-9)[heorem with applic](http://www.ams.org/mathscinet-getitem?mr=2003a:57061)ations to symplectic torus actions", Lecture notes, Winter School on Transformation Groups, Indian Statistical Institute, 1998.
- [Allday and Puppe 1993] C. Allday and V. Puppe, *Cohomological methods in transformation groups*, Cambridge Studies in [Advanced Math](http://www.ams.org/mathscinet-getitem?mr=85a:58027)[ematics](http://www.emis.de/cgi-bin/MATH-item?0521.58026) 32, Cambridge University Press, 1993. MR 94g: 55009 Zbl 0799.55001
- [Allday et [al. 2002\]](http://www.ams.org/mathscinet-getitem?mr=92m:57046) C. All[day, V. Hauschild,](http://www.emis.de/cgi-bin/MATH-item?0726.57029) and V. Puppe, "A non-fixed point theorem for Hamiltonian Lie group actions", *Trans. Amer. Math. Soc.* 354:7 (2002), 2971–2982. MR 2003a:57061 Zbl [0997.57045](http://www.ams.org/mathscinet-getitem?mr=88f:53087)
- [Atiyah 1983] M. F. [Atiyah, "Angul](http://www.emis.de/cgi-bin/MATH-item?0613.53001)[ar momentum, convex polyhedra and a](http://dx.doi.org/10.1007/BF01398933)lgebraic geometry", *Proc. Edinburgh Math. Soc.* (2) 26[:2 \(1983\), 1](http://www.ams.org/mathscinet-getitem?mr=83m:58037)[21–133.](http://www.emis.de/cgi-bin/MATH-item?0503.58017) MR 85a:58027 Zbl 0521.58026
- [Audin 1991] M. Audin, *[The topology of torus actions on sympl](http://dx.doi.org/10.1007/BF01168154)ectic manifolds*, Progress in Mathe[matics](http://www.ams.org/mathscinet-getitem?mr=86g:57028) 93, Bir[khäuser, Basel, 19](http://www.emis.de/cgi-bin/MATH-item?0546.57017)91. MR 92m:57046 Zbl 0726.57029
- [Besse 1987] A. L. Besse, *Einstein manifolds*[, Ergebnisse der Mathemat](http://dx.doi.org/10.2307/2000636)ik und ihrer Grenzgebiete (3) 10, Springer, Berlin, 1987. [MR 88f:53087](http://www.ams.org/mathscinet-getitem?mr=87m:57044) Z[bl 0613.53001](http://www.emis.de/cgi-bin/MATH-item?0623.57024)
- [Guillemin and Sternberg 1982] [V. Guillemin and S. Sternberg,](http://dx.doi.org/10.1007/s00031-005-1105-6) "Convexity properties of the moment mapping I", *Invent. Math.* 67[:3 \(1982\), 491–5](http://www.ams.org/mathscinet-getitem?mr=2006m:22029)13. [MR 83m:580](http://www.emis.de/cgi-bin/MATH-item?1107.22013)37 Zbl 0503.58017
- [Hauschild 1985] V. Hauschild, "Actions of compact Lie groups on homogeneous spaces", *Math. Z.* 189:4 (1985), 475–486. MR 86g:57028 Zbl 0546.570[17](http://www.ams.org/mathscinet-getitem?mr=54:11363)
- [Hauschild 1986] V. Hauschild, "The Euler characteristic as an obstruction to compact Lie group actions", *[Trans. Amer. Math. Soc.](http://dx.doi.org/10.1007/BF01459142)* 298:2 (1986), 549–578. MR 87m:57044 Zbl 0623.57024
- [Hauschild 2006] [V. Hausc](http://www.ams.org/mathscinet-getitem?mr=88b:53063)hild, ["Locally sm](http://www.emis.de/cgi-bin/MATH-item?0585.57023)ooth SU(*n*+1)-actions on SU(*n*+1)/S(U(*n*−1)×U(2)) are unique", *[Transform. Groups](http://dx.doi.org/10.2307/1970770)* 11:1 (2006), 77–86. MR 2006m:22029 Zbl 1107.22013
- [\[Hsiang 19](http://www.ams.org/mathscinet-getitem?mr=45:7743)75] [W.-Y. Hsian](http://www.emis.de/cgi-bin/MATH-item?0247.57013)g, *Cohomology theory of topological transformation groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete 85, Springer, New York, 1975. MR 54 #11363 Zbl 0429.[57011](http://www.ams.org/mathscinet-getitem?mr=96f:13008)
- [\[Papadima 1986\]](http://dx.doi.org/10.1090/S0273-0979-97-00724-6) Ş. Papadima, "Rigidity properties of compact Lie groups modulo maximal tori", *[Math. A](http://www.ams.org/mathscinet-getitem?mr=98i:13009)nn.* 275[:4 \(1986\)](http://www.emis.de/cgi-bin/MATH-item?0904.13004), 637–652. MR 88b:53063 Zbl 0585.57023
- [Quillen 1971] D. Quillen, "The spectrum of an equivariant cohomology ring, II", *Ann. of Math.* (2) 94 (1971), 573–602. MR 45 #7743 Zbl 0247.57013
- [Smith 1995] L. Smith, *Polynomial invariants of finite groups*, Research Notes in Mathematics 6, A K Peters Ltd., Wellesley, MA, 1995. MR 96f:13008 Zbl 0864.13002
- [Smith 1997] L. Smith, "Polynomial invariants of finite groups", *Bull. Amer. Math. Soc.* (*N.S.*) 34:3 (1997), 211–250. MR 98i:13009 Zbl 0904.13004

Received August 3, 2009.

V[OLKE](http://sv.mat.unical.it/~hauschild)R HAUSCHILD DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DELLA CALABRIA 87036 RENDE (CS) ITALY hausch@unical.it http://sv.mat.unical.it/~hauschild