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AS AN UNSTABLE A∗-ALGEBRA

VOLKER HAUSCHILD

A graded F p-algebra A with action of the Steenrod algebra A∗ is said to
be Steenrod presentable if there is a polynomial ring P = F p[u1, . . . , un]

with an action of A∗ and an A∗-invariant ideal I ⊂ P such that A = P/I
and the induced action of A∗ on P/I is the given one. It is shown that
an action ϕ of a simple compact Lie group G on a homogeneous Kähler
manifold X = G/H has a Steenrod presentable equivariant cohomology for
almost all primes p if and only if ϕ is conjugate to the standard action by
left translation. Application to the case H = T a maximal torus reproduces
a former result of the author: namely, that every topological G-action on
G/T is conjugate to the standard action by left translation with isotropy
group a maximal torus.

1. Introduction

Suppose X to be a space, and let A = H∗(X; Fp) be its cohomology with coeffi-
cients in the prime field Fp. Then on A there is an unstable action of the p-Steenrod
algebra A∗. On the other hand, given a presentation A = P/I , for an ideal I ⊂ P
where P is the polynomial algebra P = Fp[h1, . . . , hn], with deg hi = di , one
might ask whether the given action of A∗ is induced by an action of A∗ on the
polynomial algebra that leaves the defining ideal stable. In the case p 6= 2 and
di prime to p for all i , a necessary condition condition is given by a theorem of
Adams and Wilkerson [1980]; see also [Smith 1995, Theorem 10.5.1]. In particular
it follows from this theorem that the polynomial ring P must be the invariant ring

P = Fp[x1, . . . , xn]
W , deg xi = 2,

where W ⊂GL(n, Fp) is a finite group of order d1 . . . dn generated by pseudoreflec-
tions acting on Fp[x1, . . . , xn] = Fp[V ] in the standard way [Smith 1995; 1997].
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This implies that the degrees di can only assume certain precise values, which
are exactly the Weyl–Coxeter degrees of the group W ; see for example [Smith
1995, p. 199].

In the following, we say that the Fp-algebra A with an unstable action of A∗ is
Steenrod presentable if there is a polynomial ring P = Fp[x1, . . . , xn]

W with the
standard action of the Steenrod algebra A∗ and an A∗-stable ideal I ⊂ P such that
A ∼= P/I with the induced A∗-module structure.

As the main example of Steenrod presentable Fp-algebras, we consider the co-
homology of homogeneous spaces X =G/H, where H ⊂G is a closed connected
maximal rank subgroup of a compact connected Lie group G. Then there is the
standard fibration

G/H −→ BH −→ BG,

where BK is the classifying space for the topological group K . If H ⊂ G is
a subgroup of maximal rank and if nor G neither H have p-torsion, the ring
H∗(G/H ; Fp) has a presentation

H∗(G/H ; Fp)∼=
H∗(BH ; Fp)

H∗+(BG; Fp) · H∗(BH ; Fp)

such that the action of the Steenrod algebra A∗ on H∗(G/H ; Fp) is induced by the
standard action of A∗ on the ring H∗(BH ; Fp).

So, throughout this note we shall assume that p 6= 2 and that BG and BH do not
have p-torsion for all primes to be considered.

Suppose a compact connected Lie group K is acting in a reasonable way on
X = G/H . Then X is totally nonhomologous to zero in the fibration

X −→ X K −→ BK ,

where X K = EK ×K X is the Borel construction. Write H∗(X; Fp) = P/I0,
P = Fp[h1, . . . , hn], where the ideal I0 ⊂ P is generated by a set g1, . . . , gn of
multiplicative generators of the invariant ring RG = H∗(BG; Fp) ⊂ H∗(BH ; Fp).
As can be shown in the same way as in the proof of [Hauschild 1986, Theorem 1.1],
the equivariant cohomology H∗K (X; Fp) = H∗(X K ; Fp) is a graded algebra over
R= H∗(BK ; Fp), which can be written as H∗K (X; Fp)= PR/I , where PR = R⊗P
and I is an ideal generated by homogeneous elements of the form 1⊗ g j − r j ,
where the r j are elements of the ideal R+PR generated by the augmentation ideal
of R. On the ring PR = H∗(BK ; Fp)⊗Fp H∗(BH ; Fp) there is the natural unstable
A∗-module structure and the equivariant cohomology is Steenrod presentable if I
is stable under this A∗-action inducing the given A∗-action on the quotient. More-
over, since the isomorphism H∗(X; Fp)∼= H∗K (X; Fp)/H∗

+
(BK ; Fp)H∗K (X; Fp) is

induced by the inclusion i : X → X K of the fiber, the Steenrod presentation of
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H∗K (X; Fp) induces the Steenrod presentation of H∗(X; Fp). For more informa-
tion on Steenrod powers acting on equivariant cohomology, see [Allday and Puppe
1993; Quillen 1971].

2. Steenrod powers and rational cohomology

Observe that X =G/H is now the fiber of two fibrations, and that in both fibrations
it is totally nonhomologous to zero. Consequently there is the canonical epimor-
phism j∗ : H∗(BH ; Fp)→ H∗(X; Fp) induced by the inclusion j : X → BH of
the fiber. Moreover, let i∗ be induced by the inclusion i : X → X K of the fiber in
the Borel fibration. Both maps commute of course with the respective A∗-module
structures.

Observation 1. The equivariant cohomology H∗K (X; Fp) is Steenrod presentable
if and only if there is a homomorphism J : H∗(BH ; Fp)→ H∗K (X; Fp) making the
following diagram commute:

H∗K (X; Fp)

H∗(BH ; Fp) j∗
-

J
-

H∗(X; Fp)

i∗

?

Proof. Let π : X K→ BK be the projection in the Borel fibration, and then consider
the homomorphism π∗⊗ J : H∗(BK ; Fp)⊗H∗(BH ; Fp)→ H∗K (X; Fp). This map
is surjective and commutes with the respective A∗-actions. Let I = Ker(π∗⊗ J );
then H∗K (X; Fp)= (H∗(BK ; Fp)⊗ H∗(BH ; Fp))/I is a Steenrod presentation.

On the other hand, given a Steenrod presentation

H∗K (X; Fp)= (H∗(BK ; Fp)⊗ H∗(BH ; Fp))/I,

and J : H∗(BH ; Fp)→ H∗K (X; Fp) given by

H∗(BH ; Fp) 3 ξH 7→ 1⊗ ξH mod I,

then J commutes with the A∗-actions and i∗ ◦ J = j∗. �

Let X, X ′ be spaces such that the rational cohomology rings H∗(X;Q) and
H∗(X ′;Q) are finitely generated as graded Q-algebras. Then we have to define
what it means for a homomorphism θ : H∗(X;Q)← H∗(X ′;Q) to commute with
Steenrod powers for almost all primes p. Let y1, . . . , ym ∈ H∗(X ′;Q) be a set of
multiplicative generators; similarly, let x1, . . . , xn ∈ H∗(X;Q) be a set of multi-
plicative generators. Then θ(yi ) = pi (x1, . . . , xn) ∈ H∗(X;Q) are polynomials.
Let Primeθ be the (finite) subset of primes which appear as divisors of the de-
nominators of the coefficients of the pi . Then for all p /∈ Primeθ there are unique
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homomorphisms θp, θ p which make the following diagram commute [Adams and
Mahmud 1976]:

H∗(X;Q) �
θ

H∗(X ′;Q)

H∗(X;Z(p))

6

�
θp H∗(X ′;Z(p))

6

H∗(X; Fp)
?

�
θ p H∗(X ′; Fp)

?

Here the vertical maps are induced by the canonical maps Z(p)→Q and Z(p)→Fp

respectively. We say that θ commutes with the Steenrod powers for almost all
primes p if the θ p commute with Steenrod powers for p /∈ Primeθ .

Definition 2. Let K be a compact Lie group acting on X =G/H . Then we say that
the rational equivariant cohomology H∗K (X;Q) is Steenrod presentable if there is
a lifting J of the edge homomorphism j∗

H∗K (X;Q)

H∗(BH ;Q) j∗
-

J
-

H∗(X;Q)

i∗

?

such that J p : H∗(BH ; Fp) → H∗K (X; Fp) commutes with Steenrod powers for
almost all p.

A homogeneous space G/H such that rank G = rank H is Kähler if and only if
H = Z(K ) is the centralizer of a (not necessarily maximal) torus K , or, equiva-
lently, if H is conjugate to an isotropy group of the adjoint representation [Besse
1987, Chapter 8].

Here is the main theorem of this article.

Theorem 3. Let G be a simple compact connected Lie group and H ⊂ G be a
closed connected subgroup of maximal rank such that X = G/H is Kähler and let
G act topologically on X = G/H. Then the following statements are equivalent.

(i) The equivariant cohomology H∗G(X;Q) is Steenrod presentable.

(ii) The group G acts transitively on X with an isotropy group conjugate to K ,
where K is a maximal rank subgroup of G isomorphic to H by an automor-
phism of G which is inner with the possible exception of the even Spin groups.

(iii) There is an isomorphism H∗G(X;Q)∼= RH as RG-algebras.
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As a corollary, we recover an earlier result from [Hauschild 1985]. (See also
[Hauschild 1986] and the introduction of [Hauschild 2006], where the uniqueness
problem for locally smooth SU(n+ 1)-actions on SU(n+ 1)/S(U (n− 1)×U (2))
is considered.)

Theorem 4. Let G be a simple compact connected Lie group, and let T ⊂ G be a
maximal torus. Let G act nontrivially on X = G/T via ϕ. Then up to conjugacy,
ϕ is the standard transitive G-action on X with isotropy group conjugate to T .

Proof (for a proof using obstruction theory, see the Appendix). Write H∗(BT ;Q)=

Q[x1, . . . , xn], deg xi = 2. Let RG = H∗(BG;Q) and write

H∗G(X;Q)=
RG[X1, . . . , Xn]

I
, deg X i = 2.

Define J (xi )= X i , where the X i is the class of X i . Let p be a prime such that Jp

and J p are defined.
The values of the Steenrod powers Pk(xi ) and Pk(X i ) are completely deter-

mined by the instability conditions, that is, we have Pk(xi ) = x p
i for k = 1 and

Pk(xi ) = 0 for k > 1. The same holds in H∗G(X; Fp); that is, Pk(X i ) = X p
i for

k = 1 and Pk(X i ) = 0 for k > 1. It follows that Pk J p(xi ) = J pPk(xi ) for all i .
By simple induction using the Cartan rule, one gets the relation Pk

◦ J p = J p ◦Pk

for all k ≥ 0 and almost all primes p. So, the equivariant cohomology is Steenrod
presentable and the result follows from Theorem 3. �

3. A proof of the main theorem

The following definitions synthesize certain cohomological properties of symplec-
tic manifolds and are taken from the paper [Allday 1998]. We consider cohomology
with coefficients in a field Q, with char Q=0. As a coefficient field of cohomology,
the symbol Q will be omitted in this paragraph.

Definition 5. Let X be a Poincaré duality space over Q with formal dimension 2n.

(i) The space X is said to be c-symplectic (that is, cohomologically symplectic)
if there is w ∈ H 2(X) such that wn

6= 0.

(ii) If X is c-symplectic, for 0 ≤ j ≤ n, consider the map w j
: H n− j (X) →

H n+ j (X), defined as a 7→ w j a, for all a ∈ H n− j (X). Then X is said to
satisfy the hard Lefschetz condition if w j is an isomorphism for all j . In this
case X is also said to be c-Kähler.

Let X be a c-symplectic space with w ∈ H 2(X) as in the definition above. Let
G be a compact connected Lie group acting on X . Then g∗(w)=w for all g ∈ G.
In this way any action of a compact connected Lie group on a c-symplectic space
is considered to be a cohomologically symplectic action.
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Definition 6. Let X be a c-symplectic space with c-symplectic class w ∈ H 2(X).
Let a torus G act on X . Then the action is said to be cohomologically Hamilton-
ian (c-Hamiltonian) if w ∈ Im{i∗ : H 2

G(X)→ H 2(X)}, where i : X → XG is the
inclusion of the fiber in the bundle XG→ BG .

The main reason we have restricted ourselves to homogeneous spaces G/H
with the Kähler property is the following result, which can be considered a gener-
alization of a theorem of Atiyah [1983] (see also [Guillemin and Sternberg 1982;
Audin 1991, Corollary 4.2.3]). For the definition of uniformity see [Allday and
Puppe 1993, Definition 3.6.17]. For other consequences of the Kähler property,
see [Allday et al. 2002].

Theorem 7 [Allday 1998]. Let the r-torus G = T r act on a closed c-symplectic
manifold X in an effective, uniform, c-Hamiltonian way. Then X G has at least
r + 1 connected components.

The conditions of the theorem are always satisfied if X is totally nonhomologous
to zero in the Borel fibration [Allday and Puppe 1993]. Let G be a torus and
suppose G is acting on a c-symplectic manifold X with vanishing odd cohomology.
As we have seen before, the equivariant cohomology can be written as H∗G(X) =
RG[h1, . . . , hn]/I where RG = H∗(BG) and the h1, . . . , hn is a system of homoge-
neous multiplicative generators, I the defining ideal. Let X G

= F1+F2+· · ·+Fs be
the decomposition of the fixed space X G into its connected components. Then for
every α, 1≤α≤s, we choose a point pα∈ Fα and define a prime ideal Pα as the ker-
nel of the composed homomorphism RG[h1, . . . , hn]→ H∗G(X)→ H∗G(pα)∼= RG .

Here the first homomorphism is the natural projection and the second is given by
restricting equivariant cohomology classes to EG×G {pα}. Then the radical of I is
given by

√
I =

⋂
α Pα. Moreover there is a natural bijection between the primary

components of the ideal I and the connected components of X G . For more details
on these standard facts on equivariant cohomology see [Allday and Puppe 1993;
Hsiang 1975]. The following lemma is an immediate consequence of the result of
Allday.

Lemma 8. Let the r-torus G = T r act on a closed c-symplectic manifold X with
vanishing odd cohomology. Suppose G is acting on X in an effective, uniform,
c-Hamiltonian way. Then there exists a connected component F of X G such that
the prime ideal P ⊂ R[h1, . . . , hn] belonging to F is of the kind P = (h1−β1, . . . ,

hn −βn) with βi ∈ Rdeg hi and some βi 6= 0.

Proof of the main theorem. (i)⇒ (ii): Let RG = H∗(BG) and let RH = H∗(BH )∼=

Q[h1, . . . , hn]. Suppose H∗G(X)= (RG⊗Q RH )/IG to be a Steenrod presentation.
Let T ⊂ G be a maximal torus; then the equivariant cohomology of the induced
T -action is given by H∗T (X) ∼= H∗G(X)⊗RG RT . Let IT ⊂ RG ⊗Q RT be the ideal
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generated by IG , that is, IT = IG ·(RT ⊗Q RH ); then H∗T (X)∼= RT [h1, . . . , hn]/IT .
By the previous lemma there is a connected component F ⊂ X T of the fixed set X T

such that the corresponding prime ideal has the form P = (h1− β1, . . . , hn − βn)

with (β1, . . . , βn) 6= 0. In particular, the restriction homomorphism H∗T (X) →
H∗T ({p}) ∼= RT , p ∈ F is nontrivial. Let G p ⊂ G be the isotropy group of p. It
follows from the commutativity of the diagram

H∗T (X) - H∗T ({p})∼= RT

H∗G(X)

∪
6

resp

- H∗G(G(p))∼= RG p

∪
6

that the restriction homomorphism

resp : H∗G(X)→ H∗G(G(p))∼= RG p

must also be nontrivial. Let U = Go
p be the connected component of the unit

element in G p, and let η : H∗(BG p)→ H∗(BU ) be the homomorphism induced by
the inclusion U ⊂ G p. Then consider the composition θ = η ◦ resp ◦J

θ : H∗(BH )
J- H∗G(X)

resp- H∗(BG p)
η- H∗(BU ).

It follows from the construction and the hypothesis that θ commutes with the
Steenrod powers in A∗ for almost all primes p. Let LT be the Lie algebra of the
maximal torus T . Let 6 ⊂ LT be the kernel of the projection LT → T . After
[Adams and Mahmud 1976, Theorem 1.5] there is an R-linear map φ : LT → LT
carrying 6⊗Q into 6⊗Q such that the following diagram is commutative.

H∗(BH )
θ- H∗(BU )

H∗(BT )
?

φ∗- H∗(BT )
?

Here φ∗ is the graded ring homomorphism induced by the linear map φ. The
existence of this map is a consequence of [Adams and Mahmud 1976, Lemma 1.2].
The vertical maps are the homomorphisms induced by the standard fibrations BT→

BH and BT → BU . It follows from our assumption that θ is nontrivial, which
implies that φ∗ is also nontrivial. Observe that the map θ induces exactly the
homomorphism θ : H∗(G/H)→H∗(G/U ) induced by the map G/U→G/G p∼=
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G(p)⊂ X = G/H . This means that we have a commutative diagram

H∗(X)
θ- H∗(G/U )

H∗(BH )

6

θ- H∗(BU )

6

where the vertical maps are the edge homomorphisms for the fibrations BH→ BG

and BU → BG , respectively. It follows that θ sends the ideal

H∗
+
(BG) · H∗(BH )⊂ H∗(BH )

generated by the invariants of the Weyl group in H∗(BH ) into the ideal

H∗
+
(BG) · H∗(BU )⊂ H∗(BU )

generated by the same invariants in H∗(BU ). Then φ∗ sends the ideal

H∗
+
(BG) · H∗(BT )⊂ H∗(BT )

into the ideal
H∗
+
(BG) · H∗(BT )⊂ H∗(BT ),

therefore inducing a graded and nontrivial homomorphism

φ∗ : H∗(G/T )−→ H∗(G/T ).

Since G is a simple Lie group we can apply [Hauschild 1985, Lemma 4.1]. There-
fore φ∗ must be a surjective map and consequently must be an isomorphism. Now
the commutative diagrams above induce a commutative diagram

H∗(G/H)
θ- H∗(G/U )

H∗(G/T )
?

φ∗- H∗(G/T )
?

where the vertical maps are the respective inclusions of invariants under the Weyl
groups W H,WU respectively. It follows that the homomorphism θ must be in-
jective which implies dimensions cdQ(X)≤ cdQ(G/U ) for the respective rational
cohomology. But G/H and G/U are closed oriented manifolds and therefore
dim X ≤dim G/U , which implies dim X =dim G(p). It follows that X =G/G p,
that is, the action is transitive. Now X is 1-connected and therefore G p must be
connected, that is, G p = Go

p = U . It follows that G/H = G/U and θ is an
isomorphism. By a theorem of Papadima [1986], the isomorphism φ∗ is induced
by an automorphism of the root system of G. This implies that the root systems
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of the maximal rank subgroups H and U are conjugate by such an automorphism,
and consequently, the groups H and U are conjugate by an automorphism which
is inner with the possible exception of the Spin groups.

(ii) ⇒ (i): We have XG = EG ×G G/U ∼= EG/U = BU . But H ∼= U and so
XG ∼= BH and therefore H∗G(X)∼= RH as RG-algebras.

(iii)⇒ (i): Take J = Id : RH → RH . �

Appendix

Proof of Theorem 4 using obstruction theory. Let π : XG→ BG be the projection,
let b ∈ BG , and let Xb = π

−1(b) ⊂ XG be the fiber over b. Let ib : Xb→ XG be
the corresponding inclusion. Then consider the extension problem

Xb
j- BT

XG

ib
?

∩

j′
-

The obstruction to extend the inclusion j : Xb→ BT to a map j ′ : XG→ BT is to
be found in the group H 3(XG, Xb;π2(BT )). Consider the following piece of the
long exact cohomology sequence of the pair (XG, Xb).

H 2(XG;Z)→ H 2(Xb;Z)→ H 3(XG, Xb;Z)→ H 3(XG,Z)→ . . .

Now the first arrow, induced by the inclusion of the fiber, is surjective whereas
H 3(XG;Z) = 0. It follows H 3(XG, Xb;Z) = 0 and so H 3(XG, Xb;Z

n) = 0. We
thus have a lifting J = j ′∗ which gives rise to the commutative diagram

H∗G(X;Z)

H∗(BT ;Z) j∗
-

J -

H∗(X;Z).

i∗b
?

By the definition of J as a map induced geometrically, we conclude that H∗G(X;Q)
is Steenrod presentable. Using the equivalence between (i) and (ii) in Theorem 3
and the standard fact that two maximal tori are conjugate, the result follows. �
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[Papadima 1986] Ş. Papadima, “Rigidity properties of compact Lie groups modulo maximal tori”,
Math. Ann. 275:4 (1986), 637–652. MR 88b:53063 Zbl 0585.57023

[Quillen 1971] D. Quillen, “The spectrum of an equivariant cohomology ring, II”, Ann. of Math. (2)
94 (1971), 573–602. MR 45 #7743 Zbl 0247.57013

[Smith 1995] L. Smith, Polynomial invariants of finite groups, Research Notes in Mathematics 6, A
K Peters Ltd., Wellesley, MA, 1995. MR 96f:13008 Zbl 0864.13002

[Smith 1997] L. Smith, “Polynomial invariants of finite groups”, Bull. Amer. Math. Soc. (N.S.) 34:3
(1997), 211–250. MR 98i:13009 Zbl 0904.13004

Received August 3, 2009.

VOLKER HAUSCHILD

DIPARTIMENTO DI MATEMATICA

UNIVERSITÀ DELLA CALABRIA

87036 RENDE (CS)
ITALY

hausch@unical.it
http://sv.mat.unical.it/~hauschild

http://www.ams.org/mathscinet-getitem?mr=94g:55009
http://www.ams.org/mathscinet-getitem?mr=94g:55009
http://www.emis.de/cgi-bin/MATH-item?0799.55001
http://dx.doi.org/10.1090/S0002-9947-02-02968-9
http://dx.doi.org/10.1090/S0002-9947-02-02968-9
http://www.ams.org/mathscinet-getitem?mr=2003a:57061
http://www.emis.de/cgi-bin/MATH-item?0997.57045
http://www.ams.org/mathscinet-getitem?mr=85a:58027
http://www.emis.de/cgi-bin/MATH-item?0521.58026
http://www.ams.org/mathscinet-getitem?mr=92m:57046
http://www.emis.de/cgi-bin/MATH-item?0726.57029
http://www.ams.org/mathscinet-getitem?mr=88f:53087
http://www.emis.de/cgi-bin/MATH-item?0613.53001
http://dx.doi.org/10.1007/BF01398933
http://dx.doi.org/10.1007/BF01398933
http://www.ams.org/mathscinet-getitem?mr=83m:58037
http://www.emis.de/cgi-bin/MATH-item?0503.58017
http://dx.doi.org/10.1007/BF01168154
http://www.ams.org/mathscinet-getitem?mr=86g:57028
http://www.emis.de/cgi-bin/MATH-item?0546.57017
http://dx.doi.org/10.2307/2000636
http://dx.doi.org/10.2307/2000636
http://www.ams.org/mathscinet-getitem?mr=87m:57044
http://www.emis.de/cgi-bin/MATH-item?0623.57024
http://dx.doi.org/10.1007/s00031-005-1105-6
http://dx.doi.org/10.1007/s00031-005-1105-6
http://www.ams.org/mathscinet-getitem?mr=2006m:22029
http://www.emis.de/cgi-bin/MATH-item?1107.22013
http://www.ams.org/mathscinet-getitem?mr=54:11363
http://www.emis.de/cgi-bin/MATH-item?0429.57011
http://dx.doi.org/10.1007/BF01459142
http://www.ams.org/mathscinet-getitem?mr=88b:53063
http://www.emis.de/cgi-bin/MATH-item?0585.57023
http://dx.doi.org/10.2307/1970770
http://www.ams.org/mathscinet-getitem?mr=45:7743
http://www.emis.de/cgi-bin/MATH-item?0247.57013
http://www.ams.org/mathscinet-getitem?mr=96f:13008
http://www.emis.de/cgi-bin/MATH-item?0864.13002
http://dx.doi.org/10.1090/S0273-0979-97-00724-6
http://www.ams.org/mathscinet-getitem?mr=98i:13009
http://www.emis.de/cgi-bin/MATH-item?0904.13004
mailto:hausch@unical.it
http://sv.mat.unical.it/~hauschild

	1. Introduction
	2. Steenrod powers and rational cohomology
	3. A proof of the main theorem
	Appendix
	References

