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We show that if an orientable Seifert fibered space M with an orientable
genus g base space admits a strongly irreducible horizontal Heegaard split-
ting, then there is a one-to-one correspondence between isotopy classes of
strongly irreducible horizontal Heegaard splittings and elements of Z2g .
This correspondence is determined by the slopes of intersection of each
Heegaard splitting with a set of 2g incompressible tori in M. We also show
there are Seifert fibered spaces with infinitely many nonisotopic Heegaard
splittings that determine Nielsen equivalent generating systems for the fun-
damental group of M.

1. Introduction

Certain closed Seifert fibered spaces are known to admit a type of Heegaard split-
ting called a horizontal Heegaard splitting. Bachman and Derby-Talbot [2006]
showed that any Seifert fibered space that admits a strongly irreducible horizontal
splitting admits infinitely many isotopy classes of horizontal splittings. We improve
their analysis to show the following:

Let M be an orientable Seifert fibered space with base space an orientable genus
g surface, and let T1, . . . , T2g be vertical tori in M such that Ti ∩T j is a single loop
for i odd and j = i + 1 (or vice versa), and empty otherwise. The complement in
M of a regular neighborhood of these tori is a Seifert fibered space over a g-times
punctured sphere.

Theorem 1. If M admits a strongly irreducible horizontal Heegaard splitting and
M is not a circle bundle, then for every 2g-tuple of integers (s1, . . . , s2g) ∈ Z2g,
there is a unique (up to isotopy) strongly irreducible, horizontal Heegaard split-
ting that intersects each Ti in a family of essential loops with slope si . Moreover,
Heegaard splittings that define distinct 2g-tuples of slopes are not isotopic.
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A Heegaard splitting for a compact, closed, orientable 3-manifold M is a triple
(6, H1, H2), where 6 ⊂ M is a compact, closed, two-sided surface and the sub-
sets H1 and H2 of M are handlebodies (that is, homeomorphic copies of closed
regular neighborhoods of connected, finite graphs in S3) with ∂H1=6= ∂H2 and
H1 ∪ H2 = M .

A Heegaard splitting (6, H1, H2) is strongly irreducible if every essential, prop-
erly embedded disk in H1 intersects every essential, properly embedded disk in H2.
We will describe the construction of a horizontal Heegaard splitting in Section 3.

Given a Heegaard splitting (6, H1, H2) of M , there is a smooth function f from
M to the interval [0, 1] such that the preimage of each point in (0, 1) is a surface
isotopic to 6 and the preimages of {0} and {1} are graphs (called spines) in H1

and H2. Such a function is called a sweep-out [Johnson 2005] and the restriction
of f to a vertical torus in M is (generically) a Morse function. A Morse function on
a torus always has level sets that are essential in the torus. Level sets of a Morse
function are pairwise disjoint and disjoint essential loops in a torus are parallel,
so f determines a unique isotopy class of simple closed curves in the torus.

We will describe below how a simple closed curve in a vertical torus determines
a rational number called its slope. Different sweep-outs will restrict to different
Morse functions on T , so a Heegaard splitting may determine more than one slope.
We will show that in many cases if two sweep-outs come from the same Heegaard
splitting, then they will determine the same slope on the vertical torus. In particular,
for M a Seifert fibered space with orientable base space and T1, . . . , T2g vertical
tori in M as above, we show the following:

Lemma 2. If a strongly irreducible Heegaard splitting of a Seifert fibered space
M determines more than one slope in a vertical torus Ti , then M is a circle bundle.

This is proved in Section 3, based on techniques developed in Section 2, and
shows one direction of Theorem 1. The other direction follows from the construc-
tion of horizontal Heegaard splittings and is also proved in Section 3.

Weidmann has shown, in the appendix of [Bachman and Derby-Talbot 2006],
that every circle bundle contains a unique irreducible Heegaard splitting (up to
isotopy). The only circle bundles with strongly irreducible Heegaard splittings are
circle bundles over the circle (all of which are lens spaces) and the circle bundle
over the torus with Euler number one.

In Sections 4 and 5, we consider the generating set for the fundamental group
of M . Two generating sets are called Nielsen equivalent if one can be changed to
the other by a finite number of type-one Tietze moves (that is, by replacing the i-th
generator with its inverse or with the product of the i-th and the j-th generator for
some i 6= j).
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The fundamental group of each handlebody in a Heegaard splitting is a free
group. The inclusion of its fundamental group into π1(M) determines a generating
set for π1(M). If the handlebodies of two Heegaard splittings determine generating
sets for π1(M) that are not Nielsen equivalent, then these two splittings can not be
isotopic. Lustig and Moriah have used Nielsen equivalence to distinguish vertical
Heegaard splittings of Seifert fibered spaces [1991] as well as Heegaard splittings
of certain hyperbolic 3-manifolds [1997]. We show that, unfortunately, Nielsen
class does not always distinguish nonisotopic Heegaard splittings. In particular,
we describe in Section 5 a family of Seifert fibered space over the torus with two
singular fibers such that each admits infinitely many nonisotopic Heegaard split-
tings whose handlebodies determine Nielsen equivalent generating sets in π1(M).

2. Toroidal summands

Let M be a compact, closed, orientable, irreducible 3-manifold (not necessarily a
Seifert fibered space), and let N ⊂ M be a submanifold homeomorphic to T × S1,
where T is a once punctured torus. Assume ∂N is incompressible in M . (If ∂N
is compressible in M , then it compresses to a sphere in the complement of N , so
because M is irreducible, M must be a solid torus.)

Two canonical simple closed curves in ∂N are picked out by the topology: a
meridian µ that is the boundary of an incompressible torus T ×{y} in T × S1 (for
some y ∈ S1) and a longitude λ that is the slope of a vertical loop {x}×S1 (y ∈ ∂T ).
The meridian µ is the unique (up to isotopy) loop in ∂N that is homology trivial in
N , so it is determined independently of the product structure on N . Every essential
annulus properly embedded in N has boundary parallel to λ, so this loop is also
independent of the product structure. Any simple closed curve in ∂N is a sum
pµ+ qλ, and thus determines a fraction p/q ∈Q∪ {1/0}, called its slope.

For any essential, simple closed curve ` in T , the subset `× S1
⊂ T × S1 is a

nonseparating incompressible torus in M . We can define slopes µ′ = `× {y} for
y ∈ S1 and λ′ = {x} × S1 for x ∈ `, so again each loop in `× S1 determines a
slope p/q. In this case, the loop µ′ is determined by the product structure of N ,
not the topology alone. A different product structure will imply a different µ′. For
our purposes, it suffices to fix a product structure on N , since we will always be
dealing with these slopes in a relative way.

Let (6, H1, H2) be a Heegaard splitting for M . Let f : M→[0, 1] be a sweep-
out such that each level surface of f is isotopic to 6. Let S = `× S1 be a vertical
torus in N . After an arbitrarily small isotopy of f , the restriction of f to S will
be a Morse function. As mentioned above, a Morse function on a torus always has
an essential level set and the essential levels define a single isotopy class of simple
closed curves. Thus f determines a unique slope in S.
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We will say that 6 determines a slope p/q on S if there is a sweep-out f with
level sets isotopic to 6 such that the restriction of f to S has a level set in S with
slope p/q. As noted above, a Heegaard splitting may determine more than one
slope. If the intersection of 6 with S contains an essential loop of slope p/q,
then f can be chosen so that 6 is a level set of f (rather than just isotopic to one),
so 6 determines the slope p/q . Conversely, for any sweep-out for 6, each level
surface is isotopic to 6. Thus 6 determines a slope p/q in S if and only if 6 can
be isotoped so that the intersection contains a loop with that slope.

Lemma 3. If a strongly irreducible genus g Heegaard splitting (6, H1, H2) for
M determines more than one slope in a vertical torus S in N , then 6 can be
isotoped so that the closure of6\N in the closure of M\N is a properly embedded
incompressible genus g−3 surface whose boundary is a pair of loops in ∂N , each
with slope 1 or −1.

Before we begin the proof, recall that a smooth function f is Morse if every
critical point is nondegenerate and no two critical points are in the same level. A
function is near-Morse if either all but one of its critical points are nondegenerate
and all are in distinct levels, or all its critical points are nondegenerate and all but
two are in distinct levels.

Proof. If (6, H1, H2) determines more than one slope in S, then there are sweep-
outs f and f ′ such that6 is isotopic to both a level surface of f and of f ′ and such
that the essential level sets of f |S and f ′|S determine different slopes. Because f
and f ′ are sweep-outs for the same Heegaard splitting, there is an isotopy of M
taking a level surface of f ′ to a level surface of f . In particular, there is a family
of sweep-outs { ft | t ∈ [0, 1]} such that f0 determines the same slope in S as f ′

and f1 determines the same slope in S as f .
Assume the family of sweep-outs is generic with respect to S, that is, that ft |S is

Morse for all but finitely many values of t . At the finitely many non-Morse values,
the restriction will fail to be Morse because either two critical points pass through
the same level, as in Figure 1, or there is a single degenerate critical point. For any
value t0 such that ft0 |S is a Morse function, there is a neighborhood of t0 in [0, 1]
such that for any t in this neighborhood, ft |S is isotopic (in S) to ft0 |S . Thus the
slope of the essential levels can only change at the near-Morse values of t .

If two essential loops in a torus are disjoint, then they are parallel, and thus
define the same slope. Thus if the essential slope changes at a near-Morse value t0,
then the regular levels of ft0 |S must all be trivial in S. This is the case if and only
if each component of the complement of the critical levels is contained in an open
disk in S. If ft0 |S is a near-Morse function with a degenerate critical point (but
its critical points are in distinct levels), then the complement of the critical levels
must still contain an essential level loop. The only type of intermediate function
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Figure 1. The slope of the level loops in a Morse function on a
torus changes when two saddle singularities pass through the same
level. The surface is embedded so that the Morse function is a
height function.

that does not contain an essential regular level is one in which ft0 |S has two saddles
at the same level, and this level set cuts S into disks. This is shown in Figure 1.
Thus if the slope changes, there must be such an intermediate function.

The critical level containing the two saddle singularities is a graph with two
valence four vertices and thus four edges. There are exactly two (homeomorphism
classes of) connected graphs with four edges and two valence four vertices: Let 00

be a two-vertex graph in which two edges pass between the two vertices and one
edge goes from each vertex back to itself. Let 01 be a two-vertex graph in which
each edge goes from one vertex to the other.

Let 0 be a critical level set of a near-Morse function on an oriented surface
S such that 0 is homeomorphic to 00 or 01. Given an orientation for an edge
of 0, the orientation of S defines a transverse orientation. Choose an orientation
for each edge so that the transverse orientation points in the direction in which the
near-Morse function is increasing. The embedding of 0 suggests a cyclic ordering
of the ends of the edges that enter each vertex. Because each vertex is at a saddle
singularity, the edges must alternate whether they point towards the vertex or away.

If 0 is homeomorphic to 00, then for each edge that passes from a vertex to
itself, one end points towards the vertex and the other away. Thus the ends of each
such edge are adjacent in the cyclic ordering around the vertex. This implies that
a regular neighborhood in S of 0 is a planar subsurface. If S is a torus, then the
complement of 0 must contain a component that is not contained in a disk in S.

Thus if the slope defined by the Morse function changes, the level containing two
saddles must be homeomorphic to 01. There is a unique (up to homeomorphism)
way that such a graph can be embedded in a torus so that its complement is a
collection of disks. This is shown at the bottom left of Figure 2. The top left
picture shows the intersection of this level set with a square whose sides are glued
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Figure 2. Extending a level surface of ft0 locally from a critical
level in S with two saddles produces a sphere with four punctures.

to construct the torus, chosen so that the two vertices of 0 are in the two edges of
the glued square.

Let R be a regular neighborhood of S, and let F be the level surface of ft0 that
contains the critical level. The surface F intersects R as shown on the right of
Figure 2. Because of the identifications at the edges of the square, this intersection
is a sphere with four punctures, which we will call U , and a (possibly empty) col-
lection of annuli. The boundary loops of U (and thus the boundary loops of F \ R)
determine slopes in S that intersect at one point. Note that F is isotopic to 6
because it is a level surface of a sweep-out for (6, H1, H2).

Claim. The intersection F ∩ S consists of the graph U ∩ S and a (possibly empty)
collection of loops that are trivial in both S and F.

Proof. It suffices to show that the curves in F ∩ S other than U ∩ S are trivial in F .
Let g be the restriction of the sweep-out ft0 to the surface S. Each level set of g
is the intersection of S with a level surface of ft0 . There is a canonical way (up
to isotopy) to identify this level surface with 6, so each loop component of each
level set of g determines an isotopy class of simple closed curves in6. At a central
singularity in g, a loop corresponding to a trivial loop in 6 is added or removed.
At a level where there is a single saddle singularity in g, one loop is turned into
two, or vice versa by a band summing operation.

For t near 0, these simple closed curves bound disks in H1, and near 1 they
bound disks in H2. For any regular level of g, consisting of a number of simple
closed curves, the corresponding isotopy classes of loops in6 are pairwise disjoint.
Because 6 is strongly irreducible, a fixed level set of g cannot determine essential
loops in 6 bounding disks on both sides. Every regular level of g contains a trivial
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loop in S, so one of the loops in 6 determined by this regular level bounds a disk
in H1 or H2.

The disks cannot switch from one side to the other at a critical level with a single
saddle since the loops in 6 before and after the band summing are disjoint. Thus
the switch occurs at the single level of g with two saddle singularities. In particular,
the loops that limit onto this level set bound disks in opposite handlebodies (though
these disks are not disjoint), so the remaining loops of intersection must be trivial
in F . �

To complete the proof, isotope F so as to remove any loops that are trivial
in both F and S. Bachman and Derby-Talbot [2006] pointed out that after these
trivial loops are removed, S \F is a pair of compressing disks for F whose bound-
aries, when made transverse, intersect at four points. These compressing disks
are on opposite sides of F and are contained in the regular neighborhood R. Any
compressing disk for F \ R is disjoint from each of the disks in S \ F . Because
(6, H1, H2) is strongly irreducible and F is isotopic to 6, the surface 6 \ R must
be incompressible in M \ R.

The manifold N \ R is homeomorphic to a pair of pants cross S1. Any incom-
pressible surface in N \R is one of the following forms: a vertical torus or annulus
isotopic to an essential loop or arc cross S1. A horizontal pair of pants is a properly
embedded surface that intersects each vertical S1 transversely at a single point. The
surface F ∩ (N \ R) has boundary, so it is not a vertical torus and must consist of
some number of horizontal pairs of pants. The pairs of pants intersect R in the
loops ∂U . As noted above, these loops have slopes in the boundary of the closure
of R that, when projected into S, intersect at one point.

The first homology group of N \ R is isomorphic to Z×Z2, where the first Z is
generated by the S1 factor of the pair of pants cross a circle. The three boundary
loops of a component of F ∩ (N \ R) bound a pair of pants, so the sum of the
homology elements they generate is zero. The first coordinates of the two loops
in ∂R differ by exactly one (since they intersect at a single point in S), so the first
coordinate of the third loop must be 1 or −1. In other words, the third cuff of each
pair of pants must have slope 1 or −1 in ∂N .

The surface F ∩N is the union of a four times punctured sphere F ∩ R and two
pairs of pants F ∩ (N \ R), so F ∩N is a twice punctured genus two surface. Thus
F \ N is an incompressible, twice punctured genus g− 3 surface whose boundary
has slope 1 or −1 in ∂N . �

3. Seifert fibered spaces

Let M be a Seifert fibered space, and let c⊂M be a critical fiber. The complement
in M of a regular neighborhood U of c is a surface bundle. Let F be a leaf of
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this bundle, and assume that ∂F consists of a single loop in ∂U that is a longitude
of the solid torus U . Let 6 be union of two disjoint leaves parallel to F and an
annulus in U connecting the boundaries of these leaves. Each component of the
complement in M of 6 is homeomorphic to the union of F × (0, 1) and a regular
neighborhood of ∂F × (0, 1).

Because F is a surface with boundary, this set is a handlebody, so 6 determines
a Heegaard splitting (6, H1, H2). A Heegaard splitting constructed in this way
is called a horizontal Heegaard splitting. Recall the collection {Ti } of vertical tori
defined in Section 1. The slope that (6, H1, H2) determines on each Ti is precisely
the slope of intersection between F and Ti .

Sedgwick [1999] showed that a horizontal Heegaard splitting is irreducible if
and only if the multiplicity of c is greater than the least common multiple of the
multiplicities of the other critical fibers. In particular, if 6 is strongly irreducible,
then the winding number of c must be the largest over all the critical fibers in M .
Thus if (6′, H ′1, H ′2) is a second strongly irreducible horizontal Heegaard splitting
of M , then 6′ is constructed starting from the same fiber c. The incompressible
surface F is uniquely determined (up to isotopy) by the slopes of intersection be-
tween F and each Ti . Thus if 6 and 6′ determine the same slope in each Ti , then
they were constructed from the same c and F , and are therefore isotopic.

Proof of Lemma 2. The discussion above shows that if two strongly irreducible,
horizontal Heegaard splittings determine the same slope with each Ti , then they
are isotopic. We will prove the converse. Without loss of generality, assume i is
odd, so that Ti ∩ Ti+1 is a single simple closed curve.

A regular neighborhood N of Ti ∪ Ti+1 is homeomorphic to a punctured torus
cross a circle. Because Ti and Ti+1 are each isotopic to a union of regular fibers
in M , we can assume that N is also a union of regular fibers. The complement
in M of N is a Seifert fibered space, so every incompressible surface in M \ N
is either a vertical torus or a horizontal incompressible surface. The only one of
these surfaces that has boundary in ∂N is a horizontal surface.

Assume for contradiction that 6 determines more than one slope in Ti . Then
by Lemma 3 there is an incompressible surface F in the complement of N that
intersects the boundary in two parallel loops with slope ±1. A horizontal in-
compressible surface in a Seifert fibered space is nonseparating, so F (which is
separating) must be a union of two horizontal surfaces. The complement M \ N
is a Seifert fibered space whose fibers in ∂M match the fibers in N , and thus have
slope∞ in ∂N .

Each boundary component of F has slope ±1, so each regular fiber of the
fibrations intersects each component of F at a single point. The number of in-
tersections of a singular fiber with a horizontal surface is a proper integral fraction
of the number of intersections with the nearby regular fibers, so M \ N contains
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no singular fibers. This implies that N contains no singular fibers, so M must be a
circle bundle. �

Proof of Theorem 1. By Lemma 2, a strongly irreducible horizontal Heegaard
splitting is uniquely determined by the 2g-tuple of slopes it determines with the
incompressible tori {Ti }. To show a one-to-one correspondence to Z2g, we need
only show that if M admits a strongly irreducible horizontal Heegaard splitting,
then for any 2g-tuple there is a strongly irreducible horizontal Heegaard splitting
that determines this 2g-tuple of slopes.

If M has a strongly irreducible, horizontal Heegaard splitting (6, H1, H2), then
6 was constructed from some critical fiber c and an incompressible surface F in
the complement of c that intersects each regular fiber at two points. The critical
fiber c can always be taken to be disjoint from each Ti .

Given positive integers n and i ≤ g, consider n parallel copies T2i . Because F
intersects each regular fiber at two points and the torus T2i is a union of regular
fibers, the surface F will intersect each copy T j

2i of T2i in two simple closed curves.
Let U be a regular neighborhood of a component of F ∩ T j

2i . The intersection of
F ∪T j

2i with U is the union of a pair of annuli that intersect in a common essential
loop. There are two ways to replace these two intersecting annuli with two disjoint
annuli. If we make this replacement in the same way in each neighborhood, the
resulting surface will have slope either n or −n in T2i+1. For every other T j , the
slopes of F ∩ T j and F ′ ∩ T j agree. (This operation is called a Haken sum.) We
say that the surface with slope n is the result of spinning F around T2i n times.

Similarly, spinning F around T2i+1 changes its slope with T2i but not with the
other vertical tori. Thus by spinning F around the vertical tori, one can construct a
horizontal surface F ′ that intersects the vertical tori {Ti } in any 2g-tuple. This F ′

has the same boundary as F in ∂N (c), so F ′ ∪ A is a horizontal Heegaard surface
6′ for M . There are two ways to see that 6′ is a strongly irreducible, horizontal
Heegaard surface. First, the reader can check that there is a homeomorphism from
M to itself taking 6 onto 6′. Second, both Heegaard splittings are constructed
from the same critical fiber in M , so by Sedgwick’s results [1999], both are strongly
irreducible. The Heegaard surface 6′ determines the same 2g-tuple of integers
as F ′, so for each 2g-tuple of integers, there is a strongly irreducible, horizontal
Heegaard splitting whose slopes in {Ti } realize those values. �

4. Double primitive knots

Here, we will construct a family of 3-manifolds with infinitely many nonisotopic
genus three Heegaard splittings. In the next section, we will show that for certain
Seifert fibered spaces over the torus with two critical fibers, the Heegaard splittings
all determine the same Nielsen classes of generators for the fundamental group.
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Let X be a compact, closed, orientable, irreducible 3-manifold with a genus two
Heegaard splitting (6′, H ′1, H ′2), and let `⊂6′ be a simple closed curve such that
` intersects some essential, properly embedded disk Di ⊂ H ′i at a single point for
i = 1, 2. Such a loop is called double primitive. (A knot in S3 that is isotopic to a
double primitive loop in a genus two Heegaard splitting is called a Berge knot.)

Let Y ⊂ X be a regular neighborhood of a double primitive loop ` ⊂ 6′. The
intersection ∂Y∩6′ is a pair of loops `′1 and `′2 in the torus ∂Y . Define N = T×S1,
where T is a once punctured torus, and let x1 and x2 be points in S1. Let M be the
result of gluing X \ Y to N by a map that sends `′i to ∂T ×{xi } for i = 1, 2.

Lemma 4. 6 =6′ ∪ (T ×{x1, x2}) is a genus three Heegaard surface for M.

Proof. The complement in N of (T × {x1, x2}) consists of two components, each
of whose closure is a genus two handlebody T × I , where I ⊂ S1 is one of the two
intervals with endpoints x1 and x2. Let N1 and N2 be these handlebodies. Then
each of N1 ∩ ∂N and N2 ∩ ∂N is an annulus.

In M , the complement M1 = H ′1 \ Y is a handlebody. Because ` is double
primitive, the intersection of M1 with the closure of Y is an annular neighborhood
A of a loop in ∂M1 that intersects some properly embedded, essential disk D⊂M1

at a single point. A closed regular neighborhood U in M1 of A∪D is a solid torus
such that U intersects the closure of M1 \U in a disk. In M , the set U is a regular
neighborhood of an annulus in the boundary of N1. Thus N1∪U is a handlebody.

The set M1 ∪ N1 is the union of the closure of M1 \U (which is a handlebody)
and the handlebody N1 ∪ U . The two handlebodies intersect in a disk, so their
union is a handlebody H1. A similar argument for M2 implies that N2 ∪ M2 is a
handlebody H2. Thus 6 = ∂H1 = ∂H2 is a Heegaard surface for M . �

The Heegaard surface 6 =6′ ∪ (T ×{x1, x2}) determines a Heegaard splitting
(6, H1, H2) such that H ′1 ⊂ H1 and H ′2 ⊂ H2. Lemma 4 requires that for s ∈ S1,
∂T ×{s} is sent to the same slope in ∂Y as `′1, but there is no requirement for the
slope that a loop {t}×S1 (where t ∈ ∂T ) is glued to. Thus there are infinitely many
gluings that will produce a manifold with a genus three Heegaard splitting.

Lemma 5. If (6, H1, H2) is weakly reducible, then X \ Y is a solid torus.

Proof. Because M has Heegaard genus at most three, it cannot be a connect sum
of T 3 with a nontrivial manifold. If ∂N is compressible, then it compresses down
to a sphere, which must bound a ball. Thus if ∂N is compressible, X \Y is a solid
torus. We will therefore assume that ∂N is incompressible.

Assume 6 be weakly reducible. By Casson and Gordon’s theorem [1987], if
(6, H1, H2) is weakly reducible, 6 is reducible or compresses to a separating
incompressible surface S in M . In the second case, each component of the com-
plement of S has a Heegaard splitting that comes from compressing 6.
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The 3-manifold M does not admit a genus two Heegaard splitting because by the
main theorem of [Kobayashi 1984], if a closed 3-manifold M contains a separating
incompressible torus and a genus two Heegaard splitting, then each piece of the
complement is either a Seifert fibered space over a disk, an annulus or a Möbius
band, the complement of a (1, 1) knot in a lens space, or the complement of a two-
bridge knot in S3. (In fact, the theorem is much stronger than this, but that’s all
we need.) The component N is not one of these three types, so M does not admit
a genus two Heegaard splitting. Because 6 is not reducible, the weak reduction
must determine a separating incompressible surface S ⊂ M .

Because S is the result of compressing the genus three surface 6 at least twice,
S must consist of one, two or three tori. Because each component of M \ S has a
Heegaard splitting that comes from compressing the genus three surface 6, each
component of M \ S has Heegaard genus at most two. Any submanifold of M
containing N has Heegaard genus at least three (for the same reason that M has
Heegaard genus at least three), so S must intersect N .

Any incompressible surface in N is either a vertical torus or a horizontal once
punctured torus. If S∩N contains a horizontal punctured torus, then S\N contains
a disk, so ∂N is compressible into X , which contradicts the assumption on ∂N .

Thus S consists of vertical tori in N . Because it is separating, S must consist
of a union U ⊂ N of two parallel vertical tori (each of which is nonseparating).
Each component of M \U has a Heegaard splitting induced from 6 and such a
splitting has genus at most two. One component is homeomorphic to a torus cross
an interval. The other is the union of X \ Y and a pair of pants cross an interval.

Let Z be this second component. Note that if X \ Y is not a solid torus, then
the fundamental group of X \ Y has rank at least two. The fundamental group of
a pair of pants cross an interval is the direct product of Z and a free group F2 on
two generators. By Van Kampen’s theorem, the fundamental group of Z is the
quotient of the free product π1(X \Y )∗ (F2

×Z) by two relations, one that equates
an element of F2 to an element of π1(X \Y ), and the other that equates a generator
of Z to an element of π1(X \Y ). There is thus a homomorphism from π1(Z) onto
the direct product π1(X \Y )×Z. If Z admits a genus two Heegaard splitting, then
π1(Z) has rank at most 2, so π1(X \ Y ) has rank at most one, implying X \ Y is a
solid torus. �

Let α and β be essential simple closed curves in T whose intersection is a single
point. Define Sα =α×S1 and Sβ =β×S1. Because6 contains T×x1 and T×x2,
it determines the slope 0 in both Sα and Sβ . Let 6i be the result of spinning 6
i times around Sβ as in Section 3. If two such surfaces 6i and 6 j (for i 6= j)
are isotopic, then 6i determines both the slope i and the slope j . By Lemma 3,
this implies that 6 can be isotoped to intersect X \ Y in an incompressible, twice
punctured, genus zero surface, that is, an annulus.
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m
E

Figure 3. The construction of the surface E .

Assume that 6 can be isotoped to intersect X \Y in an incompressible, properly
embedded annulus A. If A is boundary compressible, then because X is irreducible,
A must be boundary parallel. Isotoping A out of X \ Y makes 6 disjoint from
∂(X \ Y ). This implies that ∂(X \ Y ) must be compressible because a Heegaard
surface cannot be made disjoint from a closed incompressible surface. Thus we
have proved the following:

Lemma 6. If ∂(X \Y ) is incompressible in M and X \Y does not contain a prop-
erly embedded, essential (that is, incompressible and boundary incompressible)
annulus, then M admits infinitely many nonisotopic Heegaard splittings.

Note that if M is the complement of a knot K in S3, then Lemma 6 holds
whenever K is not a torus knot or a cable knot.

5. Nielsen equivalence

Let (O, B1, B2) be a genus one Heegaard splitting of S3, and let K ⊂ O be a
simple closed curve that does not bound a disk in S3. (The curve K is a nontrivial
torus knot.) We can give each solid torus B1 and B2 a Seifert fibration such that
K ⊂ ∂Bi is a fiber. This defines a Seifert fibration of S3 such that there is a regular
neighborhood Y of K consisting of a union of fibers. Thus the complement in S3

of Y is a Seifert fibered space over the disk with two singular fibers. A regular
fiber in ∂Y determines the same slope as O ∩ ∂Y .

Let m be the boundary of a small disk D that intersects K in a single point
and O in a single arc, as in Figure 3. Let U be an open regular neighborhood
of m. Define E to be the union of the twice punctured torus O \U and the annulus
∂U ∩ B1. (Here U is the closure of the open set U .) Define E ′ to be the union of
O \U and ∂U ∩ B2.

Because m bounds a disk that intersects K at a single point, there is a homeo-
morphism from S3 to the result of 1 Dehn surgery on m that takes K onto itself.
Let F be the image in this homeomorphism of E , and let F ′ be the image of E ′.
In other words, F and F ′ are the result of “twisting” E and E ′, respectively, about
the meridian m. The differences E ′ \ E and E \ E ′ are annuli whose union bounds
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the solid torus U . The annuli meet in meridians of the solid torus. After the Dehn
surgery, F ′ \ F and F \ F ′ again bound the solid torus, but this time they meet
along a longitude of the solid torus. Thus there is an isotopy from F ′ \F to F \F ′.
Extending this isotopy to all of F ′ takes F ′ onto F , so F and F ′ are isotopic in S3

fixing F ′ ∩ Y = F ∩ Y .
The surface F is the result of adding a trivial handle to the genus one Heegaard

surface O . Thus F defines a genus two Heegaard splitting (6′, H ′1, H ′2) for S3

where 6′ = F , H ′1 = B1 \U , and H ′2 = B2 ∪U . The intersection D ∩ H ′2 ∩ B1

is an essential disk properly embedded in H ′2 and intersects K at a single point.
Thus K is primitive in H ′2. Because F ′ is isotopic to F , a similar argument for F ′

implies that K is also primitive in H ′1. (The reader can check that F results from
taking the standard unknotting graph consisting of a core for B1 and a short arc
to K , then pushing K into the resulting Heegaard surface in a way that makes it
double primitive.)

Let T be a once punctured torus, let s1 and s2 be points in S1, and let t1 and t2 be
points in ∂T . Each component of O∩∂Y intersects each component of 6′∩∂Y at
a single point, so these four loops cut ∂Y into four squares. The loops ti × S1 and
∂T × si intersect at one point for each pair, so they form a homeomorphic pattern
in ∂T ×S1. Let M be the result of gluing S3

\Y to T ×S1 so that the loops O∩∂Y
are sent to t1 × S1 and t2 × S1 while the loops 6′ ∩ ∂Y are sent to ∂T × s1 and
∂T × s2.

Since K is double primitive in6, Lemma 4 implies6= (6′\Y )∪(T×(s1∪s2))

is the surface in a genus three Heegaard splitting (6, H1, H2) for M . By Lemma 5,
this Heegaard splitting is strongly irreducible. Moreover, because loops of the
Seifert fibration in ∂(S3

\ Y ) are glued to vertical loops in T × S1 (which can be
thought of as loops of a Seifert fibration for N ), M is a Seifert fibered space.

Let α and β be simple closed curves in T that intersect in a single point. As in the
previous section, we can spin 6 around the vertical torus Sβ = β× S1 to construct
an infinite family of Heegaard splittings {(6i , H i

1, H i
2)} such that 6i determines

the slope i in the vertical torus Sα = α× S1.

Lemma 7. The Heegaard splittings (6i , H i
1, H i

2) and (6 j , H j
1 , H j

2 ) are isotopic
if and only if i = j . However, the generating set for π1(M) defined by the inclusion
map π1(H i

1)→ π1(M) is Nielsen equivalent to that defined by π1(H
j

1 )→ π1(M)
for all i and j . The generating set determined by π1(H i

2) → π1(M) is Nielsen
equivalent that defined by π1(H

j
2 )→ π1(M) as well.

Proof. There is an essential annulus properly embedded in S3
\ Y , so Lemma 6

is not enough to distinguish Heegaard splittings by their slopes. However, this
annulus intersects ∂Y in the same slope as O ∩ ∂Y , which determines the slope
∞ in ∂T × S1. Since there is no incompressible surface with slope ±1, Lemma 3
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implies that6i determines a unique slope on any vertical torus in T×S1. Since6i

determines slope i and6 j determines slope j , we conclude6i and6 j are isotopic
if and only if i = j .

All that remains is to show that the Nielsen classes of the generators for π1(M)
determined by these Heegaard splittings are all equivalent. We will show this for
60 and 61. A similar argument works for any 6i and 6i+1 and the general result
follows by induction on |i |.

We will choose as the base point for π1(M) a point p = (a, b) ∈ ∂T × S1. The
fundamental group of the punctured torus T × {b} (with base point b ∈ ∂T ) is a
free group on two generators. Let x and y be the inclusion into π1(M) of these
generators. We can choose x and y so that an arc representing x intersects Sβ
at a single point and is disjoint from Sα. Similarly, we can assume that an arc
representing y intersects Sα at a single point and is disjoint from Sβ .

Let z be the element of π1(M) defined by the loop a× S1. Let t be the element
of π1(M) defined by a path that follows a short arc into B1 ⊂ S3, then follows
a core of B1 disjoint from the disk D, and then follows the short arc back to p.
Because z is determined by a regular fiber and t is determined by a singular fiber
of order t , we have z = t p for some integer p.

The fundamental group of H 0
1 is generated by x , y and t , so it induces the

Nielsen class [x, y, t] for π1(M). The only generator for H 0
1 that intersects Sβ

is x . Spinning 60 around Sβ replaces x with xz= zx or xz−1
= z−1x , while fixing

y and t . Without loss of generality, we will assume it replaces x with xt . Thus
H 1

1 determines the Nielsen class [xz, y, t]. We noted above that z = t p, so the
new generating set is in fact [xt p, y, t], which is Nielsen equivalent to [x, y, t], the
generating set for H 0

1 . The generating sets induced by π1(H 0
1 ) and π1(H 1

1 ), and
by induction of any π1(H i

1), are Nielsen equivalent.
Above, we constructed 60 from the surface F in the knot complement M \ Y .

Switching the roles of B1 and B2 in this construction switches F and F ′, so the
resulting Heegaard splitting would be constructed from F ′. However, we noted
that F ′ is isotopic to F in M \ Y . Thus the Heegaard splitting that results from
switching the roles of B1 and B2 is isotopic to (60, H 0

2 , H 0
1 ), that is, the same

Heegaard surface, but with the order of the handlebodies switched. We can thus
apply the argument above to H 0

2 and H 1
2 , implying that the generating sets induced

by π1(H i
2) and π1(H

j
2 ) are Nielsen equivalent for all i, j . �
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