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We describe the finite-dimensional simple modules of all the (twisted and
untwisted) multiloop algebras and classify them up to isomorphism.

1. Introduction

Multiloop algebras are multivariable generalizations of the loop algebras appearing
in affine Kac–Moody theory. The study of these algebras and their extensions
includes a substantial literature on (twisted and untwisted) multiloop, toroidal, and
extended affine Lie algebras. This paper describes the finite-dimensional simple
modules of multiloop algebras and classifies them up to isomorphism.

Let g be a finite-dimensional simple Lie algebra over an algebraically closed
field F of characteristic zero. Suppose that σ1, . . . , σN : g→ g are commuting
automorphisms of finite orders m1, . . . ,m N , respectively. For each i , fix a primitive
mi -th root of unity ξi ∈ F . Then g decomposes into common eigenspaces relative
to these automorphisms:

g=
⊕
k∈G

gk,

where gk = {x ∈ g | σi x = ξ
ki
i x} and k is the image of each k ∈ ZN under the

canonical map ZN
→ G = Z/m1Z× · · · × Z/m N Z. The multiloop algebra of g,

relative to these automorphisms, is the Lie algebra

L= L(g; σ1, . . . , σN )=
⊕
k∈ZN

gk ⊗ Ftk,

where Ftk is the span of tk
= tk1

1 · · · t
kN
N , and multiplication is defined pointwise.

If the automorphisms σ1, . . . , σN are all trivial, L is called an untwisted multiloop
algebra. Otherwise, it is a twisted multiloop algebra.

In the one variable case (untwisted and twisted loop algebras), a proof of the
classification of the finite-dimensional simple modules appears in [Chari 1986;
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Chari and Pressley 1986; 1987; 1988]. A complete list of these modules also
appears explicitly in [Rao 1993], and a very recent paper [Chari et al. 2008] gives
a detailed discussion of this problem in the twisted loop case.

A description of the finite-dimensional simple modules of the untwisted mul-
tiloop Lie algebras was first given by S. E. Rao [2001]. Subsequent work by
P. Batra [2004] provided a complete (but redundant) list of the finite-dimensional
simple modules when σ1 is a diagram automorphism and the other automorphisms
σ2, . . . , σN are all trivial.

In the one variable case, every twisted loop algebra L(g; τ ◦ γ ) defined by an
inner automorphism τ and a diagram automorphism γ is isomorphic to L(g; γ )

[Kac 1990, Proposition 8.5]. It thus suffices to consider twists only by diagram
automorphisms in this setting. Unfortunately, this is far from true in the multivari-
able case. See [Gille and Pianzola 2007, Remark 5.9], for instance. It has recently
been shown that the centreless core of almost every extended affine Lie algebra
is a multiloop algebra [Allison et al. 2009], using results of [Allison et al. 2008;
Neher 2004]. Even for these multiloop algebras, any number of the automorphisms
σi can be nontrivial, and any number of them can fail to be diagram automorphisms.

In this paper, we consider an arbitrary (twisted or untwisted) multiloop alge-
bra L. From any ideal I of L, we construct a G-graded ideal I = I (I) of the
ring R = F[t±1

1 , . . . , t±1
N ] of Laurent polynomials. If I is the kernel of a finite-

dimensional irreducible representation, the 0-component I0 of I turns out to be a
radical ideal of the 0-component of R. The resulting decomposition of I0 into an
intersection of a finite number of maximal ideals produces an isomorphism

ψa : L/I→ g⊕ · · ·⊕ g (r copies)

whose composition with the quotient map π :L→L/I is evaluation at an r -tuple
a = (a1, . . . , ar ) of points ai ∈ (F×)N :

ψa ◦π : x ⊗ f (t) 7→ ( f (a1)x, . . . , f (ar )x)

for any x ⊗ f (t) ∈ L. Since the finite-dimensional simple modules of the semi-
simple Lie algebra g⊕· · ·⊕g are the tensor products of finite-dimensional simple
modules for g, we obtain a complete (but redundant) list of the finite-dimensional
irreducible representations of L (Corollary 4.4). Namely, any finite-dimensional
simple module for L is of the form

V (λ, a)= Vλ1(a1)⊗ · · ·⊗ Vλr (ar ),

where Vλi is the g-module of dominant integral highest weight λi , and Vλi (ai )

is the L-module obtained by evaluating elements of L at the point ai , and then
letting the resulting element of g act on Vλi . The r -tuples a = (a1, . . . , ar ) that
occur in this process must satisfy the condition that the points m(ai ) are all distinct,
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where m(ai )= (a
m1
i1 , . . . , am N

i N ) is determined by the orders m1, . . . ,m N of the auto-
morphisms σ1, . . . , σN . Conversely, the L-module V (λ, a) is finite-dimensional
and simple if the ai satisfy this condition (Theorem 4.5).

In the second half of the paper, we establish necessary and sufficient conditions
for L-modules V (λ, a) and V (µ, b) to be isomorphic. Namely, we “pull back” a
triangular decomposition N−⊕H⊕N+ of g⊕· · ·⊕g to a triangular decomposition
ψ−1

a (N−)⊕ψ−1
a (H)⊕ψ−1

a (N+) of L/I. The modules V (λ, a) and V (µ, b) are
highest weight with respect to this decomposition of L/I, and they are isomorphic
if and only if they have the same highest weights. We conclude with three equiva-
lent criteria for isomorphism in terms of an explicit formula in Theorem 5.4, orbits
under a group action in Corollary 5.9, and equivariant maps in Corollary 5.10.
These are the first such isomorphism results for modules in any multiloop setting.

Interestingly, the triangular decomposition N−⊕H⊕N+ is replaced with a new
triangular decomposition ψbψ

−1
a (N−)⊕ψbψ

−1
a (H)⊕ψbψ

−1
a (N+) of g⊕r in the

computation of the highest weight of V (µ, b). Unlike diagram automorphisms,
arbitrary finite-order automorphisms σi often fail to stabilize any triangular de-
composition of a finite-dimensional semisimple Lie algebra. This fact is reflected
in the change of triangular decomposition on g⊕r , and it is one of the reasons that
past work considered only twists by diagram automorphisms.

Another novelty in this classification is the passage from twists by a single non-
trivial automorphism σ1 to a family of nontrivial automorphisms σ1, . . . , σN . Here
the major obstacle to past approaches was reliance on the representation theory of
the fixed point subalgebra g0 under the action of the automorphisms. While this
was a great success when working with twists by a single automorphism, it cannot
be used when considering twists by more than one automorphism, since the algebra
g0 is then often 0. We avoid this pitfall by using a new approach that does not rely
on the usual Dynkin diagram folding arguments.

We expect the methods of this paper to be widely applicable. For example,
the arguments given here classify the finite-dimensional simple modules of the
Lie algebra Map(X, g) of g-valued regular functions on any affine variety X ;
namely, they are tensor products of evaluation modules at distinct points of X .
Since the release of earlier versions of this paper, our approach has already been
adapted to classify modules for Lie algebras g⊗ A of g-valued functions on affine
schemes Spec(A) and their invariants under more general finite group actions
[Chari et al. 2009; Neher et al. 2009]. Another promising direction is the classifi-
cation of ZN -graded-simple modules of L(g; σ1, . . . , σN ) with finite-dimensional
graded components. See [Pal and Batra 2008; Rao 2001] for partial results.

Notation. Throughout this paper, F will be an algebraically closed field of char-
acteristic zero. All Lie algebras, linear spans, and tensor products will be taken
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over F unless otherwise indicated. We will denote the integers by Z, the nonneg-
ative integers by Z+, and the nonzero elements of F by F×.

2. Multiloop algebras and their ideals

The following proposition is an immediate consequence of general facts about
reductive Lie algebras.

Proposition 2.1. Let L be a perfect Lie algebra over F , and let φ : L→ End V be
a finite-dimensional irreducible representation. Then L/ kerφ is a semisimple Lie
algebra.

Proof. The representation φ descends to a faithful representation of L/ kerφ.
By [Bourbaki 1960, Proposition 6.4.5], any Lie algebra with a faithful finite-
dimensional irreducible representation is reductive. Also, L is perfect. Therefore,
L/ kerφ is perfect and reductive, and hence semisimple. �

We now focus our attention on multiloop algebras. Let g be a finite-dimensional
simple Lie algebra over F , and let R= F[t±1

1 , . . . , t±1
N ] be the commutative algebra

of Laurent polynomials in N variables. The untwisted multiloop algebra is the Lie
algebra g⊗ R with (bilinear) pointwise multiplication given by

[x ⊗ f, y⊗ g] = [x, y]⊗ f g for all x, y ∈ g and f, g ∈ R.

Suppose that g is equipped with N commuting automorphisms σ1, . . . , σN : g→ g

of finite orders m1, . . . ,m N , respectively. For each i , fix ξi ∈ F to be a primitive
mi -th root of 1. Then g has a common eigenspace decomposition g =

⊕
k∈G gk ,

where k is the image of k = (k1, . . . , kN ) ∈ ZN under the canonical map

ZN
→ G = Z/m1Z× · · ·×Z/m N Z,

and

gk = {x ∈ g | σi x = ξ
ki
i x for i = 1, . . . , N }.

The (twisted) multiloop algebra L= L(g; σ1, . . . , σN ) is the Lie subalgebra

L=
⊕
k∈ZN

gk ⊗ Ftk
⊆ g⊗ R,

where tk
= tk1

1 · · · t
kN
N is multiindex notation.

Note that R has a G-grading

(2.2) R =
⊕
k∈G

Rk,
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where R0 = F[t±m1
1 , . . . , t±m N

N ] and Rk = tk R0 for every k ∈ ZN . In this notation,

L=
⊕
k∈G

(gk ⊗ Rk).

Fix an F-basis

(2.3) {xk j | j = 1, . . . , dim gk}

of gk for all k ∈ G. Then

(2.4) L=
⊕
k∈G

dim gk⊕
j=1

(Fxk j ⊗ Rk).

Since g is simple (hence perfect) and graded, each xk j can be expressed as a sum
of brackets of homogeneous elements y, z ∈ g, with deg y + deg z = k. For each
such k ∈ ZN and pair y, z, there exist a, b ∈ ZN with deg y = a, deg z = b, and
a + b = k. Then the sum of the brackets [y ⊗ ta, z ⊗ tb

] will be xk j ⊗ tk . Since
these elements span L, it is clear that L is perfect. See also [Allison et al. 2006,
Lemma 4.9].

Let πk j be the projection πk j :L→Fxk j⊗Rk relative to the decomposition (2.4).
We will view πk j as a projection L→ Rk by identifying xk j ⊗ f with f for all
f ∈ Rk . Let I be an ideal of the Lie algebra L, and let I = I (I) be the ideal of R
generated by ⋃

k∈G

dim gk⋃
j=1

πk j (I).

Note that the definition of I is independent of the choice of homogeneous basis
{xk j } of g, and the ideal I is G-graded since its generators are homogeneous with
respect to the G-grading of R. That is,

I =
⊕
k∈G

Ik, where Ik = I ∩ Rk .

Moreover, t`−k Ik ⊆ I ∩ R` = I` = t`−k(tk−` I`)⊆ t`−k Ik , so

(2.5) I` = t`−k Ik for all k, ` ∈ ZN .

We will use the following technical lemma to show that I= L∩ (g⊗ I ).

Lemma 2.6. Let

Y =
∑
r∈G

dim gr∑
n=1

xrn ⊗πrn(Y ) ∈ I.

Then xki ⊗ tk−`π` j (Y ) ∈ I for all k, ` ∈ ZN , 1≤ i ≤ dim gk , and 1≤ j ≤ dim g`.
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Proof. The finite-dimensional simple Lie algebra g is a finite-dimensional simple
g-module (and hence a finite-dimensional simple U(g)-module) under the adjoint
action of g. Fix k, ` ∈ ZN , i ∈ {1, . . . , dim gk} and j ∈ {1, . . . , dim g`}. By the
Jacobson density theorem, there exists u ∈ U(g) such that

u .xrn =

{
xki if r = ` and n = j,
0 otherwise

for all r ∈G and n ∈ {1, . . . , gr }. By the Poincaré–Birkhoff–Witt theorem, we can
write u =

∑a
s=1 ps , where a ≥ 1 and each ps is a monomial in the variables in

{xrn | r ∈ G, n = 1, . . . , dim gr }. Considering the induced G-grading of U(g), we
can assume that each ps is homogeneous of degree k− `. Write

ps = cs

∏
r∈G

dim gr∏
n=1

(xrn)
b(s)rn , where cs ∈ F and b(s)rn ∈ Z+.

Since ps is homogeneous of degree k− ` in the G-grading of U(g), we can
choose α(s, r , n, 1), α(s, r , n, 2), . . . , α(s, r , n, b(s)rn )∈ZN for each s ∈ {1, . . . , a},
r ∈ G, and n ∈ {1, . . . , dim gr } so that

(i) r = α(s, r , n, 1)= · · · = α(s, r , n, b(s)rn ) and

(ii)
∑
r∈G

dim gr∑
n=1

b(s)rn∑
b=1

α(s, r , n, b)= k− `.

Then

p̃s = cs

∏
r∈G

dim gr∏
n=1

b(s)rn∏
b=1

(xrn ⊗ tα(s,r ,n,b))

is in the universal enveloping algebra U(L) of L, which acts on I via the adjoint
action of L on I, and

∑a
s=1 p̃s .Y = xki⊗ tk−`π` j (Y ), so xki⊗ tk−`π` j (Y )∈I. �

Proposition 2.7. In the notation introduced above,

I= L∩ (g⊗ I )(2.8)

=

⊕
k∈G

gk ⊗ Ik .(2.9)

Proof. The second equality (2.9) and the inclusion I⊆L∩ (g⊗ I ) are clear, so it
remains only to verify the reverse inclusion L∩ (g⊗ I ) ⊆ I. In light of (2.9), it
suffices to show that xki ⊗ f ∈ I for all k ∈ G, i ∈ {1, . . . , dim gk}, and f ∈ Ik .
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By the definition of I , there exist Y` j ∈ I and f` j ∈ Rk−` such that

f =
∑
`∈G

dim g`∑
j=1

f` jπ` j (Y` j ).

By Lemma 2.6, xki ⊗ trπ` j (Y` j ) ∈ I for all r, ` ∈ ZN satisfying r = k− `. Since
each f` j ∈ Rk−` is an F-linear combination of {tr

| r = k− `}, we see that

xki ⊗ f` jπ` j (Y` j ) ∈ I

for all ` ∈ G and j = 1, . . . , dim g`. Thus xki ⊗ f ∈ I. �

We close this section by considering the structure of I0 ⊆ R0 in the case where
I is the kernel of an irreducible finite-dimensional representation of L. Clearly I0
is an ideal of R0. Moreover, it is a radical ideal:

Proposition 2.10. Let φ : L→ End V be a finite-dimensional irreducible repre-
sentation of the multiloop algebra L, and let I = kerφ. Define I = I (I) ⊆ R as
above. Then the graded component I0 is a radical ideal of R0.

Proof. Suppose p is an element of
√

I0, the radical of the ideal I0 = I ∩ R0 of R0.
Choose k ∈ ZN so that gk 6= 0, and let x ∈ gk be a nonzero element.

For y ⊗ f ∈ L, let 〈y ⊗ f 〉 ⊆ L be the ideal (of L) generated by y ⊗ f . Let
J = 〈x ⊗ tk p〉, and note that the n-th term J (n) in the derived series of J satisfies
J (n) ⊆ L ∩ (g⊗ 〈pn

〉), where 〈pn
〉 is the principal ideal of R generated by pn .

Since I` = t` I0 for all ` ∈ ZN by (2.5), and since pn
∈ I0 for n sufficiently large,

we see that J (n) ⊆ L∩ (g⊗ I ) for n� 0. Then by Proposition 2.7, J (n) ⊆ I, so

J+I
I
⊆ Rad(L/I).

Since Rad(L/I) = 0 by Proposition 2.1, we see that x ⊗ tk p ∈ I. That is,
p = t−k(tk p) ∈ t−k Ik = I0, and thus

√
I0 = I0. �

3. Some commutative algebra

In this short section, we recall some basic commutative algebra that will be useful
for classifying modules for multiloop algebras. Let F , F×, and R be as before. For
any ideal I ⊆ R, let V(I )={x ∈ (F×)N

| f (x)=0 for all f ∈ I } be the (quasiaffine)
variety corresponding to I , and let Poly(S) = {g ∈ R | g(s) = 0 for all s ∈ S} be
the ideal associated with any subset S ⊆ (F×)N .

Proposition 3.1. Let I be an ideal of R = F[t±1
1 , . . . , t±1

N ]. Then

Poly(V(I ))=
√

I .
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Proof. It is straightforward to verify that the usual proofs of the Hilbert Null-
stellensatz (see [Atiyah and Macdonald 1969, page 85] for instance) also hold for
this Laurent polynomial analogue. �

The following crucial lemma is an easy consequence of Proposition 3.1:

Lemma 3.2. Let J be a radical ideal of R for which the quotient R/J is a finite-
dimensional vector space over F. Then there exist distinct points a1, . . . , ar ∈

(F×)N such that
J =ma1 ∩ · · · ∩mar ,

where mai = 〈t1 − ai1, . . . , tN − ai N 〉 is the maximal ideal corresponding to ai =

(ai1, . . . , ai N ) for i = 1, . . . , r . Moreover, the set {a1, . . . , ar } is unique.

Proof. Clearly, a ∈ V(J ) implies that J ⊆ ma , so J ⊆
⋂

a∈V(J )ma . Conversely, if
f ∈

⋂
a∈V(J ) ma and x ∈ V(J ), then f (x) = 0 and f ∈ Poly(V(J )) =

√
J = J .

Hence J =
⋂

a∈V(J )ma .
Since J ⊆ ma1 ∩ · · · ∩mar for all subsets {a1, . . . , ar } ⊆ V(J ), we see that the

(F-vector space) dimension of R/(ma1 ∩ · · · ∩ mar ) is bounded by dimF (R/J ).
Take a finite collection {a1, . . . , ar } of points in V(J ) for which this dimension is
maximal. Then ma1∩· · ·∩mar ∩mar+1 =ma1∩· · ·∩mar for all points ar+1 ∈V(J ),
so

J =
⋂

b∈V(J )

mb=ma1 ∩ · · · ∩mar ∩

( ⋂
b∈V(J )

mb

)
=ma1 ∩ · · · ∩mar .

To see that {a1, . . . , ar } ⊆ (F×)N is uniquely determined, suppose that J =
ma1 ∩ · · · ∩mar =mb1 ∩ · · · ∩mbs for some a1, . . . , ar , b1, . . . , bs ∈ (F×)N . Then

{a1, . . . , ar } = V(ma1 ∩ · · · ∩mar )

= V(J )

= V(mb1 ∩ · · · ∩mbs )= {b1, . . . , bs}. �

Note that the ideal I0 ⊆ R0 of Proposition 2.10 is radical and cofinite. View-
ing R0 = F[t±m1

1 , . . . , t±m N
N ] as the ring of Laurent polynomials in the variables

tm1
1 , . . . , tm N

N , we see that

I0 = Ma1 ∩ · · · ∩Mar ,

where {a1, . . . , ar } = V(I0) is a set of distinct points in (F×)N , and

Mai = 〈t
m1
1 − ai1, . . . , tm N

N − ai N 〉R0

is the maximal ideal of R0 corresponding to the point ai = (ai1, . . . , ai N ). Then
by the Chinese remainder theorem, we have the following corollary:
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Corollary 3.3. Let I0 and R0 be as in Proposition 2.10. Then there exist unique
(up to reordering) points a1, . . . , ar ∈ (F×)N such that the canonical map

R0/I0→R0/Ma1 × · · ·× R0/Mar , f + I0 7→( f +Ma1, . . . , f +Mar )

is a well-defined F-algebra isomorphism.

4. Classification of simple modules

We now return to classifying the finite-dimensional simple modules of multiloop
algebras. As in Section 2, let g be a finite-dimensional simple Lie algebra, and let
φ : L→ End V be a finite-dimensional irreducible representation of a multiloop
algebra L = L(g; σ1, . . . , σN ) defined by commuting automorphisms σ1, . . . , σN

of order m1, . . . ,m N , respectively.
Define I, I , G, and R as in Section 2. Then we see that

L=
⊕
k∈G

gk ⊗ Rk and I=
⊕
k∈G

gk ⊗ Ik,

by Proposition 2.7. Since I is a G-graded ideal of L, we have

L/I=
⊕
k∈G

((gk ⊗ Rk)/(gk ⊗ Ik))=
⊕
k∈G

gk ⊗ (Rk/Ik).

Each graded component Rk/Ik of R/I is an R0-module, and it is easy to check
that the map

µk : R0/I0→ Rk/Ik, f + I0 7→ tk f + Ik

is a well-defined R0-module homomorphism for each k ∈ZN and f ∈ R0. By (2.2)
and (2.5), Rk = tk R0 and t−k Ik = I0, so the map µk is both surjective and injective.
Hence the following lemma holds:

Lemma 4.1. Let k ∈ ZN . Then the map µk : R0/I0 → Rk/Ik is a well-defined
isomorphism of R0-modules. In particular, each graded component Rk/Ik has the
same dimension (as a vector space), that is, dim(Rk/Ik)= dim(R0/I0).

Let a1, . . . , ar ∈ (F×)N be the (unique) points defined by Corollary 3.3, and let
bi = (bi1, . . . , bi N ) be a point in (F×)N such that bm j

i j = ai j for all 1 ≤ i ≤ r and
1 ≤ j ≤ N . Recall that Ik = tk I0 for all k ∈ ZN , and I0 is contained in the ideal
Mai of R0 for i = 1, . . . , r . Therefore, the map

ψ = ψb : L→ g⊕ · · ·⊕ g (r copies),

x ⊗ f 7→ ( f (b1)x, . . . , f (br )x)

descends to a well-defined Lie algebra homomorphism

(4.2) ψ : L/ kerφ→ g⊕ · · ·⊕ g.
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Theorem 4.3. The map ψ : L/ kerφ → g ⊕ · · · ⊕ g in (4.2) is a Lie algebra
isomorphism.

Proof. Let k ∈ ZN , and let ψk : gk ⊗ (Rk/Ik)→ gk ⊕ · · ·⊕ gk be the restriction of
ψ to the graded component gk ⊗ (Rk/Ik) of L/ kerφ.

The map ψ is injective if each ψk is injective. In the notation of (2.3), if

u =
dim gk∑

j=1

xk j ⊗ (t
k f j (t)+ Ik)

is in the kernel of ψk for some collection of f j ∈ R0, then bk
i f j (bi ) = 0 for all i

and j . Then for all i and j , we have f j (bi ) = 0 and f j ∈ Mai , where Mai is the
ideal of R0 generated by {tm`

` − ai` | ` = 1, . . . , N }. Hence f j ∈
⋂r

i=1 Mai = I0,
so tk f j (t) ∈ tk I0 = Ik , and

dim gk∑
j=1

xk j ⊗ tk f j (t) ∈ gk ⊗ Ik ⊆ kerφ.

Hence u = 0 in L/ kerφ, so ψk (and thus ψ) is injective.
By Lemma 4.1, dim(R`/I`)= dim(R0/I0) for all ` ∈ ZN . Therefore,

dim(L/ kerφ)=
∑
`∈G

(dim g`)(dim(R`/I`))= dim(R0/I0) dim g.

Since F is algebraically closed, R0/Mai
∼= F for every i , so the (F-vector space)

dimensions satisfy

dim(R0/I0)= dim(R0/Ma1 × · · ·× R0/Mar )= r,

by Corollary 3.3. Therefore, ψ is an injective homomorphism between two Lie
algebras of equal dimension, so ψ is an isomorphism. �

The finite-dimensional simple modules over direct sums of copies of the Lie
algebra g are tensor products of finite-dimensional simple modules over g. (See
[Bourbaki 1958, section 7, numéro 7] for instance.) We can thus conclude that the
finite-dimensional simple modules for multiloop algebras are pullbacks (under ψ)
of tensor products of finite-dimensional simple modules over g.

Fix a Cartan subalgebra h⊂ g, a base1 of simple roots, and weights λi ∈ h∗ for
i = 1, . . . , r . Then we will write Vλi (bi ) for the simple g-module Vλi of highest
weight λi , equipped with the L-action given by

(x ⊗ f (t)).v = f (bi )xv for all x ⊗ f ∈ L and v ∈ Vλi .
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The tensor product of such a family of evaluation modules will be denoted

V (λ, b)= Vλ1(b1)⊗ · · ·⊗ Vλr (br ),

and we will write m(bi ) for the point (bm1
i1 , . . . , bm N

i N ) ∈ (F
×)N for i = 1, . . . , r .

We have now proved one of our main results:

Corollary 4.4. Let V be a finite-dimensional simple module for the multiloop
algebra L. Then there exist b1, . . . , br ∈ (F×)N and λ1, . . . , λr dominant integral
weights for g such that V ∼= V (λ, b), where m(bi ) 6= m(b j ) whenever i 6= j . �

Conversely, if the points m(bi )∈ (F×)N are pairwise distinct, then such a tensor
product of evaluation modules is simple:

Theorem 4.5. Let λ1, . . . , λr be dominant integral weights for g, and suppose
b1, . . . , br ∈ (F×)N satisfy the property that m(bi ) 6=m(b j ) whenever i 6= j . Then
V (λ, b) is a finite-dimensional simple L-module.

Proof. Let I0 be the intersection
⋂r

i=1 Mai of the maximal ideals Mai of R0 that
correspond to the points ai = m(bi ). For any k, ` ∈ ZN , we see that tk−` I0 = I0 if
k = ` as elements of G = Z/m1Z× · · · × Z/m N Z. Thus tk I0 = t` I0 if k = `, so
we can unambiguously define Ik = tk I0 for any k ∈ ZN .

Since a1, . . . , ar are pairwise distinct points in (F×)N , the proof of Theorem 4.3
(in particular, the appeal to Corollary 3.3) shows that the map

ψ : L→ g⊕ · · ·⊕ g (r copies),

x ⊗ f (t) 7→ ( f (b1)x, . . . , f (br )x)

is surjective. Then since each Vλi is a simple g-module, we see that the tensor
product Vλ1 ⊗ · · · ⊗ Vλr is a simple module over g ⊕ · · · ⊕ g, and the pullback
V (λ, b) is a simple L-module. �

Remark 4.6. It is not difficult to verify that if m(bi ) = m(b j ) for some i 6= j for
which λi and λ j are both nonzero, then V (λ, b) is not simple. However, as we do
not need this fact for the classification of simple modules, we will omit its proof.

5. Isomorphism classes of simple modules

By Corollary 4.4 and Theorem 4.5, the finite-dimensional simple modules of the
multiloop algebra L(g; σ1, . . . , σN ) are precisely the tensor products

(5.1) V (λ, a)= Vλ1(a1)⊗ · · ·⊗ Vλr (ar )

for which all the λi ∈ h∗ are dominant integral, and m(ai ) 6=m(a j ) whenever i 6= j .
If λi = 0 for some i , then Vλi (ai ) is the trivial module, and (up to isomorphism)
this term can be omitted from the tensor product (5.1). With the convention that
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empty tensor products of L-modules are the 1-dimensional trivial module, we may
assume that every λi is a nonzero dominant integral weight in (5.1).

To proceed further, we will need a lemma about how highest weights depend on
triangular decompositions.

Let L be a finite-dimensional semisimple Lie algebra with Cartan subalgebra
H and base of simple roots 1 ⊂ H∗. The group Aut L of automorphisms of L is
(canonically) a semidirect product of the group Int L of inner automorphisms and
the group Out L of diagram automorphisms with respect to (H,1):

Aut L = Int L o Out L .

See [Jacobson 1962, IX.4] for instance. Every automorphism θ can therefore be
decomposed as θ = τ ◦ γ with an inner part τ ∈ Int L and outer part γ ∈ Out L .

Lemma 5.2. Let H be a Cartan subalgebra of a finite-dimensional semisimple
Lie algebra L , and let 1 ⊂ H∗ be a base of simple roots. Suppose that V is a
finite-dimensional simple L-module of highest weight λ with respect to (H,1),
and θ ∈ Aut L. Write θ = τ ◦ γ for some τ ∈ Int L and γ ∈ Out L.

Then 1 ◦ θ−1
= {α ◦ θ−1

| α ∈1} is a base of simple roots for L , relative to the
Cartan subalgebra θ(H) ⊂ L , and V has highest weight λ ◦ τ−1 with respect to
(θ(H),1 ◦ θ−1).

Proof. Any diagram automorphism with respect to (H,1) will preserve H and 1,
so V has highest weight λ with respect to (γ (H),1◦γ−1)= (H,1). Therefore, it
is enough to prove the lemma for the case where θ = τ is an inner automorphism.
Since inner automorphisms are products of automorphisms of the form exp(ad x)
for ad-nilpotent elements x ∈ L , we may also assume without loss of generality
that τ = exp(ad u) for some ad-nilpotent element u.

Let ρ : L → End V be the homomorphism describing the action of L on V .
Then for any v ∈ V ,

(5.3) τ(h).v = (exp(ad u)(h)).v= eρ(u)ρ(h)e−ρ(u)v,

where eρ(u) denotes the matrix exponential of the endomorphism ρ(u).
The map eρ(u) is invertible, so for any nonzero element

w ∈ V H
α := {v ∈ V | h .v = α(h)v for all h ∈ H},

we see that eρ(u)w 6= 0, and using (5.3),

τ(h).eρ(u)w = eρ(u)ρ(h)e−ρ(u)eρ(u)w = α(h)eρ(u)w.

That is,

eρ(u)V H
α ⊆ V τ(H)

α◦τ−1 := {v ∈ V | h .v = α ◦ τ−1(h).v for all h ∈ τ(H)}.
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The reverse inclusion follows similarly by considering τ−1
= exp(− ad u), so

eρ(u)V H
α = V τ(H)

α◦τ−1

for all α ∈ H∗. In the case where V is the adjoint module L , we now see that α
is a root relative to H if and only if α ◦ τ−1 is a root relative to τ(H). It follows
easily that 1 ◦ τ−1 is a base of simple roots for L , with respect to the Cartan
subalgebra τ(H).

The second part also follows easily, since V τ(H)
λ◦τ−1 = eρ(u)V H

λ is nonzero, but
V τ(H)
λ◦τ−1

+α◦τ−1 = eρ(u)V H
λ+α = 0 for all α ∈ 1. That is, the highest weight of V is

λ ◦ τ−1, relative to (τ (H),1 ◦ τ−1)= (θ(H),1 ◦ θ−1). �

Fix a base1 of simple roots with respect to a Cartan subalgebra h⊆ g. The next
theorem gives necessary and sufficient conditions for modules of the form V (λ, a)
to be isomorphic.

Theorem 5.4. Let λ= (λ1, . . . , λr ) and µ= (µ1, . . . , µs) be sequences of nonzero
dominant integral weights with respect to 1. Suppose that a = (a1, . . . , ar ) and
b = (b1, . . . , bs) are sequences of points in (F×)N such that m(ai ) 6= m(a j ) and
m(bi ) 6= m(b j ) whenever i 6= j .

Then the finite-dimensional simple L-modules V (λ, a) and V (µ, b) are isomor-
phic if and only if r = s and there is a permutation π ∈ Sr satisfying the conditions

m(ai )= m(bπ(i)) and λi = µπ(i) ◦ γi

for i = 1, . . . , r , where γi is the outer part of the automorphism ωi : g→ g defined
by ωi (x)= (bk

π(i)/a
k
i )x for all k ∈ ZN and x ∈ gk .

Proof. Let φλ,a : L → End V (λ, a) and φµ,b : L → End V (µ, b) be the Lie
algebra homomorphisms defining the representations V (λ, a) and V (µ, b). By
Theorem 4.3, the kernel of φλ,a is equal to the kernel of the evaluation map ψa ,
defined by

ψa : L→ g⊕ · · ·⊕ g, x ⊗ f 7→ ( f (a1)x, . . . , f (ar )x)

for all x ⊗ f ∈ L. Similarly, kerφµ,b = kerψb.
If the L-modules V (λ, a) and V (µ, b) are isomorphic, then kerφλ,a = kerφµ,b,

so kerψa = kerψb. But kerψa =
⊕

k∈G gk ⊗ Ik , where Ik = tk I0 for all k ∈ ZN ,
and

I0 = Mm(a1) ∩ · · · ∩Mm(ar ),

where Mm(ai ) = 〈t
m1
1 − am1

i1 , . . . , tm N
N − am N

i N 〉R0
is the maximal ideal of R0 that

corresponds to the point m(ai ) = (a
m1
i1 , . . . , am N

i N ). Since kerψa = kerψb, we see
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that (in the notation of Section 3)

{m(a1), . . . ,m(ar )} = V(Mm(a1) ∩ · · · ∩Mm(ar ))

= V(I0)

= V(Mm(b1) ∩ · · · ∩Mm(bs))= {m(b1), . . . ,m(bs)}.

Hence r = s, and there is a permutation π ∈ Sr such that m(ai ) = m(bπ(i)) for
i = 1, . . . , r . We will write π(b)= (bπ(1), . . . , bπ(r)).

Let g=n−⊕h⊕n+ be the triangular decomposition of g relative to1. Assuming
that r = s and m(ai ) = m(bπ(i)) for all i , view Vλ = Vλ1 ⊗ · · · ⊗ Vλr and Vπ(µ) =
Vµπ(1) ⊗ · · ·⊗ Vµπ(r) as highest weight modules of the semisimple Lie algebra g⊕r

relative to the triangular decomposition

(5.5) g⊕r
= (n⊕r

−
)⊕ (h⊕r )⊕ (n⊕r

+
).

The highest weights of Vλ and Vπ(µ) are λ and π(µ)= (µπ(1), . . . , µπ(r)), respec-
tively, where λ(h1, . . . , hr ) =

∑
i λi (hi ) for all (h1, . . . , hr ) ∈ h⊕r , and π(µ) ∈

(h⊕r )∗ is defined analogously.
We can pull back the triangular decomposition (5.5) via the isomorphism ψa :

L/ kerψa → g⊕r defined in (4.2). Then V (λ, a) and V (µ, b) are irreducible
highest weight modules of the semisimple Lie algebra L/ kerψa relative to the
triangular decomposition

(5.6) L/ kerψa = ψ
−1
a (n⊕r

−
)⊕ψ−1

a (h⊕r )⊕ψ−1
a (n⊕r

+
).

The L-modules V (λ, a) and V (µ, b) are isomorphic if and only if they have the
same highest weights relative to the decomposition (5.6). Since ψa maps the de-
composition (5.6) to the decomposition (5.5), the highest weight of V (λ, a) is
clearly λ ◦ψa : ψ

−1
a (h⊕r )→ F .

The highest weight of V (µ, b) is ν ◦ψπ(b), where ν ∈ (ψπ(b)ψ−1
a (h⊕r ))∗ is the

highest weight of Vπ(µ) relative to the new triangular decomposition

g⊕r
= ψπ(b)ψ

−1
a (n⊕r

−
)⊕ψπ(b)ψ

−1
a (h⊕r )⊕ψπ(b)ψ

−1
a (n⊕r

+
).

Let ψπ(b)ψ−1
a = τ ◦ γ be a decomposition into an inner automorphism τ and

a diagram automorphism γ with respect to (h⊕r ,1). By Lemma 5.2, we have
ν = π(µ) ◦ τ−1, so the two modules V (λ, a) and V (µ, b) are isomorphic if and
only if λ ◦ψa = π(µ) ◦ τ

−1
◦ψπ(b) on ψ−1

a (h⊕r ). That is, V (λ, a) ∼= V (µ, b) if
and only if

λ= π(µ) ◦ γ

on h⊕r . To finish the proof, it is enough to write down an explicit formula for the
automorphism ψπ(b)ψ

−1
a = τ ◦ γ of g⊕r .



REPRESENTATIONS OF MULTILOOP ALGEBRAS 181

For each x ∈ g, let x i
= (0, . . . , x, . . . , 0) ∈ g⊕r , where x is in the i-th position.

If k ∈ ZN and x ∈ gk , then we see that

ψ−1
a (x i )= a−k

i x ⊗ tk fi (t)+ kerψa

in L/ kerψa , for any fi (t) ∈ R0 with fi (a j )= δi j for all j = 1, . . . , r . Since fi ∈

R0= F[t±m1
1 , . . . , t±m N

N ] and m(a j )=m(bπ( j)) for all j , we see that fi (bπ( j))=δi j ,
and

ψπ(b)ψ
−1
a (x i )= (bk

π(i)/a
k
i )x

i . �

Theorem 5.4 may also be interpreted in terms of a group action on the space of
parameters (λ, a) defining the finite-dimensional simple modules of L. Let Gr

=

G×· · ·×G (r factors), where G is the finite abelian group G = 〈σ1〉× · · ·×〈σN 〉

as before. Note that G acts on (F×)N via the primitive mi -th roots of unity ξi used
in the definition of L:

(σ c1
1 , . . . , σ

cN
N ).(d1, . . . , dN )= (ξ

c1
1 d1, . . . , ξ

cN
N dN )

for any (c1, . . . , cN )∈ZN and (d1, . . . , dN )∈ (F×)N . Form the semidirect product
Gr o Sr by letting the symmetric group Sr act on Gr (on the left) by permuting the
factors of Gr . That is,

π(ρ1, . . . , ρr )= (ρπ(1), . . . , ρπ(r)) for all π ∈ Sr and ρi ∈ G.

This semidirect product acts on the space of ordered r -tuples of points in the torus
(F×)N by letting Gr act diagonally and letting Sr permute the points:

(5.7) ρπa = (ρ1 .aπ(1), . . . ρr .aπ(r)),

for all ρ = (ρ1, . . . , ρr ) ∈ Gr , π ∈ Sr , and r -tuples a = (a1, . . . , ar ) of points
ai ∈ (F×)N .

The group Gr o Sr also acts on the space of r -tuples λ of nonzero dominant
integral weights. For each ρ = (ρ1, . . . , ρr ) ∈ Gr , write ρi = (σ

ρi1
1 , . . . , σ

ρi N
N ) for

some nonnegative integers ρi j . Let the ρi act on g by

ρi (x)= σ
ρi1
1 · · · σ

ρi N
N x

for all x ∈ g, and on the weights λi by

ρi (λi )= λi ◦ γ (ρ
−1
i ),

where γ (ρ−1
i ) is the outer part of the automorphism ρ−1

i : g→ g. Then Gr o Sr

acts on each λ= (λ1, . . . , λr ) by

(5.8) ρπλ= (λπ(1) ◦ γ (ρ
−1
1 ), . . . , λπ(r) ◦ γ (ρ

−1
r )).
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Combining (5.7) and (5.8) gives an action of Gr o Sr on the set of pairs (λ, a),
where λ is an r -tuple of nonzero dominant integral weights λi and a is an r -tuple
of points ai ∈ (F×)N . Namely, let

ρπ(λ, a)= (ρπλ, ρπa).

In terms of this action, the isomorphism classes of the finite-dimensional simple
L-modules are labeled by orbits of the groups Gr o Sr .

Corollary 5.9. Let λ= (λ1, . . . , λr ) andµ= (µ1, . . . , µs) be sequences of nonzero
dominant integral weights with respect to 1. Suppose a = (a1, . . . , ar ) and b =
(b1, . . . , bs) are sequences of points in (F×)N with m(ai ) 6= m(a j ) and m(bi ) 6=

m(b j ) whenever i 6= j . Then V (λ, a) and V (µ, b) are isomorphic if and only if
r = s and (λ, a)= ρπ(µ, b) for some (ρ, π) ∈ Gr o Sr .

Proof. Note that m(ai ) = m(bπ(i)) if and only if the coordinates ai j of ai =

(ai1, . . . , ai N ) differ from the coordinates bπ(i) j of bπ(i) by an m j -th root of unity.
Since ξ j is a primitive m j -th root of unity, this happens if and only if there are
integers ρi j such that ai j = ξ

ρi j
j bπ(i) j . In terms of group actions, this is precisely

the existence of ρi = (σ
ρi1
1 , . . . , σ

ρi N
N ) ∈ G with ai = ρi .bπ(i). In other words,

m(ai )= m(bπ(i)) for all i if and only if a = ρπb for some ρ ∈ Gr and π ∈ Sr .
Since ξρi j

j = ai j/bπ(i) j , we see that

ρ−1
i (x)= σ−ρi1

1 · · · σ
−ρi N
N x = ξ−ρi1k1

1 · · · ξ
−ρi N kN
N x = (bk

π(i)/a
k
i )x

for all k ∈ZN and x ∈ gk . Therefore, the automorphism ωi of Theorem 5.4 is equal
to ρ−1

i , and λ= ρπµ is equivalent to the condition that λi =µπ(i)◦γi for every i . �

For any diagram automorphism σ1, the finite-dimensional simple modules for
the twisted (single) loop algebra L(g; σ1) were classified in [Chari et al. 2008].
Recently, E. Neher, A. Savage, and P. Senesi [Senesi 2009] have reinterpreted this
work in terms of finitely supported σ1-equivariant maps F×→ P+, where P+ is
the set of nonzero dominant integral weights of g with respect to a fixed Cartan
subalgebra and base of simple roots. Theorem 5.4 and Corollary 5.9 can be used
to extend this perspective to the multiloop setting.

Let λ= (λ1, . . . , λr ) and a= (a1, . . . , ar ) be as in Theorem 5.4. Each evaluation
module Vλi (ai ) corresponds to a map

χλi ,ai
: (F×)N

→ P+, x 7→ δx,aiλi .

The isomorphism class [λ, a] of the tensor product V (λ, a) can then be identified
with the sum of all the characters χη0,c0

for which (η0, c0) = (µ1, b1) for some
µ= (µ1, . . . , µr ) and b = (b1, . . . , br ) with (µ, b) in the Gr o Sr -orbit of (λ, a).



REPRESENTATIONS OF MULTILOOP ALGEBRAS 183

That is, we let

χ
[λ,a] =

∑
g∈G

r∑
i=1

χλi◦γ (g−1),g .ai
.

Thus to each isomorphism class of finite-dimensional simple L(g; σ1, . . . , σN )-
modules, we associate a finitely supported G-equivariant map

χ
[λ,a] : (F

×)N
→ P+.

From Corollary 5.9 and the construction of χ
[λ,a], it is easy to see that distinct

isomorphism classes get sent to distinct functions.
Conversely, any finitely supported G-equivariant map f : (F×)N

→ P+ corre-
sponds to an isomorphism class [λ, a] of finite-dimensional simple L-modules, as
follows. By G-equivariance, the support supp f of f decomposes into a disjoint
union of G-orbits. Choose representatives a1, . . . , ar ∈ (F×)N to label each G-
orbit in supp f . Since the G-orbits are disjoint, m(ai ) 6= m(a j ) whenever i 6= j ,
and by definition of f , the r -tuple λ := ( f (a1), . . . , f (ar )) consists of nonzero
dominant integral weights. Then by Theorem 4.5, V (λ, a) is a finite-dimensional
simple L-module, and by Corollary 5.9, the isomorphism class [ f ] := [λ, a] of
this module is independent of the choice of orbit representatives a1, . . . , ar . It is
now straightforward to verify that χ

[ f ] = f for all finitely supported G-equivariant
maps f : (F×)N

→ P+.

Corollary 5.10. The isomorphism classes of finite-dimensional simple L-modules
are in bijection with the finitely supported G-equivariant maps (F×)N

→ P+. �
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