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FENG-YU WANG

By using the reflecting diffusion process and a conformal change of metric,
a generalized maximum principle is established for (unbounded) time-space
functions on a class of noncompact Riemannian manifolds with (nonconvex)
boundary. As applications, Li–Yau-type gradient and Harnack inequalities
are derived for the Neumann semigroup on a class of noncompact manifolds
with (nonconvex) boundary. These generalize some previous ones obtained
for the Neumann semigroup on compact manifolds with boundary. As a
byproduct, the gradient inequality for the Neumann semigroup derived by
Hsu on a compact manifold with boundary is confirmed on these noncom-
pact manifolds.

1. Introduction

Suppose M is a d-dimensional connected complete Riemannian manifold, and
let L = 1+ Z , where Z is a C1 vector field satisfying the curvature-dimension
condition of Bakry and Émery [1984] given by

(1-1) 02( f, f ) := 1
2 L|∇ f |2−〈∇L f,∇ f 〉 ≥

(L f )2

m
−K |∇ f |2 for f ∈C∞(M)

for some constants K ≥ 0 and m > d . By [Qian 1998, page 138], this condition is
equivalent to

(1-2) Ric−∇Z − Z⊗Z
m−d

≥−K .

When Z = 0 and M is either without boundary or compact and with a convex
boundary ∂M , Li and Yau [1986] found a now-famous gradient estimate for the
(Neumann) semigroup Pt generated by L:

(1-3) |∇ log Pt f |2−α∂t log Pt f ≤ dα2

2t
+

dα2K
4(α−1)

for t > 0 and α > 1
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for all positive f ∈ Cb(M). We note that in [Li and Yau 1986] the second term
on the right side of (1-3) is dα2K/(

√
2(α−1)), but

√
2 here can be replaced by 4

according to a refined calculation; see for example [Davies 1989].
As an application, (1-3) implies a parabolic Harnack inequality for Pt :

(1-4) Pt f (x)≤
( t+s

t

)dα/2
(Pt+s f (y)) exp

(
αρ(x, y)2

4s
+

αK ds
4(α−1)

)
for t > 0 and x, y ∈ M,

where α > 1 and f ∈Cb(M) is positive. From this Harnack inequality, one obtains
Gaussian-type heat kernel bounds for Pt ; see [Li and Yau 1986; Davies 1989].

The gradient estimate (1-3) has been extended and improved in several papers.
See for example [Bakry and Qian 1999] for an improved version for α = 1 with
Z 6= 0 and ∂M =∅, and see [Wang 1997] for an extension to a compact manifold
with nonconvex boundary. The aim of this paper is to investigate the gradient and
Harnack inequalities for Pt on noncompact manifolds with (nonconvex) boundary.

Recall that the key step of Li and Yau’s argument for the gradient estimate (1-3)
is to apply the maximum principle to the reference function

G(t, x) := t (|∇ log Pt f |2−α∂t log Pt f )(x) for t ∈ [0, T ] and x ∈ M.

When M is compact without boundary, the maximum principle says that for any
smooth function G on [0, T ] × M with G(0, · ) ≤ 0 and sup G > 0, there exists
a maximal point of G at which ∇G = 0, ∂t G ≥ 0, and 1G ≤ 0. When M is
compact with a convex boundary, the same assertion holds for the above specified
function G, as observed in [Li and Yau 1986, proof of Theorem 1.1]. In [1997],
J. Wang extended this maximum principle on a compact manifold with nonconvex
boundary by taking

G(t, x)= t (φ|∇ log Pt f |2−α∂t log Pt f )(x) for t ∈ [0, T ] and x ∈ M

for a nice function φ compensating the concavity of the boundary.
As for a noncompact manifold without boundary, Li and Yau [1986] established

the gradient estimate by applying the maximal principle to a sequence of functions
with compact support that approximate the original function G. An alternative is
to apply directly the following generalized maximum principle:

Lemma 1.1 [Yau 1975]. For any bounded smooth function G on [0, T ] ×M with
G(0, · )≤ 0 and sup G > 0, there exists a sequence {(tn, xn)}n≥1⊂ [0, T ]×M such
that

(i) 0< G(tn, xn) ↑ sup G as n ↑∞, and

(ii) for any n ≥ 1,

LG(tn, xn)≤ 1/n, |∇G(tn, · )(xn)| ≤ 1/n, ∂t G(tn, xn)≥ 0.
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To apply this generalized maximal principle for the gradient estimate, one has
to first confirm the boundedness of G(t, · ) := t (|∇ log Pt f |2 − α∂t log Pt f ) on
[0, T ]×M for T > 0.

Since the boundedness of this type of reference function is unknown when M
is noncompact with a nonconvex boundary, we shall establish a generalized maxi-
mum principle on a class of noncompact manifolds with boundary for not necessar-
ily bounded functions. Applying this principle to a suitable reference function G,
we derive the Li–Yau-type gradient and Harnack inequalities for Neumann semi-
groups. To establish such a maximum principle, we adopt a localization argument
so that the classical maximum principle can be applied.

For M noncompact without boundary, Li and Yau [1986] used such a localiza-
tion argument to apply the maximal principle to functions with compact support;
they then passed to the desired global estimate by taking a limit. To do this, they
constructed cut-off functions using ρo, the Riemannian distance function to a fixed
point o ∈ M . It turns out that this argument works also when ∂M is convex; see
Section 2.1. For the nonconvex case, we will use the conformal change of metric
introduced in [Wang 2007] to make a nonconvex boundary convex; see Section 2.2.

Assumption A. The manifold M is connected and complete with boundary ∂M
and such that either

(1) ∂M is convex, or

(2) the second fundamental form of ∂M is bounded, the sectional curvature of M
is bounded from above, and the injectivity radius i∂M of ∂M is positive.

Recall that the Riemannian distance function ρ∂M to the boundary is smooth on
the set {ρ∂M < i∂M}.

Let N be the inward unit normal vector field on ∂M . The second fundamental
form of ∂M is

II(X, Y )=−〈∇X N , Y 〉 for X, Y ∈ T ∂M.

The boundary ∂M is called convex if II≥ 0. We are now ready to state our gener-
alized maximal principle for possibly unbounded functions.

Theorem 1.2. Let M satisfy A, and let L satisfy (1-2). Let T > 0, and let G be a
smooth function on [0, T ]×M such that N G|∂M ≥ 0, G(0, · )≤ 0 and sup G > 0.
Then for any ε > 0, there exists a sequence {(tn, xn)}n≥1 ⊂ (0, T ] × M such that
Lemma 1.1(i) holds and for any n ≥ 1

LG(tn, xn)≤
G(tn, xn)

1+ε

n
, |∇G(tn, xn)| ≤

G(tn, xn)
1+ε

n
,

∂t G(tn, xn)≥ 0.
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Applying Theorem 1.2 to a proper choice of function G, we will derive the
Li–Yau-type gradient estimate (1-5). We shall prove that the reflecting diffusion
process X t generated by L on M is non explosive, so that the corresponding Neu-
mann semigroup Pt can be formulated as

Pt f (x)= Ex f (X t) for t ≥ 0, x ∈ M , and f ∈ Cb(M),

where Ex is the expectation taken for X0 = x .

Theorem 1.3. Let M satisfy A, and suppose L satisfies (1-2) with ‖Z‖∞ < ∞.
Then the reflecting L-diffusion process on M is nonexplosive and the correspond-
ing Neumann semigroup Pt satisfies these assertions:

(i) If ∂M is convex, then (1-3) holds with m in place of d.

(ii) If ∂M is nonconvex with II ≥ −σ for some σ > 0, then for any bounded
φ ∈ C∞(M) with φ ≥ 1 and N logφ|∂M ≥ 2σ , the gradient inequality

(1-5) |∇ log Pt f |2−α∂t log Pt f ≤
m(1+ ε)α2

2(1− ε)t
+

mα2K (φ, ε, α)
4(α−‖φ‖∞)

holds for all positive f ∈ Cb(M), α > ‖φ‖∞, t > 0, ε ∈ (0, 1) and

K (φ, ε, α) :=

1+ε
1−ε

(
K + 1

ε‖∇ logφ‖2
∞
+

1
2 sup(−φ−1Lφ)+

mα2
‖∇ logφ‖2

∞
(1+ ε)

8(α−‖φ‖∞)2ε(1− ε)

)
.

We emphasize that the results in Theorem 1.3 are new for noncompact manifolds
with boundary. When M is compact with a convex boundary, the first assertion was
proved in [Li and Yau 1986] by using the classical maximum principle on compact
manifolds, while when M is compact with a nonconvex boundary, an inequality
similar to (1-5) was proved in [Wang 1997] by using the “interior rolling R-ball”
condition.

These two theorems will be proved in Sections 2 and 3. By a standard argument
due to Li and Yau [1986], the gradient estimate (1-5) implies a Harnack inequality.
Let ρ(x, y) be the Riemannian distance between x, y ∈ M , that is, the infimum of
the length of all smooth curves in M that link x and y.

Corollary 1.4. In the situation of Theorem 1.3 the Neumann semigroup Pt satisfies

(1-6) Pt f (x)≤( t+s
t

)m(1+ε)α/2(1−ε)
(Pt+s f (y)) exp

(
αρ(x, y)2

4s
+
αmK (φ, ε, α)s
4(α−‖φ‖∞)

)
for all positive f ∈ Cb(M), t, ε ∈ (0, 1), α > ‖φ‖∞ and x, y ∈ M. In particular,
if ∂M is convex, then (1-4) holds with m in place of d and for all α > 1.



INEQUALITIES ON NONCOMPACT MANIFOLDS WITH BOUNDARY 189

To derive explicit inequalities for the nonconvex case, we shall take a specific
choice of φ as in [Wang 2007]. Let i∂M be the injectivity radius of ∂M , and let
ρ∂M be the Riemannian distance to the boundary. We shall take φ = ϕ ◦ ρ∂M for
a nice reference function ϕ on [0,∞). More precisely, let the sectional curvature
satisfy SectM ≤ k and −σ ≤ II≤ γ for some k, σ, γ > 0. Let

h(s)= cos(
√

k s)− (γ /
√

k) sin(
√

k s) for s ≥ 0.

Then h is the unique solution to the differential equation h′′+kh=0 with boundary
conditions h(0)=1 and h′(0)=−γ . By the Laplacian comparison theorem for ρ∂M

(see [Kasue 1984, Theorem 0.3] or [Wang 2007]),

(1-7) 1ρ∂M ≥
(d − 1)h′

h
(ρ∂M) and ρ∂M < i∂M ∧ h(−1)(0),

where h(−1)(0) = (1/
√

k) arcsin(
√

k/
√

k+ γ 2) is the first zero point of h. Fix a
positive number r0 ≤ i∂M ∧ h(−1)(0), and let

δ =
2σ(1− h(r0))

d−1∫ r0
0 (h(s)− h(r0))d−1 ds

,

ϕ(r)= 1+ δ
∫ r

0
(h(s)− h(r0)

1−d ds
∫ r0

s∧r0

(h(u)− h(r0))
d−1 du.

It is easy to see that ϕ ◦ ρ∂M is differentiable with a Lipschitzian gradient. By a
simple approximation argument, we may apply Theorem 1.3 and Corollary 1.4 to
φ = ϕ ◦ ρ∂M ; see [Wang 2007, page 1436].

Obviously, (1-7) and N =∇ρ∂M imply

1ϕ ◦ ρ∂M ≥−δ and N logϕ ◦ ρ∂M |∂M = ϕ
′(0)/ϕ(0)= 2σ.

Moreover, by [Wang 2007, (20)] we have

δ ≤ 2σdr−1
0 and ϕ(r0)≤ 1+ σdr0.

Thus, for φ := ϕ ◦ ρ∂M we have

−φ−1Lφ ≤ 2σdr−1
0 + 2σ‖Z‖∞, ‖∇ logφ‖2

∞
≤ 4σ 2,

‖φ‖∞ ≤ ϕ(r0)≤ 1+ σdr0.

Combining these with Theorem 1.3 and Corollary 1.4, we obtain these explicit
inequalities on a class of nonconvex and noncompact manifolds:

Corollary 1.5. Let i∂M > 0, and suppose γ ≥ II ≥ −σ and SectM ≤ k for some
γ, σ, k > 0. If (1-2) holds and ‖Z‖∞ <∞, then for any positive number

r0 ≤min
{
i∂M , (1/

√
k) arcsin(

√
k/
√

k+ γ 2)
}
,
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the inequalities

|∇ log Pt f |2−α∂t log Pt f ≤
m(1+ ε)α2

2(1− ε)t
+

mα2Kε

4(α− 1− σdr0)

and

Pt f (x)≤
( t+s

t

)m(1+ε)α/2(1−ε)
(Pt+s f (y)) exp

(
αρ(x, y)2

4s
+

mαKεs
4(α− 1− σdr0)

)
for x, y ∈ M

hold for all positive f ∈ Cb(M), t > 0, ε ∈ (0, 1), α > 1+ σdr0, and

Kε =
1+ε
1−ε

(
K + 4σ 2

ε
+
σd
r0
+ σ‖Z‖∞+

mα2σ 2(1+ ε)
2(α− 1− σdr0)2ε(1− ε)

)
.

Combining our gradient estimate with an approximation and a probabilistic
argument, we can derive the gradient estimate (1-9) for a class of noncompact
manifolds:

Theorem 1.6. Let M satisfy A, and let L satisfy (1-2) with ‖Z‖∞ < ∞. Let κ1

and κ2 be positive elements of Cb(M) such that

(1-8) Ric −∇Z ≥−κ1 and II≥−κ2

hold on M and ∂M, respectively. Then

(1-9) |∇Pt f |(x)≤ Ex
(
|∇ f |(X t) exp

(∫ t

0
κ1(Xs)ds+

∫ t

0
κ2(Xs)dls

))
holds for all f ∈ C1

b(M), t > 0, and x ∈ M.

Inequality (1-9) was first derived by Hsu [2002] on a compact manifold with
boundary. In [2002, Theorem 3.7], Hsu applied the Itô formula to F(Ut , T −
t) := U−1

t ∇PT−t f (X t), where Ut is the horizontal lift of X t on the frame bundle
O(M). Since M is compact, the (local) martingale part of this process is a real
martingale (it may not be for noncompact M). Then the desired gradient estimate
followed immediately from [2002, Corollary 3.6]. In Section 4, we will prove the
boundedness of ∇P( · ) f on [0, T ]×M for any T > 0 and f ∈C1

b(M), which leads
to a simple proof of (1-9) for a class of noncompact manifolds.

2. Proof of Theorem 1.2

We consider the convex case and pass to the nonconvex case using the conformal
change of metric constructed in [Wang 2007]. Without loss of generality, we may
assume that sup G := sup[0,T ]×M > 1. (Otherwise, we simply replace G by mG
for a sufficiently large m > 0.)



INEQUALITIES ON NONCOMPACT MANIFOLDS WITH BOUNDARY 191

2.1. Convex ∂ M. Fix o∈M , and let ρo be the Riemannian distance to the point o.
Since ∂M is convex, there exists a minimal geodesic in M of length ρ(x, y) that
links any x and y in M ; see for example [Wang 2005a, Proposition 2.1.5]. So,
by (1-2) and a comparison theorem (see [Qian 1998])

Lρo ≤
√

K (m− 1) coth
(√

K/(m− 1) ρo
)

holds outside {o}∪cut(o), where cut(o) is the cut locus of o. In the sequel, we will
set Lρo = 0 on cut(o) so that this implies

(2-1) L
√

1+ ρ2
o ≤ c1 on M

for some constant c1 > 0.
Let h ∈ C∞0 ([0,∞)) be decreasing such that

h(r)=


1 if r ≤ 1,
exp(−(3− r)−1) if r ∈ [2, 3),
0 if r ≥ 3.

Obviously, for any ε > 0 we have

(2-2) sup
[0,∞)

{
|hε−1h′′| + |hε−1h′|

}
<∞.

Let W =
√

1+ ρ2
o , and take ϕn = h(W/n) for n ≥ 1. Then

(2-3) {ϕn = 1} ↑ M as n ↑∞.

So, according to (2-1) and (2-2),

(2-4)

|∇ logϕn| ≤
c

nϕεn
,

ϕ−1
n Lϕn =

h′(W/n)
nh(W/n)

LW +
h′′(W/n)

n2h(W/n)
|∇W |2 ≥− c

nϕεn

holds for some constant c > 0 and all n ≥ 1.
Let Gn(t, x)= ϕn(x)G(t, x) for t ∈ [0, T ] and x ∈ M . Since Gn is continuous

with compact support, there exists (tn, xn) ∈ [0, T ]×M such that

Gn(tn, xn)= max
[0,T ]×M

Gn.

By (2-3) and that sup G > 1, we have limn→∞ G(tn, xn)= sup G > 1. By renum-
bering from a sufficient large n0, we may assume that Gn(tn, xn) is greater than 1
and is increasing in n. In particular, Lemma 1.1(i) holds and

(2-5) ϕn(xn)≥ 1/G(tn, xn) for n ≥ 1.
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Moreover, since Gn(0, · )≤ 0, we have tn > 0 and ∂t G(tn, xn)≥ 0 for n ≥ 1. Thus,
it remains to confirm that

(2-6)
|∇G(tn, xn)| ≤ cG(tn, xn)

1+ε/n and

LG(tn, xn)≤ cG(tn, xn)
1+ε/n for n ≥ 1

for some constant c> 0. Indeed, by using a subsequence {(tmn, xmn)}n≥1 for m ≥ c
to replace {(tn, xn)}n≥1, one may reduce (2-6) with some c > 0 to that with c = 1.

Since xn is the maximal point of Gn , we have ∇Gn(tn, xn)= 0 if xn ∈ M \∂M .
If xn ∈ ∂M , we have N Gn(tn, xn)≤ 0. Recall that N G(tn, · )≥ 0 and G(tn, xn)> 0.
Then, noting that Nρ0 ≤ 0 together with h′ ≤ 0 implies Nϕn ≥ 0, we conclude that
N Gn(tn, xn) ≥ 0. Hence, N Gn(tn, xn) = 0. Moreover, since xn is the maximal
point of Gn(tn, · ) on the closed manifold ∂M , we have U Gn(tn, xn) = 0 for all
U ∈ T ∂M . Therefore, ∇Gn(tn, xn) = 0 also holds for xn ∈ ∂M . Combining this
with (2-4) and (2-5), we obtain

|∇G(tn, xn)| ≤
G(tn, xn)

ϕn(xn)
|∇ϕn| ≤

cG(tn, xn)
1+ε

n
,

which proves the first inequality in (2-6).
Finally, by (2-4), the inequality

ϕn LnG+GLnϕn + 2〈∇G,∇ϕn〉 ≥ ϕn LnG−
cϕ1−ε

n

n
G−

2cϕ1−ε
n

n
|∇G| =:8

holds on {Gn > 0} \ cut(o). By Lemma 2.1 below we obtain at the point (tn, xn)

that

LG ≤ c
nϕεn

G+ 2c
nϕn
|∇G|.

Combining this with (2-5) and the first inequality in (2-6), we get

LG(tn, xn)≤
c
n

G1+2ε(tn, xn)

for some constant c > 0 and all n ≥ 1. Since ε > 0 is arbitrary, we may replace ε
by ε/2 (recall that G(tn, xn)≥ 1). This proves the second inequality in (2-6).

Lemma 2.1. The reflecting L-diffusion process is nonexplosive, and for any 8 in
Cb(M) such that

8≤ LGn = GLϕn +ϕn LG+ 2〈∇ϕn,∇G〉 on {Gn > 0} \ cut(o),

we have 8(tn, xn)≤ 0 for all n ≥ 1.

Proof. Let X t be the reflecting L-diffusion process generated by L , and let Ut

be its horizontal lift on the frame bundle O(M). By the Itô formula for ρo(X t)



INEQUALITIES ON NONCOMPACT MANIFOLDS WITH BOUNDARY 193

found by Kendall [1987] for ∂M = ∅ and by the fact that Nρo|∂M ≤ 0 when ∂M
is nonempty but convex, we have

(2-7) dρo(X t)=
√

2〈∇ρo(X t),Ut dBt 〉+ Lρo(X t)dt − dlt + dl ′t ,

where Bt is the d-dimensional Brownian motion, where Lρo is taken to be zero on
{o}∪cut(o), and where lt and l ′t are two increasing processes such that l ′t increases
only when X t = o, while lt increases only when X t ∈ cut(o)∪∂M (note that l ′t = 0
for d ≥ 2). Combining this with (2-1) we obtain

d
√

1+ ρ2
o(X t)≤ dMt + L

√
1+ ρ2

o(X t) dt ≤ dMt + c1 dt

for some martingale Mt . This implies immediately that X t does not explode.
Now, let us take X0 = xn . Since h′ ≤ 0, it follows from (2-7) that

(2-8) dϕn(X t)≥
√

2〈∇ϕn(X t),Ut dBt 〉+ Lϕn(X t)dt,

where we set Lϕn = 0 on cut(o) as above.
On the other hand, since N G(tn, · ) ≥ 0, we may apply the Itô to G(tn, X t) to

obtain

(2-9) dG(tn, X t)≥
√

2〈∇G(tn, X t),Ut dBt 〉+ LG(tn, X t)dt.

Because Gn(tn, xn) > 0, there exists an r > 0 such that Gn > 0 on B(xn, r), the
geodesic ball in M centered at xn with radius r . Let

τ = inf{t ≥ 0 : X t /∈ B(xn, r)}.

Then (2-8) and (2-9) imply

dGn(tn, X t)≥ dMt + LGn(tn, · )(X t)dt ≥ dMt +8(tn, X t)dt for t ≤ τ

for some martingale Mt . Since Gn(tn, X t)≤ Gn(tn, xn) and X0 = xn , this implies
that

0≥ EGn(tn, X t∧τ )−Gn(tn, xn)≥ E

∫ t∧τ

0
8(tn, Xs)ds.

Therefore, the continuity of 8 implies that

8(tn, xn)= lim
t→0

1
E(t∧τ)

E

∫ t∧τ

0
8(tn, Xs)ds ≤ 0. �

2.2. Nonconvex ∂ M. Under our assumptions on M , there exists a constant R > 1
and a function φ ∈ C∞(M) such that

1≤ φ ≤ R, |∇φ| ≤ R, N logφ|∂M ≥ σ.

By [Wang 2007, Lemma 2.1], the boundary ∂M is convex under the new metric
〈 · , · 〉′ := φ−2

〈 · , · 〉. Let L ′ = φ2L . By [Wang 2007, Equation (9)], the vector
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U ′ := φU is unit under the new metric for any unit vector U ∈ T M , and the
corresponding Ricci curvature satisfies

(2-10) Ric′(U ′,U ′)≥ φ2 Ric(U,U )+φ1φ− (d − 3)|∇φ|2

− 2(Uφ)2+ (d − 2)φ Hessφ(U,U ).

Let 1′ be the Laplacian induced by the new metric. By [Wang 2007, Lemma 2.2],
we have

L ′ := φ2L =1′+ (d − 2)φ∇φ+φ2 Z =:1′+ Z ′.

Noting that

∇
′

X Y =∇X Y −〈X,∇ logφ〉Y −〈Y,∇ logφ〉X +〈X, Y 〉∇ logφ for X, Y ∈ T M,

we have

〈∇U ′Z ′,U ′〉′ = 〈∇U Z ′,U 〉− 〈Z ′,∇ logφ〉

= φ2
〈∇U Z ,U 〉+ (Uφ2)〈Z ,U 〉+ (d − 2)(Uφ)2

+ (d − 2)φ Hessφ(U,U )−〈Z ′,∇ logφ〉.

Combining this with (2-10) and the properties of φ mentioned above, we find a
constant c1 > 0 such that

(2-11) Ric′(U,′U ′)−〈∇ ′U ′Z
′,U ′〉′ ≥ φ2(Ric−∇Z)(U,U )− c1 for |U | = 1.

Moreover, since

(Z ′⊗′ Z ′)(U ′,U ′) := (〈Z ′,U ′〉′)2 = φ−2
〈Z ′,U 〉2

≤ 2(d − 2)2〈∇φ,U 〉2+ 2φ2
〈Z ,U 〉2

≤ 2(d − 2)2 R2
+ 2φ2(Z ⊗ Z)(U,U ),

it follows from (1-2) and (2-11) that

Ric′−∇ ′Z ′−
Z ′⊗′ Z ′

2(m− d)
≥−φ2K − c2 ≥−K ′

holds for the metric 〈 · , · 〉′ and some constants c2, K ′>0. Therefore, we may apply
Lemma 2.1 to L ′ on the convex Riemannian manifold (M, 〈 · , · 〉′) to conclude that
the desired sequence {(tn, xn)} exists.

3. Proofs of Theorem 1.3 and Corollary 1.4

Proof of Theorem 1.3. When ∂M is convex, Lemma 2.1 ensures that X t does
not explode. If ∂M is nonconvex, this can be confirmed by reparametrizing the
time of the process. More precisely, let X ′t be the reflecting diffusion process
on M generated by L ′ := φ2L constructed in Section 2.2. Since L ′ = 1′ + Z ′
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satisfies (1-2) for some K > 0 on the convex manifold (M, 〈 · , · 〉′), the process X ′t
generated by L ′ is nonexplosive by Lemma 2.1. Since X t = X ′

ξ−1(t), where ξ−1 is
the inverse of

t 7→ ξ(t)=
∫ t

0
φ2(X ′s)ds,

we have t‖φ‖−2
∞
≤ ξ−1(t)≤ t , and the process X t is nonexplosive as well.

Let f ∈ C1
b(M) be strictly positive, and let u(t, x) = log Pt f (x). For a fixed

number T > 0, we will apply Theorem 1.2 to the reference function

G(t, x)= t
{
φ(x)|∇u|2(t, x)−αut(t, x)

}
for t ∈ [0, T ] and x ∈ M.

Note that II≥−σ and N logφ ≥ 2σ imply

Nφ ≥ 2σφ,

N |∇Pt f |2 = 2 HessPt f (N ,∇Pt f )= 2II(∇Pt f,∇Pt f )≥−2σ |∇Pt f |2.

Since Pt f and hence ut satisfy the Neumann boundary condition, this implies that

N G = t
{
(Nφ)|∇u|2+

φ

(Pt f )2
N |∇Pt f |2

}
≥ t{2σφ|∇u|2− 2σφ|∇u|2} = 0

on ∂M .

According to [Ledoux 2000, (1.14)], inequality (1-2) implies

(3-1) L|∇u|2− 2〈∇Lu,∇u〉 ≥ −2K |∇u|2+
|∇|∇u|2|2

2|∇u|2
.

By multiplying this inequality by ε and (1-1) by 2(1− ε) and by combining the
results, we obtain

L|∇u|2 ≥ 2〈∇Lu,∇u〉− 2K |∇u|2+
2(1− ε)(Lu)2

m
+
ε|∇|∇u|2|2

2|∇u|2
.

It is also easy to check that Lu = ut −|∇u|2 and ∂t |∇u|2 = 2〈∇u,∇ut 〉. Then we
arrive at

(3-2) (L − ∂t)|∇u|2

≥
2(1− ε)

m
(|∇u|2− ut)

2
+
ε|∇|∇u|2|2

2|∇u|2
− 2〈∇u,∇|∇u|2〉− 2K |∇u|2.

On the other hand,

−α(L − ∂t)ut = 2α〈∇u,∇ut 〉 = 2〈∇u,∇(φ|∇u|2− t−1G)〉

= 2φ〈∇u,∇|∇u|2〉+ 2|∇u|2〈∇u,∇φ〉− 2t−1
〈∇u,∇G〉.
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Combining this with (3-2), we obtain

(L − ∂t)G = −
G
t
+ t
(
φ(L − ∂t)|∇u|2+ |∇u|2Lφ+ 2〈∇φ,∇|∇u|2〉

)
+ t
(
2φ〈∇u,∇|∇u|2〉+ 2|∇u|2〈∇u,∇φ〉− 2t−1

〈∇u,∇G〉
)

≥ −
G
t
+

2(1− ε)φt
m

(|∇u|2− ut)
2
+
εφt |∇|∇u|2|2

2|∇u|2
− 2Kφt |∇u|2

− 2|∇u| · |∇G| − 2t |∇u|3|∇φ| − 2t |∇φ| · |∇|∇u|2| + t |∇u|2Lφ.

Noting that

εφt |∇|∇u|2|2

2|∇u|2
− 2t |∇φ| · |∇|∇u|2| ≥ −

2t |∇φ|2|∇u|2

εφ
,

we get

(3-3) (L−∂t)G ≥−
G
t
+

2(1− ε)φt
m

(|∇u|2−ut)
2
−2Kφt |∇u|2−2|∇u| · |∇G|

− 2t |∇u|3|∇φ| + t |∇u|2Lφ−
2t |∇φ|2|∇u|2

εφ
.

We assume that sup G > 0, otherwise the proof is done. Since G(0, · )= 0 and
N G|∂M ≥ 0, we can apply Theorem 1.2. Let {(tn, xn)} be fixed in Theorem 1.2
with, for example, ε = 1/2. Then,

(3-4) (L − ∂t)G(tn, xn)≤
G3/2(tn, xn)

n
and |∇G|(tn, xn)≤

G3/2(tn, xn)

n
.

From now on, we evaluate functions at the point (tn, xn), so that t = tn .
Let µ= |∇u|2/G. We have

|∇u|2− ut =

(
µ−

(µt − 1)φ
αt

)
G =

µt (α−φ)+φ
αt

G.

Combining this with (3-3) and (3-4), we arrive at

(3-5)
2(1− ε)φ(µt (α−φ)+φ)2

mα2t
G2

≤
G3/2

n
+

G
t
+

2
√
µG2

n
+ 2t |∇φ|(µG)3/2+ (2kφ+ 2ε−1φ−1

|∇φ|2− Lφ)µtG.

Since it is easy to see that

(µt (α−φ)+φ)2 ≥max
{
φ2, 4µt (α−φ)φ, (2t (α−φ))3/2

√
φµ3/2},
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we may multiply both sides of (3-5) by t (µt (α−φ)+φ)−2G−2 to obtain

2(1− ε)φ
mα2 ≤

c′t
n(1∧

√
G)
+

1
φ2G
+

2K + 2ε−1
|∇ logφ|2−φ−1Lφ

4(α−φ)G
t

+
|∇ logφ|

√
tφ

(α−φ)3/2
√

2G

≤
c′t

n(1∧
√

G)
+

1
φ2G
+

2K + 2ε−1
|∇ logφ|2−φ−1Lφ

4(α−φ)G

+
|∇ logφ|2mα2(1+ ε)t
16(α−φ)3ε(1− ε)G

+
2(1− ε)εφ
mα2(1+ ε)

for some constant c′ > 0. Taking n→∞ and noting that φ ≥ 1, we conclude that
θ := sup G satisfies

2(1− ε)
mα2(1+ ε)

≤
1
θ

(
1+

2K + 2ε−1
‖∇ logφ‖2

∞
+ sup(−φ−1Lφ)

4(α−‖φ‖∞)
T

+
‖∇ logφ‖2

∞
mα2(1+ ε)T

16(α−‖φ‖∞)3ε(1− ε)

)
.

Combining this with θ ≥ G(T, x) = T (φ(x)|∇u|2(T, x)− αut(T, x)) for x ∈ M ,
we obtain

φ(x)|∇u|2(T, x)−αut(T, x)

≤
mα2(1+ ε)

2(1− ε)

( 1
T
+

2K + 2ε−1
‖∇ logφ‖2

∞
+ sup(−φ−1Lφ)

4(α−‖φ‖∞)

+
‖∇ logφ‖2

∞
mα2(1+ ε)

16(α−‖φ‖∞)3ε(1− ε)

)
for all x ∈ M . Then the proof is completed since T > 0 is arbitrary. �

Proof of Corollary 1.4. By Theorem 1.3, the proof is standard according to [Li and
Yau 1986]. For x, y ∈ M , let γ : [0, 1] → M be the shortest curve in M linking x
and y such that |γ̇ | = ρ(x, y). Then, for any s, t > 0 and f ∈ C∞b (M), it follows
from (1-5) that

d
dr

log Pt+rs f (γr )= s∂u log Pu f (γr )|u=t+rs +〈γ̇r ,∇Pt+rs f (γr )〉

≥
s
α
|∇ log Pt+rs f |2(γr )− ρ(x, y)|∇ log f |(γr )

− s
( m(1+ ε)α

2(1− ε)(t + rs)
+

mαK (φ, ε, α)
4(α− 1‖φ‖∞)

)
≥ −

α
4s
− s

( m(1+ ε)α
2(1− ε)(t + rs)

+
mαK (φ, ε, α)
4(α−‖φ‖∞)

)
.
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We complete the proof by integrating with respect to dr over [0, 1]. �

4. Proof of Theorem 1.6

We first provide a simple proof of (1-9) under an extra assumption that |∇P( · ) f |
is bounded on [0, T ] × M for any T > 0; we then drop this assumption by an
approximation argument.

Lemma 4.1. If that f ∈ C1
b(M) is such that |∇P( · ) f | is bounded on [0, T ] × M

for any T > 0, then (1-9) holds.

Proof. For any ε > 0, let ηs =
√
ε+ |∇Pt−s f |2(Xs) for s ≤ t . By the Itô formula,

we have

dηs = dMs +
L|∇Pt−s f |2− 2〈∇L Pt−s f,∇Pt−s f 〉

2
√
ε+ |∇Pt−s f |2)2

(Xs)ds

−
|∇|∇Pt−s f |2|2

4(ε+ |∇Pt−s f |2)3/2
(Xs)ds+

N |∇Pt−s f |2

2
√
ε+ |∇Pt−s f |2

(Xs)dls

for s ≤ t , where Ms is a local martingale. Combining this with (1-8) and (3-1),
with κ1 in place of K0, we obtain

dηs ≥ dMs −
κ1|∇Pt−s f |2√
ε+ |∇Pt−s f |2

(Xs)ds−
κ2|∇Pt−s f |2√
ε+ |∇Pt−s f |2

(Xs)dls

≥ dMs − κ1(Xs)ηs ds− κ2(Xs)ηs dls for s ≤ t.

Now ηs is bounded on [0, t], and by the proof of [Wang 2005b, Lemma 2.1] we
have Eeλlt <∞ for all λ > 0. This implies that

[0, t] 3 s 7→
√
ε+ |∇Pt−s f |2(Xs) exp

(∫ s

0
κ1(Xs)ds+

∫ s

0
κ2(Xs)dls

)
is a submartingale for any ε > 0. Letting ε ↓ 0 we conclude that

[0, t] 3 s 7→ |∇Pt−s f |(Xs) exp
(∫ s

0
κ1(Xs)ds+

∫ s

0
κ2(Xs)dls

)
is a submartingale as well. �

According to Lemma 4.1, it suffices to confirm the boundedness of |∇P( · ) f | on
[0, T ] ×M for any T > 0 and f ∈ C1

b(M). We shall start from f ∈ C∞0 (M) with
N f |∂M = 0, then pass to f ∈ C1

b(M) by combining an approximation argument
and Lemma 4.1.

Case a. Let f ∈ C∞0 (M) with N f |∂M = 0. We have

(4-1) Pt f = f +
∫ t

0
Ps L f ds.
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Since L f is bounded, there is a c> 0 such that L f +c≥ 1. Applying Corollary 1.5
with for example α = 2+ σdr0 and ε = 1/2, but using L f + c in place of f , we
obtain

|∇Ps L f | = |∇Ps(L f + c)|

≤ ‖L f + c‖∞
(
α‖Ps L2 f ‖∞+

m(1+ ε)α2

2(1− ε)s
+

mα2Kε

4(α− 1− σdr0)

)1/2

≤ c1/
√

s for s ≤ T

for some constant c1 > 0. Combining this with (4-1) we conclude that, for some
constant c2 > 0,

|∇Pt f | ≤ |∇ f | +
∫ t

0

c1
√

s
ds ≤ c2 for t ≤ T .

Case b. Let f ∈C∞0 (M). There exists a sequence of functions { fn}n≥1⊂C∞0 (M)
such that N fn|∂M = 0, fn→ f uniformly as n→∞, and ‖∇ fn‖∞ ≤ 1+‖∇ f ‖∞
holds for any n ≥ 1; see for example [Wang 1994]. By Case a and Lemma 4.1,
(1-9) holds with fn in place of f , so that

|Pt fn(x)− Pt fn(y)|
ρ(x, y)

≤ C for t ≤ T, n ≥ 1, x 6= y

for some constant C > 0. Letting first n→ 0 and then y→ x , we conclude that
|∇P( · ) f | is bounded on [0, T ]×M .

Case c. Let f ∈ C∞b (M). Let {gn}n≥1 ⊂ C∞0 ) be such that 0≤ gn ≤ 1, |∇gn| ≤ 2
and gn ↑ 1 as n ↑ ∞. By Case b and Lemma 4.1, we may apply (1-9) to gn f in
place of f such that

|Pt(gn f )(x)− Pt(gn f )(y)|
ρ(x, y)

≤ C for t ≤ T, n ≥ 1, x 6= y

for some constant C > 0. By the same reason as in Case b, we conclude that
|∇P( · ) f | is bounded on [0, T ]×M .

Case d. Finally, for f ∈ C1
b(M), there exist { fn}n≥1 ⊂ C∞b (M) such that fn→ f

uniformly as n →∞ and ‖∇ fn‖∞ ≤ ‖∇ f ‖∞ + 1 for any n ≥ 1. The proof is
completed by the same reason as in Cases b and c. �
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