Pacific Journal of Mathematics

GRADIENT AND HARNACK INEQUALITIES ON NONCOMPACT MANIFOLDS WITH BOUNDARY

FENG-YU WANG

Volume 245 No. 1 March 2010

PACIFIC JOURNAL OF MATHEMATICS Vol. 245, No. 1, 2010

GRADIENT AND HARNACK INEQUALITIES ON NONCOMPACT MANIFOLDS WITH BOUNDARY

FENG-YU WANG

By using the reflecting diffusion process and a conformal change of metric, a generalized maximum principle is established for (unbounded) time-space functions on a class of noncompact Riemannian manifolds with (nonconvex) boundary. As applications, Li–Yau-type gradient and Harnack inequalities are derived for the Neumann semigroup on a class of noncompact manifolds with (nonconvex) boundary. These generalize some previous ones obtained for the Neumann semigroup on compact manifolds with boundary. As a byproduct, the gradient inequality for the Neumann semigroup derived by Hsu on a compact manifold with boundary is confirmed on these noncompact [manifo](#page-15-0)lds.

1. Introduction

Suppose *M* is a *d*-[dimensional](#page-16-0) connected complete Riemannian manifold, and let $L = \Delta + Z$, where *Z* is a $C¹$ vector field satisfying the curvature-dimension condition of Bakry and Émery $[1984]$ given by

$$
(1-1)\ \Gamma_2(f,f) := \frac{1}{2}L|\nabla f|^2 - \langle \nabla Lf, \nabla f \rangle \ge \frac{(Lf)^2}{m} - K|\nabla f|^2 \quad \text{for } f \in C^\infty(M)
$$

for so[me con](#page-16-1)stants $K \ge 0$ and $m > d$. By [Qian 1998, page 138], this condition is equivalent to

(1-2)
$$
\operatorname{Ric} - \nabla Z - \frac{Z \otimes Z}{m - d} \geq -K.
$$

When $Z = 0$ and *M* is either without boundary or compact and with a convex boundary ∂ *M*, Li and Yau [1986] found a now-famous gradient estimate for the (Neumann) semigroup *P^t* generated by *L*:

(1-3)
$$
|\nabla \log P_t f|^2 - \alpha \partial_t \log P_t f \le \frac{d\alpha^2}{2t} + \frac{d\alpha^2 K}{4(\alpha - 1)} \quad \text{for } t > 0 \text{ and } \alpha > 1
$$

MSC2000: 58J35, 60J60.

Keywords: gradient estimate, Harnack inequality, generalized maxium principle.

Supported in part by National Natural Science Foundation of China, number 10721091, and the 973 Project.

[186](#page-1-0) FENG-YU WANG

for all positive $f \in C_b(M)$. We note that in [Li and Yau 1986] the second term for all positive $f \in C_b(M)$. We note that in [Li and Yau 1986] the second term
on the right side of (1-3) is $d\alpha^2 K/(\sqrt{2}(\alpha - 1))$, but $\sqrt{2}$ here can be replaced by 4 according to a refined calculation; see for example [Davies 1989].

As an application, $(1-3)$ [implies a parab](#page-16-1)[olic Harnack](#page-16-2) inequality for P_t :

$$
(1-4) \quad P_t f(x) \le \left(\frac{t+s}{t}\right)^{d\alpha/2} (P_{t+s} f(y)) \exp\left(\frac{\alpha \rho(x, y)^2}{4s} + \frac{\alpha K ds}{4(\alpha - 1)}\right)
$$

for $t > 0$ and $x, y \in M$,

where $\alpha > 1$ and $f \in C_b(M)$ is positive. From this Harnack inequality, one obtains Gaussian-type heat kernel bounds for P_t ; see [Li and Yau 1986; Davies 1989].

The gradient estimate (1-3) has been extended and i[mprov](#page-1-0)ed in several papers. See for example [Bakry and Qian 1999] for an improved version for $\alpha = 1$ with *Z* \neq 0 and ∂*M* = ∅, and see [Wang 1997] for an extension to a compact manifold with nonconvex boundary. The aim of this paper is to investigate the gradient and Harnack inequalities for P_t on noncompact manifolds with (nonconvex) boundary.

Recall that the key step of Li and Yau's argument for the gradient estimate (1-3) is to apply the maximum principle to the reference function

$$
G(t, x) := t(|\nabla \log P_t f|^2 - \alpha \partial_t \log P_t f)(x) \quad \text{for } t \in [0, T] \text{ and } x \in M.
$$

When *M* is compact without boundary, the maximum principle says that for any smooth function *G* on $[0, T] \times M$ with $G(0, \cdot) \leq 0$ and sup $G > 0$, there exists a maximal point of *G* at which $\nabla G = 0$, $\partial_t G \ge 0$, and $\Delta G \le 0$. When *M* is compact with a convex boundary, the same assertion holds for the above specified function *G*, as observed in $[L]$ and Yau 1986, proof of Theorem 1.1. In [1997], J. Wang extended this maximum principle [on a c](#page-16-1)ompact manifold with nonconvex boundary by taking

$$
G(t, x) = t(\phi |\nabla \log P_t f|^2 - \alpha \partial_t \log P_t f)(x) \quad \text{for } t \in [0, T] \text{ and } x \in M
$$

[fo](#page-16-5)r a nice function ϕ compensating the concavity of the boundary.

As for a noncompact manifold without boundary, Li and Yau [1986] established the gradient estimate by applying the maximal principle to a sequence of functions with compact support that approximate the original function *G*. An alternative is to apply directly the following generalized maximum principle:

Lemma 1.1 [Yau 1975]. *For any bounded smooth function G on* [0, T] \times *M with* $G(0, \cdot) \leq 0$ *and* sup $G > 0$, *there exists a sequence* $\{(t_n, x_n)\}_{n \geq 1} \subset [0, T] \times M$ *such that*

(i) $0 < G(t_n, x_n) \uparrow \sup G$ as $n \uparrow \infty$, and

(ii) *for any n* > 1 ,

$$
LG(t_n, x_n) \leq 1/n, \quad |\nabla G(t_n, \cdot)(x_n)| \leq 1/n, \quad \partial_t G(t_n, x_n) \geq 0.
$$

To apply this generalized maximal principle for the gradient estimate, one has to first confirm the boundedness of $G(t, \cdot) := t(|\nabla \log P_t f|^2 - \alpha \partial_t \log P_t f$ on $[0, T] \times M$ for $T > 0$.

Since the boundedness of this type of reference function is unknown when *M* is noncompact with a nonconvex boundary, we shall establish a generalized maximum principle on a class of nonc[ompac](#page-16-1)t manifolds with boundary for not necessarily bounded functions. Applying this principle to a suitable reference function *G*, we derive the Li–Yau-type gradient and Harnack inequalities for Neumann semigroups. To establish such a maximum principle, we adopt a localization argument so that the classical maximum principle can be applied.

For *M* noncompact without boundary, Li and Yau [1986] used such a localiza[tion](#page-16-6) argument to apply the maximal principle t[o functions w](#page-9-0)ith compact support; they then passed to the desired global estimate by taking a limit. To do this, they constructed cut-off functions using ρ_o , the Riemannian distance function to a fixed point $o \in M$. It turns out that this argument works also when ∂M is convex; see Section 2.1. For the nonconvex case, we will use the conformal change of metric introduced in [Wang 2007] to make a nonconvex boundary convex; see Section 2.2.

Assumption A. The manifold *M* is connected and complete with boundary ∂M and such that either

- (1) ∂M is convex, or
- (2) the second fundamental form of ∂ *M* is bounded, the sectional curvature of *M* is bounded from above, and the injectivity radius i[∂] *^M* of ∂ *M* is positive.

Recall that the Riemannian distance function $\rho_{\partial M}$ to the boundary is smooth on the set $\{\rho_{\partial M} < i_{\partial M}\}.$

Let *N* be the inward unit normal vector field on ∂M . The second fundamental form of [∂](#page-3-0) *M* is

$$
\Pi(X, Y) = -\langle \nabla_X N, Y \rangle \quad \text{for } X, Y \in T \partial M.
$$

The boundary ∂M is called convex if II ≥ 0. We are now ready to state our generalized maximal principle for possibly unbounded functions.

Theorem 1.2. Let M satisfy A, and let L satisfy $(1-2)$. Let $T > 0$, and let G be a *smooth function on* $[0, T] \times M$ *such that* $NG|_{\partial M} \geq 0$, $G(0, \cdot) \leq 0$ *and* $\sup G > 0$ *. Then for any* $\varepsilon > 0$, *there exists a sequence* $\{(t_n, x_n)\}_{n>1} \subset (0, T] \times M$ *such that Lemma 1.1(i) holds and for any* $n \geq 1$

$$
LG(t_n, x_n) \leq \frac{G(t_n, x_n)^{1+\varepsilon}}{n}, \qquad |\nabla G(t_n, x_n)| \leq \frac{G(t_n, x_n)^{1+\varepsilon}}{n},
$$

 $\partial_t G(t_n, x_n) \geq 0.$

Applying Theorem 1.2 to a proper choice of function *G*, we will derive the Li–Yau-type gradient estimate $(1-5)$. We shall prove that the reflecting diffusion process X_t generated by L on M is non explosive, so that the corresponding Neumann s[em](#page-3-0)igroup P_t can be formula[ted as](#page-1-1)

$$
P_t f(x) = \mathsf{E}^x f(X_t) \quad \text{for } t \ge 0, \, x \in M, \text{ and } f \in C_b(M),
$$

whe[re](#page-1-0) E^x is the expectation taken for $X_0 = x$.

Theorem 1.3. *Let M satisfy A, and suppose L satisfies* (1-2) *with* $||Z||_{\infty} < \infty$ *. Then the reflecting L-diffusion process on M is nonexplosive and the corresponding Neumann semigroup P^t satisfies these assertions*:

- (i) *If* ∂ *M is convex*, *then* (1-3) *holds with m in place of d.*
- (ii) *If* ∂M *is nonconvex with* $\Pi \ge -\sigma$ *for some* $\sigma > 0$ *, then for any bounded* $\phi \in C^{\infty}(M)$ *with* $\phi \geq 1$ *and* $N \log \phi|_{\partial M} \geq 2\sigma$, *the gradient inequality*

$$
(1-5) \qquad |\nabla \log P_t f|^2 - \alpha \partial_t \log P_t f \le \frac{m(1+\varepsilon)\alpha^2}{2(1-\varepsilon)t} + \frac{m\alpha^2 K(\phi,\varepsilon,\alpha)}{4(\alpha - \|\phi\|_\infty)}
$$

holds fo[r all positive](#page-4-0) $f \in C_b(M)$, $\alpha > ||\phi||_{\infty}$, $t > 0$, $\varepsilon \in (0, 1)$ *and*

$$
K(\phi, \varepsilon, \alpha) :=
$$

$$
\frac{1+\varepsilon}{1-\varepsilon} \bigg(K + \frac{1}{\varepsilon} \|\nabla \log \phi\|_{\infty}^2 + \frac{1}{2} \sup(-\phi^{-1}L\phi) + \frac{m\alpha^2 \|\nabla \log \phi\|_{\infty}^2 (1+\varepsilon)}{8(\alpha - \|\phi\|_{\infty})^2 \varepsilon (1-\varepsilon)}\bigg).
$$

We emphasize that the results in Theorem 1.3 are new for noncompact manifolds with boundary. When *M* is [co](#page-6-0)mp[act](#page-10-0) with a convex boundary, the first assertion was [pro](#page-16-1)ved in [Li and Yau 19[86\] by](#page-4-1) using the classical maximum principle on compact manifolds, while when M is compact with a nonconvex boundary, an inequality similar to (1-5) was proved in [Wang 1997] by using the "interior rolling *R*-ball" condition.

These t[wo theorems w](#page-4-0)ill be proved in Sections 2 and 3. By a standard argument due to Li and Yau [1986], the gradient estimate (1-5) implies a Harnack inequality. Let $\rho(x, y)$ be the Riemannian distance between $x, y \in M$, that is, the infimum of the length of all smooth curves in *M* that link *x* and *y*.

Corollary 1.4. *In the situation of Theorem 1.3 the Neumann semigroup P^t satisfies*

$$
(1-6) \quad P_t f(x) \le \left(\frac{t+s}{t}\right)^{m(1+\varepsilon)\alpha/2(1-\varepsilon)} (P_{t+s}f(y)) \exp\left(\frac{\alpha\rho(x,y)^2}{4s} + \frac{\alpha mK(\phi,\varepsilon,\alpha)s}{4(\alpha - \|\phi\|_{\infty})}\right)
$$

for all positive $f \in C_b(M)$ *,* $t, \varepsilon \in (0, 1)$ *,* $\alpha > ||\phi||_{\infty}$ *and* $x, y \in M$ *. In particular, if* ∂M *is convex, then* (1-4) *holds with m in place of d and for all* $\alpha > 1$ *.*

To derive explicit inequalities for the nonconvex case, we shall take a specific choice of ϕ as in [Wang 2007]. Let i_{∂M} be the injectivity radius of ∂M , and let $\rho_{\partial M}$ be the Riemannian distance to the boundary. We shall take $\phi = \varphi \circ \rho_{\partial M}$ for a nice reference function φ on [0, ∞). More precisely, let the sectional curvature satisfy Sect_M $\leq k$ [and](#page-16-6) $-\sigma \leq \mathbb{I} \leq \gamma$ for some $k, \sigma, \gamma > 0$. Let

$$
h(s) = \cos(\sqrt{k} s) - (\gamma/\sqrt{k}) \sin(\sqrt{k} s) \quad \text{for } s \ge 0.
$$

Then *h* is the unique solution to the differential equation $h'' + kh = 0$ with boundary conditions $h(0) = 1$ and $h'(0) = -\gamma$. By the Laplacian comparison theorem for $\rho_{\partial M}$ (see [Kasue 1984, Theorem 0.3] or [Wang 2007]),

(1-7)
$$
\Delta \rho_{\partial M} \geq \frac{(d-1)h'}{h} (\rho_{\partial M}) \text{ and } \rho_{\partial M} < i_{\partial M} \wedge h^{(-1)}(0),
$$

where $h^{(-1)}(0) = (1/$ √ *k*) arcsin(√ \sqrt{k} / $\sqrt{k + \gamma^2}$) is the first zero point of *h*. Fix a positive number $r_0 \leq i_{\partial M} \wedge h^{(-1)}(0)$, and let

$$
\delta = \frac{2\sigma (1 - h(r_0))^{d-1}}{\int_0^{r_0} (h(s) - h(r_0))^{d-1} ds},
$$

$$
\varphi(r) = 1 + \delta \int_0^r (h(s) - h(r_0)^{1-d} ds \int_{s \wedge r_0}^{r_0} (h(u) - h(r_0))^{d-1} du.
$$

It is easy to see that $\varphi \circ \rho_{\partial M}$ is differentiable with a Lipschitzian gradient. By a [simpl](#page-16-6)e approximation argument, we may apply Theorem 1.3 and Corollary 1.4 to $\phi = \varphi \circ \rho_{\partial M}$; see [Wang 2007, page 1436].

Obviously, (1-7) and $N = \nabla \rho_{\partial M}$ imply

$$
\Delta \varphi \circ \rho_{\partial M} \ge -\delta \quad \text{and} \quad N \log \varphi \circ \rho_{\partial M}|_{\partial M} = \varphi'(0)/\varphi(0) = 2\sigma.
$$

Moreover, by [Wang 2007, (20)] we have

$$
\delta \le 2\sigma dr_0^{-1} \quad \text{and} \quad \varphi(r_0) \le 1 + \sigma dr_0.
$$

Thus, for $\phi := \varphi \circ \rho_{\partial M}$ $\phi := \varphi \circ \rho_{\partial M}$ $\phi := \varphi \circ \rho_{\partial M}$ [we have](#page-4-2)

$$
-\phi^{-1}L\phi \le 2\sigma dr_0^{-1} + 2\sigma ||Z||_{\infty}, \quad ||\nabla \log \phi||_{\infty}^2 \le 4\sigma^2,
$$

$$
||\phi||_{\infty} \le \varphi(r_0) \le 1 + \sigma dr_0.
$$

Combining these with Theorem 1.3 and Corollary 1.4, we obtain these explicit inequalities on a class of nonconvex and noncompact manifolds:

Corollary 1.5. *Let* $i_{\partial M} > 0$, *and suppose* $\gamma \geq \mathbb{I} \geq -\sigma$ *and* $\text{Sect}_M \leq k$ *for some* γ , σ , $k > 0$. If (1-2) holds and $\|Z\|_{\infty} < \infty$, then for any positive number

$$
r_0 \leq \min\{i_{\partial M}, (1/\sqrt{k}) \arcsin(\sqrt{k}/\sqrt{k+\gamma^2})\},\
$$

the inequalities

$$
|\nabla \log P_t f|^2 - a \partial_t \log P_t f \le \frac{m(1+\varepsilon)\alpha^2}{2(1-\varepsilon)t} + \frac{m\alpha^2 K_\varepsilon}{4(\alpha-1-\sigma dr_0)}
$$

and

$$
P_t f(x) \le \left(\frac{t+s}{t}\right)^{m(1+\varepsilon)a/2(1-\varepsilon)} (P_{t+s} f(y)) \exp\left(\frac{a\rho(x,y)^2}{4s} + \frac{m\alpha K_{\varepsilon} s}{4(\alpha-1-\sigma dr_0)}\right)
$$

for $x, y \in M$

hold for all positive $f \in C_b(M)$ $f \in C_b(M)$ $f \in C_b(M)$ *,* $t > 0$ *,* $\varepsilon \in (0, 1)$ *,* $\alpha > 1 + \sigma dr_0$ *, and*

$$
K_{\varepsilon} = \frac{1+\varepsilon}{1-\varepsilon}\bigg(K + \frac{4\sigma^2}{\varepsilon} + \frac{\sigma d}{r_0} + \sigma \|Z\|_{\infty} + \frac{m\alpha^2\sigma^2(1+\varepsilon)}{2(\alpha-1-\sigma dr_0)^2\varepsilon(1-\varepsilon)}\bigg).
$$

Combining our gradient estimate with an approximation and a probabilistic argument, we can derive the gradient estimate (1-9) for a class of noncompact manifolds:

Theorem 1.6. *Let M satisfy A*, *and let L satisfy* (1-2) *with* $||Z||_{\infty} < \infty$ *. Let* κ_1 *and* κ_2 *be positive elements of* $C_b(M)$ *such that*

(1-8) Ric
$$
-\nabla Z \ge -\kappa_1
$$
 and $\Pi \ge -\kappa_2$

hold on M and ∂ *M, res[pective](#page-16-7)ly. Then*

$$
(1-9) \qquad |\nabla P_t f|(x) \le \mathsf{E}^x\bigg(|\nabla f|(X_t)\exp\bigg(\int_0^t \kappa_1(X_s)\,\mathrm{d} s + \int_0^t \kappa_2(X_s)\,\mathrm{d} l_s\bigg)\bigg)
$$

holds for all $f \in C_b^1(M)$ *,* $t > 0$ *, and* $x \in M$ *.*

Ine[quality](#page-16-7) (1-9) was first de[rived by H](#page-14-0)su [2002] on a compact manifold with boundary. In [2002, Theorem 3.7], Hsu applied the Itô formula to $F(U_t, T$ t) [:=](#page-6-1) $U_t^{-1} \nabla P_{T-t} f(X_t)$, where U_t is the horizontal lift of X_t on the frame bundle $O(M)$. Since *M* is compact, the (local) martingale part of this process is a real martingale (it may [not be for non](#page-3-1)compact *M*). Then the desired gradient estimate followed immediately from [2002, Corollary 3.6]. In Section 4, we will prove the boundedness of $\nabla P_{(\cdot)} f$ on $[0, T] \times M$ for any $T > 0$ and $f \in C_b^1(M)$, which leads to a simple [proof of](#page-16-6) $(1-9)$ for a class of noncompact manifolds.

2. Proof of Theorem 1.2

We consider the convex case and pass to the nonconvex case using the conformal change of metric constructed in [Wang 2007]. Without loss of generality, we may assume that $\sup G := \sup_{[0, T] \times M} > 1$. (Otherwise, we simply replace *G* by *mG* for a sufficiently large $m > 0$.)

2.1. *Convex* ∂*M*. Fix $o \in M$, and let ρ_o be the Riemannian distance to the point o . Since ∂M is convex, there exists a minimal geodesic in *M* of length $\rho(x, y)$ that links any *x* and *y* in *M*; see for example [Wang 2005a, Proposition 2.1.5]. So, by $(1-2)$ and a comparison theorem (see [Qian 1998])

$$
L\rho_o \le \sqrt{K(m-1)} \coth\left(\sqrt{K/(m-1)} \rho_o\right)
$$

holds outside $\{o\} \cup \text{cut}(o)$, where $\text{cut}(o)$ is the cut locus of *o*. In the sequel, we will set $L\rho_o = 0$ on cut(*o*) so that this implies

$$
(2-1) \t\t\t L\sqrt{1+\rho_o^2} \le c_1 \quad \text{on } M
$$

for some constant $c_1 > 0$.

Let $h \in C_0^{\infty}([0, \infty))$ be decreasing such that

$$
h(r) = \begin{cases} 1 & \text{if } r \le 1, \\ \exp(-(3-r)^{-1}) & \text{if } r \in [2, 3), \\ 0 & \text{if } r \ge 3. \end{cases}
$$

Obviously, for any $\varepsilon > 0$ we have

(2-2)
$$
\sup_{[0,\infty)} \{|h^{\varepsilon-1}h''| + |h^{\varepsilon-1}h'|\} < \infty.
$$

Let $W = \sqrt{1 + \rho_o^2}$, and take $\varphi_n = h(W/n)$ for $n \ge 1$. Then

$$
(2-3) \qquad \{ \varphi_n = 1 \} \uparrow M \quad \text{as } n \uparrow \infty.
$$

So, according to $(2-1)$ and $(2-2)$,

$$
|\nabla \log \varphi_n| \leq \frac{c}{n\varphi_n^{\varepsilon}},
$$

(2-4)

$$
\varphi_n^{-1} L \varphi_n = \frac{h'(W/n)}{nh(W/n)} LW + \frac{h''(W/n)}{n^2 h(W/n)} |\nabla W|^2 \geq -\frac{c}{n\varphi_n^{\varepsilon}}
$$

holds for some constant $c > 0$ and all $n \ge 1$.

Let $G_n(t, x) = \varphi_n(x)G(t, x)$ for $t \in [0, T]$ and $x \in M$. Since G_n is continuous with compact [support, the](#page-2-1)[re e](#page-2-2)xists $(t_n, x_n) \in [0, T] \times M$ such that

$$
G_n(t_n, x_n) = \max_{[0,T] \times M} G_n.
$$

By (2-3) and that sup $G > 1$, we have $\lim_{n \to \infty} G(t_n, x_n) = \sup G > 1$. By renumbering from a sufficient large n_0 , we may assume that $G_n(t_n, x_n)$ is greater than 1 and is increasing in *n*. In particular, Lemma 1.1(i) holds and

$$
\varphi_n(x_n) \ge 1/G(t_n, x_n) \quad \text{for } n \ge 1.
$$

192 FENG-YU WANG

Moreover, since $G_n(0, \cdot) \leq 0$, we have $t_n > 0$ and $\partial_t G(t_n, x_n) \geq 0$ for $n \geq 1$. Thus, it remains to confi[rm tha](#page-8-0)t

(2-6)
$$
|\nabla G(t_n, x_n)| \le c G(t_n, x_n)^{1+\varepsilon}/n \text{ and}
$$

$$
LG(t_n, x_n) \le c G(t_n, x_n)^{1+\varepsilon}/n \text{ for } n \ge 1
$$

for some constant $c > 0$. Indeed, by using a subsequence $\{(t_{mn}, x_{mn})\}_{n \geq 1}$ for $m \geq c$ to replace $\{(t_n, x_n)\}_{n \ge 1}$, one may reduce (2-6) with some $c > 0$ to that with $c = 1$.

Since x_n is the maximal point of G_n , we have $\nabla G_n(t_n, x_n) = 0$ if $x_n \in M \setminus \partial M$. If *x*^{*n*} ∈ ∂*M*, we have $NG_n(t_n, x_n) ≤ 0$. Recall that $NG(t_n, \cdot) ≥ 0$ and $G(t_n, x_n) > 0$. Then, noting that $N\rho_0 \le 0$ together with $h' \le 0$ implies $N\varphi_n \ge 0$, we conclude that $NG_n(t_n, x_n) \geq 0$. Hence, $NG_n(t_n, x_n) = 0$. Moreover, since x_n is the maximal point of $G_n(t_n, \cdot)$ on the closed manifold ∂*M*, we have $UG_n(t_n, x_n) = 0$ for all *U* ∈ *T*∂*M*. [Therefo](#page-8-0)re, $\nabla G_n(t_n, x_n) = 0$ also holds for $x_n \in \partial M$. Combining this with $(2-4)$ and $(2-5)$, we obtain

$$
|\nabla G(t_n,x_n)|\leq \frac{G(t_n,x_n)}{\varphi_n(x_n)}|\nabla \varphi_n|\leq \frac{cG(t_n,x_n)^{1+\varepsilon}}{n},
$$

which pro[ves the first i](#page-8-1)nequality in $(2-6)$.

Finally, by $(2-4)$, the inequality

$$
\varphi_n L_n G + GL_n \varphi_n + 2 \langle \nabla G, \nabla \varphi_n \rangle \ge \varphi_n L_n G - \frac{c \varphi_n^{1-\varepsilon}}{n} G - \frac{2c \varphi_n^{1-\varepsilon}}{n} |\nabla G| =: \Phi
$$

holds on $\{G_n > 0\} \setminus \text{cut}(o)$. By Lemma 2.1 below we obtain at the point (t_n, x_n) that

$$
LG \leq \frac{c}{n\varphi_n^{\varepsilon}}G + \frac{2c}{n\varphi_n} |\nabla G|.
$$

Combining this with $(2-5)$ $(2-5)$ and the first inequality in $(2-6)$, we get

$$
LG(t_n,x_n)\leq \frac{c}{n}G^{1+2\varepsilon}(t_n,x_n)
$$

for some constant $c > 0$ and all $n \ge 1$. Since $\varepsilon > 0$ is arbitrary, we may replace ε by $\epsilon/2$ (recall that $G(t_n, x_n) \ge 1$). This proves the second inequality in (2-6).

Lemma 2.1. *The reflecting L-diffusion process is nonexplosive, and for any* Φ *in Cb*(*M*) *such that*

$$
\Phi \le LG_n = GL\varphi_n + \varphi_n LG + 2\langle \nabla \varphi_n, \nabla G \rangle \quad \text{on } \{G_n > 0\} \setminus \text{cut}(o),
$$

we have $\Phi(t_n, x_n) \leq 0$ *for all n* ≥ 1 *.*

Proof. Let X_t be the reflecting *L*-diffusion process generated by *L*, and let U_t be its horizontal lift on the frame bundle $O(M)$. By the Itô formula for $\rho_o(X_t)$ found by Kendall [1987] for $\partial M = \emptyset$ and by the fact that $N \rho_o|_{\partial M} \leq 0$ when ∂M is nonempty but convex, we have

(2-7)
$$
d\rho_o(X_t) = \sqrt{2} \langle \nabla \rho_o(X_t), U_t dB_t \rangle + L\rho_o(X_t) dt - dl_t + dl'_t,
$$

where B_t is the *d*-dimensional Brownian motion, where $L\rho_o$ is taken to be zero on { o }∪cut(o), and where l_t and l'_t are two increasing processes such that l'_t increases only when $X_t = o$, while l_t increases [only w](#page-9-1)hen $X_t \in \text{cut}(o) \cup \partial M$ (note that $l'_t = 0$ for $d \ge 2$). Combining this with $(2-1)$ we obtain

$$
d\sqrt{1+\rho_o^2(X_t)} \le dM_t + L\sqrt{1+\rho_o^2(X_t)} dt \le dM_t + c_1 dt
$$

for some martingale M_t . This implies immediately that X_t does not explode.

Now, let us take $X_0 = x_n$. Since $h' \le 0$, it follows from (2-7) that

(2-8)
$$
d\varphi_n(X_t) \ge \sqrt{2} \langle \nabla \varphi_n(X_t), U_t dB_t \rangle + L\varphi_n(X_t) dt,
$$

where we set $L\varphi_n = 0$ on cut(*o*) as above.

On the other hand, since $NG(t_n, \cdot) \ge 0$, we may apply the Itô to $G(t_n, X_t)$ to obtain

(2-9)
$$
dG(t_n, X_t) \ge \sqrt{2} \langle \nabla G(t_n, X_t), U_t dB_t \rangle + LG(t_n, X_t) dt.
$$

Because $G_n(t_n, x_n) > 0$, there exists an $r > 0$ such that $G_n > 0$ on $B(x_n, r)$, the geodesic ball in *M* centered at *xⁿ* with radius *r*. Let

$$
\tau = \inf\{t \geq 0: X_t \notin B(x_n, r)\}.
$$

Then $(2-8)$ and $(2-9)$ imply

$$
dG_n(t_n, X_t) \ge dM_t + LG_n(t_n, \cdot)(X_t) dt \ge dM_t + \Phi(t_n, X_t) dt \text{ for } t \le \tau
$$

for some martingale M_t . Since $G_n(t_n, X_t) \leq G_n(t_n, x_n)$ and $X_0 = x_n$, this implies that

$$
0 \geq \mathsf{E} G_n(t_n, X_{t \wedge \tau}) - G_n(t_n, x_n) \geq \mathsf{E} \int_0^{t \wedge \tau} \Phi(t_n, X_s) \, \mathrm{d} s.
$$

Therefore, the continuity of Φ implies that

$$
\Phi(t_n, x_n) = \lim_{t \to 0} \frac{1}{\mathsf{E}(t \wedge \tau)} \mathsf{E} \int_0^{t \wedge \tau} \Phi(t_n, X_s) \, \mathrm{d} s \leq 0. \qquad \qquad \Box
$$

2.2. *Nonconvex* ∂M . [Under our](#page-16-6) assumptions on *M*, there exists a constant $R > 1$ and a function $\phi \in C^{\infty}(M)$ such that

$$
1 \le \phi \le R, \quad |\nabla \phi| \le R, \quad N \log \phi|_{\partial M} \ge \sigma.
$$

By [Wang 2007, Lemma 2.1], the boundary ∂ *M* is convex under the new metric $\langle \cdot, \cdot \rangle' := \phi^{-2} \langle \cdot, \cdot \rangle$. Let $L' = \phi^2 L$. By [Wang 2007, Equation (9)], the vector

 $U' := \phi U$ is unit under the new [metric for a](#page-16-6)ny unit vector $U \in TM$, and the corresponding Ricci curvature satisfies

(2-10) Ric'(U', U')
$$
\ge \phi^2 \text{Ric}(U, U) + \phi \Delta \phi - (d-3)|\nabla \phi|^2
$$

-2(U\phi)² + (d-2)\phi Hess_{\phi}(U, U).

Let Δ' be the Laplacian induced by the new metric. By [Wang 2007, Lemma 2.2], we have

$$
L' := \phi^2 L = \Delta' + (d - 2)\phi \nabla \phi + \phi^2 Z =: \Delta' + Z'.
$$

Noting that

$$
\nabla'_X Y = \nabla_X Y - \langle X, \nabla \log \phi \rangle Y - \langle Y, \nabla \log \phi \rangle X + \langle X, Y \rangle \nabla \log \phi \quad \text{for } X, Y \in TM,
$$

we have

$$
\langle \nabla_{U'} Z', U' \rangle' = \langle \nabla_U Z', U \rangle - \langle Z', \nabla \log \phi \rangle
$$

= $\phi^2 \langle \nabla_U Z, U \rangle + (U\phi^2) \langle Z, U \rangle + (d - 2)(U\phi)^2$
+ $(d - 2)\phi$ Hess _{ϕ} $(U, U) - \langle Z', \nabla \log \phi \rangle$.

Combining this with $(2-10)$ and the properties of ϕ mentioned above, we find a constant $c_1 > 0$ such that

$$
(2-11) \quad \text{Ric}'(U, 'U') - \langle \nabla'_{U'} Z', U' \rangle' \ge \phi^2(\text{Ric} - \nabla Z)(U, U) - c_1 \quad \text{for } |U| = 1.
$$

Mo[reover,](#page-10-2) since

$$
(Z' \otimes' Z')(U', U') := (\langle Z', U'\rangle')^2 = \phi^{-2} \langle Z', U\rangle^2
$$

\n
$$
\leq 2(d-2)^2 \langle \nabla \phi, U\rangle^2 + 2\phi^2 \langle Z, U\rangle^2
$$

\n
$$
\leq 2(d-2)^2 R^2 + 2\phi^2 (Z \otimes Z)(U, U),
$$

it follows from $(1-2)$ and $(2-11)$ that

$$
Ric' - \nabla' Z' - \frac{Z' \otimes' Z'}{2(m-d)} \ge -\phi^2 K - c_2 \ge -K'
$$

[h](#page-4-0)olds for the metric $\langle \cdot, \cdot \rangle'$ [and some co](#page-8-1)nstants $c_2, K' > 0$. Therefore, we may apply Lemma 2.1 to L' on the convex Riemannian manifold $(M, \langle \cdot, \cdot \rangle)$ to conclude that the desired sequence $\{(t_n, x_n)\}\)$ exists.

3. Proofs of [Theore](#page-9-0)m 1.3 and Corollary 1.4

Proof of Theorem 1.3. When ∂M is convex, Lemma 2.1 ensures that X_t does not explode. If ∂M is nonconvex, this can be confirmed by reparametrizing the time of the process. More precisely, let X'_t be the reflecting diffusion process on *M* generated by $L' := \phi^2 L$ constructed in Section 2.2. Since $L' = \Delta' + Z'$

satisfies (1-2) for some $K > 0$ on the convex manifold $(M, \langle \cdot, \cdot \rangle')$, the process X'_t generated by *L'* is nonexplosive by Lemma 2.1. Since $X_t = X'_{\xi^{-1}(t)}$, where ξ^{-1} is the inve[rse of](#page-3-1)

$$
t \mapsto \xi(t) = \int_0^t \phi^2(X'_s) \, \mathrm{d} s,
$$

we have $t \|\phi\|_{\infty}^{-2} \leq \xi^{-1}(t) \leq t$, and the process X_t is nonexplosive as well.

Let $f \in C_b^1(M)$ be strictly positive, and let $u(t, x) = \log P_t f(x)$. For a fixed number $T > 0$, we will apply Theorem 1.2 to the reference function

$$
G(t, x) = t\big\{\phi(x)|\nabla u|^2(t, x) - \alpha u_t(t, x)\big\} \quad \text{for } t \in [0, T] \text{ and } x \in M.
$$

Note that II $\geq -\sigma$ and *N* log $\phi \geq 2\sigma$ imply

$$
N\phi \ge 2\sigma\phi,
$$

$$
N|\nabla P_t f|^2 = 2 \text{Hess}_{P_t f}(N, \nabla P_t f) = 2\Pi(\nabla P_t f, \nabla P_t f) \ge -2\sigma |\nabla P_t f|^2.
$$

[Since](#page-16-8) $P_t f$ and hence u_t satis[fy the](#page-1-1) Neumann boundary condition, this implies that

$$
NG = t \left\{ (N\phi) |\nabla u|^2 + \frac{\phi}{(P_t f)^2} N |\nabla P_t f|^2 \right\} \ge t \left\{ 2\sigma \phi |\nabla u|^2 - 2\sigma \phi |\nabla u|^2 \right\} = 0
$$

on ∂M .

According to [Ledoux 2000, (1.14)], inequality (1-2) implies

(3-1)
$$
L|\nabla u|^2 - 2\langle \nabla Lu, \nabla u \rangle \ge -2K|\nabla u|^2 + \frac{|\nabla |\nabla u|^2|^2}{2|\nabla u|^2}.
$$

By multiplying this inequality by ε and (1-1) by 2(1 – ε) and by combining the results, we obtain

$$
L|\nabla u|^2 \geq 2\langle \nabla Lu, \nabla u \rangle - 2K|\nabla u|^2 + \frac{2(1-\varepsilon)(Lu)^2}{m} + \frac{\varepsilon|\nabla|\nabla u|^2|^2}{2|\nabla u|^2}.
$$

It is also easy to check that $Lu = u_t - |\nabla u|^2$ and $\partial_t |\nabla u|^2 = 2(\nabla u, \nabla u_t)$. Then we arrive at

$$
(3-2) \quad (L - \partial_t) |\nabla u|^2
$$

\n
$$
\geq \frac{2(1-\varepsilon)}{m} (|\nabla u|^2 - u_t)^2 + \frac{\varepsilon |\nabla |\nabla u|^2|^2}{2|\nabla u|^2} - 2\langle \nabla u, \nabla |\nabla u|^2 \rangle - 2K |\nabla u|^2.
$$

On the other hand,

$$
-\alpha (L - \partial_t)u_t = 2\alpha \langle \nabla u, \nabla u_t \rangle = 2 \langle \nabla u, \nabla (\phi |\nabla u|^2 - t^{-1}G) \rangle
$$

= $2\phi \langle \nabla u, \nabla |\nabla u|^2 \rangle + 2|\nabla u|^2 \langle \nabla u, \nabla \phi \rangle - 2t^{-1} \langle \nabla u, \nabla G \rangle.$

Combining this with $(3-2)$, we obtain

$$
(L - \partial_t)G = -\frac{G}{t} + t(\phi(L - \partial_t)|\nabla u|^2 + |\nabla u|^2 L\phi + 2\langle\nabla\phi, \nabla|\nabla u|^2\rangle) + t(2\phi\langle\nabla u, \nabla|\nabla u|^2\rangle + 2|\nabla u|^2\langle\nabla u, \nabla\phi\rangle - 2t^{-1}\langle\nabla u, \nabla G\rangle) \ge -\frac{G}{t} + \frac{2(1-\varepsilon)\phi t}{m}(|\nabla u|^2 - u_t)^2 + \frac{\varepsilon\phi t|\nabla|\nabla u|^2|^2}{2|\nabla u|^2} - 2K\phi t|\nabla u|^2 - 2|\nabla u| \cdot |\nabla G| - 2t|\nabla u|^3|\nabla\phi| - 2t|\nabla\phi| \cdot |\nabla|\nabla u|^2| + t|\nabla u|^2 L\phi.
$$

Noting that

$$
\frac{\varepsilon\phi t|\nabla|\nabla u|^2|^2}{2|\nabla u|^2}-2t|\nabla\phi|\cdot|\nabla|\nabla u|^2|\geq-\frac{2t|\nabla\phi|^2|\nabla u|^2}{\varepsilon\phi},
$$

we get

$$
(3-3)\quad (L-\partial_t)G \ge -\frac{G}{t} + \frac{2(1-\varepsilon)\phi t}{m}(|\nabla u|^2 - u_t)^2 - 2K\phi t|\nabla u|^2 - 2|\nabla u|\cdot|\nabla G| \\
- 2t|\nabla u|^3|\nabla \phi| + t|\nabla u|^2L\phi - \frac{2t|\nabla \phi|^2|\nabla u|^2}{\varepsilon \phi}.
$$

We assume that sup $G > 0$, otherwise the proof is done. Since $G(0, \cdot) = 0$ and *NG*| ∂M ≥ 0, we can apply Theorem 1.2. Let {(t_n , x_n)} be fixed in Theorem 1.2 with, for example, $\varepsilon = 1/2$. Then,

$$
(3-4) \quad (L-\partial_t)G(t_n,x_n)\leq \frac{G^{3/2}(t_n,x_n)}{n} \quad \text{and} \quad |\nabla G|(t_n,x_n)\leq \frac{G^{3/2}(t_n,x_n)}{n}.
$$

[From](#page-12-0) no[w on,](#page-12-1) we evaluate functions at the point (t_n, x_n) , so that $t = t_n$. Let $\mu = |\nabla u|^2/G$. We have

$$
|\nabla u|^2 - u_t = \left(\mu - \frac{(\mu t - 1)\phi}{\alpha t}\right)G = \frac{\mu t(\alpha - \phi) + \phi}{\alpha t}G.
$$

Combining this with $(3-3)$ and $(3-4)$, we arrive at

$$
(3-5) \frac{2(1-\varepsilon)\phi(\mu t(\alpha-\phi)+\phi)^2}{m\alpha^2 t}G^2
$$

$$
\leq \frac{G^{3/2}}{n} + \frac{G}{t} + \frac{2\sqrt{\mu}G^2}{n} + 2t|\nabla\phi|(\mu G)^{3/2} + (2k\phi + 2\varepsilon^{-1}\phi^{-1}|\nabla\phi|^2 - L\phi)\mu tG.
$$

Since it is easy to see that

$$
(\mu t(\alpha - \phi) + \phi)^2 \ge \max\{\phi^2, 4\mu t(\alpha - \phi)\phi, (2t(\alpha - \phi))^{3/2}\sqrt{\phi}\mu^{3/2}\},\
$$

we may multiply both sides of (3-5) by $t(\mu t(\alpha - \phi) + \phi)^{-2}G^{-2}$ to obtain

$$
\frac{2(1-\varepsilon)\phi}{m\alpha^2} \le \frac{c't}{n(1\wedge\sqrt{G})} + \frac{1}{\phi^2 G} + \frac{2K + 2\varepsilon^{-1}|\nabla\log\phi|^2 - \phi^{-1}L\phi}{4(\alpha - \phi)G}t + \frac{|\nabla\log\phi|\sqrt{t\phi}}{(\alpha - \phi)^{3/2}\sqrt{2G}}
$$

$$
\le \frac{c't}{n(1\wedge\sqrt{G})} + \frac{1}{\phi^2 G} + \frac{2K + 2\varepsilon^{-1}|\nabla\log\phi|^2 - \phi^{-1}L\phi}{4(\alpha - \phi)G}
$$

$$
+ \frac{|\nabla\log\phi|^2 m\alpha^2 (1+\varepsilon)t}{16(\alpha - \phi)^3 \varepsilon (1-\varepsilon)G} + \frac{2(1-\varepsilon)\varepsilon\phi}{m\alpha^2 (1+\varepsilon)}
$$

for some constant $c' > 0$. Taking $n \to \infty$ and noting that $\phi \ge 1$, we conclude that $\theta := \sup G$ satisfies

$$
\frac{2(1-\varepsilon)}{m\alpha^2(1+\varepsilon)} \leq \frac{1}{\theta} \left(1 + \frac{2K + 2\varepsilon^{-1} \|\nabla \log \phi\|_{\infty}^2 + \sup(-\phi^{-1}L\phi)}{4(\alpha - \|\phi\|_{\infty})} T + \frac{\|\nabla \log \phi\|_{\infty}^2 m\alpha^2 (1+\varepsilon)T}{16(\alpha - \|\phi\|_{\infty})^3 \varepsilon (1-\varepsilon)} \right).
$$

Combining this with $\theta \ge G(T, x) = T(\phi(x)|\nabla u|^2(T, x) - \alpha u_t(T, x))$ for $x \in M$, we obtain

$$
\phi(x)|\nabla u|^2(T,x) - \alpha u_t(T,x) \n\leq \frac{ma^2(1+\varepsilon)}{2(1-\varepsilon)} \Big(\frac{1}{T} + \frac{2K + 2\varepsilon^{-1} \|\nabla \log \phi\|_{\infty}^2 + \sup(-\phi^{-1}L\phi)}{4(\alpha - \|\phi\|_{\infty})} + \frac{\|\nabla \log \phi\|_{\infty}^2 ma^2(1+\varepsilon)}{16(\alpha - \|\phi\|_{\infty})^3 \varepsilon(1-\varepsilon)} \Big)
$$

for all $x \in M$. Then the proof is completed since $T > 0$ is arbitrary.

Proof of Corollary 1.4. By Theorem 1.3, the proof is standard according to [Li and Yau 1986]. For $x, y \in M$, let $\gamma : [0, 1] \rightarrow M$ be the shortest curve in M linking x and *y* such that $|\dot{y}| = \rho(x, y)$. Then, for any *s*, *t* > 0 and $f \in C_b^{\infty}(M)$, it follows from $(1-5)$ that

$$
\frac{d}{dr} \log P_{t+rs} f(\gamma_r) = s \partial_u \log P_u f(\gamma_r)|_{u=t+rs} + \langle \dot{\gamma}_r, \nabla P_{t+rs} f(\gamma_r) \rangle
$$

\n
$$
\geq \frac{s}{\alpha} |\nabla \log P_{t+rs} f|^2(\gamma_r) - \rho(x, y) |\nabla \log f|(\gamma_r)
$$

\n
$$
- s \left(\frac{m(1+\varepsilon)\alpha}{2(1-\varepsilon)(t+rs)} + \frac{m\alpha K(\phi, \varepsilon, \alpha)}{4(\alpha-1\|\phi\|_{\infty})} \right)
$$

\n
$$
\geq -\frac{\alpha}{4s} - s \left(\frac{m(1+\varepsilon)\alpha}{2(1-\varepsilon)(t+rs)} + \frac{m\alpha K(\phi, \varepsilon, \alpha)}{4(\alpha-\|\phi\|_{\infty})} \right).
$$

We complete the proof by integrating with respect to dr over [0, 1]. \Box

4. Proof of Theorem 1.6

We first provide a simple proof of $(1-9)$ under an extra assumption that $|\nabla P_{(.)} f|$ is bounded on $[0, T] \times M$ for any $T > 0$; we then drop this assumption by an approximation argument.

Lemma 4.1. *If that* $f \in C_b^1(M)$ *is such that* $|\nabla P_{(\cdot)}f|$ *is bounded on* $[0, T] \times M$ *for any* $T > 0$ *, then* $(1-9)$ *holds.*

Proof. For any $\varepsilon > 0$, let $\eta_s = \sqrt{\varepsilon + |\nabla P_{t-s}f|^2}(X_s)$ for $s \le t$. By the Itô formula, we have

$$
d\eta_s = dM_s + \frac{L|\nabla P_{t-s}f|^2 - 2\langle \nabla L P_{t-s}f, \nabla P_{t-s}f \rangle}{2\sqrt{\varepsilon + |\nabla P_{t-s}f|^2}^2} (X_s) ds - \frac{|\nabla |\nabla P_{t-s}f|^2|^2}{4(\varepsilon + |\nabla P_{t-s}f|^2)^{3/2}} (X_s) ds + \frac{N|\nabla P_{t-s}f|^2}{2\sqrt{\varepsilon + |\nabla P_{t-s}f|^2}} (X_s) dl_s
$$

for $s \le t$, where M_s is a local martingale. Combining this with (1-8) and (3-1), with κ_1 in place of K_0 , we ob[tain](#page-16-9)

$$
d\eta_s \ge dM_s - \frac{\kappa_1 |\nabla P_{t-s}f|^2}{\sqrt{\varepsilon + |\nabla P_{t-s}f|^2}} (X_s) ds - \frac{\kappa_2 |\nabla P_{t-s}f|^2}{\sqrt{\varepsilon + |\nabla P_{t-s}f|^2}} (X_s) dl_s
$$

\n
$$
\ge dM_s - \kappa_1(X_s) \eta_s ds - \kappa_2(X_s) \eta_s dl_s \quad \text{for } s \le t.
$$

Now η_s is bounded on [0, *t*], and by the proof of [Wang 2005b, Lemma 2.1] we have $\text{E}e^{\lambda t} < \infty$ for all $\lambda > 0$. This implies that

$$
[0, t] \ni s \mapsto \sqrt{\varepsilon + |\nabla P_{t-s}f|^2(X_s)} \exp \left(\int_0^s \kappa_1(X_s) \, ds + \int_0^s \kappa_2(X_s) \, dl_s \right)
$$

[is a su](#page-14-1)bmartingale for any $\varepsilon > 0$. Letting $\varepsilon \downarrow 0$ we conclude that

$$
[0, t] \ni s \mapsto |\nabla P_{t-s} f|(X_s) \exp \left(\int_0^s \kappa_1(X_s) \, ds + \int_0^s \kappa_2(X_s) \, dl_s \right)
$$

is a submartingale as well.

According to Lemma 4.1, it suffices to confirm the boundedness of $|\nabla P(\cdot) f|$ on $[0, T] \times M$ for any $T > 0$ and $f \in C_b^1(M)$. We shall start from $f \in C_0^{\infty}(M)$ with *N f* $|_{\partial M}$ = 0, then pass to *f* ∈ *C*¹_{*b*}(*M*) by combining an approximation argument and Lemma 4.1.

Case a. Let $f \in C_0^{\infty}(M)$ with $Nf|_{\partial M} = 0$. We have

$$
(4-1) \t\t P_t f = f + \int_0^t P_s L f \, ds.
$$

Since *Lf* is bounded, there is a $c > 0$ such that $Lf + c \ge 1$. Applying Corollary 1.5 with for example $\alpha = 2 + \sigma dr_0$ and $\varepsilon = 1/2$, but using $Lf + c$ in place of f, we obtain

$$
|\nabla P_s L f| = |\nabla P_s (Lf + c)|
$$

\n
$$
\leq ||Lf + c||_{\infty} \Big(\alpha ||P_s L^2 f||_{\infty} + \frac{m(1+\varepsilon)\alpha^2}{2(1-\varepsilon)s} + \frac{m\alpha^2 K_{\varepsilon}}{4(\alpha - 1 - \sigma dr_0)} \Big)^{1/2}
$$

\n
$$
\leq c_1/\sqrt{s} \quad \text{for } s \leq T
$$

for some constant $c_1 > 0$. Combining this with $(4-1)$ we conclude that, for some constant $c_2 > 0$,

$$
|\nabla P_t f| \le |\nabla f| + \int_0^t \frac{c_1}{\sqrt{s}} ds \le c_2 \quad \text{for } t \le T.
$$

Case b. Let $f \in C_0^{\infty}(M)$. There exists a sequence of functions $\{f_n\}_{n \geq 1} \subset C_0^{\infty}(M)$ such that $Nf_n|_{\partial M} = 0$, $f_n \to f$ uniformly as $n \to \infty$, and $\|\nabla f_n\|_{\infty} \leq 1 + \|\nabla f\|_{\infty}$ holds for any $n \ge 1$; see for example [Wang 1994]. By Case a and Lemma 4.1, (1-9) holds with f_n in place of f , so that

$$
\frac{|P_t f_n(x) - P_t f_n(y)|}{\rho(x, y)} \le C \quad \text{for } t \le T, \ n \ge 1, \ x \ne y
$$

for some constant $C > 0$. Letting first $n \to 0$ and then $y \to x$, we conclude that $|\nabla P_{(\cdot)} f|$ is bounded on $[0, T] \times M$.

Case c. Let $f \in C_b^{\infty}(M)$. Let $\{g_n\}_{n \geq 1} \subset C_0^{\infty}$ be such that $0 \leq g_n \leq 1$, $|\nabla g_n| \leq 2$ [and](#page-15-1) $g_n \uparrow 1$ as $n \uparrow \infty$. By Case b and Lemma 4.1, we may apply (1-9) to $g_n f$ in place of *f* such that

$$
\frac{|P_t(g_nf)(x) - P_t(g_nf)(y)|}{\rho(x,y)} \le C \quad \text{for } t \le T, \ n \ge 1, \ x \ne y
$$

for some constant $C > 0$. By the same reason as in Case b, we conclude that $|\nabla P_{(\cdot)} f|$ is bounded on $[0, T] \times M$.

Case d. Finally, for $f \in C_b^1(M)$, there exist $\{f_n\}_{n \geq 1} \subset C_b^{\infty}(M)$ such that $f_n \to f$ uniformly as $n \to \infty$ and $\|\nabla f_n\|_{\infty} \leq \|\nabla f\|_{\infty} + 1$ for any $n \geq 1$. The proof is completed by the same reason as in Cases b and c. \Box

A[cknowledgm](http://www.ams.org/mathscinet-getitem?mr=86f:60097)[ent](http://www.emis.de/cgi-bin/MATH-item?0563.60068)

The author thanks the referee for useful comments and a number of corrections.

References

[Bakry and Émery 1984] D. Bakry and M. Émery, "Hypercontractivité de semi-groupes de diffusion", *C. R. Acad. Sci. Paris Sér. I Math.* 299:15 (1984), 775–778. MR 86f:60097 Zbl 0563.60068

200 [FE](http://www.emis.de/cgi-bin/MATH-item?0699.35006)NG-YU WANG

- [Bakry and Qian 1999] [D. Bakry a](http://www.ams.org/mathscinet-getitem?mr=2003f:58067)[nd Z. M. Qian, "H](http://www.emis.de/cgi-bin/MATH-item?1037.58024)arnack inequalities on a manifold with positive or negative Ricci curvature", *Rev. Mat. Iberoamericana* 15:1 (1999), 143–179. MR 2000f:58052 Zbl 0924.58096
- [Davies 1989] E. B. Davies, *[Heat kerne](http://www.ams.org/mathscinet-getitem?mr=86j:53062)[ls and spectral the](http://www.emis.de/cgi-bin/MATH-item?0578.53029)ory*, Cambridge Tracts in Mathematics 92, Ca[mbridge University Press, 1989.](http://links.jstor.org/sici?sici=0091-1798(198710)15:4<1491:TRPOBM>2.0.CO;2-W&origin=MSN) MR 90e:35123 Zbl 0699.35006
- [Hsu 2002] E. P. Hsu, "[Multiplicative fun](http://www.ams.org/mathscinet-getitem?mr=88k:60151)[ctional for the he](http://www.emis.de/cgi-bin/MATH-item?0647.60086)at equation on manifolds with boundary", *Michigan Math. J.* 50[:2 \(2002\), 351–367.](http://www.numdam.org/item?id=AFST_2000_6_9_2_305_0) MR 2003f:58067 Zbl 1037.58024
- [Kasue 1984] [A. Kasue,](http://www.ams.org/mathscinet-getitem?mr=2002a:58045) ["Applications of](http://www.emis.de/cgi-bin/MATH-item?0980.60097) Laplacian and Hessian comparison theorems", pp. 333– 386 in *Geo[metry of geodesics and related topics](http://dx.doi.org/10.1007/BF02399203)* (Tokyo, 1982), edited by K. Shiohama, Adv. Stud. Pure Math. 3[, North-H](http://www.ams.org/mathscinet-getitem?mr=87f:58156)[olland, Amsterda](http://www.emis.de/cgi-bin/MATH-item?0611.58045)m, 1984. MR 86j:53062 Zbl 0578.53029
- [\[Kendall 1987\]](http://dx.doi.org/10.1023/A:1008698923961) W. S. Kendall, "The radial part of Brownian motion on a manifold: a semimartingale [property",](http://www.emis.de/cgi-bin/MATH-item?0930.58012) *Ann. Probab.* 15:4 (1987), 1491–1500. MR 88k:60151 Zbl 0647.60086
- [Ledoux 2000] M. Ledoux, ["The geometry of Markov diffusion generator](http://dx.doi.org/10.1007/BF01192256)s", *Ann. Fac. Sci. Toulouse Math.* (6) 9:2 (2000), 305–366. [MR 2002a:5](http://www.ams.org/mathscinet-getitem?mr=94k:58153)8045 [Zbl 0980.](http://www.emis.de/cgi-bin/MATH-item?0791.58113)60097
- [\[Li and Yau 1986\]](http://dx.doi.org/10.2140/pjm.1997.178.377) P. Li and S.-T. Yau, "On the parabolic kernel of the Schrödinger operator", *Acta [Math.](http://www.emis.de/cgi-bin/MATH-item?0882.35018)* 156:3-4 (1986), 153–201. MR 87f:58156 Zbl 0611.58045
- [Qian 1998] Z. Qian, ["A comparison theorem for an elliptic opera](http://www.sciencedirect.com/science/book/9780080449425)tor", *Potential Anal.* 8:2 (1998), 137–142. MR 99d:58161 Zbl 0930.58012
- [Wang 1994] F. Y. Wang, ["Application of coupling methods to the Neum](http://dx.doi.org/10.1016/j.spa.2005.04.004)ann eigenvalue problem", *Probab. Theory Related Fields* 98:3 ([1994\), 299–306.](http://www.ams.org/mathscinet-getitem?mr=2006g:58054) [MR 94k:58153](http://www.emis.de/cgi-bin/MATH-item?1088.58015) Zbl 0791.58113
- [Wang 1997] J. Wang, ["Global heat kernel estimates",](http://dx.doi.org/10.1002/mana.200410555) *Pacific J. Math.* 178:2 (1997), 377–398. [MR 98](http://dx.doi.org/10.1002/mana.200410555)g:58168 Zbl 0882.35018
- [Wang 2005a] F.-Y. Wang, *Functional inequalities, Markov semigroups, and spectral theory*, Else[vier, Amsterdam, 2005.](http://dx.doi.org/10.1002/cpa.3160280203)
- [[Wang 2005b\]](http://www.ams.org/mathscinet-getitem?mr=55:4042) F.[-Y. Wang,](http://www.emis.de/cgi-bin/MATH-item?0291.31002) "Gradient estimates and the first Neumann eigenvalue on manifolds with boundary", *Stochastic Process. Appl.* 115:9 (2005), 1475–1486. MR 2006g:58054 Zbl 1088.58015
- [Wang 2007] F.-Y. Wang, "Estimates of the first Neumann eigenvalue and the log-Sobolev constant on non-convex manifolds", *Math. Nachr.* 280:12 (2007), 1431–1439. MR 2008m:58050 Zbl 1130.58019
- [Yau 1975] S. T. Yau, "Harmonic functions on complete Riemannian manifolds", *Comm. Pure Appl. Math.* 28 (1975), 201–228. MR 55 #4042 Zbl 0291.31002

Received November 13, 2008. Revised August 25, 2009.

FENG-YU WANG SCHOOL OF MATHEMATICAL SCIENCES BEIJING NORMAL UNIVERSITY BEIJING 100875 **CHINA** [w](mailto:F.Y.Wang@swansea.ac.uk)angfy@bnu.edu.cn and

MATHEMATICS DEPARTMENT SWANSEA UNIVERSITY SINGLETON PARK SA2 8PP UNITED KINGDOM F.Y.Wang@swansea.ac.uk