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To the memory of Novica Blažić (1959–2005),
a remarkable mathematician and a wonderful person.

An algebraic curvature tensor is called Osserman if the eigenvalues of the
associated Jacobi operator are constant on the unit sphere. A Riemannian
manifold is called conformally Osserman if its Weyl conformal curvature
tensor at every point is Osserman. We prove that a conformally Osserman
manifold of dimension n 6= 3, 4, 16 is locally conformally equivalent either
to a Euclidean space or to a rank-one symmetric space.

1. Introduction

An algebraic curvature tensor R on a Euclidean space Rn is a (3, 1) tensor having
the same symmetries as the curvature tensor of a Riemannian manifold. For X ∈Rn ,
the Jacobi operator RX : R

n
→ Rn is defined by RX Y = R(X, Y )X . The Jacobi

operator is symmetric, and RX X = 0 for all X ∈ Rn .

Definition 1.1. An algebraic curvature tensor R is Osserman if the eigenvalues of
the Jacobi operator RX do not depend on the choice of a unit vector X ∈ Rn .

One of the algebraic curvature tensors naturally associated to a Riemannian
manifold (apart from the curvature tensor itself) is the Weyl conformal curvature
tensor.

Definition 1.2. A Riemannian manifold is (pointwise) Osserman if its curvature
tensor at every point is Osserman. It is conformally Osserman if its Weyl tensor
everywhere at every point is Osserman.

It is well known (and easy to check directly) that a Riemannian space locally
isometric to a Euclidean space or to a rank-one symmetric space is Osserman. The
question of whether the converse is true (“every pointwise Osserman manifold is
flat or locally rank-one symmetric”) is known as the Osserman conjecture [1990].
The first result on the Osserman conjecture, the affirmative answer for manifolds of
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dimension not divisible by 4, was published before the conjecture itself [Chi 1988].
In the following two decades, substantial progress was made in understanding
Osserman and related classes of manifolds, both in the Riemannian and pseudo-
Riemannian settings; see the books [Gilkey 2001; 2007; Garcı́a-Rı́o et al. 2002].

The Osserman conjecture is proved in the most cases, exception being when the
dimension of an Osserman manifold is 16 and one of the eigenvalues of the Jacobi
operator has multiplicity 7 or 8 [N 2003; 2004; 2005; 2006]. The main difficulty
in proving the conjecture in these remaining cases lies in the fact that the Cayley
projective plane (and its hyperbolic dual) are Osserman, with the multiplicities of
the nonzero eigenvalues of the Jacobi operator being exactly 7 and 8; moreover, the
curvature tensor of the Cayley projective plane is essentially different from that of
the other rank-one symmetric spaces, as it does not admit a Clifford structure (see
Section 2 for details). This is the only known Osserman curvature tensor without
a Clifford structure, and to prove the Osserman conjecture in full, it would be very
desirable to show that there are no other exceptions.

The study of conformally Osserman manifolds was started by Blažić and Gilkey
[2004] and was continued in [Blažić and Gilkey 2005; Blažić et al. 2005; Gilkey
2007; Blažić et al. 2008]. Every Osserman manifold is conformally Osserman
(which easily follows from the formula for the Weyl tensor and the fact that every
Osserman manifold is Einstein), since also every manifold is locally conformally
equivalent to an Osserman manifold.

Theorem 1.3 (main result). A connected C∞ Riemannian conformally Osserman
manifold of dimension n 6=3, 4, 16 is locally conformally equivalent to a Euclidean
space or to a rank-one symmetric space.

This theorem answers the conjecture made in [Blažić et al. 2005], with three ex-
ceptions. (For conformally Osserman manifolds of dimension n > 6, not divisible
by 4, this conjecture is proved in [Blažić and Gilkey 2004, Theorem 1.4].)

Note that the nature of the three excepted dimensions in Theorem 1.3 is dif-
ferent. In dimension three, the Weyl tensor vanishes, hence giving no information
about the manifold at all. In dimension four, even a “genuine” pointwise Osserman
manifold may not be locally symmetric (see the examples of “generalized complex
space forms” in [Gilkey et al. 1995, Corollary 2.7] and [Olszak 1989]). As proved
in [Chi 1988], the Osserman conjecture is still true in dimension four, but in a
more restrictive version: One requires the eigenvalues of the Jacobi operator to
be constant on the whole unit tangent bundle (a Riemannian manifold having this
property is called globally Osserman). One might wonder whether the conformal
counterpart of this result is true. Blažić and Gilkey [2005] found the elegant charac-
terization that a four-dimensional Riemannian manifold is conformally Osserman
if and only if it is either self-dual or anti-self-dual.
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In dimension 16, both the conformal and the original Osserman conjecture
remain open; for partial results, see [N 2005; 2006] in the Riemannian case and
Theorem 3.1 in the conformal case.

As a rather particular case of Theorem 1.3, we obtain an analogue of the Weyl–
Schouten theorem for rank-one symmetric spaces: A Riemannian manifold of
dimension greater than four having “the same” Weyl tensor as that of one of
the complex/quaternionic projective spaces or their noncompact duals is locally
conformally equivalent to that space. More precisely:

Theorem 1.4. Let Mn
0 denote one of the spaces CPn/2, CH n/2, HPn/4 or HH n/4,

and let W0 be the Weyl tensor of Mn
0 at some point x0 ∈Mn

0 . Suppose that for every
point x of a Riemannian manifold Mn with n > 4 there exists a linear isometry
ι : Tx Mn

→ Tx0 Mn
0 that maps the Weyl tensor of Mn at x on a positive multiple

of W0. Then Mn is locally conformally equivalent to Mn
0 .

The claim follows from [Blažić and Gilkey 2004, Theorem 1.4] for Mn
0 =CPn/2,

CH n/2 and n> 6. The fact that the dimension n= 16 is not excluded (as compared
to Theorem 1.3) follows from Theorem 3.1.

We assume all the object (manifolds, metrics, vector and tensor fields) to be
smooth (of class C∞), although all the results remain valid for class Ck , with
sufficiently large k.

The paper is organized as follows. In Section 2, we give some background on
Osserman algebraic curvature tensors and on Clifford structures and prove some
technical lemmas. The proof of Theorem 1.3 is given in Section 3. Theorem 1.3
is deduced from a more general Theorem 3.1. We first prove the local version
using the second Bianchi identity, and then the global version by showing that
the “algebraic type” of the Weyl tensor is the same at all points of a connected
conformally Osserman Riemannian manifold (in particular, a nonzero Osserman
Weyl tensor cannot degenerate to zero).

2. Algebraic curvature tensors with a Clifford structure

2.1. Clifford structure. The requirement that an algebraic curvature tensor R be
Osserman is algebraically quite restrictive. In most cases, such a tensor can be
obtained by the following construction, suggested in [Gilkey et al. 1995], which
generalizes the curvature tensor of complex and quaternionic projective space.

Definition 2.2. A Clifford structure Cliff(ν; J1, . . . , Jν; λ0, η1, . . . , ην) on Rn is a
set of ν ≥ 0 anticommuting almost Hermitian structures Ji and ν+1 real numbers
λ0, η1, . . . ην , with ηi 6= 0. An algebraic curvature tensor R on Rn has a Clifford
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structure Cliff(ν; J1, . . . , Jν; λ0, η1, . . . , ην) if

(2-1) R(X, Y )Z = λ0(〈X, Z〉Y −〈Y, Z〉X)

+

ν∑
i=1

ηi (2〈Ji X, Y 〉Ji Z +〈Ji Z , Y 〉Ji X −〈Ji Z , X〉Ji Y ).

When it does not create ambiguity, we write Cliff(ν; J1, . . . , Jν; λ0, η1, . . . , ην)

simply as Cliff(ν).

Remark 2.3. Definition 2.2 implies that the operators Ji are skew-symmetric and
orthogonal and satisfy the equations

〈Ji X, J j X〉 = δi j‖X‖2 and Ji J j + J j Ji =−2δi j id

for all i, j = 1, . . . , ν and all X ∈ Rn . This implies that every algebraic curvature
tensor with a Clifford structure is Osserman, as by (2-1) the Jacobi operator has
the form RX Y = λ0(‖X‖2Y − 〈Y, X〉X)+

∑ν
i=1 3ηi 〈Ji X, Y 〉Ji X . So for a unit

vector X , the eigenvalues of RX are λ0 (of multiplicity n−1− ν if ν < n−1), 0,
and λ0+ 3ηi for i = 1, . . . , ν.

The converse — every Osserman algebraic curvature tensor has a Clifford struc-
ture — is true in all dimensions but n = 16 and also in many cases when n = 16,
as follows from [N 2005, Proposition 1 and the penultimate paragraph of the proof
of Theorems 1 and 2], [N 2004, Proposition 1] and [N 2006, Proposition 2.1]. The
only known counterexample is the curvature tensor ROP2

of the Cayley projective
plane (more precisely, any algebraic curvature tensor of the form R=a ROP2

+bR1,
where R1 is the curvature tensor of the unit sphere S16(1) and a 6= 0).

A Clifford structure Cliff(ν) on Euclidean Rn turns it into a Clifford module;
see [Atiyah et al. 1964, Part 1], [Husemoller 1975, Chapter 11], and [Lawson and
Michelsohn 1989, Chapter 1] for standard facts on Clifford algebras and Clifford
modules). A Clifford algebra Cl(ν) on ν generators x1, . . . , xν is an associative
unital algebra over R defined by the relations xi x j + x j xi = −2δi j . The homo-
morphism σ : Cl(ν)→ End(Rn) of associative algebras defined on generators by
σ(xi ) = Ji and σ(1) = id is a representation of Cl(ν) on Rn . Since all the Ji

are orthogonal and skew-symmetric, σ gives rise to an orthogonal multiplication
defined as follows. In the Euclidean space Rν , fix an orthonormal basis e1, . . . , eν .
For every u =

∑ν
i=1 ui ei ∈ Rν and every X ∈ Rn , define

(2-2) Ju X =
∑ν

i=1
ui Ji X

(when u= ei , we abbreviate Jei to Ji ). The map J :Rν×Rn
→Rn defined by (2-2)

is an orthogonal multiplication: ‖Ju X‖2 = ‖u‖2‖X‖2 (similarly, we can define an
orthogonal multiplication J :Rν+1

×Rn
→Rn by Ju X =u0 X+

∑ν
i=1 ui Ji X for u=
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i=0 ui ei ∈ Rν+1, where e0, . . . , eν is an orthonormal basis for Euclidean Rν+1).

For X ∈ Rn , denote

JX = Span(J1 X, . . . , JνX) and IX = Span(X, J1 X, . . . , JνX).

We also use the complexified versions of these subspaces, which we denote by
JC X and IC X respectively for X ∈ Cn .

If Rn is a Cl(ν)-module (equivalently, if there exists an algebraic curvature tensor
with a Clifford structure Cliff(ν) on Rn), then

(2-3) ν ≤ 2b
+ 8a− 1, where n = 24a+bc, c is odd, and 0≤ b ≤ 3;

see, for instance, [Husemoller 1975, Theorem 11.8.2].
As a direct consequence of (2-3), we have the following inequalities.

Lemma 2.4. Let R be an algebraic curvature tensor with a Clifford structure
Cliff(ν) on Rn . Suppose that n > 4 and n 6= 8, 16. Then

(i) n ≥ 3ν+3, with equality only when n = 6 and ν = 1, or n = 12 and ν = 3, or
n = 24 and ν = 7;

(ii) n > 4ν− 2, except when n = 24 and ν = 7 or n = 32 and ν = 9;

(iii) there exists an integer l such that ν < 2l < n.

Proof. Let ρ(n) = 2b
+ 8a − 1, the right side of (2-3). Then ν ≤ ρ(n). First

suppose that n = 2mc, with m = 4a + b ≥ 6, where 0 ≤ b ≤ 3 and c is odd.
We claim that n > 4ρ(n). Indeed, n ≥ 2m

= 24a+b, so it suffices to show that
24a−2 > 1+23−ba−2−b. The latter inequality follows from 24a−2 > 1+8a, when
a ≥ 2, and is also true when a = 1 and b = 2, 3. Since n > 4ρ(n), (ii) is obvious,
(i) is satisfied (since ρ(n) > 3), and (iii) is satisfied with l = m− 1.

In each of the remaining cases (n = 2mc, with an odd c and m = 0, . . . , 5),
ρ(n) can be computed explicitly and the claim follows by a routine check. �

2.5. Clifford structures on R8 and the octonions. The proof of Theorem 1.3 in
the generic case uses that ν is small relative to n (with the required estimates given
in Lemma 2.4). However, in the case n = 8, the number ν can be as large as 7,
according to (2-3). Consider this case in more detail. In [N 2004], it is shown
that every Osserman algebraic curvature tensor R on R8 has a Clifford structure,
and that either R has a Cliff(3) structure with J1 J2 =±J3, or an existing Cliff(ν)
structure can be complemented to a Cliff(7) structure. More precisely:

Lemma 2.6. (1) Suppose R is an algebraic curvature tensor on R8 with Clifford
structure Cliff(ν; J1, . . . , Jν; λ0, η1, . . . , ην). Then exactly one of two possi-
bilities may occur: either R has a Clifford structure Cliff(3)with J1 J2= J3, or
there exist 7−ν operators Jν+1, . . . , J7 such that J1, . . . , J7 are anticommut-
ing almost Hermitian structures with J1 J2 . . . J7 = idR8 and R has a Clifford
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structure Cliff(7; J1, . . . , J7; λ0 − 3ξ, η1 + ξ, . . . , ην + ξ, ξ, . . . , ξ) for any
ξ 6= −ηi , 0.

(2) Let O be the octonion algebra with inner product defined by ‖u‖2 = uu∗,
where ∗ is the octonion conjugation, and let O′ = 1⊥, the space of imaginary
octonions. Then, in the second case in part (1), there exist linear isometries
ι1 : R

8
→O and ι2 : R7

→O′ such that the orthogonal multiplication (2-2) is
given by Ju X = ι1(X)ι2(u).

Proof. (1) This claim is proved in [N 2004, Lemma 5]. The proof is based on
the fact that every representation σ of Cl(ν) on R8, except for the representations
of Cl(3) with J1 J2 = ±J3, is a restriction of a representation of Cl(7) on R8 to
Cl(ν) ⊂ Cl(7). It follows that the almost Hermitian structures J1, . . . , Jν defined
by σ can be complemented by almost Hermitian structures Jν+1, . . . , J7 such that
J1, . . . , J7 anticommute, and so R can be written in the form (2-1), with a formal
summation up to 7 on the right side (but with ηi = 0 when i = ν + 1, . . . , 7). To
obtain a Cliff(7) structure for R, according to Definition 2.2, we only need to make
all the ηi nonzero. This can be done using the identity

(2-4) 〈X, Z〉Y −〈Y, Z〉X =
7∑

i=1

1
3(2〈Ji X, Y 〉Ji Z+〈Ji Z , Y 〉Ji X−〈Ji Z , X〉Ji Y ),

which is gotten from the polarized identity

‖X‖2Y −〈X, Y 〉X =
∑7

i=1〈Ji X, Y 〉Ji X,

which is true because for X 6= 0 the vectors ‖X‖−1 X , ‖X‖−1 J1 X, . . . , ‖X‖−1 J7 X
form an orthonormal basis for R8. Then by (2-1), R has a Clifford structure
Cliff(7; J1, . . . , J7; λ0− 3ξ, η1+ ξ, . . . , ην + ξ, ξ, . . . , ξ) for any ξ 6= −ηi , 0.

(2) This claim is proved in [N 2004, the beginning of Section 5.1]. The proof is
based on the following. There are two nonisomorphic representations of Cl(7) on
R8. By identifying R8 with the octonion algebra O via a linear isometry, these rep-
resentations are given by the orthogonal multiplications Ju X = u X and Ju X = Xu
respectively [Lawson and Michelsohn 1989, Section I.8]. Since (u X)∗ = X∗u∗ =
−X∗u for all u, X ∈O with u⊥1, the first representation is orthogonally equivalent
to the second one, with the operators Ji replaced by −Ji . Since changing the signs
of the Ji does not affect the form of the algebraic curvature tensor (2-1), we can
always assume that a Cliff(7) structure for an algebraic curvature tensor on R8 is
given by the orthogonal multiplication Ju X = ι1(X)ι2(u). �

In the proof of Theorem 1.3 for n = 8, we will usually identify R8 with O and
identify R7 with O′ via some fixed linear isometries ι1 and ι2, and we will simply
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write the orthogonal multiplication in the form

(2-5) Ju X = Xu,

where X ∈ R8
= O and u ∈ O′. The proof of Theorem 1.3 for n = 8 extensively

uses computations in the octonion algebra O, in particular, the standard identities

a∗ = 2〈a, 1〉1− a, 〈a, b〉 = 〈a∗, b∗〉 = 1
2(a
∗b+ b∗a),

a(ab)= a2b, 〈a, bc〉 = 〈b∗a, c〉 = 〈ac∗, b〉,

(ab∗)c+ (ac∗)b = 2〈b, c〉a, 〈ab, ac〉 = 〈ba, ca〉 = ‖a‖2〈b, c〉

for any a, b, c ∈ O, and the like; see for example [Harvey and Lawson 1982,
Section IV]. It also uses the fact that O is a division algebra; in particular, any
nonzero octonion is invertible: a−1

= ‖a‖−2a∗. We will also use the bioctonions
O⊗C, the algebra over the C that has same multiplication table as O. Since all the
identities above are polynomial, they still hold for bioctonions, with the complex
inner product on C8, the underlying linear space of O⊗C. However, the bioctonion
algebra is not a division algebra (and has zero-divisors: (i1+ e1)(i1− e1)= 0).

The proof of Theorem 1.3 will require a technical lemma.

Lemma 2.7. (1) Let J1, . . . , Jν be anticommuting almost Hermitian structures
on Rn , and let F : Rn

→ Rn be a homogeneous polynomial map of degree m
such that F(X) ∈ JX for all X ∈ Rn . Suppose that n > 4, and also ν ≤ 3 if n = 8
and ν ≤ 7 if n = 16. Then there exist homogeneous polynomials ci for i = 1, . . . , ν
of degree m− 1 such that F(X)=

∑ν
i=1 ci (X)Ji X.

With the same assumption, but with J replaced by I, an additional homogeneous
degree m− 1 polynomial c0 appears, and c0(X)X is added to F(X).

(2) Let J1, . . . , Jν be anticommuting almost Hermitian structures on Rn . Suppose
that n> 4 and that ν ≤ 3 if n= 8. Let 1≤ k ≤ ν and let a j for 1≤ j ≤ ν with j 6= k
be ν− 1 vectors in Rn such that

(2-6)
∑
j 6=k

(〈a j , JkY 〉J j Y +〈a j , Y 〉Jk J j Y )= 0 for all Y ∈ Rn .

Then either a j = 0 for all j 6= k, or ν = 1, or ν = 3, J1 J2 = εJ3, ε = ±1, and
a j = Jiv, where {i, j, k} = {1, 2, 3} and v 6= 0.

(3) Let N n be a smooth Riemannian manifold and let J1, . . . , Jν be anticommuting
almost Hermitian structures on N n . Suppose that for every nowhere vanishing
smooth vector field X on N n , the distribution JX =Span(J1 X, . . . , JνX) is smooth
(that is, the ν-form J1 X ∧· · ·∧ JνX is smooth). Then for every x ∈ N n , there exists
a neighborhood U=U(x) and smooth anticommuting almost Hermitian structures
J̃ 1, . . . , J̃ν on U such that Span( J̃ 1 X, . . . , J̃ νX) = Span(J1 X, . . . , JνX) for any
vector field X on U.
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Proof. (1) It is sufficient to prove the assertion for the case F(X) ∈ IX .
Since for every X 6= 0, the vectors X, J1 X, . . . , JνX are orthogonal and have

the same length ‖X‖, we have

‖X‖2 F(X)= f0(X)X +
ν∑

i=1

fi (X)Ji X,

where f0(X) = 〈F(X), X〉 and fi (X) = 〈F(X), Ji X〉 are homogeneous polyno-
mials of degree m+ 1 of X (or possibly zeros). Taking the squared lengths of the
both sides we get

‖X‖2‖F(X)‖2 = f 2
0 (X)+

ν∑
i=1

f 2
i (X),

so the sum of squares of the ν+1 polynomials f0(X), f1(X), . . . , fν(X) is divisible
by ‖X‖2. For X = (x1, . . . , xn), let (‖X‖2) be the ideal of R[X ] generated by
‖X‖2 =

∑
j x2

j , and let R be the quotient of R[X ] by this ideal. Let π be the
natural projection from R[X ] to R. We have

∑ν
i=0 f̂ 2

i = 0, where f̂i = π fi . If
at least one of the f̂i is nonzero (say the ν-th one), then

∑ν−1
i=0 ( f̂i/ f̂ν)2 = −1

in F, the field of fractions of the ring R. The field F is isomorphic to the field
Ln−1 = R(x1, . . . , xn−1,

√
−d), where d = x2

1 + · · ·+ x2
n−1 (an isomorphism from

Ln−1 to F is induced by the map (a + b
√
−d)/c → (a + bxn)/c, with a, b, c ∈

R[x1, . . . , xn−1] and c 6= 0). By [Pfister 1995, Theorem 3.1.4], the level of the
field Ln−1, the minimal number of elements whose sum of squares is −1, is 2l ,
where 2l < n ≤ 2l+1. It follows that we arrive at a contradiction in all the cases
when ν < 2l < n. This means that f̂i = 0 for all i = 0, . . . , ν, so each of the fi is
divisible by ‖X‖2 in R[X ], so

F(X)= (‖X‖−2 f0(X))X +
ν∑

i=1

(‖X‖−2 fi (X))Ji X,

with all the nonzero coefficients on the right side being homogeneous polynomials
of degree m− 1. The claim now follows from Lemma 2.4(iii).

(2) If ν = 1, Equation (2-6) is trivially satisfied. If ν = 2, the claim follows
immediately by taking the inner product of (2-6) with J1 J2Y . Suppose ν = 3.
Taking the inner product of (2-6) with Ji Y and i 6= k, we obtain

〈ai , JkY 〉‖Y‖2 = 〈a j , Y 〉〈Ji Jk J j , Y 〉,

where {i, j, k} = {1, 2, 3}. It follows that the polynomial 〈Ji Jk J j Y, Y 〉 is divisible
by ‖Y‖2. Since the operator Ji Jk J j is symmetric and orthogonal, it equals ε̃ id,
with ε̃ = ±1; hence J1 J2 = εJ3 with ε = ±1. Then −Jkai = ε̃a j , so Ji a j =

−ε̃Ji Jkai = −ε̃Ji Jkai = J j ai . Therefore for all i, j such that {i, j, k} = {1, 2, 3},
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we have a j = Jiv and ai = J jv, and we can assume that v 6= 0, since otherwise
ai = a j = 0.

Now suppose ν > 3 and let L = Span(a j ). It follows from (2-6) that if Y ⊥ L ,
then JkY ⊥ L , so L is Jk-invariant. Polarizing (2-6) we obtain∑

j 6=k

(〈a j , Jk X〉J j Y +〈a j , X〉Jk J j Y )+
∑
j 6=k

(〈a j , JkY 〉J j X +〈a j , Y 〉Jk J j X)= 0.

It follows that, for all X ⊥ L and all Y ∈ Rn ,∑
j 6=k

(〈a j , JkY 〉J j X +〈a j , Y 〉Jk J j X)= 0,

that is, with u(Y ) =
∑

j 6=k〈a j , JkY 〉e j and v(Y ) =
∑

j 6=k〈a j , Y 〉e j , we have that
Ju(Y )X = −Jk Jv(Y )X . Note that u(Y ) and v(Y ) are perpendicular to ek . Now,
fix an arbitrary Y ∈ Rn and choose a unit vector w perpendicular to u(Y ), v(Y )
and ek in Rν (this is possible since ν > 3). Then Jw Ju(Y )X = −Jw Jk Jv(Y )X , so
〈Jw Jk Jv(Y )X, X〉= 0 for all X ∈ L⊥. If v(Y ) 6= 0, the operator ‖v(Y )‖−1 Jw Jk Jv(Y )
is symmetric and orthogonal, so the maximal dimension of its isotropic subspace
is n/2< n− (ν−1)= dim L⊥ (the inequality follows from Lemma 2.4(ii)), which
is a contradiction. Hence v(Y )= 0 for all Y ∈ Rn , so all the a j are zeros.

(3) We first prove the lemma assuming 2ν ≤ n. In this case, the proof closely
follows the arguments in the proof of [N 2003, Lemma 3.1].

Let Y0 ∈ Tx N n be a unit vector. Since 2ν ≤ n, there exists a unit vector E ∈
Tx N n that is not in the range of the map 8 : Sν−1

× Sν−1
→ Sn−1, 8(u, v) 7→

Ju JvY0. Then JE ∩JY0 = 0. It follows that on some neighborhood U′ of x , there
exist smooth unit vector fields Y and En such that En(x) = E , Y (x) = Y0 and
JEn∩JY = 0 at every point y ∈U′. By assumption, the ν-dimensional distribution
JEn is smooth, so we can choose ν smooth orthonormal sections E1, . . . , Eν of
it, and then define anticommuting almost Hermitian structures J̃α on U′ satisfying
J̃αEn = Eα by setting J̃α =

∑ν
β=1 aαβ Jβ , where (aαβ) is the ν × ν orthogonal

matrix given by aαβ = 〈Eα, JβEn〉.
Let Eν+1, . . . , En−1 be orthonormal vector fields on U′ such that E1, . . . , En

is an orthonormal frame, and for a vector field X on U′, let J̃ X denote the n× ν
matrix whose column vectors are J̃ 1 X, . . . , J̃ νX relative to the frame E1, . . . , En .
Then ( J̃ X)t J̃ X = ‖X‖2 Iν and all the ν × ν minors of the matrix J̃ X are smooth
functions on U′. Moreover, the entries of the matrices J̃ Ei for i = 1, . . . , n are the
rearranged entries of the matrices J̃α for α= 1, . . . , ν relative to the basis {Ei }, so
to prove that the J̃α are smooth it suffices to show that all the entries of the matrices
J̃ Ei are smooth (on a possibly smaller neighborhood). Write J̃ Ei =

(Ki
Pi

)
, where

Ki and Pi are respectively ν × ν and (n − ν)× ν matrix-valued functions on U′;
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note that J̃ En =
( Iν

0

)
. For an arbitrary t ∈ R, all the ν× ν minors of the matrix

J̃ (Ei + t En)=

(
Ki + t Iν

Pi

)
are smooth. For every entry (Pi )kα, where k = ν+ 1, . . . , n and α = 1, . . . , ν, the
coefficient of tν−1 in the ν×ν minor of J̃ (Ei + t En) consisting of ν−1 out of the
first ν rows (omitting the α-th row) and the k-th row is ±(Pi )kα, so all the entries
of all the Pi are smooth.

For the vector field Y defined above, write J̃ Y =
(

K
P

)
. Since P=

∑n
i=1〈Y, Ei 〉Pi ,

all the entries of P are smooth on U′. Moreover, since IY ∩ IEn = 0, the spans
of the vector columns of the matrices J̃ Y and J̃ En =

( Iν
0

)
have trivial intersection,

so rk P = ν at every point y ∈ U′. Therefore we can choose the rows ν + 1 ≤
b1 < · · · < bν ≤ n of the matrix P at the point x so that the corresponding minor
P(b) = Pb1...bν is nonzero. Then the same minor P(b) is nonzero on a (possibly
smaller) neighborhood U⊂U′ of x . Taking all the ν× ν minors of J̃ Y consisting
of ν − 1 out of ν rows of P(b) and one row of K , we obtain that all the entries of
K are smooth on U. Moreover, for an arbitrary t ∈ R, all the ν × ν minors of the
matrix

J̃ (t Ei + Y )=
(

t Ki + K
t Pi + P

)
are smooth. Computing the coefficient of t in all the ν × ν minors of J̃ (t Ei + Y )
consisting of ν−1 out of ν rows of (t Pi+P)(b) and one row of t Ki+K , and using
the fact that all the entries of K , P and Pi are smooth on U, we obtain that all the
entries of Ki are also smooth on U. Therefore all the entries of all the matrices
J̃ Ei are smooth on U; hence the anticommuting almost Hermitian structures J̃α
are also smooth on U.

Since ν and n must satisfy inequality (2-3) (and hence those of Lemma 2.4), the
above proof works in all the cases except when n = 4 and ν = 3 and when n = 8
and ν = 5, 6, 7. The former case is easy: Taking any smooth orthonormal frame
Ei on a neighborhood of x and defining J̃α =

∑3
β=1 aαβ Jβ with the orthogonal

3×3 matrix (aαβ) given by aαβ = 〈Eα, JβE4〉, we see that all the entries of the J̃α
relative to the basis Ei are ±1 and 0.

The proof in the cases that n = 8 and ν = 5, 6, 7 is based on the fact that,
except when ν = 3 and J1 J2 = ±J3, any set of anticommuting almost Hermitian
structures J1, . . . , Jν on R8 can be complemented by almost Hermitian structures
Jν+1, . . . , J7 to a set J1, . . . , J7 of anticommuting almost Hermitian structures
on R8 (this is Lemma 2.6(1)).

If n= 8 and ν = 7, choose an arbitrary smooth almost Hermitian structure J7 on
some neighborhood U of x and complement it by anticommuting almost Hermitian
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structures J1, . . . , J6 at every point of U. Then for every smooth nowhere vanish-
ing vector field X on U, Span(J1 X, . . . , J6 X) = (Span(X, J7 X))⊥ is a smooth
distribution. This reduces the case n = 8 and ν = 7 to the case n = 8 and ν = 6.

Let n= 8 and ν= 6, and let J7 be an almost Hermitian structure complementing
J1, . . . , J6 at every point x ∈ N n . Using the first part of the proof (or the fact that
J7 X spans the one-dimensional smooth distribution (Span(J1 X, . . . , J6 X)⊕RX)⊥

for every nonvanishing smooth vector field X ) we can assume that J7 is smooth
on a neighborhood U of x ∈ N n . Choose a smooth orthonormal frame E1, . . . , E8

on (a possibly smaller neighborhood) U such that the matrix of J7 relative to Ei is( 0 I4
−I4 0

)
and define the almost Hermitian structure J̃ 6 on U by

J̃ 6 E2 = E1, J̃ 6 E4 = E3, J̃ 6 E6 =−E5, J̃6 E8 =−E7.

Then J7 and J̃ 6 anticommute; hence we can complement them by almost Hermitian
structures J ′1, . . . , J ′5 on U so that J ′1, . . . , J ′5, J̃ 6, J7 are anticommuting almost
Hermitian structures. Moreover, since both J7 and J̃ 6 are smooth on U, the five-
dimensional distribution Span(J ′1 X, . . . , J ′5 X)= (Span(X, J7 X, J̃ 6 X))⊥ is smooth
for every smooth nowhere vanishing vector field X on U. This reduces the case
n = 8 and ν = 6 to the case n = 8 and ν = 5. Indeed, if J̃ 1, . . . , J̃ 5 are smooth an-
ticommuting almost Hermitian structures on U such that Span( J̃ 1 X, . . . , J̃ 5 X)=
Span(J ′1 X, . . . , J ′5 X) for every vector field X , then J̃ 1, . . . , J̃ 5, J̃ 6 are the required
almost Hermitian structures, since

Span( J̃ 1 X, . . . , J̃ 6 X)= Span(J ′1 X, . . . , J ′5 X, J̃6 X)

= (Span(X, J7 X))⊥ = Span(J1 X, . . . , J6 X),

for every vector field X on U, and J̃6 anticommutes with every J̃α for α=1, . . . , 5,
since it anticommutes with every J ′α for α = 1, . . . , 5.

Let n = 8 and ν = 5. Let J6 and J7 be anticommuting almost Hermitian struc-
tures complementing J1, . . . , J5 at every point x ∈ N n . Since Span(J6 X, J7 X) =
(Span(J1 X, . . . , J5 X))⊥, we can choose such J6 and J7 to be smooth on a neigh-
borhood U of x ∈ N n , by the first part of the proof. Choose a smooth orthonormal
frame E1, . . . , E8 on (a possibly smaller neighborhood) U as follows. First choose
an arbitrary smooth unit vector field E1 on U. The vector fields J6 E1 and J7 E1

are orthonormal; set E2 = −J6 E1, E3 = −J7 E1. The unit vector field J6 J7 E1

is orthogonal to E1, J6 E1 and J7 E1; set E4 = −J6 J7 E1. Choose an arbitrary
smooth unit section E5 of the smooth distribution (Span(E1, E2, E3, E4))

⊥ on U.
That distribution is both J6- and J7-invariant, so we can set, similar to above,
E6 = J6 E5, E7 = J7 E5 and E8 = −J6 J7 E5. Now define the almost Hermitian
structure J̃ 5 on U whose matrix in the frame Ei is

( 0 I4
−I4 0

)
. Then J̃ 5, J6 and J7

are anticommuting almost Hermitian structures on U, with J̃ 5 J6 6= ±J7; hence
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we can complement them by almost Hermitian structures J ′1, . . . , J ′4 on U in such
a way that J ′1, . . . , J ′4, J̃ 5, J6, J7 are anticommuting almost Hermitian structures.
Moreover, since J̃ 5, J6 and J7 are smooth on U, the four-dimensional distribution
Span(J ′1 X, . . . , J ′4 X) = (Span(X, J̃ 5 X, J6 X, J7 X))⊥ is smooth for every smooth
nowhere vanishing vector field X on U. By the first part of the proof, we can
find smooth anticommuting almost Hermitian structures J̃ 1, . . . , J̃ 4 on (a possibly
smaller) neighborhood U such that Span( J̃ 1 X, . . . , J̃ 4 X) = Span(J ′1 X, . . . , J ′4 X)
for every vector field X . Then J̃ 1, . . . , J̃ 4, J̃ 5 are the required almost Hermitian
structures, since

Span( J̃ 1 X, . . . , J̃ 5 X)= Span(J ′1 X, . . . , J ′4 X, J̃5 X)

= (Span(X, J6 X, J7 X))⊥ = Span(J1 X, . . . , J5 X)

for every vector field X on U, and J̃5 anticommutes with every J̃α for α=1, 2, 3, 4,
since it anticommutes with every J ′α for α = 1, 2, 3, 4. �

3. Conformally Osserman manifolds: Proof of Theorem 1.3

Let Mn be a smooth conformally Osserman Riemannian manifold with n 6= 3, 4.
If n = 2, the manifold is locally conformally flat, so we can assume that n > 4.
Combining [N 2005, Proposition 1 and the penultimate paragraph of the proof of
Theorems 1 and 2] with [N 2004, Proposition 1] and [N 2006, Proposition 2.1],
we obtain that the Weyl tensor of Mn has a Clifford structure for all n 6= 16, and
also for n = 16 provided the Jacobi operator WX has an eigenvalue of multiplicity
at least 9 (note that the Jacobi operator of any Osserman algebraic curvature tensor
on R16 has an eigenvalue of multiplicity at least 7, for topological reasons). In the
latter case, W has a Clifford structure Cliff(ν), with ν ≤ 6, at every point on Mn .

To prove Theorem 1.3 it therefore suffices to prove the following theorem.

Theorem 3.1. Let Mn be a connected smooth Riemannian manifold whose Weyl
tensor at every point x ∈ Mn has a Clifford structure Cliff(ν(x)). Suppose that
n > 4, and additionally that ν(x)≤ 4 if n = 16. Then there exists a space Mn

0 from
the list Rn,CPn/2, CH n/2, HPn/4, HH n/4 (Euclidean space and the rank-one
symmetric spaces with their standard metrics) such that Mn is locally conformally
equivalent to Mn

0 .

Note that by Theorem 3.1, every point of Mn has a neighborhood conformally
equivalent to a domain of the same “model space”. Also note that the theorem says
something also in the case n = 16, whereas Theorem 3.1 does not.

We start with a sketch of the proof of Theorem 3.1. First, we show that the
Clifford structure for the Weyl tensor can be chosen locally smooth on an open,
dense subset M ′ ⊂ Mn (see Lemma 3.2 for the precise statement). To simplify
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the form of the curvature tensor R of Mn , we combine the λ0-part of W (from
(2-1)) with the difference R −W , so that R has the form (3-1) for some smooth
symmetric operator field ρ at every point of M ′. The technical core of the proof is
Lemmas 3.5 and 3.6, which establish various identities for the covariant derivatives
of ρ, the Ji and the ηi , using the second Bianchi identity for the curvature tensor
of the form (3-1). Lemma 3.6 treats the case (n, ν)= (8, 7) and uses the octonion
arithmetic; Lemma 3.5 treats all the other cases, and uses the fact that ν is small
compared to n — see Lemma 2.4. It follows from the identities of Lemma 3.5 and
Lemma 3.6 that, unless the Weyl tensor vanishes, the metric on M ′ can be locally
changed to a conformal one whose curvature tensor again has the form (3-1), but
with the two additional features: First, all the ηi are locally constant, and second,
ρ is a Codazzi tensor, that is, (∇Xρ)Y = (∇Yρ)X . By the result of [Derdziński and
Shen 1983], exterior products of the eigenspaces of a symmetric Codazzi tensor
are invariant under the curvature operator on the two-forms. Using that, we prove
in Lemma 3.7 that ρ must be a multiple of the identity, so, by (3-1), M ′ is locally
conformally equivalent to an Osserman manifold. The affirmative answer to the
Osserman conjecture in the cases for n and ν considered in Theorem 3.1, given by
[N 2003, Theorem 1.2], implies that M ′ is locally conformally equivalent to one of
the spaces listed in Theorem 3.1. This proves Theorem 3.1 at the generic points.
To prove Theorem 3.1 globally, we first show, using Lemma 3.9, that M splits into
a disjoint union of a closed subset M0, on which the Weyl tensor vanishes, and
nonempty open connected subsets Mα, each of which is locally conformal to one
of the rank-one symmetric spaces CPn/2, CH n/2, HPn/4, HH n/4. On every Mα,
the conformal factor f is a well-defined positive smooth function. Assuming that
there exists at least one Mα and that M0 6= ∅, we show in Lemma 3.10 that there
exists a point x0 ∈ M0 on the boundary of a geodesic ball B ⊂ Mα such that both
f (x) and ∇ f (x) tend to zero when x→ x0 for x ∈ B. Then the positive function
u = f (n−2)/4 satisfies the elliptic equation (3-31) in B, with limx→x0,x∈B u(x)= 0;
hence by the boundary point theorem, the limiting value of the inner derivative of u
at x0 must be positive. This contradiction implies that either M = M0 or M = Mα.

Proof of Theorem 3.1. For n > 4, let Mn be a connected smooth Riemannian
manifold whose Weyl tensor at every point has a Clifford structure. Define the
function N : Mn

→ N so that N (x) is the number of distinct eigenvalues of the
Jacobi operator WX associated to the Weyl tensor, where X is an arbitrary nonzero
vector from Tx Mn . Since the Weyl tensor is Osserman, N (x) is well defined.
Moreover, since the set of symmetric operators having no more than N0 distinct
eigenvalues is closed in the linear space of symmetric operators on Rn , the function
N (x) is lower semicontinuous, that is, every subset {x :N (x)≤N0} is closed in Mn .
Let M ′ be the set of points where the function N (x) is continuous. It is easy to
see that M ′ is an open and dense (but possibly disconnected) subset of Mn . The
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following lemma shows that the Clifford structure for the Weyl tensor is locally
smooth on every connected component of M ′.

Lemma 3.2. For n > 4, let Mn be a smooth Riemannian manifold whose Weyl
tensor has a Clifford structure at every point. If n = 16, we additionally require
that at every point x ∈ M16, the Weyl tensor has a Clifford structure Cliff(ν(x))
with ν(x) 6= 8.

Let M ′ be the (open, dense) subset of Mn , at the points of which the number of
distinct eigenvalues of the Jacobi operator associated to the Weyl tensor of Mn is
locally constant. Then for every x ∈ M ′, there exists a neighborhood U = U(x),
a number ν ≥ 0, smooth functions η1, . . . , ην : U→ R \ {0}, a smooth symmetric
linear operator field ρ, and smooth anticommuting almost Hermitian structures Ji

for i = 1, . . . , ν, on U such that the curvature tensor of Mn has the form

(3-1) R(X, Y )Z = 〈X, Z〉ρY +〈ρX, Z〉Y −〈Y, Z〉ρX −〈ρY, Z〉X

+

ν∑
i=1

ηi (2〈Ji X, Y 〉Ji Z +〈Ji Z , Y 〉Ji X −〈Ji Z , X〉Ji Y ),

for all y ∈ U and X, Y, Z ∈ Ty Mn . Moreover, if n = 8, then the curvature tensor
has the form (3-1) either with ν = 3 and J1 J2 =±J3, or with ν = 7 for all y ∈U.

Proof. Let X be a smooth unit vector field on Mn . Since the Weyl tensor W is
a smooth Osserman algebraic curvature tensor, the characteristic polynomial of
WX |X⊥ (of the restriction of the Jacobi operator WX to the subspace X⊥) does not
depend on X and is a well-defined smooth map p : Mn

→ Rn−1[t], y 7→ py(t),
where Rn−1[t] is the (n−1)-dimensional affine space of polynomials of degree
n − 1 with leading term (−t)n−1. Since all the roots of py(t) are real and the
number of different roots is constant on every connected component of M ′, the
eigenvalues µ0, µ1, . . . , µl of WX |X⊥ are smooth functions and their multiplicities
m0,m1, . . . ,ml are constant on every connected component of M ′ (we chose the
labeling so that m0 =max{m0,m1, . . . ,ml}.

First consider the case n 6= 8. The Weyl tensor has a Clifford structure given
by (2-1) at every point of M ′. By Lemma 2.4, for n > 4 with n 6= 8, 16, we
have n − 1− ν > ν for any Clifford structure on Rn . By (2-3), we have ν ≤ 8
for n = 16, so by assumption, the inequality n − 1− ν > ν also holds for n =
16. Then the biggest multiplicity of an eigenvalue of WX |X⊥ is n − 1 − ν; see
Remark 2.3. So ν = n − 1−m0 is constant and the function λ0 = µ0 is smooth
on every connected component of M ′. Moreover, for every smooth unit vec-
tor field X on M ′ and every i = 1, . . . , l, the µi -eigendistribution of WX |X⊥ is
Span j :λ0+3η j=µi

(J j X). Since λ0 and µi are smooth functions on every connected
component of M ′, so is η j . Moreover, on every connected component of M ′, every
distribution Span j :λ0+3η j=µi

(J j X) is smooth and has a constant dimension mi for
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any nowhere vanishing smooth vector field X . By Lemma 2.7(3), there exists a
neighborhood Ui (x) and smooth anticommuting almost Hermitian structures J̃ j

(for j such that λ0+ 3η j = µi ) on Ui (x) such that

Span j :λ0+3η j=µi
(J j X)= Span j :λ0+3η j=µi

( J̃ j X).

Let W̃ be the algebraic curvature tensor on U =
⋂l

i=1 Ui (x) with the Clifford
structure Cliff(ν; J̃ 1, . . . , J̃ ν; λ0, η1, . . . , ην). Then ν= n−1−m0 is constant and
all the J̃ i , ηi and λ0 are smooth on U. Moreover, for every unit vector field X
on U, the Jacobi operators W̃ X and WX have the same eigenvalues and the same
eigenspaces by construction; hence W̃ X =WX , which implies W̃ =W .

Now consider the case n = 8. By Lemma 2.6, at every point x ∈ M ′, the Weyl
tensor either has a Cliff(3) structure with J1 J2 = J3 or a Cliff(7) structure (but
not both). Since on every connected component Mα of M ′ the eigenvalues of the
operator WX |X⊥ with X 6= 0 have constant number and multiplicity, Remark 2.3
implies that the only case when Mα may potentially contain points of both kinds
is when one of the eigenvalues of WX |X⊥ with X 6= 0 on Mα has multiplicity 4 and
the Clifford structure at every point x ∈ Mα is either

Cliff(3; J1, J2, J3; λ0, η1, η2, η3)

with J1 J2 = J3, or

Cliff(7; J1, . . . , J7; λ0− 3ξ, η1+ ξ, η2+ ξ, η3+ ξ, ξ, ξ, ξ, ξ),

where η1, η2, η3 6= 0 (some of them can be equal) and ξ 6=−ηi , 0. The eigenvalues
of WX |X⊥ with ‖X‖ = 1 at every point x ∈ Mα are λ0, of multiplicity 4, and
λ0+3ηi . Let X be an arbitrary nowhere vanishing smooth vector field on a neigh-
borhood U⊂ Mα of a point x ∈ Mα. Then the four-dimensional eigendistribution
of WX |X⊥ corresponding to the eigenvalue of multiplicity 4 is smooth; hence its
orthogonal complement, the distribution Span(J1 X, J2 X, J3 X), is also smooth.
By Lemma 2.7(3), there are smooth anticommuting almost Hermitian structures
J̃ 1, J̃ 2, J̃ 3 such that Span( J̃ 1 X, J̃ 2 X, J̃3 X)=Span(J1 X, J2 X, J3 X) on (a possibly
smaller) neighborhood U. By Lemma 2.7(1) with F(X)= J̃ i X , every J̃ i is a linear
combination of the J j : J̃ i =

∑3
j=1 ai j J j , and moreover, the matrix (ai j ) must be

orthogonal, since the J̃ i are anticommuting almost Hermitian structures. It follows
that J̃ 1 J̃2 J̃ 3 =±J1 J2 J3. The operator on the left side is smooth on U, the one on
the right side is ± idR8 at the points where the Clifford structure is Cliff(3) with
J1 J2 = J3, and is symmetric with trace zero at the points where the Clifford struc-
ture is Cliff(7), which follows from the identity J4(J1 J2 J3)J4= J1 J2 J3. Therefore
all the points of U either have a Cliff(3) structure with J1 J2 = J3 or a Cliff(7)
structure. In both cases, the Clifford structure for W can be taken to be smooth:
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In the first, this follows from the arguments similar to those in the first part of
the proof, since ν < n − 1− ν; in the second, we apply Lemma 2.7(3) to every
eigendistribution of WX |X⊥ .

Thus for any x ∈M ′, the Weyl tensor on a neighborhood U=U(x) has the form
(2-1), with a constant ν and smooth λ0, ηi and Ji . Then the curvature tensor has
the form (3-1) with the operator ρ given by

ρ =
1

n−2
Ric+

(
λ0
2
−

scal
2(n−1)(n−2)

)
id,

where Ric is the Ricci operator and scal is the scalar curvature. Since λ0 is a smooth
function, the operator field ρ is also smooth. �

Remark 3.3. In fact, the proof shows that if an algebraic curvature tensor field R

has a Clifford structure at every point of a Riemannian manifold (and ν 6= 8 when
n = 16), then it has a Clifford structure of the same class of differentiability as R

on a neighborhood of every generic point of the manifold.

Remark 3.4. It follows from Lemma 2.6(1) (in fact, from Equation (2-4)) that, in
the case n = 8 and ν = 7 we can replace ρ by ρ− 3

2 f id and ηi by ηi + f in (3-1)
without changing R, where f is an arbitrary smooth function on U. If we want
the resulting Clifford structure to be Cliff(7), we additionally require that ηi + f
is nowhere zero.

Let x ∈M ′, and let U=U(x) be its neighborhood defined in Lemma 3.2. By the
second Bianchi identity, (∇U R)(X, Y )Y + (∇Y R)(U, X)Y + (∇X R)(Y,U )Y = 0.
Substituting R from (3-1) and using the fact that the operators Ji and their covariant
derivatives are skew-symmetric and the operator ρ and its covariant derivatives are
symmetric we get

(3-2) 〈X, Y 〉((∇Uρ)Y − (∇Yρ)U )+‖Y‖2((∇Xρ)U − (∇Uρ)X)

+〈U, Y 〉((∇Yρ)X − (∇Xρ)Y )+〈(∇Yρ)U − (∇Uρ)Y, Y 〉X

+〈(∇Xρ)Y − (∇Yρ)X, Y 〉U +〈(∇Uρ)X − (∇Xρ)U, Y 〉Y

+

∑ν

i=1
3(X (ηi )〈Ji Y,U 〉−U (ηi )〈Ji Y, X〉)Ji Y

+

∑ν

i=1
Y (ηi )(2〈JiU, X〉Ji Y +〈Ji Y, X〉JiU −〈Ji Y,U 〉Ji X)

+

∑ν

i=1
ηi
(
(3〈(∇U Ji )X, Y 〉+ 3〈(∇X Ji )Y,U 〉+ 2〈(∇Y Ji )U, X〉)Ji Y

+ 3〈Ji X, Y 〉(∇U Ji )Y + 3〈Ji Y,U 〉(∇X Ji )Y + 2〈JiU, X〉(∇Y Ji )Y

+〈(∇Y Ji )Y, X〉JiU +〈Ji Y, X〉(∇Y Ji )U

−〈(∇Y Ji )Y,U 〉Ji X −〈Ji Y,U 〉(∇Y Ji )X
)
= 0.
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Taking the inner product of (3-2) with X and assuming X , Y and U to be orthog-
onal, we obtain

(3-3) ‖X‖2〈Q(Y ),U 〉+ ‖Y‖2〈Q(X),U 〉

+

∑ν

i=1
3(X (ηi )〈Ji Y,U 〉− Y (ηi )〈Ji X,U 〉−U (ηi )〈Ji Y, X〉)〈Ji Y, X〉

+

∑ν

i=1
3ηi
(
(2〈(∇U Ji )X, Y 〉+ 〈(∇X Ji )Y,U 〉+ 〈(∇Y Ji )U, X〉)〈Ji Y, X〉

− 〈Ji Y,U 〉〈(∇X Ji )X, Y 〉− 〈Ji X,U 〉〈(∇Y Ji )Y, X〉
)
= 0,

where Q : Rn
→ Rn is the quadratic map defined by

(3-4) 〈Q(X),U 〉 = 〈(∇Xρ)U − (∇Uρ)X, X〉.

Note that 〈Q(X), X〉 = 0.

Lemma 3.5. Under the assumptions of Lemma 3.2, let x ∈ M ′ and let U be the
corresponding neighborhood of x. Suppose that if n= 8, then ν = 3 and J1 J2 = J3

on U, and if n = 16, then ν ≤ 4. For every point y ∈ U, identify Ty Mn with
Euclidean Rn via a linear isometry.

(i) There exist mi , bi j ∈ Rn with i, j = 1, . . . , ν such that for all X, Y,U ∈ Rn

and all i, j = 1, . . . , ν,

Q(Y )= 3
∑ν

k=1〈mk, Y 〉JkY,(3-5a)

(∇X Ji )X = η−1
i (‖X‖2mi −〈mi , X〉X)+

∑ν
j=1〈bi j , X〉J j X,(3-5b)

bi j + b j i = η
−1
i J j mi + η

−1
j Ji m j ,(3-5c)

∇ηi = 2Ji mi ,(3-5d) ∑
j 6=i

(〈ηi bi j + η j b j i , Ji Y 〉J j Y +〈ηi bi j + η j b j i , Y 〉Ji J j Y )= 0.(3-5e)

(ii) These equations hold:

(∇Yρ)U − (∇Uρ)Y =
ν∑

i=1

(2〈Ji Y,U 〉mi −〈mi , Y 〉JiU +〈mi ,U 〉Ji Y ),(3-6a)

bi j (3− ηiη
−1
j )+ b j i (3− η jη

−1
i )= 0 for i 6= j,(3-6b)

Ji mi = ηi p for i = 1, . . . , ν and some p ∈ Rn.(3-6c)

Proof. (i) We split the proof of these assertions into two cases: the exceptional
case, when either n = 6 and ν = 1, or n = 12, ν = 3 and J1 J2 = ±J3, or n = 8,
ν = 3 and J1 J2 = J3, and the generic case, consisting of all the other Clifford
structures considered in the lemma.
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Generic case. From (3-3) we obtain

(3-7) ‖X‖−2
〈Q(X),U 〉+ ‖Y‖−2

〈Q(Y ),U 〉 = 0

for all X ⊥ IY , X, Y ⊥ IU , and X, Y,U 6= 0.

We want to show that 〈Q(X),U 〉 = 0 for all X ⊥ IU . This is immediate when
n> 3ν+3. Indeed, codim(IU+IX)> ν+1 for any U 6= 0 and any unit X ⊥IU ,
so we can choose unit vectors Y1, Y2 ⊥ IU +IX such that Y1 ⊥ IY2. Then (3-7)
implies that 〈Q(X),U 〉 = −〈Q(Y1),U 〉 = 〈Q(Y2),U 〉 = −〈Q(X),U 〉.

Consider the case n ≤ 3ν + 3. By Lemma 2.4(i), this could only happen when
n= 12 and ν = 3 or n= 24 and ν = 7 (for the pairs (n, ν) belonging to the generic
case), and in both cases, n=3ν+3. Choose and fix an arbitrary U 6=0 and consider
the quadratic form q(X)= 〈Q(X),U 〉 defined on the (2ν+ 2)-dimensional space
L = (IU )⊥. Suppose q 6= 0. By (3-7), the restriction of q to the unit sphere of L is
not a constant, so it attains its maximum (respectively minimum) on a great sphere
S1 (respectively S2). The subspaces L1 and L2 defined by S1 and S2 are orthogonal.
Moreover by (3-7), we have L2⊃ (IX)⊥∩L for any nonzero X ∈ L1, which implies
that dim L2 ≥ ν+ 1. Similarly dim L1 ≥ ν+ 1, so dim L1 = dim L2 = ν+ 1 since
L1 ⊥ L2, and L = L1⊕ L2. It follows that q(X)= c(‖π1 X‖2−‖π2 X‖2) for some
c > 0, where πi : L→ L i is the orthogonal projection. Also, L2 = (IX)⊥ ∩ L for
all nonzero X ∈ L1, which means that the subspace L1 = L⊥2 ∩ L (and similarly
L2) is πI-invariant, where π : Rn

→ L is the orthogonal projection, and even
furthermore πIX = Lα for every nonzero X ∈ Lα for α = 1, 2, by dimension
count. Let X = X1+ X2 and Y = Y1+ Y2 ∈ L , where Xα = παX and Yα = παY .
The condition Y ⊥ IX is equivalent to

〈X1, Y1〉+ 〈X2, Y2〉 = 〈π Ji X1, Y1〉+ 〈π Ji X2, Y2〉 = 0 for all i = 1, . . . ν.

Take arbitrary orthonormal bases for L1 and for L2 and let Mα(Xα) for α= 1, 2 be
the (ν+1)× (ν+1) matrix whose columns relative to the chosen basis for Lα are
Xα, π J1 Xα, . . . , π JνXα. Then Y ⊥IX if and only if M1(X1)

t Y1=−M2(X2)
t Y2.

Since for α = 1, 2, and any nonzero Xα ∈ Lα, the columns of Mα(Xα) span Lα,
we obtain Y2 =−(M2(X2)

t)−1 M1(X1)
t Y1 for any X2 6= 0. Then, since

q(X)= c(‖X1‖
2
−‖X2‖

2) and q(Y )= c(‖Y1‖
2
−‖Y2‖

2),

Equation (3-7) implies ‖Y1‖
2
‖X1‖

2
−‖Y2‖

2
‖X2‖

2
= 0, so

‖Y1‖
2
‖X1‖

2
−‖(M2(X2)

t)−1 M1(X1)
t Y1‖

2
‖X2‖

2
= 0

for any X1, Y1 ∈ L1 and any nonzero X2 ∈ L2. It follows that

‖X1‖
2(M1(X1)

t M1(X1))
−1
= ‖X2‖

2(M2(X2)
t M2(X2))

−1
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for any nonzero Xα ∈ Lα. Thus for some positive definite symmetric (ν+1)×(ν+1)
matrix T , we have

Mα(Xα)t Mα(Xα)= ‖Xα‖2T

for all Xα ∈ Lα with α = 1, 2. Then for any X = X1+ X2 ∈ L with Xα ∈ Lα, and
any i = 1, . . . , ν,

‖π Ji X‖2 = ‖π Ji X1‖
2
+‖π Ji X2‖

2
= (M1(X1)

t M1(X1)+M2(X2)
t M2(X2))i i

= Ti i (‖X1‖
2
+‖X2‖

2)= Ti i‖X‖2.

On the other hand, π Ji X = Ji X−‖U‖−2∑ν
j=1〈Ji X, J jU 〉J jU for any X ∈ L , so

‖π Ji X‖2 = ‖X‖2−‖U‖−2∑ν
j=1〈Ji X, J jU 〉2. It follows that

‖X‖2‖U‖2(1− Ti i )=

ν∑
j=1

〈Ji X, J jU 〉2 =
ν∑

j=1

〈X, Ji J jU 〉2

for an arbitrary X ∈ L . Since dim L = 2ν + 2 > ν, we can choose a nonzero
X ∈ L orthogonal to the ν vectors Ji J jU , for j = 1, . . . , ν. This implies Ti i = 1,
and so X ⊥ Ji J jU , for all i, j = 1, . . . , ν and all X ∈ L = (IU )⊥. Therefore
Ji J jU ∈ IU for all i, j = 1, . . . , ν and all U ∈ Rn for which the quadratic form
q(X)= 〈Q(X),U 〉 defined on (IU )⊥ is nonzero. If this is true for at least one U ,
then this is true for a dense subset of Rn , which implies that Ji J jU ∈ IU for all
i, j = 1, . . . , ν and all U ∈ Rn . Then by Lemma 2.7(1), Ji J jU =

∑ν
k=1 ai jk JkU

for i 6= j for some constants ai jk , which implies that 〈Jk Ji J jU,U 〉 = ai jk‖U‖2,
so for all triples of pairwise distinct i, j, k, the symmetric operator Jk Ji J j on Rn

is a multiple of the identity. This is impossible when ν > 3 (since for l 6= i, j, k,
the operator Jl Jk Ji J j must be orthogonal and symmetric). The only remaining
cases are n = 12 and ν = 3, with J1 J2 J3 = ± id, and n = 6 and ν = 1, which are
considered under the exceptional case below.

Therefore 〈Q(X),U 〉 = 0 for X ⊥ IU , so Q(X) ∈ IX for all X ∈ Rn . By
Lemma 2.7(1) (and the fact that 〈Q(X), X〉 = 0), this implies (3-5a) for some
vectors mi ∈ Rn .

To prove (3-5b) and (3-5c), we first show that for an arbitrary X 6= 0, there is
a dense subset of the Y in (IX)⊥ such that JX ∩JY = 0. This follows from the
dimension count (compare to [N 2003, Lemma 3.2(1)]). For X 6= 0, define the
cone CX = {Ju JvX : u, v ∈ Rν}; see (2-2). Since

dim CX ≤ 2ν− 1< n− (ν+ 1)= dim(IX)⊥,

where the inequality in the middle follows from Lemma 2.4(i), the complement to
CX is dense in (IX)⊥. This complement is the required subset, since the condition
Y /∈CX is equivalent to JX ∩JY = 0. Substituting such X, Y into (3-3) we obtain
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by (3-5a)
ν∑

i=1

(‖X‖2〈mi , Y 〉− ηi 〈(∇X Ji )X, Y 〉)Ji Y

+

ν∑
i=1

(‖Y‖2〈mi , X〉− ηi 〈(∇Y Ji )Y, X〉)Ji X = 0.

Since JX ∩JY = 0, all the coefficients vanish, so

‖X‖2〈mi , Y 〉− ηi 〈(∇X Ji )X, Y 〉 = 0

for all X ∈ Rn , all i = 1, . . . , ν, and all Y from a dense subset of (IX)⊥, which
implies that (∇X Ji )X − η−1

i ‖X‖
2mi ∈ IX for all X ∈ Rn . Equation (3-5b) then

follows from Lemma 2.7(1). Equation (3-5c) follows from (3-5b) and the fact that
〈(∇X Ji )X, J j X〉+ 〈(∇X J j )X, Ji X〉 = 0.

To prove (3-5d) and (3-5e), substitute X = JkY and U ⊥ X, Y into (3-3). Since
〈Ji Y, X〉 = ‖Y‖2δik , the first term in the second sum equals

3ηk(2〈(∇U Jk)X, Y 〉+ 〈(∇X Jk)Y,U 〉+ 〈(∇Y Jk)U, X〉)‖Y‖2.

Since Jk is orthogonal and skew-symmetric,

〈(∇U Jk)X, Y 〉 = 〈(∇U Jk)JkY, Y 〉 = −〈Jk(∇U Jk)Y, Y 〉 = 〈(∇U Jk)Y, JkY 〉 = 0.

Next,

〈(∇Y Jk)U, X〉 = −〈(∇Y Jk)JkY,U 〉 = 〈Jk(∇Y Jk)Y,U 〉

= 〈(η−1
k ‖Y‖

2 Jkmk +
∑ν

j=1〈bk j , Y 〉Jk J j Y,U 〉

by (3-5b). Similarly, since Y =−Jk X , it follows from (3-5b) that

〈(∇X Jk)Y,U 〉 = 〈Jk(∇X Jk)X,U 〉

= 〈Jk(η
−1
k (‖X‖2mk −〈mk, X〉X)+

∑ν
j=1〈bk j , X〉J j X),U 〉

= 〈η−1
k ‖Y‖

2 Jkmk +
∑

j 6=k〈bk j , JkY 〉J j Y −〈bkk, JkY 〉JkY,U 〉.

Substituting this into (3-3) and using (3-5a) and (3-5b), we obtain after simplifica-
tion

(3-8) ‖Y‖2(〈2Jkmk,U 〉−U (ηk))

+

ν∑
j=1

〈ηkbk j + η j b jk, 〈J j Y,U 〉JkY +〈Jk J j Y,U 〉Y 〉 = 0.

By [N 2003, Lemma 3.2(3)] for all U ∈ Rn , we can find a nonzero Y such that
U ⊥ JY + JJkY . Substituting such a Y into (3-8) proves (3-5d). Then (3-8)
simplifies to (3-5e).
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Exceptional case. Here either n = 6 and ν = 1, or n = 12, ν = 3 and J1 J2 =±J3,
or n = 8 and ν = 3 and J1 J2 = J3.

In all these cases, the Clifford structure has the “J 2 property” that IIX =
JIX = IX for every X ∈ Rn . In particular, if Y ⊥ IX , then IY ⊥ IX .

Substitute X = JkU and Y ⊥ IX = IU into (3-2) and take the inner prod-
uct of the resulting equation with JkY . Using the J 2 property and the fact that
〈(∇Y Jk)U, JkU 〉 = 〈(∇Y Jk)Y, JkY 〉 = 0, we get

−Jk((∇JkUρ)U−(∇Uρ)JkU )+2‖U‖2∇ηk+3ηk((∇U Jk)JkU−(∇JkU Jk)U )∈IU.

The expression F(U ) on the left side is a quadratic map from Rn to itself. By
Lemma 2.7(1), F(U ) is a linear combination of U, J1U, . . . , JνU whose coeffi-
cients are linear forms of U . In particular, the cubic polynomial 〈F(U ), JkU 〉must
be divisible by ‖U‖2. Since Jk is orthogonal and skew-symmetric,

〈(∇U Jk)JkU − (∇JkU Jk)U, JkU 〉 = 0,

so there exists a vector mk ∈ Rn such that

〈(∇JkUρ)U − (∇Uρ)JkU,U 〉 = −3‖U‖2〈mk,U 〉.

It follows that the quadratic map Q defined by (3-4) satisfies

〈Q(U ), JkU 〉 = 3‖U‖2〈mk,U 〉 for all U ∈ Rn and all k = 1, . . . , ν.

Since 〈Q(U ),U 〉 = 0, we can define a quadratic map T : Rn
→ Rn such that for

all U ∈ Rn ,

(3-9) Q(U )= T (U )+ 3
∑ν

k=1〈mk,U 〉JkU and T (U )⊥ IU.

Taking U = Jk X, X,U ⊥ IY in (3-3) and using (3-9) we obtain

−Jk T (Y )+ 3‖Y‖2mk − 3ηk(∇Y Jk)Y ∈ IY.

From Lemma 2.7(1) it follows that the expression on the left side is a linear com-
bination of Y, J1Y, . . . , JνY whose coefficients are linear forms of Y , so for some
vectors bi j ∈ Rn ,

(3-10) (∇Y Ji )Y = η−1
i (mi‖Y‖2−〈mi , Y 〉Y )− (3ηi )

−1 Ji T (Y )+
ν∑

j=1

〈bi j , Y 〉J j Y.

Since 〈(∇Y Ji )Y, J j Y 〉 is antisymmetric in i and j and Ji T (Y )⊥ IY by (3-9) and
the J 2 property, the bi j satisfy (3-5c).

Take X = JkY and U ⊥ IY = IX in (3-3). Since 〈(∇U Jk)JkY, Y 〉 = 0,

〈(∇Y Jk)U, X〉 = −〈(∇Y Jk)JkY,U 〉 = 〈Jk(∇Y Jk)Y,U 〉,
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and similarly 〈(∇X Jk)Y,U 〉 = −〈(∇X Jk)Jk X,U 〉 = 〈Jk(∇X Jk)X,U 〉, we obtain
from (3-9) and (3-10) after simplification that

(3-11) 2T (Y )+ 2T (JkY )− 3‖Y‖2(∇ηk − 2Jkmk) ∈ IY.

In case n=6 and ν=1, we can prove the remaining identities (3-5a), (3-5b), (3-5d)
and (3-5e) of Lemma 3.5(i) as follows. Taking in (3-3) nonzero X, Y,U such that
the subspaces IX,IY and IU are mutually orthogonal we obtain by (3-9)

‖X‖−2
〈T (X),U 〉+ ‖Y‖−2

〈T (Y ),U 〉 = 0,

which is, essentially, (3-7). Replacing Y by J1Y and using (3-11) we get

2T (X)+ 3‖X‖2(∇η1− 2J1m1) ∈ IX.

The same is true with X replaced by J1 X . Then by (3-11), ∇η1 − 2J1m1 ∈ IX
for all X ∈ R6, so ∇η1 − 2J1m1 = 0, which is (3-5d). Then T (X) ∈ IX ; hence
T (X) = 0, since T (X) ⊥ IX by (3-9). Now (3-5a) follows from (3-9), (3-5b)
follows from (3-10), and (3-5e) is trivially satisfied, as ν = 1.

In the cases n = 8, 12, ν = 3 and J1 J2 = J3 (if J1 J2 = −J3, we replace J3

by −J3 without changing the curvature tensor (3-1)), we argue as follows. Adding
(3-11) with k = 1 and with k = 2 and then subtracting (3-11) with k = 3 and Y
replaced by J1Y we get

4T (Y )− 3‖Y‖2((∇η1− 2J1m1)+ (∇η2− 2J2m2)− (∇η3− 2J3m3)) ∈ IY.

This remains true under a cyclic permutation of the indices 1, 2, 3, which implies
(∇ηk − 2Jkmk)− (∇ηi − 2Ji mi ) ∈ IY for all i, k = 1, 2, 3 and all Y ∈ Rn . Then
∇ηk−2Jkmk =∇ηi−2Ji mi = 4V/3 for some vector V ∈Rn , and T (Y )−‖Y‖2V
belongs to IY by the above. Since T (Y )⊥ IY by (3-9), we obtain

T (Y )= ‖Y‖2V −〈Y, V 〉Y −
∑3

i=1〈Ji Y, V 〉Ji Y,

so

(3-12)

∇ηi = 2Ji mi +
4
3 V,

Q(Y )= ‖Y‖2V −〈Y, V 〉Y +
∑3

j=1〈3m j + J j V, Y 〉J j Y,

(∇Y Ji )Y = (3ηi )
−1(
‖Y‖2(3mi − Ji V )−〈3mi − Ji V, Y 〉Y

+
∑3

j=1〈3ηi bi j − J j Ji V, Y 〉J j Y
)
,

where the second equation follows from (3-9) and the third from (3-10) and the
fact that J1 J2 = J3.

Substitute X = JkY into (3-3) again, with an arbitrary U ⊥ X, Y . Using (3-12)
and that the Ji are skew-symmetric, orthogonal and anticommute, we obtain after



CONFORMALLY OSSERMAN MANIFOLDS 337

simplification that

3∑
i=1

〈3aik − 2Ji Jk V, JkY 〉Ji Y +
3∑

i=1

〈3aik − 2Ji Jk V, Y 〉Jk Ji Y ∈ Span(Y, JkY ),

where aik = ηkbki + ηi bik . Taking k = 1 and using that J1 J2 = J3, we get from
the coefficient of J2Y that 3J1a12−4J2V +3a13 = 0, so 4V =−3J2a13+3J3a12.
Cyclically permuting the indices 1, 2, 3 and using that aik = aki , we get V = 0,
which implies (3-5e). Since V = 0, equations (3-5a), (3-5d) and (3-5b) follow
from (3-12).

(ii) By (3-4) and (3-5a),

〈(∇Xρ)U − (∇Uρ)X, X〉 = 3
ν∑

i=1

〈mi , X〉〈Ji X,U 〉 for all X,U ∈ Rn .

Polarizing this equation and using the fact that the covariant derivative of ρ is
symmetric, we obtain

〈(∇Xρ)U, Y 〉+ 〈(∇Yρ)U, X〉− 2〈(∇Uρ)Y, X〉

= 3
ν∑

i=1

(〈mi , Y 〉〈Ji X,U 〉+ 〈mi , X〉〈Ji Y,U 〉).

Subtracting the same equation with Y and U interchanged, we get

〈(∇Yρ)U − (∇Uρ)Y, X〉 =
ν∑

i=1

(2〈mi , X〉〈Ji Y,U 〉

+ 〈mi , Y 〉〈Ji X,U 〉− 〈mi ,U 〉〈Ji X, Y 〉),

which proves (3-6a).
To establish (3-6b), substitute X ⊥IY, U = JkY into (3-2). Using the equations

of part (i) and (3-6a) we obtain after simplification that

3(∇X Jk)Y − (∇Y Jk)X

=−3η−1
k 〈mk, Y 〉X +

ν∑
i=1

η−1
k 〈ηi bik + 2δik Jkmk, Y 〉Ji X mod (IY ).

Subtracting thrice polarized Equation (3-5b) (with i = k) and solving for (∇Y Jk)X ,
we get, for all X ⊥ IY ,

(3-13) (∇Y Jk)X =
ν∑

i=1

1
4η
−1
k 〈3ηkbki − ηi bik − 2δik Jkmk, Y 〉Ji X mod (IY ).

Choose s 6= k and define the subset Sks ⊂ Rn
⊕Rn by

Sks = {(X, Y ) : X, Y 6= 0 and X, Jk X, Js X ⊥ JY }.
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It is easy to see that (X, Y ) ∈ Sks if and only if (Y, X) ∈ Sks and that replacing JY
by IY in the definition of Sks gives the same set Sks . Moreover, {X : (X, Y ) ∈ Sks}

(and hence {Y : (X, Y )∈ Sks}) spans Rn . If n= 8, ν= 3 and J1 J2= J3, this follows
from the J 2-property; in all other cases, it follows from [N 2003, Lemma 3.2(4)].
For (X, Y )∈ Sks , take the inner product of (3-13) with Js X . Since 〈(∇Y Jk)X, Js X〉
is antisymmetric in k and s, we get 〈(3− ηkη

−1
s )bks + (3− ηsη

−1
k )bsk, Y 〉 = 0 for

a set of Y spanning Rn . This proves (3-6b).
To prove (3-6c), we apply of Lemma 2.7(2) to (3-5e). If ν = 1, there is nothing

to prove; in fact, if ν = 1 and n ≥ 8, Theorem 3.1 follows from [Blažić and Gilkey
2004, Theorem 1.1]. If ηi bi j+η j b j i = 0 for all i 6= j , then by (3-6b), bi j+b j i = 0
for all i 6= j , so η−1

i J j mi = −η
−1
j Ji m j by (3-5c). Acting by Ji J j we obtain that

the vector η−1
i Ji mi is the same for all i = 1, . . . , ν.

The only remaining possibility is ν=3, J1 J2= J3 (if J1 J2=−J3 we can replace
J3 by −J3 without changing the curvature tensor (3-1)), and ηkbki + ηi bik = J jv

for all the triples {i, j, k} = {1, 2, 3}, where v 6= 0. We will show that this leads
to a contradiction. Note that by (2-3), the existence of a Cliff(3) structure implies
that n is divisible by 4, so n ≥ 8 by the assumption of the lemma.

If ηi = ηk for some i 6= k, then from (3-6b) and ηkbki + ηi bik = J jv it follows
that v = 0, a contradiction. Otherwise, if the ηi are pairwise distinct, we get

bik = (3ηi − ηk)(4ηi (ηi − ηk))
−1 J jv for {i, j, k} = {1, 2, 3}.

Substituting this into (3-5c) and acting by J j on both sides, we get

η−1
i Ji mi − η

−1
k Jkmk =

1
4εik(η

−1
i + η

−1
k )v for {i, j, k} = {1, 2, 3},

where for i 6= k we define εik =±1 by Ji Jk = εik J j . It is easy to see that ε jk =−ε jk

and ε jk = εi j , where {i, j, k} = {1, 2, 3}. Then∑3
i=1 η

−1
i = 0 and η−1

i Ji mi =
1

12ε jk(η
−1
j − η

−1
k )v+w for some w ∈ Rn .

It then follows from (3-5d) that ∇ηi = (1/6)ε jkηi (η
−1
j − η

−1
k )v + 2ηiw, which

implies
∇ ln|η1η2η3| = 6w and ∇ ln|ηiη

−1
j | = −

1
2εi jη

−1
k v.

Let U′⊂U be a neighborhood of x on which∇ ln |η1η
−1
2 | 6=0. Then v is a nowhere

vanishing smooth vector field on U′. Multiplying the metric on U by a function
e f changes neither the Weil tensor nor the Ji , and multiplies every ηi by e− f and
∇ acting on functions by e− f . Taking f = (1/3) ln|η1η2η3| we can assume that
w = 0 on U′, so that C = η1η2η3 is a constant. Then, since

∑3
i=1 η

−1
i = 0, we get

∇ηi =±
1
6v

√
1− 4C−1η3

i .
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It follows that v = ∇t for some smooth function t : U′ → R such that ηi =

−36C℘(t + ci ), where ℘ is the Weierstrass function satisfying

( d
dt℘(t))

2
= 4℘(t)3+ 6−6C−2

and ci ∈ R. Summarizing these identities, we have pointwise pairwise nonequal
functions ηi :U

′
→ R \ {0} satisfying

(3-14)

v =∇t 6= 0, ∇ηi =
1
6ε jkηi (η

−1
j − η

−1
k )v,

0=
∑3

i=1 η
−1
i , C = const=

∏3
i=1 ηi ,

mi =−
1
12ε jkηi (η

−1
j − η

−1
k )Jiv, bi i =

1
12ε jk(η

−1
j − η

−1
k )v,

bi j = (3ηi − η j )(4ηi (ηi − η j ))
−1 Jkv,

for {i, j, k}= {1, 2, 3}, where we used (3-5c) to compute bi i . Then Equation (3-13)
simplifies to

(∇Y Jk)X =
∑
i 6=k

1
2(ηk − ηi )

−1
〈J jv, Y 〉Ji X mod (IY ) for all X ⊥ IY .

By the J 2-property, IY ⊥IX , so to find the “mod(IY )” part, we have to compute
the inner products of (∇Y Jk)X with Y , J1Y , J2Y and J3Y . Since

〈(∇Y Jk)X, Y 〉 = −〈(∇Y Jk)Y, X〉,

〈(∇Y Jk)X, JkY 〉 = −〈(∇Y Jk)JkY, X〉 = 〈Jk(∇Y Jk)Y, X〉,

〈(∇Y Jk)X, Ji Y 〉 = −〈(∇Y Jk)Ji Y, X〉 = −〈(εki (∇Y J j )− Jk(∇Y Ji ))Y, X〉

(from Jk Ji = εki J j ), these products can be found using (3-5b). Simplifying by
(3-14) we get

(∇Y Jk)X = 1
12εi j (η

−1
i − η

−1
j )(〈Jkv, X〉Y +〈v, X〉JkY )

+
1
4η
−1
k

∑
i 6=k

〈J jv, X〉Ji Y +
∑
i 6=k

1
2(ηk − ηi )

−1
〈J jv, Y 〉Ji X,

for all X ⊥ IY , where {i, j, k} = {1, 2, 3}. To compute (∇Y Jk)X when X ∈ IY ,
we again use (3-5b) and the fact that, for {i, j, k} = {1, 2, 3},

(∇Y Jk)Jk =−Jk(∇Y Jk) and (∇Y Jk)Ji = εki (∇Y J j )− Jk(∇Y Ji ).

Simplifying by (3-14) and using the above equation we get after some calculation

(∇Y Jk)X = 1
12εi j (η

−1
i − η

−1
j )(〈Jkv, X〉Y +〈v, X〉JkY −〈X, Y 〉Jkv−〈X, JkY 〉v)

+
1
4η
−1
k

∑
i 6=k

(〈J jv, X〉Ji Y −〈Ji Y, X〉J jv)+
∑
i 6=k

1
2(ηk − ηi )

−1
〈J jv, Y 〉Ji X,
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for all X, Y ∈ Rn , where {i, j, k} = {1, 2, 3}. For a, b ∈ Rn , let a ∧ b be the skew-
symmetric operator defined by (a ∧ b)X = 〈a, X〉b − 〈b, X〉a. Then the above
equation can be written in the form

∇Y Jk =
1

12εi j (η
−1
i − η

−1
j )(Jkv∧ Y + v∧ JkY )

+
1
4η
−1
k

∑
i 6=k

J jv∧ Ji Y +
∑
i 6=k

1
2(ηk − ηi )

−1
〈J jv, Y 〉Ji ,

that is, for {i, j, k} = {1, 2, 3},

(3-15)
∇Y Jk = [Jk, AY ], AY =

3∑
i=1

( 1
2λi Ji Y ∧ Jiv+ωi 〈Jiv, Y 〉Ji ),

λi =
1
6ε jk(η

−1
j − η

−1
k ), ωi =

1
4ε jk(ηk − η j )

−1

where we used that, for {i, j, k} = {1, 2, 3},

[Jk, a ∧ b] = Jka ∧ b+ a ∧ Jkb and [Jk, Ji ] = 2εki J j .

By the Ricci formula, ∇2
Z ,Y Jk − ∇

2
Y,Z Jk = [Jk, R(Y, Z)], where the tensor field

∇
2 Jk is defined by

∇
2
Z ,Y Jk =∇Z (∇Y Jk)−∇∇Z Y Jk for vector fields Y, Z on U′.

Since ∇Y Jk = [Jk, AY ] by (3-15), this is equivalent to the fact that the operator
F(Y, Z) = (∇Z A)Y − (∇Y A)Z − [AY, AZ ] − R(Y, Z) commutes with all the Js

for all Y, Z ∈ Rn and all s = 1, 2, 3. By (3-1), we have

R(Y, Z)= Y ∧ ρZ + ρY ∧ Z +
3∑

i=1

ηi (Ji Y ∧ Ji Z + 2〈Ji Y, Z〉Ji ),

so using (3-15) and the identities

[a ∧ b, c∧ d] = 〈a, d〉c∧ b−〈a, c〉d ∧ b−〈b, d〉c∧ a+〈b, c〉d ∧ a,

[Js, a ∧ b] = Jsa ∧ b+ a ∧ Jsb,

we obtain

(3-16) F(Y, Z)= V (Y, Z)+
3∑

i=1

〈Ki Y, Z〉Ji + S(Y, Z),

where

S(Y, Z) ∈ (IY +IZ)∧Rn,

V (Y, Z)=− 1
2

∑3

i=1
〈Ji Z , Y 〉(λ2

i v∧ Jiv+ ε jk(λ jλk − λiλk − λ jλi )J jv∧ Jkv)

∈ Iv∧Iv,
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and for subspaces L1, L2 ⊂ Rn , we denote by L1 ∧ L2 the subspace of the space
o(n) of skew-symmetric operators on Rn defined by

L1 ∧ L2 = Span(a ∧ b : a ∈ L1, b ∈ L2).

Note that if L1 and L2 are J-invariant (that is, JLα ⊂ Lα), then L1 ∧ L2 is adJ-
invariant, that is, [Js, L1 ∧ L2] ⊂ L1 ∧ L2.

From (3-15) and the facts that

ωiλi = (24C)−1ηi ,
d
dtωi = 4ω2

i + (12C)−1ηi ,
∑

i ω
−1
i = 0,

which follow from (3-14) and (3-15), we obtain

(3-17) Ki =−ωi ((4ωi + λi )v∧ Jiv+ 4ε jk(ω j +ωk)J jv∧ Jkv

+ λi (48C +‖v‖2)Ji + (Ji H + H Ji )),

where {i, j, k}={1, 2, 3} and H is the symmetric operator associated to the Hessian
of t , that is, 〈HY, Z〉 = Y (Zt)− (∇Y Z)t for vector fields Y and Z on U′.

Since [F(Y, Z), Js] = 0 and the subspace IY + IZ is J-invariant (and hence
(IY +IZ)∧Rn is adJ-invariant), it follows from (3-16) that for all Y, Z ∈Rn and
all s = 1, 2, 3,

(3-18) [V (Y, Z), Js] +

3∑
i=1

〈Ki Y, Z〉[Ji , Js] ∈ (IY +IZ)∧Rn.

Take Y, Z ∈ Iv in (3-18). Then IY + IZ = Iv and [V (Y, Z), Js] ∈ Iv ∧ Iv

by the J 2 property, so (3-18) simplifies to
∑

i 6=s εis〈Ki Y, Z〉J j ∈ Iv ∧Rn , where
{i, j, s} = {1, 2, 3}. Project this onto the subspace (Iv)⊥ ∧ (Iv)⊥ ⊂ o(n) by the
standard inner product on o(n), and use that (Iv)⊥ is J-invariant and n ≥ 8. Then
we get 〈Ki Y, Z〉 = 0 for all i = 1, 2, 3 and all Y, Z ∈ Iv. Introduce the operators

Ĵi = πIv JiπIv and Ĥ = πIvHπIv on Iv.

Since Iv is J-invariant, the Ĵi are anticommuting almost Hermitian structures
on Iv. Then the condition 〈Ki Y, Z〉 = 0 for Y, Z ∈ Iv and (3-17) imply

(4ωi+λi )v∧ Ĵiv+4ε jk(ω j+ωk) Ĵ jv∧ Ĵkv+λi (48C+‖v‖2) Ĵi+ Ĵi Ĥ+ Ĥ Ĵi = 0.

Multiplying by Ĵi and taking the trace we obtain for {i, j, k} = {1, 2, 3}

4‖v‖2(ωi +ω j +ωk)+ λi (96C + 3‖v‖2)+Tr Ĥ = 0,

so λi (96C + 3‖v‖2) does not depend on i = 1, 2, 3. Since the λi are pairwise
distinct (otherwise the condition

∑3
i=1 η

−1
i = 0 from (3-14) is violated), we get

‖v‖2 =−32C .
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Now take Y, Z ⊥ Iv in (3-18). Projecting to Iv ∧ Iv and using the fact that
Iv ∧ Iv is adJ-invariant we obtain that the operator V (Y, Z)+

∑3
i=1〈Ki Y, Z〉 Ĵi

on Iv commutes with every Ĵs . The centralizer of the set { Ĵ1, Ĵ2, Ĵ3} in the Lie
algebra o(4)= o(Iv) is the three-dimensional subalgebra spanned by

v∧ Ĵiv− ε jk Ĵ jv∧ Ĵkv for {i, j, k} = {1, 2, 3}

(right multiplication by the imaginary quaternions). Substituting V (Y, Z) from
(3-16) and using that

Ĵi = ‖v‖
−2(v∧ Ĵiv+ ε jk Ĵ jv∧ Ĵkv),

we obtain that the operator V (Y, Z)+
∑3

i=1〈Ki Y, Z〉 Ĵi commutes with all the Ĵs

for Y, Z ⊥ Iv if and only if

−
1
2〈Ji Z , Y 〉(λ2

i +λ jλk −λiλk −λ jλi )+2‖v‖−2
〈Ki Y, Z〉 = 0 for all i = 1, 2, 3.

Substituting the λi from (3-15) and 〈Ki Y, Z〉 from (3-17) and taking into account
that ‖v‖2 =−32C , which is shown above, we obtain

〈(Ji H + H Ji − 32Cλi Ji )Y, Z〉 = 0 for all Y, Z ⊥ Iv and all i = 1, 2, 3.

Then
π(Ji H + H Ji )π = 32Cλiπ Jiπ,

where π = π(Iv)⊥ . Multiplying both sides by π Jiπ from the right and using that
[π, Ji ] = 0 (as (Iv)⊥ is J-invariant), we get π(Ji H Ji−H)π =−32Cλiπ . Taking
the traces of the both sides we obtain −2 Tr(πHπ)=−32Cλi (n− 4), which is a
contradiction since n > 4 and the λi are pairwise distinct, which follows from the
equation

∑3
i=1 η

−1
i = 0 of (3-14). �

The next lemma shows that the relations similar to (3-5) and (3-6) of Lemma 3.5
also hold in all the remaining cases when n= 8, that is, when ν 6= 3 and when ν= 3
and J1 J2 6= ±J3. As shown in Lemma 3.2, in all these cases the Weyl tensor has a
smooth Cliff(7) structure in a neighborhood U of every point x ∈ M ′. Moreover,
Lemma 2.6(2), that Cliff(7) structure is an almost Hermitian octonion structure, in
the following sense. For every y ∈ U, we can identify R8

= Ty M8 with O and of
R7 with O′ = 1⊥ via linear isometries ι1 and ι2 respectively so that the orthogonal
multiplication (2-2) defined by Cliff(7) has the form (2-5): Ju X = Xu for every
X ∈ R8

=O and u ∈O′.

Lemma 3.6. Let x ∈ M ′ ⊂ M8, and let U be the neighborhood of x defined in
Lemma 3.2. For every point y ∈ U, identify R8

= Ty M8 with O via a linear
isometry so that the Clifford structure Cliff(7) on R8 is given by (2-5). Then there
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exist m, t, bi j ∈ R8
=O with i, j = 1, . . . , 7 such that for all X,U ∈ R8

=O,

(∇U Ji )X =
7∑

j=1

〈bi j ,U 〉Xe j(3-19a)

+ (X (U∗m)−〈m,U 〉X)ei +〈m,Uei 〉X,

bi j + b j i = 0,(3-19b)

(∇Xρ)U − (∇Uρ)X = 2
7∑

i=1

ηi (〈mei ,U 〉Xei(3-19c)

−〈mei , X〉Uei + 2〈Xei ,U 〉mei )

+
3
4(X ∧U )t,

∇ηi =−4ηi m− 1
2 t.(3-19d)

Proof. In the proof we use standard identities of the octonion arithmetic (some of
them are given in Section 2.5).

By [N 2004, Lemma 7], for the Clifford structure Cliff(7) given by (2-5), there
exist bi j ∈ R8, with i, j = 1, . . . , 7, satisfying (3-19b) and an (R-)linear operator
A :O→O′ such that for all X,U ∈ R8

=O,

(3-20) (∇U Ji )X =
7∑

j=1

〈bi j ,U 〉Xe j + (X · AU )ei +〈AU, ei 〉X.

Equation (3-2) is a polynomial equation in 24 real variables, the coordinates of
the vectors X, Y,U ∈ R8. It still holds if we allow X, Y,U to be complex and
extend the tensors Ji ,∇ Ji and 〈 · , · 〉 to C8 by complex linearity. The complexified
inner product 〈 · , · 〉 takes values in C and is a nonsingular quadratic form on C8.
Moreover, Equation (2-5) is still true if we identify C8 with the bioctonion algebra
O⊗C, and C7 with 1⊥ =O′⊗C, the orthogonal complement to 1 in O⊗C.

Let Y ∈O⊗C be a nonzero isotropic vector (that is, Y ∗Y = 0) and let

JCY = SpanC(J1Y, . . . , J7Y ).

Then Y ∈ JCY and the space JCY is isotropic: The inner product of any two
vectors from JCY vanishes. Choose X,U ∈ JCY and take the inner product of
the complexified (3-2) with X . Since X, Y and U are mutually orthogonal, we get
(3-3), which further simplifies to

7∑
i=1

ηi 〈Ji X,U 〉〈(∇Y Ji )Y, X〉 = 0,

since
‖X‖2 = ‖Y‖2 = 〈Ji Y, X〉 = 〈Ji Y,U 〉 = 0.
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Using (3-20) we obtain

7∑
i=1

ηi 〈Ji X,U 〉〈(Y · AY )ei , X〉 = 0

for all isotropic vectors Y and for all X,U ∈JCY . It follows that Y · AY is perpen-
dicular to

∑7
i=1 ηi 〈Ji X,U 〉Xei for all X,U ∈ JCY . Since Y · AY = JAY Y ∈ JCY

and JCY is isotropic, we get Y · AY ⊥ JCY , so Y · AY is perpendicular to

JCY +SpanC({
∑7

i=1 ηi 〈Ji X,U 〉Ji X | X,U ∈ JCY }).

Following the arguments in the proof of [N 2004, Lemma 8] starting with for-
mula (29), we obtain that AU = U∗m − 〈U,m〉1 for some m ∈ O. Then (3-19a)
follows from (3-20).

To prove (3-19c) and (3-19d), introduce the vectors fi j ∈ R8 for i, j = 1, . . . , 8
and the quadratic map T : R8

→ R8 (similar to the map Q of (3-4)) by

fi j = (ηi − η j )bi j + δi j (∇ηi − 2ηi m),(3-21)

〈T (X),U 〉 = 1
3〈(∇Xρ)U − (∇Uρ)X, X〉−

∑7
i=1 ηi 〈mei , X〉〈Xei ,U 〉.(3-22)

Note that fi j = f j i and 〈T (X), X〉 = 0. Take X, Y,U to be mutually orthogonal
vectors in R8. By (3-19a) and (3-19b),

〈(∇U Ji )X, Y 〉 =
7∑

j=1

〈bi j ,U 〉〈Xe j , Y 〉− 〈m,U 〉〈Xei , Y 〉+ 〈(X (U∗m))ei , Y 〉

=

7∑
j=1

〈bi j − δi j m,U 〉〈Xe j , Y 〉+ 〈m((ei Y ∗)X),U 〉,

so every term on the left side of (3-3) can be written as the inner product of U with
a vector depending on X and Y . Since U is arbitrary other than being perpendicular
to X and Y , we find after substituting (2-5) and (3-19a) into (3-3) and rearranging
the terms that

‖X‖2T (Y )+‖Y‖2T (X)

+

7∑
i=1

(
2ηi 〈Y ei , X〉(m((ei Y ∗)X)+ (Y (X∗m))ei )

+〈Y e j , X〉(〈 fi j , X〉Y ei −〈 fi j , Y 〉Xei )−〈Y ei , X〉〈Y e j , X〉 fi j
)

∈ Span(X, Y ),

for all X ⊥ Y , where we used the fact that (X (Y ∗m))ei = −(Y (X∗m))ei , since
X ⊥ Y . Taking the inner products with X and with Y , we obtain that the left side
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of the above (before the “∈”) is equal to 〈T (Y ), X〉X+〈T (X), Y 〉Y for all X ⊥ Y .
Taking X = Y u with u =

∑7
i=1 ui ei ∈O′ and regrouping the terms, we obtain

(3-23) ‖u‖2T (Y )+ T (Y u)

+ 2
7∑

i=1

ηi ui (2〈Y,mei 〉Y u− 2〈Y u,mei 〉Y + 2‖Y‖2(mu)ei )

+

7∑
i, j=1

u j (〈 fi j + 8δi jηi m, Y u〉Y ei −〈 fi j + 8δi jηi m, Y 〉(Y u)ei )

−

7∑
i, j=1

‖Y‖2ui u j fi j = ‖Y‖−2
〈T (Y ), Y u〉Y u+‖Y‖−2

〈T (Y u), Y 〉Y,

where we used

m((ei Y ∗)X)+ (Y (X∗m))ei

= 2〈Y,mei 〉Y u− 2〈Y u,mei 〉Y + 4〈Y u,m〉Y ei − 4〈Y,m〉(Y u)ei + 2‖Y‖2(mu)ei ,

which follows from

m((ei Y ∗)X)= (Y (X∗m))ei − 2〈m, Y ei 〉X − 2〈X,mei 〉Y

for all X, Y , and

(Y (X∗m))ei =−2〈Y,m〉(Y u)ei − 2〈Y,mu〉Y ei +‖Y‖2(mu)ei

for X = Y u and u ⊥ 1. By Lemma 2.7(1) (with ν = 1 and IY = Span(Y, Y u))
we obtain that both coefficients on the right side of (3-23), ‖Y‖−2

〈T (Y ), Y u〉 and
‖Y‖−2

〈T (Y u), Y 〉, are linear forms of Y ∈ R8 for every u ∈ O′. Since 〈T (Y ), Y 〉
is zero, this implies that there exists an (R-)linear operator C : O→ O′ such that
‖Y‖−2Y ∗T (Y )= CY , so T (Y )= Y ·CY for all Y ∈O. Substituting this to (3-23)
and rearranging the terms, we obtain

(3-24) (Y u)
(

C(Y u)−
7∑

i, j=1

u j 〈 fi j + 8δi jηi m, Y 〉ei

)
+ Y

(
‖u‖2CY +

7∑
i=1

(
4ηi ui (〈Y,mei 〉u−〈Y u,mei 〉1+ Y ∗((mu)ei ))

+u j 〈 fi j + 8δi jηi m, Y u〉ei

− ui u j Y ∗ fi j −〈CY, u〉u+〈C(Y u), u〉1
))
= 0,

The left side of (3-24) has the form (Y u)L(Y, u)+ Y F(Y, u), where L(Y, u) and
F(Y, u) are (R-) linear operators on O for every u ∈ O′. By [N 2004, Lemma 6],
for every unit octonion u ∈ O′, L(Y, u) = 〈a(u), Y 〉1+ 〈t (u), Y 〉u + Y ∗ p(u) for
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some functions a, t, p : S6
⊂O′→O. Extending a, t, p by homogeneity (of degree

1, 0, 1 respectively) to O′ we obtain

C(Y u)−
7∑

i, j=1

u j 〈 fi j + 8δi jηi m, Y 〉ei = 〈a(u), Y 〉1+〈t (u), Y 〉u+ Y ∗ p(u)

for all u ∈ O′. Moreover, p(u) = −a(u), since C(Y ) ⊥ 1. By the linearity of the
left side in u, we get

〈a(u1+ u2)− a(u1)− a(u2), Y 〉1+〈t (u1+ u2)− t (u1), Y 〉u1

+〈t (u1+ u2)− t (u2), Y 〉u2+ Y ∗(a(u1+ u2)− a(u1)− a(u2))= 0

for all u1, u2 ∈O′. Then Y ∗(a(u1+ u2)−a(u1)−a(u2)) ∈ Span(1, u1, u2) for all
Y ∈ O, which is only possible when a(u) is linear, that is, a(u) = Bu for some
(R-)linear operator B :O′→O. It follows that t (u1+u2)= t (u1)= t (u2), that is,
t ∈O is a constant. So

C(Y u)=
7∑

i, j=1

u j 〈 fi j + 8δi jηi m, Y 〉ei +〈Bu, Y 〉1+〈t, Y 〉u− Y ∗Bu.

Taking the inner product of the both sides with v ∈ O′ and subtracting from
the resulting equation the same equation with u and v interchanged, we obtain
〈C(Y u), v〉 − 〈C(Yv), u〉 = 〈Bv, Y u〉 − 〈Bu, Yv〉, since fi j = f j i by (3-21). It
follows that 〈C tv− Bv, Y u〉 = 〈C t u − Bu, Yv〉, where C t is the operator adjoint
to C . Now taking u ⊥ v and Y = uv, we get

‖u‖2〈C tv− Bv, v〉 = −‖v‖2〈C t u− Bu, u〉,

which implies C = B t . Then from the above,

〈C(Y u), ei 〉 =

7∑
j=1

u j 〈 fi j + 8δi jηi m, Y 〉+ 〈t, Y 〉ui −〈Bu, Y ei 〉 = 〈Bei , Y u〉,

so
∑7

j=1 u j ( fi j + δi j (8ηi m+ t))+ (Bu)ei + (Bei )u = 0. Therefore

(3-25) T (Y )=Y ·CY =Y ·B t Y and fi j =−δi j (8ηi m+t)−(Bei )e j−(Be j )ei .

Substituting (3-25) to (3-24) and simplifying, we obtain

−〈Lu · u, Y 〉Y −〈Lu, Y 〉Y u+‖Y‖2Lu · u = 0,

where Lu = 4Bu− tu− 4
∑7

i=1 ηi ui mei . Taking Y ⊥ Lu, Lu · u we get Lu = 0,
so

(3-26) Bu = 1
4 tu+

∑7
i=1 ηi ui mei .
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Substituting (3-26) into the first equation of (3-25) and then into (3-22) and sim-
plifying, we obtain that for arbitrary X,U ∈O,

〈(∇Xρ)U − (∇Uρ)X, X〉

=
3
4(〈t, X〉〈X,U 〉− ‖X‖2〈t,U 〉)+ 6

∑7
i=1 ηi 〈Xei ,U 〉〈mei , X〉.

Polarizing this equation we get

〈(∇Yρ)U − (∇Uρ)Y, X〉+ 〈(∇Xρ)U − (∇Uρ)X, Y 〉

=
3
4(〈t, X〉〈Y,U 〉+ 〈t, Y 〉〈X,U 〉− 2〈X, Y 〉〈t,U 〉)

+ 6
7∑

i=1

ηi (〈Xei ,U 〉〈mei , Y 〉+ 〈Y ei ,U 〉〈mei , X〉).

Subtracting the same equation with X and U interchanged and using the fact that
ρ is symmetric, we get (3-19c). The second equation of (3-25) and (3-26) give
fi i =−6ηi m− t/2, which by (3-21) implies (3-19d). �

Lemma 3.7. In the assumptions of Theorem 3.1, let x ∈ M ′, where M ′ ⊂ Mn is
defined in Lemma 3.2. Then there exists a neighborhood U = U(x) and a smooth
metric on U conformally equivalent to the original metric whose curvature tensor
has the form (3-1), with ρ a multiple of the identity.

Proof. Let x ∈ M ′ and let U be the neighborhood of x on which the Weyl tensor
has the smooth Clifford structure defined in Lemma 3.2. We can assume that
ν > 0, since in the case of a Cliff(0) structure, the curvature tensor given by (3-1)
has the form R(X, Y )Z = 〈X, Z〉ρY +〈ρX, Z〉Y −〈Y, Z〉ρX −〈ρY, Z〉X , so the
Weyl tensor vanishes. Then the metric on U is locally conformally flat, that is, is
conformally equivalent to a one with ρ = 0.

If n = 8 and ν = 7, and all the ηi at x are equal, then they are equal at some
neighborhood of x (by the definition of M ′). By Remark 3.4, we can replace ρ
by ρ + 3η1/2 id and ηi by 0 = ηi − η1 in (3-1), thus arriving at the case ν = 0
considered above.

For the remaining part of the proof, we will assume that in the case n = 8 and
ν = 7, at least two of the ηi at x are different; up to relabeling, let η1 6= η2 at x and
also on a neighborhood of x (replace U by a smaller neighborhood if necessary).
Let f be a smooth function on U and let 〈 · , ·〉′= e f

〈 · , ·〉. Then W ′=W , J ′i = Ji ,
η′i = e− f ηi and on functions, ∇ ′ = e− f

∇, where we use the prime for objects
associated to the metric 〈 · , · 〉′. Moreover, the curvature tensor R′ still has the
form (3-1), and all the identities of Lemmas 3.5 and 3.6 remain valid.

In the cases considered in Lemma 3.5, the ratios ηi/η1 are constant, which fol-
lows from (3-5d) and (3-6c). In particular, taking f = ln|η1| we obtain that η′1 is a
constant, so all the η′i are constant; m′i = 0 by (3-5d), so (∇ ′Yρ

′)U − (∇ ′Uρ
′)Y = 0
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by (3-6a). In the case n = 8 and ν = 7 (Lemma 3.6), take f = ln|η1 − η2|.
Then by (3-19d), we have ∇ f = −4m and ∇ ′η′i = −(1/2)e

−2 f t , which imply
m′ = −(1/4)∇ ′ ln|η′1 − η

′

2| = 0 and t ′ = e−2 f t , again by (3-19d) for the metric
〈 · , · 〉′. Then by (3-19c), we have (∇ ′Xρ

′)U−(∇ ′Uρ
′)X = (3/4)(X∧′U )t ′. By Re-

mark 3.4, we can replace ρ ′ by ρ̃=ρ ′+(3/2)(η′1+C) id and η′i by η̃i =η
′

i−(η
′

1+C)
without changing the curvature tensor R′ given by (3-1). (Here C is a constant
chosen in such a way that η̃i 6= 0 anywhere on U.) Then by (3-19c) and (3-19d),
(∇ ′X ρ̃)U − (∇

′

U ρ̃)X = 0 for the metric 〈 · , · 〉′.
Dropping the primes and the tildes, we obtain that, up to a conformal smooth

change of the metric on U, the curvature tensor has the form (3-1), with ρ satisfying
the identity

(∇Yρ)X = (∇Xρ)Y for all X, Y ,

that is, with ρ being a symmetric Codazzi tensor.
Then by [Derdziński and Shen 1983, Theorem 1], at every point of U for any

three eigenspaces Eβ, Eγ , Eα of ρ with α /∈ {β, γ }, the curvature tensor satisfies
R(X, Y )Z = 0 for all X ∈ Eβ , Y ∈ Eγ and Z ∈ Eα. It then follows from (3-1) that

(3-27)
ν∑

i=1

ηi (2〈Ji X, Y 〉Ji Z +〈Ji Z , Y 〉Ji X −〈Ji Z , X〉Ji Y )= 0

for all X ∈ Eβ, Y ∈ Eγ , Z ∈ Eα, with α /∈ {β, γ }.

Suppose ρ is not a multiple of the identity. Let E1, . . . , E p for p ≥ 2 be the
eigenspaces of ρ. If p > 2, write E ′1 = E1 and E ′2 = E2 ⊕ · · · ⊕ E p. Then by
linearity, (3-27) holds for any X, Y ∈ E ′α and Z ∈ E ′β such that {α, β} = {1, 2}.
Hence to prove the lemma it suffices to show that (3-27) leads to a contradiction in
the assumption p=2. For the rest of the proof, suppose that p=2. Let dα=dim Eα
with d1 ≤ d2.

Choose Z ∈ Eα, X, Y ∈ Eβ , α 6= β, and take the inner product of (3-27)
with X . We get

∑ν
i=1 ηi 〈Ji X, Y 〉〈Ji X, Z〉 = 0. It follows that for every X ∈

Eα, the subspaces E1 and E2 are invariant subspaces of the symmetric operator
R̂X ∈ End(Rn) defined by R̂X Y =

∑ν
i=1 ηi 〈Ji X, Y 〉Ji X . So R̂X commutes with

the orthogonal projections πβ : Rn
→ Eβ for β = 1, 2. Then for all α, β = 1, 2

(α and β can be equal), all X ∈ Eα and all Y ∈ Rn , we have

ν∑
i=1

ηi 〈Ji X, πβY 〉Ji X =
ν∑

i=1

ηi 〈Ji X, Y 〉πβ Ji X.

Taking Y = J j X we get that πβ J j X ⊂ JX ; that is, πβJX ⊂ JX for all X ∈ Eα
with α, β = 1, 2. Since π1+π2= id, we obtain JX ⊂ π1JX⊕π2JX ⊂JX ; hence
JX = π1JX ⊕ π2JX . Since every function fαβ : Eα→ Z, X 7→ dimπβJX with
α, β = 1, 2 is lower semicontinuous, and fα1(X) + fα2(X) = ν for all nonzero
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X ∈ Eα, there exist constants cαβ with cα1 + cα2 = ν such that dimπβJX = cαβ
for all α, β = 1, 2 and all nonzero X ∈ Eα.

Let X, Y ∈ Eα, Z ∈ Eβ and β 6= α. Taking the inner product of (3-27) with
J j Z for j = 1, . . . , ν, we get

2η j 〈J j X, Y 〉‖Z‖2 =
∑
i 6= j

ηi (〈Ji Z , X〉〈Ji Y, J j Z〉− 〈Ji Z , Y 〉〈Ji X, J j Z〉).

Since 〈Ji Z , X〉 = 〈Jiπβ Z , X〉 = −〈Z , πβ Ji X〉 (and similarly for 〈Ji Z , Y 〉), the
right side, viewed as a quadratic form of Z ∈ Eβ , vanishes for all Z in the inter-
section of πβJX)⊥ and (πβJY )⊥, that is, on a subspace of dimension at least
dβ − 2cαβ . So for α 6= β, either 2cαβ ≥ dβ , or JEα ⊥ Eα, that is, πβJX = JX for
all X ∈ Eα, so cαβ = ν.

Similarly, if Z ∈ Eα, X, Y ∈ Eβ and β 6= α, the inner product of (3-27) with
J j X for j = 1, . . . , ν gives

η j 〈J j Z , Y 〉‖X‖2 =
ν∑

i=1

ηi (−2〈Ji X, Y 〉〈Ji Z , J j X〉+ 〈Ji Z , X〉〈Ji Y, J j X〉).

Because

〈Ji X, Y 〉 = −〈X, πβ Ji Y 〉 and 〈Ji Z , X〉 = −〈X, πβ Ji Z〉,

the right side, viewed as a quadratic form of X ∈ Eβ , vanishes on the intersection
of (πβJY )⊥ and (πβJZ)⊥, whose dimension is at least dβ− cαβ− cββ . We obtain
that for α 6= β, either cαβ + cββ ≥ dβ , or JEα ⊥ Eβ , that is, πβJZ = 0 for all
Z ∈ Eα, so cαβ = 0. Since cαβ = 0 contradicts both 2cαβ ≥ dβ and cαβ = ν (since
ν > 0), we must have cαβ + cββ ≥ dβ . Then 2ν =

∑
αβ cαβ ≥ d1+ d2 = n.

This proves the lemma in all the cases when 2ν < n, that is, in all the cases
except for n = 8 and ν ≥ 4 (which follows from Lemma 2.4).

Consider the case n = 8. We identify R8 with O and assume that the Ji act
as in (2-5). Let D : O→ O be the symmetric operator defined by D1 = 0 and
Dei = ηi ei . By (2-4), condition (3-27) still holds if we replace D by D + cIm,
where Im is the operator of taking the imaginary part of an octonion. So we can
assume that the eigenvalue of the maximal multiplicity of D|O′ is zero (one of
them, if there are more than one). Then in (3-27), ν = rk D. By construction, we
have ν ≤ 6, and we only need to consider the cases when ν ≥ 4, as shown above.

By (2-5),
〈Ji X, Y 〉Ji Z = 〈Xei , Y 〉Zei = 〈ei , X∗Y 〉Zei ,

so
ν∑

i=1

ηi 〈Ji X, Y 〉Ji Z =
ν∑

i=1

ηi 〈ei , X∗Y 〉Zei =

7∑
i=1

〈Dei , X∗Y 〉Zei = Z D(X∗Y ),
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since D is symmetric and D1= 0. Then (3-27) can be rewritten as

(3-28) 2Z D(X∗Y )+ X D(Z∗Y )− Y D(Z∗X)= 0

for all X, Y ∈ Eβ , Z ∈ Eα an α 6= β.

Taking the inner product of (3-28) with X (and using the fact that D is symmetric,
D1= 0 and Y ∗X = 2〈X, Y 〉1− X∗Y ), we obtain 〈D(X∗Y ), X∗Z〉 = 0. It follows
that for every X ∈ Eβ , the subspaces E1 and E2 are invariant subspaces of the
symmetric operator L X DL t

X , where L X : O→ O is the left multiplication by X
(note that L X∗ = L t

X and that L X DL t
X coincides with the operator R̂X introduced

above). So L X DL t
X commutes with both orthogonal projections πα :R8

→ Eα for
α= 1, 2. It follows that for every α, β (not necessarily distinct) and every X ∈ Eβ ,
the operator D commutes with L t

XπαL X = ‖X‖2πX∗Eα , that is,

(3-29) X∗Eα is an invariant subspace of D for all α, β, and all X ∈ Eβ .

Consider all the possible cases for the dimensions dα of the subspaces Eα.
Let (d1, d2)= (1, 7), and let u be a nonzero vector in E1. Then by (3-29), every

line spanned by X∗u with X ⊥ u (that is, every line in O′) is an invariant subspace
of D. It follows that D|O′ is a multiple of the identity, which is a contradiction
since rk D = ν for 4≤ ν ≤ 6.

Let (d1, d2)= (2, 6), and let E1=Span(u, ue) for e∈O′, and let ‖e‖=‖u‖= 1.
Then E2 = uL , where L = Span(1, e)⊥. Let U be any element of L . By (3-29)
with Eα = E1 and X = uU∗ = −uU ∈ E2, every two-plane Span(U, (Uu∗)(ue))
is an invariant subspace of D. Note that (Uu∗)(ue) ∈ L , and that the operator J
defined by JU = (Uu∗)(ue) is an almost Hermitian structure on L . Then L is an
invariant subspace of D since it is as the sum of invariant subspaces Span(U, JU )
and J D|LU ∈ Span(U, JU ) (since Span(U, JU ) is both J - and D|L -invariant).
From Lemma 2.7(1), it follows that the operator J D|L is a linear combination of
id|L and J . Since D is symmetric and its eigenvalue of maximal multiplicity is
zero, we have D|L = 0. Then ν = rk D ≤ 1, which is a contradiction.

For the cases (d1, d2) = (3, 5), (4, 4), we use the notion of Cayley plane. A
four-dimensional subspace C ⊂ O is called a Cayley plane if X (Y ∗Z) ∈ C for
orthonormal octonions X, Y, Z ∈ C. This definition coincides with [Harvey and
Lawson 1982, Definition IV.1.23], if we disregard the orientation. We will need the
following properties of the Cayley plane (they can be found in [ibid., Section IV]
or proved directly):

(i) A Cayley plane is well defined; moreover, if X (Y ∗Z) ∈ C for some triple
X, Y, Z of orthonormal octonions in C, then the same is true for any (possibly
nonorthonormal) triple X, Y, Z ∈ C.
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(ii) If C is a Cayley plane, then the subspace X∗C is the same for all nonzero
X ∈ C; we call this subspace C∗C.

(iii) If C is a Cayley plane, then C⊥ is also a Cayley plane and C⊥∗C⊥ = C∗C.
Moreover, for all nonzero X ∈C⊥, the subspace X∗C is the same and is equal
to (C∗C)⊥.

(iv) For every nonzero e ∈ O and every pair of orthonormal imaginary octonions
u, v, the subspace C= Span(e, eu, ev, (eu)v) is a Cayley plane; every Cayley
plane can be obtained in this way.

Let (d1, d2) = (3, 5). Then E1 is contained in a Cayley plane C (spanned by
E1 and X (Y ∗Z) for some orthonormal vectors X, Y, Z ∈ E1), so C⊥ ⊂ E2. Let U
be a unit vector in the orthogonal complement to C⊥ in E2. Then X∗E2 = C∗C⊕

R(X∗U ) for every nonzero X ∈ C⊥ by properties (ii) and (iii). Since for any two
invariant subspaces of a symmetric operator, their intersection and the orthogonal
complement to it in each of them are also invariant, it follows from (3-29) that both
C∗C and every line R(X∗U ) with X ∈ C⊥ are invariant subspaces of D. Then D
restricts to a multiple of the identity on the four-dimensional space (C⊥)∗U . Since
the eigenvalue of maximal multiplicity of D is zero, R1⊕ (C⊥)∗U ⊂Ker D. Then
ν = rk D ≤ 3, which is again a contradiction.

Let now d1 = d2 = 4. First suppose E1 is not a Cayley plane. Let X1 and X2

be orthonormal vectors in E1. Then X∗1 E1∩ X∗2 E1 contains Span(1, X∗1 X2), since
X∗2 X1 = −X∗1 X2. Also, for any unit vector Y ∈ X∗1 E1 ∩ X∗2 E1 orthogonal to
Span(1, X∗1 X2), we have Y = X∗1 X3 = X∗2 X4 for some X3, X4 ∈ E1 such that
X3, X4 ⊥ X1, X2, which implies X2(X∗1 X3) = X4 ∈ E1, so E1 is a Cayley plane
by property (i). It follows that X∗1 E1 ∩ X∗2 E1 = Span(1, X∗1 X2). Since by (3-29)
both subspaces on the left side are invariant under D and since R1 is an invari-
ant subspace of D, we obtain that every line R(X∗1 X2) for X1, X2 ∈ E1 is an
invariant subspace of D (that is, X∗1 X2 is an eigenvector of D). Then the space
L = Span(E∗1 E1) lies in an eigenspace of D, so D|L is a multiple of id|L . If
X1, X2, X3 ∈ E1 are orthonormal, then X∗2 X3 /∈ X∗1 E1, since E1 is not a Cayley
plane. So dim L ≥ 5. Since the eigenvalue of maximal multiplicity of D is zero,
ν = rk D ≤ 3, a contradiction.

Let again d1 = d2 = 4, and let E1 be a Cayley plane. Then E2 = (E1)
⊥ is also a

Cayley plane by property (iii). Also, by the same property, E∗1 E1= E∗2 E2=V1 and
E∗1 E2 = E∗1 E2 = V2, where V1 and V2 are mutually orthogonal four-dimensional
subspaces of O, and 1∈V1. From (3-29), both V1 and V2 are invariant under D. Let
X, Y ∈ E1 and Z ,W ∈ E2, with X, Z 6= 0, and let u= X−1Y and v= Z−1W . Since
X−1
=‖X‖−2 X∗, we have L X−1 E1= V1 by property (ii). Similarly, L Z−1 E2= V1.

Taking the inner product of (3-28) with W we obtain

2‖Z‖2‖X‖2〈Du, v〉− 〈D(Z∗(Xu)), Z∗(Xv)〉 = −〈D(Z∗X), Z∗((Xu)v)〉
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for all X ∈ E1, Z ∈ E2 and u, v ∈ V1. The left side is symmetric in u, v. Since
(Xu)v=−(Xv)u for any u⊥v with u, v⊥1, we obtain 〈D(Z∗X), Z∗((Xu)v)〉=0
for all u, v ∈ V1 with u ⊥ v and u, v ⊥ 1, and all X ∈ E1 and Z ∈ E2. Given any
nonzero orthogonal X, X ′ ∈ E1, we can find u, v ∈ V1 with u ⊥ v and u, v ⊥ 1
such that X ′ = (Xu)v. To see this, note that Xu ∈ E1 for every u ∈ V1 = E∗1 E1 by
property (i). Since L X is nonsingular, L X (V1∩1⊥) is a three-dimensional subspace
of E1. The same is true with X replaced by X ′. Therefore Xu = X ′v for some
u, v ∈ V1∩1⊥; hence X ′ =−‖v‖−2(Xu)v. Since X ′ ⊥ X , we get 〈X, (Xu)v〉 = 0,
so u⊥v. Thus 〈D(Z∗X), Z∗X ′〉=0 for any Z ∈ E2 and any orthogonal X, X ′∈ E1.
Since Z∗E1 = V2 for any nonzero Z ∈ E2 by properties (ii) and (ii), and since the
operator L Z∗ is orthogonal when ‖Z‖ = 1, we get 〈Dv1, v2〉 = 0 for any two
orthogonal vectors v1, v2 ∈ V2. It follows that the restriction of D to its invariant
subspace V2 is a multiple of the identity. Since V2⊂O′ and the eigenvalue of D|O′
of maximal multiplicity is zero, we obtain R1⊕ V2 ⊂ Ker D. Then ν = rk D ≤ 3,
which is a contradiction. �

Remark 3.8. It follows from the proof of Lemma 3.7 that the algebraic statement
“a symmetric operator satisfying (3-27) is a multiple of the identity” is valid when
2ν < n. In particular, when n= 16, it remains true if we relax the restrictions ν ≤ 4
of Theorem 3.1 to ν 6= 8 (as for n = 16 and ν ≤ 8 by (2-3)).

Lemma 3.7 implies Theorem 3.1 at the generic points. Indeed, by Lemma 3.7,
every x ∈M ′ has a neighborhood U that is either conformally flat or is conformally
equivalent to a Riemannian manifold whose curvature tensor has the form (3-1),
with ρ being a multiple of the identity, that is, whose curvature tensor has a Clifford
structure. It follows from [N 2003, Theorem 1.2] and [N 2004, Proposition 2] that
U is conformally equivalent to an open subset of one of five model spaces: the
rank-one symmetric spaces CPn/2, CH n/2, HPn/4 or HH n/4, or Euclidean space.

To prove Theorem 3.1 in full, we show first that the same is true for any x ∈Mn ,
and second that the model space, to a domain of which U is conformally equivalent,
is the same for all x ∈ Mn .

We normalize the standard metric g̃ on each of the spaces CPn/2, CH n/2, HPn/4

and HH n/4 so that the sectional curvature Kσ satisfies |Kσ | ∈ [1, 4]. Then the
curvature tensor of each has a Clifford structure Cliff(ν; J1, . . . , Jν; ε, ε, . . . , ε).
Here ν = 1, 3 and ε = ±1. The Ji are smooth anticommuting almost Hermitian
structures with J1 J2 =±J3 when ν = 3, and satisfy

∇̃Z Ji =

m∑
j=1

ω
j
i (Z)J j ,

where ω j
i are smooth 1-forms with ω j

i +ω
i
j =0 and ∇̃ is the Levi-Civita connection

for g̃. Denote the corresponding spaces by Mν,ε and their Weyl tensors by Wν,ε,
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so that
M1,1 = (CPn/2, g̃), M1,−1 = (CH n/2, g̃),

M3,1 = (HPn/4, g̃), M3,−1 = (HH n/4, g̃).

We start with a technical lemma:

Lemma 3.9. Let (N n, 〈 · , · 〉) be a smooth Riemannian space locally conformally
equivalent to one of the Mν,ε, so that g̃ = f 〈 · , · 〉 for a positive smooth func-
tion f = e2φ

: N n
→ R. Then the curvature tensor R and the Weyl tensor W of

(N n, 〈 · , · 〉) satisfy

R(X, Y )= (X ∧ K Y + K X ∧ Y )+ ε f (X ∧ Y + T (X, Y )), where(3-30a)

T (X, Y )=
∑ν

i=1(Ji X ∧ Ji Y + 2〈Ji X, Y 〉Ji ),

K = H(φ)−∇φ⊗∇φ+ 1
2‖∇φ‖

2 id,

W (X, Y )=Wν,ε(X, Y )= ε f (− 3ν
n−1 X ∧ Y + T (X, Y )),(3-30b)

‖W‖2 = Cνn f 2, where Cνn = 6νn(n+ 2)(n− ν− 1)(n− 1)−1,(3-30c)

(∇Z W )(X, Y )= εZ f (− 3ν
n−1 X ∧ Y + T (X, Y ))(3-30d)

+
1
2ε([T (X, Y ),∇ f ∧ Z ] + T ((∇ f ∧ Z)X, Y )

+ T (X, (∇ f ∧ Z)Y )),

where X ∧ Y is the linear operator defined by (X ∧ Y )Z = 〈X, Z〉Y − 〈Y, Z〉X ,
H(φ) is the symmetric operator associated to the Hessian of φ, and both ∇ and
the norm are computed with respect to 〈 · , · 〉.

Proof. The curvature tensor of Mν,ε has the form

R̃(X, Y )= ε(X∧̃Y +
∑ν

i=1(Ji X∧̃Ji Y + 2g̃(Ji X, Y )Ji )),

where (X∧̃Y )Z = g̃(X, Z)Y − g̃(Y, Z)X . Under the conformal change of metric,
the curvature tensor transforms as R̃(X, Y ) = R(X, Y )− (X ∧ K Y + K X ∧ Y ).
Since g̃(X, Y ) = f 〈X, Y 〉 and X∧̃Y = f (X ∧ Y ) and because the Ji remain anti-
commuting almost Hermitian structures for 〈 · , · 〉, Equation (3-30a) follows.

The fact that the Weyl tensor has the form (3-30b) follows from the definition
of W ; the norm of W can be computed directly using that the Ji are orthogonal
and that J1 J2 =±J3 when ν = 3.

From

∇̃Z Ji =
∑ν

j=1 ω
j
i (Z)J j and ∇̃Z X =∇Z X + ZφX + XφZ −〈X, Z〉∇φ,

where ∇̃ is the Levi-Civita connection for g̃, we get

∇Z Ji =
∑ν

j=1 ω
j
i (Z)J j + [Ji ,∇φ ∧ Z ]
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(where we used the fact that [Ji , X ∧ Y ] = Ji X ∧ Y + X ∧ Ji Y ). Then

(∇Z T )(X, Y )= [T (X, Y ),∇φ ∧ Z ] + T ((∇φ ∧ Z)X, Y )+ T (X, (∇φ ∧ Z)Y ),

which, together with (3-30b), proves (3-30d). �

For every point x ∈M ′, there exists a neighborhood U of x and a positive smooth
function f : U→ R such that the Riemannian space (U(x), f 〈 · , · 〉) is isometric
to an open subset of one of the five model spaces (Mν,ε or Rn), so at every point
x ∈M ′, the Weyl tensor W of Mn either vanishes or has the form given in (3-30b).
The Jacobi operators associated to the different Weyl tensors Wν,ε in (3-30b) differ
by their multiplicities and the signs of their eigenvalues, so every point x ∈ M ′ has
a neighborhood conformally equivalent to a domain of exactly one of the model
spaces. Moreover, the function f > 0 is well defined at all the points where W 6= 0,
since ‖W‖2 = Cνn f 2 by (3-30c).

By continuity, the Weyl tensor W of Mn either has the form Wν,ε or vanishes at
every point x ∈ Mn (since M ′ is open and dense in Mn — see Lemma 3.2). More-
over, every point x ∈Mn at which the Weyl tensor has the form Wν,ε has a neighbor-
hood in which the Weyl tensor has the same form. Hence Mn

=M0∪
⋃
α Mα, where

M0={x :W (x)= 0} is closed, and every Mα is a nonempty open connected subset
with ∂Mα ⊂ M0 such that the Weyl tensor has the same form Wν,ε =Wν(α),ε(α) at
every point x ∈ Mα. In particular, since Mα ⊂ M ′, each Mα is locally conformal
to one of the model spaces Mν,ε.

If M=M0 or if M0=∅, the theorem is proved. Otherwise, suppose that M0 6=∅
and that there exists at least one component Mα. Let y ∈ ∂Mα ⊂ M0 and let Bδ(y)
be a small geodesic ball of M centered at y that is strictly geodesically convex
(any two points from B(y) can be connected by a unique geodesic segment lying in
Bδ(y), and that segment realizes the distance between them). Let x ∈ Bδ/3(y)∩Mα

and let r = dist(x,M0). Then the geodesic ball B= Br (x) lies in Mα and is strictly
convex. Moreover, ∂B contains a point x0 ∈ M0. Replacing x by the midpoint of
the segment [xx0] and r by r/2, if necessary, we can assume that all the points
of ∂B, except for x0, lie in Mα.

The function f is positive and smooth on B \ {x0} (that is, on an open subset
containing B \ {x0}, but not containing x0). We are interested in the behavior of
f (x) when x ∈ B approaches x0.

Lemma 3.10. When x→ x0 while staying in B, both f and ∇ f have a finite limit.
Moreover, limx→x0,x∈B f (x)= 0.

Proof. The fact that limx→x0,x∈B f (x) = 0 follows from (3-30c) and the fact that
W |x0 = 0 (since x0 ∈ M0).
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Since the Riemannian space (B, f 〈 · , · 〉) is locally isometric to a rank-one
symmetric space Mν,ε and is also simply connected, there exists a smooth iso-
metric immersion ι : (B, f 〈 · , · 〉) → Mν,ε. Since f is smooth on B \ {x0} and
limx→x0,x∈B f (x)=0, the range of ι is a bounded domain in Mν,ε. Moreover, since
limx→x0,x∈B f (x)= 0, every sequence of points in B converging to x0 in the metric
〈 · , · 〉 is a Cauchy sequence for the metric f 〈 · , · 〉. It follows that there exists a limit
limx→x0,x∈B ι(x)∈Mν,ε. Defining for every x ∈ B the point J|x=Span(J1, . . . , Jν)
in the Grassmanian G(ν,

∧2Tx Mn), we find that there exists a limit

lim
x→x0,x∈B

J|x =: J|x0 ∈ G(ν,
∧2 Tx0 Mn).

In particular, if Z is a continuous vector field on B, then there exists a unit contin-
uous vector field Y on B such that Y ⊥ Z ,JZ on B. For such two vector fields,
the function

θ(Y, Z)= 〈
∑n

j=1(∇E j W )(E j , Y )Y, Z〉

(where E j is an orthonormal frame on B) is well defined and continuous on B.
Using (3-30d), we obtain by a direct computation that at the points of B,

θ(Y, Z)=
ε(n− 3)
2(n− 1)

〈(3ν∇ f ∧Y −(n−1)T (∇ f, Y ))Y, Z〉 =
−3εν(n− 3)

2(n− 1)
〈∇ f, Z〉

(where we used that ‖Y‖ = 1 and Y ⊥ Z ,JZ ). Since θ(Y, Z) is continuous on B,
there exists a limit limx→x0,x∈B Z f . Since Z is an arbitrary continuous vector field
on B, ∇ f has a finite limit when x→ x0 while staying in B. �

Since limx→x0,x∈B f (x) = 0 and the Ji are orthogonal, the second term on the
right side of (3-30a) tends to 0 when x→ x0 in B. Therefore the (3,1) tensor field
defined by (X, Y )→ (X ∧ K Y + K X ∧ Y ) has a finite limit (namely R|x0) when
x → x0 in B. It follows that the symmetric operator K has a finite limit at x0.
Computing the trace of K and using the fact that φ = 1

2 ln f , we get

(3-31) 4u = Fu on B, where u = f (n−2)/4 and F = 1
2(n− 2)Tr K .

Both functions F and u are smooth on B \{x0} and have a finite limit at x0. More-
over, limx→x0,x∈B u(x) = 0 by Lemma 3.10 and u(x) > 0 for x ∈ B \ {x0}. The
domain B is a small geodesic ball, so it satisfies the inner sphere condition (the
radii of curvature of the sphere ∂B are uniformly bounded). By the boundary
point theorem [Fraenkel 2000, Section 2.3], the inner directional derivative of u
at x0 (which exists by Lemma 3.10 if we define u(x0)=0 by continuity) is positive.

Since ∇u = (1/4)(n − 2) f (n−6)/4
∇ f in B, we arrive at a contradiction with

Lemma 3.10 in all cases except for n= 6. To finish the proof in that case, we show
that the limit limx→x0,x∈B ∇ f (x), which exists by Lemma 3.10, is zero. When
n = 6, we have ν = 1 by (2-3), so T (X, Y ) = J X ∧ JY + 2〈J X, Y 〉J , where
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J = J (x) is smooth on B \ {x0} and has a limit when x→ x0 while in B (see the
proof of Lemma 3.10). Using the covariant derivative of T computed in Lemma 3.9
and (3-30d), we obtain that on B,

(∇U∇Z W )(X, Y )

= ε〈H( f )U, Z〉(−3
5 X ∧ Y + T (X, Y ))

+
1
2ε([T (X, Y ), H( f )U∧Z ]+T ((H( f )U∧Z)X, Y )+T (X, (H( f )U∧Z)Y ))

+
1
2ε f −1 Z f ([T (X, Y ),∇ f ∧U ] + T ((∇ f ∧U )X, Y )+ T (X, (∇ f ∧U )Y ))

+
1
4ε f −1

[[T (X, Y ),∇ f ∧U ] + T ((∇ f ∧U )X, Y )

+ T (X, (∇ f ∧U )Y ),∇ f ∧ Z ]

+
1
4ε f −1([T ((∇ f ∧ Z)X, Y ),∇ f ∧U ] + T ((∇ f ∧U )(∇ f ∧ Z)X, Y )

+ T ((∇ f ∧ Z)X, (∇ f ∧U )Y ))

+
1
4ε f −1([T (X, (∇ f ∧ Z)Y ),∇ f ∧U ] + T ((∇ f ∧U )X, (∇ f ∧ Z)Y )

+ T (X, (∇ f ∧U )(∇ f ∧ Z)Y )),

where H( f ) is the symmetric operator associated to the Hessian of f . Taking
U = Z = E j , where {E j } is an orthonormal basis, and summing up by j we find
after some computation

6∑
j=1

(∇E j∇E j W )(X, Y )

= ε4 f (− 3
5 X ∧ Y + T (X, Y ))− ε f −1

‖∇ f ‖2T (X, Y )

+ ε f −1(T (X, Y )∇ f ∧∇ f + T ((X ∧ Y )∇ f,∇ f ))

+
3
2ε f −1(∇ f ∧ (X ∧ Y )∇ f + J∇ f ∧ (X ∧ Y )J∇ f ).

Since both ∇ f and J are smooth on B \ {x0} and have limits when x→ x0 while
in B, there exist unit vector fields X and Y that are continuous on B and satisfy
IX,IY ⊥∇ f and IX ⊥ IY . For such X and Y ,

6∑
j=1

(∇E j∇E j W )(X, Y )= ε4 f (− 3
5 X ∧ Y + J X ∧ JY )− ε f −1

‖∇ f ‖2 J X ∧ JY.

Since the left side is continuous on B and limx→x0,x∈B 4 f = 0 by (3-31) and
Lemma 3.10, we obtain that the field f −1

‖∇ f ‖2 J X ∧ JY of skew-symmetric
operators has a limit at x0. Taking the trace of its square, we find that there exists
a limit limx→x0,x∈B f −2

‖∇ f ‖4, which implies limx→x0,x∈B ∇ f = 0 by Lemma
3.10. We again arrive at a contradiction with the boundary point theorem for the
function u = f satisfying (3-31). �
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the Weyl conformal tensor”, pp. 195–203 in PDEs, submanifolds and affine differential geome-
try, edited by B. Opozda et al., Banach Center Publications 69, Polish Acad. Sci., Warsaw, 2005.
MR 2006k:53044 Zbl 1091.53007
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