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We study the singularities of the Bergman and Szegő kernels for domains
� = {(z1, z2) ∈ C2 | Im z2 > b(Re z1)}. Here b is an even function in C∞(R)
satisfying b(0) = b′(0) = 0, b′′(r) > 0 for r 6= 0, and vanishing to infinite
order at r = 0. A model example is b(r) = exp(−|r|−a) for |r| small and
b(r) = r2m for |r| large, with a,m > 0. If 1 ⊂ ∂�× ∂� is the diagonal of
the boundary, our results show in particular that if 0 < a < 1 the Bergman
and Szegő kernels extend smoothly to �×� \1, while if a ≥ 1 the kernels
are singular at points on �×� \1.

1. Introduction

If �⊂ Cn is a domain, let O(�) denote the space of holomorphic functions on �.
The associated Bergman projection B= B� is the orthogonal projection of L2(�)

onto the closed subspace B2(�)= L2(�)∩O(�) of square-integrable holomorphic
functions on �. If � has smooth boundary ∂�, the Szegő projection S = S� is
the orthogonal projection of L2(∂�) onto the closed subspace H 2(�) of square-
integrable boundary values of holomorphic functions. These operators have inte-
gral representations

B[ f ](z)=
∫
�

B(z, w) f (w)dw,(1-1)

S[ f ](z)=
∫
∂�

S(z, w) f (w)dσ(w),(1-2)

where dw denotes Lebesgue measure on � and dσ is an appropriate measure
on ∂�. The functions B and S are known respectively as the Bergman and Szegő
kernels. In this paper we study the boundary behavior of these kernels on model
domains for which the boundary has infinitely flat points but does not contain any
analytic disks. Our main result is that in certain cases these kernels have singular-
ities on the boundary of the domain away from the diagonal of the boundary.
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Explicitly, let b ∈ C∞(R), and put

(1-3) �= {(z1, z2) ∈ C2
| =m(z2) > b(<e(z1))}.

Then � is pseudoconvex if and only if b is convex, � is of finite type if and only
if b′′(r) vanishes to at most finite order at any point r ∈ R, and ∂� contains an
analytic disk if and only if b′′(r) = 0 on some nonempty open interval I ⊂ R. In
this paper, we consider the case in which b is convex and even, and b′′(r) vanishes
to infinite order at the point r = 0 but is nonzero at all other points. We assume
that for large |r | the function b behaves like a convex polynomial. The motivating
examples for our analysis are the functions b given for small |r | by

(1-4) b(r)= exp(−|r |−a)

for a > 0. In this case, the behavior of the kernels B and S on ∂�× ∂� depends
on the size of a. As particular examples of our main results, we show

(i) if 0 < a < 1, the Bergman and Szegő kernels for � extend smoothly to
�×� \1, where 1 = {(z, w) ∈ ∂�× ∂� | z = w} is the diagonal of the
boundary;

(ii) if a > 1, the kernels are singular precisely at all points of 1∪6 ⊂ ∂�× ∂�
where

(1-5) 6 = {(z, w) ∈ ∂�× ∂� | <e(z1)=<e(w1)= 0,<e(z2)=<e(w2)} ;

(iii) if a= 1, there is a constant ε > 0 such that the kernels are singular at all points
of 1∪6ε , where

(1-6) 6ε = {(z, w) ∈6 | |=m(z1−w1)|< ε}.

1.1. Previous results. There is a huge literature on the boundary behavior of the
Bergman kernel. Here we recall some results dealing with the smooth extension
of the kernel B(z, w) to the boundary of �×�.

First, it is known in many cases that the Bergman kernel for � becomes infinite
on the diagonal 1 of the boundary ∂�. If z ∈ �, let δ(z) be the distance from z
to the boundary ∂�. If � is strictly pseudoconvex, Hörmander [1965] showed that
δ(z)n+1B(z, z) has a finite nonzero limit as z → z0 ∈ ∂�, and hence B(z, z)→
+∞. In [Boas et al. 1995], Boas, Straube, and Yu established the existence of
a finite limit for δ(z)m B(z, z) for a much more general class of domains. Here
m is a constant that depends on certain boundary invariants of the domain at the
boundary point z0. More generally, Pflug [1975; 1982] showed that if � ⊂ Cn is
pseudoconvex and has a C2-boundary, then B(z, z) ≥ Cεδ(z)−2+ε for any ε > 0.
This result was later improved by Ohsawa [1984]. In [1994], Siqi Fu showed that
Pflug’s result holds with ε = 0.
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One can understand the singularity of the Bergman kernel on the diagonal 1 in
terms of the existence of unbounded functions in B2(�). Thus it is well known
(see for example [Krantz 1992]) that the Bergman kernel on the diagonal solves an
extremal problem: If z ∈�, then

(1-7) B(z, z)= sup{| f (z)|2 | f ∈ B2(�) and ‖ f ‖L2(�) ≤ 1}.

Thus if � ⊂ Cn is a domain, if z0 ∈ ∂�, and if there exists a square-integrable
holomorphic function f such that lim supz→z0

| f (z)| = +∞, then the Bergman
kernel is singular at (z0, z0).

On the other hand, it is sometimes possible to prove that the Bergman kernel
extends smoothly to part of �×�. Kerzman [1972] showed that if � ⊂ Cn is a
bounded strictly pseudoconvex domain, then the Bergman kernel B(z, w) extends
to a C∞-function on � × � \ 1. Kerzman’s argument uses J. J. Kohn’s result
on the existence of subelliptic estimates for the ∂̄-Neumann problem in strictly
pseudoconvex domains; see [Kohn 1963; 1964]. Later work of Kohn [1979],
Catlin [1987], and Diederich and Fornaess [1978] established the existence of
subelliptic estimates for bounded weakly pseudoconvex domains of finite type.
Kerzman’s result is true for these domains as well. Other results on the smooth
extension of the Bergman kernel can be found in the work of Bell [1986] and
Boas [1987]. For weakly pseudoconvex domains of finite type, the Bergman kernel
extends to a C∞ function precisely on the set �×� \1.

If the domain � is not of finite type, the situation is less clear. For example,
if the boundary ∂� contains an analytic disk, the singularities of the Bergman
and Szegő kernels can “propagate” along the disk, and thus the kernels can have
singularities away from the diagonal. A simple example is the polydisk in Cn ,
where the Bergman and Szegő kernels are just products of one-dimensional kernels
in each variable. The results of this paper show that the Bergman and Szegő kernels
can be singular away from the diagonal of the boundary even if there are no analytic
disks in the boundary.

When b is a convex polynomial, domains of the form given in (1-3) were dis-
cussed in [Nagel 1986], which gives an explicit integral formula for the Szegő
kernel:

(1-8) S((z1, z2), (w1, w2))=
1

2π2

∫∫
τ>0

eη(z1+w1)+iτ(z2−w2)∫
R

e2(ηr−τb(r)) dr
dηdτ.

That paper estimates this integral, and shows that there is a natural nonisotropic
metric on ∂� relative to which the Szegő projection is a variant of a classical
Calderón–Zygmund operator. The integral formula (1-8) was later used by Christ
and Geller [1992] to obtain examples of the failure of analytic hypoellipticity
in domains of finite type. Haslinger [1995] considered such integrals, and then
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Christ [2002] made a deeper study of this formula.1 The program of studying
the Szegő projection S as a singular integral operator was carried out for general
pseudoconvex domains of finite type in C2 in [Nagel et al. 1988; 1989].

There are closely related problems involving the functions b(r)= exp(−|r |−a)

for which there is a qualitative difference in behavior for a < 1 and for a ≥ 1.
For example, Kusuoka and Stroock [1985] showed that the second order partial
differential operator

(1-9) L = ∂2

∂x2 +
∂2

∂y2 + e−|x |
−a ∂2

∂t2

is hypoelliptic if and only if a < 1. This result has led to considerable further
research; see for example [Christ 2001a; 2001b].

1.2. Plan of the paper. The double integral in (1-8) involves two oscillatory terms:
eiη=m(z1+w1) and eiτ<e(z2−w2). To obtain good estimates for the integral, one needs
to take advantage of these oscillations. When b is a polynomial, this is accom-
plished in [Nagel 1986] essentially through integration by parts. However, if b′′(r)
vanishes to infinite order, it seems that integration by parts in η no longer suffices
to give good estimates. To overcome this difficulty, we will regard the function

(1-10) N (η, τ )=
∫
+∞

−∞

e2(ηr−τb(r)) dr

as a holomorphic function of η, τ ∈ C with <e(τ ) > 0. We can then use Cauchy’s
theorem to change a contour in (1-8). Since the function N (η, τ ) appears in the
denominator, we need information about the location of its zeros. (This is also a
main concern of [Christ and Geller 1992] and [Christ 2002]). In particular, to show
that for a≥ 1 in (1-4), the kernels are singular off the diagonal of the boundary, we
show that the main contribution to the size of the kernel comes from the residue of
N (η, τ )−1 at the smallest zero on the imaginary axis.

The rest of the paper is organized as follows.
In Section 2, we give precise definitions of the Szegő projection and a family of

Bergman projections in weighted L2-spaces. The domain � is unbounded, and we
take this opportunity to show how the usual theory for bounded domains carries
over to this situation.

In Section 3, we introduce appropriate notation and state our basic results.
Theorem 3.4 gives formulas for the Bergman and Szegő kernels. Theorem 3.6
shows that the kernels extend to C∞-functions on appropriate parts of the boundary.
Theorem 3.8 shows that the kernels are singular on the set 6 defined in (1-5).

The proofs of Theorems 3.4 and 3.6 depend on various estimates for integrals
involving convex functions. Rather than prove these results piecemeal, we gather

1See especially [Christ 2002, Lemma 4].
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these technical arguments together in Section 4. In particular, the change in the
contour of integration in (1-8) leads to the integrals in Lemmas 4.17 and 4.18.
These are the key estimates of the paper. To deal with the integrals we need very
precise estimates for the functions ϕ(λ, τ ) and hα(λ− α) that appear there, and
these in turn require the results in the earlier parts of the section.

In Section 5, we study the function N (η, τ ) defined in (1-10) as a function of
complex variables.

Finally, in Sections 6, 7 and 8 we give the proofs of Theorems 3.4, 3.6, and 3.8.

2. Bergman and Szegő projections

The domain � given in (1-3) is unbounded, but most standard discussions of
Bergman and Szegő projections deal with the case of bounded domains. In this
section we give precise definitions of the relevant weighted Bergman spaces B2

ρ(�)

and the space H2(�), and develop enough of the theory in our unbounded context
to allow us to derive formulas such as (1-8) for the Bergman and Szegő projections.

Let b ∈ C∞(R), and suppose b′′(r) ≥ 0, b(r) = b(−r), and b(0) = b′(0) = 0.
As in (1-3), put

�= {(z1, z2) ∈ C2
| =m(z2) > b(<e(z1))} = {(x + iy, t + is) ∈ C2

| b(x)− s < 0}.

We identify the boundary of � with R3 so that (x + iy, t + ib(x)) ∈ ∂� corre-
sponds to (x, y, t) ∈ R3. We take Lebesgue measure dx dy dt as the measure on
the boundary.2

2.1. Weighted Bergman spaces and Bergman projections. For 0≤ρ <1, let dmρ

denote the measure on � given by (s− b(x))−ρdx dy dt ds, and let L2
ρ(�) denote

the space of Lebesgue measurable functions on � that are square integrable with
respect to the measure dmρ . Note that s − b(x) is essentially the distance to the
boundary. The norm in L2

ρ(�) is given by

(2-1) ‖ f ‖2ρ =
∫
�

| f (x, y, t, s)|2(s− b(x))−ρdx dy dt ds.

The weighted Bergman space for the measure dmρ is

(2-2) B2
ρ(�)= {F ∈ O(�) | F ∈ L2

ρ(�)}.

The mean-value property of holomorphic functions implies that for any compact
set K ⊂�, there is a constant CK such that supz∈K | f (z)| ≤CK‖ f ‖ρ if f ∈ B2

ρ(�).

2Lebesgue measure is not the same as the surface area measure dσs on the boundary of�; in fact,
dσs =

√
1+ b′(x)2dx dy dt . Since

√
1+ b′(x)2 is unbounded, using this measure would result in a

different space of boundary values. We choose dx dy dt because we want H2(�) to be the limiting
case as ρ→ 1 of the spaces B2

ρ(�) defined in Section 2.1.
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It follows that B2
ρ(�) is a closed subspace of L2

ρ(�), and the Bergman projection
is the orthogonal projection

(2-3) Bρ : L2
ρ(�)→ B2

ρ(�).

The case ρ = 0 is the standard Bergman space.
The operator Bρ is given by integration against the Bergman kernel Bρ(z, w),

which is defined as follows. Point evaluation f → f (z) is a bounded linear
functional on B2

ρ(�) and hence by the Riesz representation theorem is given by
integrating f (w) against the conjugate of an element bz(w) in B2

ρ(�). Then
Bρ(z, w)= bz(w). The following result is standard; see, e.g., [Krantz 1992].

Proposition 2.2. There exists a unique function Bρ : � × � → C, called the
Bergman kernel, such that

(a) for each w ∈�, the function z→Bρ(z, w) belongs to B2
ρ(�);

(b) Bρ(z, w)=Bρ(w, z) for z, w ∈�;

(c) f (z)=
∫
�

Bρ(z, w) f (w)dmρ(w) for f ∈ Bρ(�);

(d) Bρ[ f ](z)=
∫
�

Bρ(z, w) f (w)dmρ(w) for f ∈ L2
ρ(�).

2.3. The space H2(�) and the Szegő projection. In an appropriate sense, the lim-
iting case of B2

ρ(�) as ρ→ 1 is the Hardy space H2(�), but dealing with boundary
values that are defined only almost everywhere makes its definition more delicate
than that of B2

ρ(�).
3 We proceed as follows. For F ∈ O(�) and ε > 0, set

(2-4) Fε(x, y, t)= F(x + iy, t + ib(x)+ iε).

Then

(2-5) H2(�)=
{

F ∈ O(�)
∣∣∣ supε>0

∫
∂�

|Fε(x, y, t)|2 dx dy dt ≡ ‖F‖2H2 <∞
}
.

The following proposition gives some of the basic facts about H2(�). In particular,
it shows that H2(�) can be identified with a closed subspace of L2(∂�)= L2(R3).

Proposition 2.4. Let F ∈H2(�). Then there exists Fb
∈ L2(∂�) such that

(a) Fb(x, y, t)= limε→0+ Fε(x, y, t) for almost every (x, y, t) ∈ R3;

(b) there is a constant C independent of F such that∫
R3

sups>0|F(x + iy, t + ib(x)+ is)|2dx dy dt ≤ C2
‖F‖2H2;

3A discussion of the Bergman and Hardy spaces on certain model domains can be found
[Haslinger 1998].
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(c) limε→0+‖Fε − Fb
‖L2(∂�) = 0, and ‖Fb

‖L2(R3) = ‖F‖H2(�);

(d) the boundary function Fb satisfies the differential equation

∂Fb

∂x
+ i ∂Fb

∂y
− ib′(x)∂Fb

∂t
= 0

in the sense of distributions;

(e) for any compact subset K ⊂�, there is a positive constant C(K ) independent
of F such that

supz∈K |F(z)| ≤ C(K )‖F‖H2 .

Proof. Parts (a), (b), and (c) follow as in [Stein 1993] from the analogous results4

for the Hardy space H2(U) in the upper half-space U={z= x+iy ∈C | y>0}. Part
(d) follows from (c) and the fact that each Fε satisfies the differential equation of
(d) in the classical sense since it is the restriction to ∂� of a holomorphic function
defined in a neighborhood of ∂�. Part (e) follows from the mean-value property of
holomorphic functions and the estimate corresponding to that of (e) for H2(U). �

We shall also need the fact that the space of boundary values Fb
∈ L2(∂�) of

functions F ∈H2(�) is exactly the space of functions f ∈ L2(∂�) that satisfy the
inequality in (b) in the sense of distributions. To see this, define a partial Fourier
transform F : L2(R3)→ L2(R3) by the integral

(2-6) F[ f ](x, η, τ )= f̂ (x, η, τ )=
∫∫

R2
e−2π i(yη+tτ) f (x, y, t)dy dt.

This converges for almost every x ∈R if f ∈ L1(R3). The two-variable Plancherel
theorem and Fubini’s theorem then give

(2-7)
∫∫∫

R3
| f (x, y, t)|2 dx dy dt =

∫∫∫
R3
| f̂ (x, η, τ )|2 dx dηdτ

if f ∈ L1(R3)∩ L2(R3). Thus F extends to an isometry of L2(R3). If f̂ ∈ L1(R3),
the inversion formula

(2-8) f (x, y, t)=
∫∫

R2
e2π i(yη+tτ) f̂ (x, η, τ )dηdτ

holds for almost every x ∈ R.

Proposition 2.5. Let b be convex and even, let b(0) = b′(0) = 0, and suppose
limx→±∞|x |−1b(x)=+∞. Let f ∈ L2(∂�)= L2(R3). Then

4The argument in [Stein 1993] deals with the case in which there is a large group of biholomorphic
mappings of �, and this is not true in our situation. For convenience, we include the details of the
argument in the appendix, along with a discussion of the spaces Hp(�) for 1< p <∞. Only minor
modifications of the argument in [Stein 1993] are needed.
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(a) the function f satisfies

(2-9) ∂ f
∂x
+ i ∂ f

∂y
− ib′(x)∂ f

∂t
= 0

on R3 in the distributional sense if and only if the partial Fourier transform
F[ f ] = f̂ satisfies

(2-10) ∂
∂x
(e−2π(ηx−τb(x)) f̂ (x, η, τ ))= 0

on R3 in the sense of distributions;

(b) if f satisfies (2-9), then f̂ (x, η, τ ) = 0 almost everywhere when τ < 0. In
particular, if we set hs(x, η, τ ) = e−2πτ s f̂ (x, η, τ ), then hs ∈ L2(R3) for
s ≥ 0;

(c) if f satisfies (2-9) and if

F(z1, z2)= F(x + iy, t + ib(x)+ is)= F−1
[hs](x, y, t),

then F ∈H2(�) and Fb
= f .

Proof. Part (a) follows directly from (2-6) if f ∈ C∞0 (R
3). If f ∈ L2(R3), the

equivalence of (2-9) and (2-10) follows from the identity∫∫∫
R3

f1(x, y, t) f2(x, y, t)dx dy dt =
∫∫∫

R3
f̂1(x, η, τ ) f̂2(x, η, τ )dx dηdτ

and integration by parts when f1, f2 ∈ L2(R3) and f2 ∈ C∞0 (R
3).

To establish (b), note that there is a set E ⊂ R2 of measure zero such that if
(η, τ ) /∈ E , the function x → f̂ (x, η, τ ) belongs to L2(R). For such (η, τ ), it
follows from (2-10) that x → e−2π(ηx−τb(x)) f̂ (x, η, τ ) is a constant, which we
write g(η, τ ). But then∫∫
|g(η, τ )|2

(∫
R

e4π(ηx−τb(x))dx
)

dηdτ =
∫∫∫

R3
| f̂ (x, η, τ )|2 dx dηdτ <+∞.

It follows from the hypothesis limx→±∞|x |−1b(x) = +∞ that the inner integral
on the left side is infinite for τ < 0, and hence we must have f̂ (x, η, τ )= 0 almost
everywhere for τ < 0. The statement about hs is then clear.

To establish (c), observe that Plancherel’s theorem gives∫∫∫
R3
|F(x+iy, t+ib(x)+is)|2 dx dy dt =

∫∫∫
R3

e−4πτ s
| f̂ (x, η, τ )|t2 dx dηdτ

≤ ‖ f̂ ‖L2 = ‖ f ‖L2 .

Thus the function F is locally square-integrable on �. On the other hand, the
inverse partial Fourier transform F−1

[hs] is the limit in L2(R3) as N →∞ of the
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functions∫∫
η2+τ 2≤N 2

e2π i[ηy+τ t]hs(x, η, τ )dηdτ =
∫∫

η2+τ 2≤N 2

e2π i[ηy+τ t]e−2πτ s f̂ (x, η, τ )dηdτ

=

∫∫
η2+τ 2≤N 2

e2π [η(x+iy)+iτ(t+ib(x)+is)] g(η, τ )dηdτ

=

∫∫
η2+τ 2≤N 2

e2π [ηz1+iτ z2] g(η, τ )dηdτ = FN (z1, z2).

It is clear that each FN is holomorphic on �, and since FN → F locally in L2,
it follows that F is also holomorphic. Thus F ∈ H2(�). Finally, it follows from
Proposition 2.4 that F has boundary values Fb and lims→0+ Fs = Fb in L2(R3).
However Fs =F−1

[hs], and lims→0+ hs = f̂ in L2(R3). Since F−1 is an isometry,
it follows that Fb

= f . �

Corollary 2.6. The set of functions f ∈ L2(∂�) such that there exists F ∈H2(�)

with Fb
= f is the set of functions whose partial Fourier transforms f̂ satisfy

equation (2-10) in the sense of distributions.

We now define the Szegő projection S for the domain � to be the orthogonal
projection from L2(R3) to the closed subspace of functions f ∈ L2(R3) satisfying
∂ f/∂x + i∂ f/∂y − ib′(x)∂ f/∂t = 0 in the sense of distributions. It follows from
Corollary 2.6 that S maps L2(∂�) to H2(�).

3. Main results

3.1. Basic assumptions on the function b. We make the following hypotheses
about the function b ∈ C∞(R) used in the definition of the domain � given in
Equation (1-3).

b is convex on R and is normalized at 0 ∈ R:

b′′(r)≥ 0, b(0)= 0, b′(0)= 0.

(3-1)

b is even: b(r)= b(−r).(3-2)

b′ and b′′ are convex on the positive real axis:5

r ≥ 0 implies b(3)(r)≥ 0 and b(4)(r)≥ 0.

(3-3)

Let B(r)=
∫ r

0 b(t)dt , so that B ′(r)= b(r) and B(0)= 0.

Then there exists a constant C > 1 such that

0<
B( j+1)(r)
B( j)(r)

≤ C
B(k+1)(r)
B(k)(r)

for r > 0 and any j, k ∈ {0, 1, 2, 3},

(3-4)
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There is an even convex polynomial P of degree N ≥ 2 such that

|r | ≥ 1 implies b(r)= P(r).

(3-5)

Suppose that b satisfies (3-1)–(3-5). We introduce a quantity that measures the
degree of “flatness” of the function b at r = 0. For r 6= 0, put

(3-6) 2(r)= b(r)/(rb′(r)).

2 is also an even function. Since b′ is increasing on the positive real axis, we have
0<2(r) ≤ 1 for r 6= 0. If b is a convex polynomial, Bruna et. al. [1988] showed
that there is an ε >0 depending only on the degree such that ε≤2(r)≤1 for r 6=0.

In contrast, we are interested in the case that b vanishes to infinite order at the
origin and limr→02(r) = 0. If b(r) = exp(−|r |−a) for small |r | as in (1-4), then
for these r we have b(r)/(rb′(r))= |r |a/a.

Definition 3.2. Let b∈C∞(R) satisfy (3-1)–(3-5), and define2 as in (3-6). Then b
is subcritical at r = 0 if there are constants c > 0 and 0< γ < 1 such that

2(r) > c|r |γ for small |r |;

it is critical at r = 0 if there is a constant 0< C <∞ such that

2(r)≤ C |r | for small |r |;

and it is supercritical at r = 0 if there are constants C > 0 and a > 1 such that

2(r)≤ C |r |a for small |r |.

Throughout this paper, we shall use the symbol A to denote a constant that is
independent of the choice of the function b, while we shall use C to denote a
constant depending on the convex function b but independent of other parameters.
As usual, the value of A or C may change from line to line.

3.3. The Bergman and Szegő kernels: absolute convergence. We begin with the
formulas for the integral kernels for the Bergman and Szegő projections. For η∈R

and τ > 0, set

(3-7) N (η, τ )=
∫
+∞

−∞

e2(ηr−τb(r)) dr.

Then for (z, w)= ((z1, z2), (w1, w2)) ∈ C2
×C2 and 0≤ ρ ≤ 1, set

(3-8) Bρ(z, w)=
21−ρ

4π20(1−ρ)

∫∫
τ>0

eη(z1+w1)+iτ(z2−w2) τ 1−ρ

N (η, τ )
dηdτ.

5It is quite possible that weaker conditions would suffice.
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If we can show that the integral in (3-8) converges absolutely in a neighborhood
of a point (z0, w0) ∈ C2

× C2, the function Bρ(z, w) is holomorphic in z and
conjugate holomorphic in w in that neighborhood. The first theorem describes
such a region of absolute convergence, and identifies the functions Bρ for ρ ≤ 1
with the Szegő and Bergman kernels.

We use the notation

(3-9)
z = (z1, z2)= (x + iy, t + ib(x)+ ih),

w = (w1, w2)= (u+ iv, s+ ib(u)+ ik).

Theorem 3.4. Suppose b ∈ C∞(R) satisfies the hypotheses in (3-1)–(3-5).

(a) The integral in (3-8) defining Bρ(z, w) converges absolutely in the region

h+ k+ b(x)+ b(u)− 2b
(1

2(x + u)
)
> 0.

This is an open neighborhood of the set (�×�)∪ {(z, w) ∈�×� | x 6= u}.
More generally, for any nonnegative integers a, b, c, d ,

(3-10) ∂a
z1
∂b
w1
∂c

z2
∂d
w2

Bρ(z, w)

=
21−ρic−d

4π20(1−ρ)

∫∫
τ>0

eη(z1+w1)+iτ(z2−w2)
ηa+bτ c+d+1−ρ

N (η, τ )
dηdτ,

and this integral converges absolutely in the same region.

(b) The Bergman projection Bρ , defined in equation (2-3) for ρ < 1, is given by

Bρ[ f ](z)=
∫
�

Bρ(z, w) f (w)dmρ(w) for z ∈�.

(c) The Szegő projection S, defined after Corollary 2.6, is given by

S[ f ](z)=
∫
∂�

B1(z, w) f (w)dw for z ∈�.

3.5. The Bergman and Szegő kernels: smooth extensions.

Theorem 3.6. Suppose b ∈ C∞(R) satisfies the hypotheses in (3-1)–(3-5).

(a) Suppose b is subcritical. If U is any open neighborhood in C4 of the diagonal
1 in ∂�×∂�, and if a, b, c, d are arbitrary nonnegative integers, the function
∂a

z1
∂b
w1
∂c

z2
∂d
w2

Bρ(z, w) is uniformly bounded on (�×�) \U. In particular,
the function Bρ extends to a C∞-function on (�×�) \1.

(b) Suppose b is supercritical. Let

(3-11) 6 = {(z, w) ∈ ∂�× ∂� | x = u = 0, t = s}.
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Let W be any open neighborhood in C4 of1∪6 in ∂�×∂�. If a, b, c, d are
arbitrary nonnegative integers, ∂a

z1
∂b
w1
∂c

z2
∂d
w2

Bρ(z, w) is uniformly bounded
on (�×�) \W. In particular, the function Bρ extends to a C∞ function on
(�×�) \ (1∪6).

3.7. The Bergman and Szegő kernels: singularities off the diagonal. The next
results assert that in the critical or supercritical case, the kernels Bρ for 0≤ ρ ≤ 1
actually have singularities away from the diagonal.

Theorem 3.8. Suppose b ∈ C∞(R) satisfies the hypotheses in (3-1)–(3-5). Let
h, k > 0 and put δ = h+ k. Let t ∈ R.

(a) If b is critical, there exists ε > 0 such that if |y− v|< ε,

lim
δ→0
|Bρ((iy, t + ih), (iv, t + ik))| = +∞.

(b) If b is supercritical,

lim
δ→0
|Bρ((iy, t + ih), (iv, t + ik))| = +∞ for all y, v ∈ R.

4. Estimates for convex functions

In this section we establish various estimates that are needed for the proofs of
Theorems 3.4, 3.6, and 3.8.

4.1. Notation. For any smooth convex function b with b(0) = b′(0) = 0, define
renormalizations about an arbitrary point α ∈ R, by setting

bα(r)= b(α+ r)− b(α)− rb′(α)=
∫ r

0

∫ t

0
b′′(α+ s)ds dt.(4-1)

Then

b′α(r)= b′(α+ r)− b′(α)=
∫ r

0
b′′(α+ t)dt, and(4-2)

b′′α(r)= b′′(α+ r)≥ 0.(4-3)

If b satisfies (3-1), then each bα also satisfies (3-1), and b0 = b. It is also easy to
check that

(4-4) (bα1)α2 = bα1+α2 .

Next, given b, let h denote the function6 given by

(4-5) h(r)= rb′(r)− b(r).

6If b̂ denotes the Legendre transform of b, then h(r)= b̂((b′)−1(r)).
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Also put

(4-6)
hα(r)= rb′α(r)− bα(r)= rb′(α+ r)− b(α+ r)+ b(α)

=

∫ r

0

∫ r

t
b′′(α+ s)ds dt,

so that

h′α(r)= rb′′α(r)= rb′′(α+ r).(4-7)

It follows from (4-6) that hα(0)= 0, and since b′′(x)≥ 0, it follows from (4-7) that
hα(x) is increasing for x > 0 and decreasing for x < 0. Note that hα(−α)= b(α)
and bα(−α)= h(α).

If we let b̃(r)= b(−r) and h̃(r)= h(−r), then

(4-8)
bα(−r)= b̃−α(r), b′α(−r)=−b̃′

−α(r), b′′α(−r)= b̃′′
−α(r);

hα(−r)= h̃−α(r), h′α(−r)=−h̃′
−α(r), h′′α(−r)= h̃′′

−α(r).

These identities often allow us to verify identities by considering only r ≥ 0. Also,
if b is an even function, so is h, and the identities in (4-8) hold for b̃= b and h̃= h.

4.2. Elementary estimates for bα and hα.

Proposition 4.3. Suppose that b satisfies (3-1)–(3-5). Let α, r ∈ R, and let ε > 0.

(a) bα((1+ ε)r)≥ (1+ ε) bα(r).

(b) 0≤ bα(r)≤ r b′α(r)≤ ε
−1bα((1+ ε)r) and in particular rb′α(r)≤ bα(2r).

(c) 0≤hα(r)≤ ε−1bα((1+ε)r)−bα(r), and in particular hα(r)≤bα(2r)−bα(r).

(d) the function r 7→ r−1bα(r) is monotone increasing.

Proof. Suppose r ≥ 0. Since b′α is monotone increasing and bα(0)= 0, we have

bα((1+ ε)r)≥ bα(r)+
∫ (1+ε)r

r
b′α(s)ds ≥ bα(r)+ εrb′α(r)

≥ bα(r)+ ε
∫ r

0
b′α(s)ds = (1+ ε)bα(r).

This proves (a) and (b) for r ≥ 0; the case r ≤ 0 then follows by applying these
inequalities to b̃. Since hα(r)= rb′α(r)− bα(r), part (c) follows from (b). Finally,(bα(r)

r

)′
=

rb′α(r)− bα(r)
r2 =

hα(r)
r2 ≥ 0,

which gives (d). �

The next proposition describes the relationship between the sizes of the functions
bα and hα.
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Proposition 4.4. Suppose that b satisfies (3-1)–(3-5). Then

α ≥ 0 implies
{

bα(r)≤ hα(r) if r /∈ [−2α, 0];
bα(r)≥ hα(r) if r ∈ [−2α, 0].

α ≤ 0 implies
{

bα(r)≤ hα(r) if r /∈ [0,−2α];
bα(r)≥ hα(r) if r ∈ [0,−2α].

Proof. The case α ≤ 0 follows from the results for α ≥ 0 by using the identities
in (4-8), so we can assume that α ≥ 0. Let ϕ(r) = rb′α(r) and ψ(r) = rb′′α(r).
Note that ϕ(0) = ψ(0) = 0. For r 6= 0 we can use Cauchy’s mean value theorem
to establish the existence of points s and t with 0< |t |< |s|< |r | such that

rb′α(r)
bα(r)

=
ϕ(r)
bα(r)

=
ϕ(r)−ϕ(0)

bα(r)− bα(0)
=
ϕ′(s)
b′α(s)

=
sb′′α(s)+ b′α(s)

b′α(s)
= 1+

ψ(s)
b′α(s)

= 1+
ψ(s)−ψ(0)
b′α(s)− b′α(0)

= 1+
ψ ′(t)
b′′α(t)

= 1+
b′′α(t)+ tb′′′α (t)

b′′α(t)
= 2+

tb′′′α (t)
b′′α(t)

= 2+
tb′′′(α+ t)
b′′(α+ t)

.

If r > 0 it follows that t > 0, in which case the last fraction is nonnegative, so
rb′α(r) ≥ 2bα(r), and hence bα(r) ≤ hα(r). Also, if −α ≤ r < 0 it follows that
−α < t < 0, in which case the last fraction is nonpositive, so rb′α(r)≤ 2bα(r), and
hence bα(r)≥ hα(r).

Next, observe that since b is an even function, we have

hα(−2α)− bα(−2α)= 2αb′(α)− 2αb′(α)= 0,

h′α(−2α)− b′α(−2α)= 2(b′(α)−αb′′(α))≤ 0,

and h′′α(r)− b′′α(r)= rb′′′(α+ r)≥ 0 for r ≤−α. It follows that (hα − bα)(r)≥ 0
for r ≤−2α and (hα − bα)(r)≤ 0 for −2α ≤ r ≤−α. �

If b satisfies (3-1), then b and h are monotone increasing on the positive axis and
map [0,∞) to itself, so we can define inverse functions b−1, h−1

: [0,∞)→[0,∞).
Then both b−1 and h−1 are monotone increasing. Although the functions b and h
are in general not comparable and do not satisfy a doubling property of the form
f (2x)≤ C f (x), we have the following result about the inverse functions.

Proposition 4.5. Suppose b satisfies (3-1)–(3-5). Then for any λ≥ 0,

h−1(λ)≤ b−1(λ)≤ 2h−1(λ),

b−1(2λ)≤ 2b−1(λ)≤ 2b−1(2λ),

h−1(2λ)≤ 2h−1(λ)≤ 2h−1(2λ).
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Proof. Let λ ≥ 0, and let r = b−1(λ) ≥ 0. It follows from Proposition 4.4 that
λ = b(r) ≤ h(r), and since h−1 is monotone increasing, h−1(λ) ≤ r = b−1(λ).
This gives the first inequality. Next, if λ ≥ 0 and if r ≥ 0 satisfies λ = h(r/2),
it follows from Proposition 4.3(c) that λ = h(r/2) ≤ b(r)− b(r/2) ≤ b(r). Thus
b−1(λ)≤ r = 2h−1(λ). Finally we have

b(2r)= b(r)+
∫ 2r

r
b′(t)dt = b(r)+

∫ r

0
b′(t+r)dt ≥ b(r)+

∫ r

0
b′(t)dt = 2b(r),

and this gives b−1(2λ)≤ 2b−1(λ). The same argument works for any function with
monotone increasing derivative, and in particular for h. �

In general, the functions {bα} are not even for α 6= 0, even if b is even.7 The
next proposition clarifies this lack of symmetry.

Proposition 4.6. Suppose that b satisfies (3-1)–(3-5). Let r > 0. Then

α ≥ 0 implies
{

bα(−r)≤ bα(r),
hα(−r)≤ hα(r);

and α ≤ 0 implies
{

bα(−r)≥ bα(r),
hα(−r)≥ hα(r).

Proof. Suppose first that α ≥ 0. Since bα(0)= b′α(0)= 0, for r > 0 we have

bα(+r)=
∫ r

0
b′′(α+ t)(r − t)dt and bα(−r)=

∫ r

0
b′′(α− t)(r − t)dt.

Thus bα(+r)− bα(−r) =
∫ r

0 (r − t)
∫ α+t
α−t b′′′(s)ds dt . If α− t ≥ 0, then the inner

integral is positive, so bα(+r)− bα(−r) ≥ 0. On the other hand, if α− t < 0 we
have∫ α+t

α−t
b′′′(s)ds =

∫ t−α

α−t
b′′′(s)ds+

∫ t+α

t−α
b′′′(s)ds =

∫ t+α

t−α
b′′′(s)ds ≥ 0

since b′′′(−s) = −b′′′(s), and so
∫ t−α
α−t b′′′(s)ds = 0. Thus bα(+r)− bα(−r) ≥ 0

again, which is the first inequality if α > 0.
Next, for r > 0 we have

hα(+r)=
∫ r

0
h′α(s)ds =

∫ r

0
sb′′α(s)ds,

−hα(−r)=
∫ 0

−r
h′α(s)ds =

∫ r

0
(−s)b′′α(−s)ds,

so hα(r)− hα(−r) =
∫ r

0 s(b′′α(s)− b′′α(−s)) ds =
∫ r

0 s(b′′(α+ s)− b′′(α− s)) ds.
But for α, s ≥ 0 we have b′′(α+ s)− b′′(α− s) ≥ 0, and so hα(r)− hα(−r) ≥ 0,
completing the proof for α > 0. The case α < 0 follows similarly, using (4-8). �

7However, if b(r)= r2, then bα(r)= r2 for all α ∈ R.
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4.7. Estimates for |{r ∈ R | bα(r) < τ−1}|. We need estimates for the measure
of the intervals on which the functions bα are bounded by a constant τ−1. In case
α≥ 0, these depend on estimates of the functions bα and hα on the interval [−α, 0].
The key fact is that there is an interval [α−η(α), α] on which b(r), b′(r), and b′′(r)
are essentially constant.

Set η(α) = (b(α)/b′(α))/(2C) where C > 1 is the constant in (3-4). Note that
η(α) < α/2. It follows from (3-4) that for j ∈ {0, 1, 2},

(4-9) 1
2C2 b( j)(α)≤ η(α) b( j+1)(α)≤ 1

2 b( j)(α).

Proposition 4.8. Suppose that b satisfies (3-1)–(3-5), and let α > 0.

(a) The functions {b( j)
} satisfy

(i) 1
2 b( j)(α)≤ b( j)(r)≤ b( j)(α) if j ∈ {0, 1, 2} and α− η(α)≤ r ≤ α;

(ii) 0≤ b( j)(r)≤ (1− (4C2)−1)b( j)(α) if j ∈ {0, 1} and 0≤ r ≤ α− η(α).

(b) The function hα satisfies

(i) 1
4r2b′′(α)≤ hα(−r)≤ 1

2r2b′′(α) if 0≤ r ≤ η(α);
(ii) rb′(α)/(16C2)≤ bα(−r)≤ rb′(α) if η(α)≤ r ≤ 2α;

(iii) b(α)+ h(r −α)≤ hα(−r)≤ 4h(r) if α ≤ r .

(c) The function bα satisfies

(a) 1
4r2b′′(α)≤ bα(−r)≤ 1

2r2b′′(α) if 0≤ r ≤ η(α);
(b) rb′(α)/(16C2)≤ bα(−r)≤ rb′(α) if η(α)≤ r ≤ 2α;
(c) b(r/2)≤ bα(−r)≤ 3b(r) if r ≥ 2α.

Proof. (a) Since the functions b( j)(r) are monotone increasing for j ≤ 3 and r > 0,
it follows from (4-9) that for α− η(α)≤ r ≤ α we have

b( j)(α)− b( j)(r)≤ (α− r)b( j+1)(α)≤ η(α)b( j+1)(α)≤ 1
2 b( j)(α),

and so b( j)(α)/2 ≤ b( j)(r) ≤ b( j)(α). This gives the first set of inequalities.
Next, if 0 ≤ r ≤ α − η(α) and j ∈ {0, 1}, it follows from the first inequality
that b( j+1)(α− η(α))≥ b( j+1)(α)/2, and so we have

b( j)(α)− b( j)(r)≥
∫ α

α−η(α)

b( j+1)(t)dt ≥ 1
2η(α)b

( j+1)(α)≥ b( j)(α)/(4C2).

Thus b( j)(r)≤ (1− (4C2)−1)b( j)(α). This proves (a).

(b) Using Equation (4-6) and the monotonicity of b′′,we have

hα(−r)=
∫ α

α−r

∫ t

α−r
b′′(s)ds dt ≤ 1

2r2b′′(α)
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for 0≤ r ≤ α. On the other hand, if r ≤ η(α), we have

hα(−r)=
∫ α

α−r

∫ t

α−r
b′′(s)ds dt ≥ 1

2r2b′′(α− r)≥ 1
2r2b′′(α− η(α))≥ 1

4r2b′′(α)

by the first inequality in part (a). This gives the first set of inequalities. Next,
recall from (4-7) that h′α(−r) = −rb′′(α − r), and so h′α(−r) is monotone de-
creasing for r ≥ 0. Using the first inequality in (b) and (4-9), it follows that
hα(−η(α)) ≥ 4−1η(α)2b′′(α) ≥ (16C4)−1b(α) and hα(−α) = b(α). Thus we
have (16C4)−1b(α) ≤ hα(−r) ≤ b(α). This gives the second set of inequalities.
To prove the third set of inequalities, note that

hα(−r)− h(r −α)

= (−rb′(α− r)− b(α− r)+ b(α))− ((r −α)b′(r −α)− b(r −α))

= αb′(r −α)+ b(α).

If r ≥ α, then αb′(r − α) ≥ 0, so hα(−r) ≥ h(r − α) + b(α). Also, if r ≥ α,
αb′(r −α)≤ rb′(r)= h(r)+ b(r)≤ 2h(r). Thus

hα(−r)≤ h(r −α)+ b(α)+ 2h(r)≤ 4h(r).

This proves (b).

(c) First suppose 0≤ r ≤ η(α). Then b′′(α− r)≥ b′′(α− η(α))≥ b′′(α)/2 by the
first inequality in (a). But bα(−r)=

∫ α
α−r

∫ α
t b′′(s)ds dt , so using the monotonicity

of b′′ it follows that

1
4r2b′′(α)≤ 1

2r2b′′(α− r)≤ bα(−r)≤ 1
2r2b′′(α).

This is the first inequality. Next suppose η(α)≤ r ≤ 2α. We have b(α−r)≤ b(α),
and hence

bα(−r)= rb′(α)− (b(α)− b(α− r))≤ rb′(α).

On the other hand, using the second estimate in (a) for b′ and the monotonicity
of b′, we have

b(α)− b(α− r)=
∫ α−η(α)

α−r
b′(s)ds+

∫ α

α−η(α)

b′(s)ds

≤ (1− (4C2)−1)b′(α)(r − η(α))+ η(α)b′(α)

= (1− (4C2)−1)rb′(α)+ (4C2)−1η(α)b′(α).

Thus if 2η(α)≤ r , it follows that b(α)−b(α−r)≤ (1−(8C2)−1)rb′(α), and hence
bα(−r) = rb′(α)− (b(α)− b(α− r)) ≥ (8C2)−1rb′(α). It remains to establish a
lower bound for bα(−r) for η(α) ≤ r ≤ 2η(α). In this case, using the fact that



92 JENNIFER HALFPAP, ALEXANDER NAGEL AND STEPHEN WAINGER

η(α)≤ α/2 so that α− η(α) > 0, we have

bα(−r)≥ bα(−η(α))=
∫ α

α−η(α)

∫ α

t
b′′(s)ds dt ≥ 1

2η(α)
2b′′(α− η(α))

≥
1
4η(α)

2b′′(α)≥ (8C2)−1η(α)b′(α)≥ (16C2)−1rb′(α).

This gives the second inequality. Finally if r ≥ 2α,

bα(−r)= b(r −α)− b(α)+ rb′(α)≥ b(r/2)+αb′(α)− b(α)≥ b(r/2),

and by Proposition 4.3, bα(−r)≤ b(r)+ rb′(α)≤ b(r)+ rb′(r/2)≤ 3b(r). �

We can now derive estimates for the measure of the set |{r ∈ R | bα(r)≤ τ−1
}|.

Proposition 4.9. There are constants c < 1< C such that

if 0< τ−1
≤ b(α), then

c(τb′′(α))−1/2
≤ |{r ∈ R | bα(r)≤ τ−1

}| ≤ C(τb′′(α))−1/2
;

(4-10)

if b(α)≤ τ−1
≤ h(α), then

c(τb′(α))−1
≤ |{r ∈ R | bα(r)≤ τ−1

}| ≤ C(τb′(α))−1
;

(4-11)

if h(α)≤ τ−1 then

cb−1(τ−1)≤ |{r ∈ R | bα(r)≤ τ−1
}| ≤ Cb−1(τ−1).

(4-12)

In particular, for any τ > 0,

(4-13) c(τ 1/2b′′(α)1/2+ τb′(α)+ (b−1(τ−1))−1)−1

≤ |{r ∈ R | bα(r)≤ τ−1
}|

≤ C(τ−1/2b′′(α)−1/2
+ τ−1b′(α)−1

+ b−1(τ−1)).

Proof. Since bα(r)= b−α(−r), it suffices to establish the estimates for α > 0. Now
bα(r)= τ−1 has two roots, −r1 < 0< r2, and so |{r ∈R | bα(r)≤ τ−1

}| = r1+ r2.
By Proposition 4.6, r2 ≤ r1, and so r1 ≤ |{r ∈ R | bα(r) ≤ τ−1

}| ≤ 2r1. Thus in
proving (4-10), (4-11), and (4-12), it suffices to obtain estimates for r1.

Since bα(−r1)= τ
−1, it follows from Proposition 4.8(c) that

r1 ≤ η(α) implies
√

2(τb′′(α))−1/2
≤ r1 ≤ 2(τb′′(α))−1/2

;(4-14)

η(α)≤ r1 ≤ 2α implies (τb′(α))−1
≤ r1 ≤ 16C2(τb′(α))−1

;(4-15)

r1 ≥ 2α implies b−1(3−1τ−1)≤ r1 ≤ 2b−1(τ−1).(4-16)

It follows from (4-9) and the first inequality in part (c) of Proposition 4.8 that
(16C4)−1b(α) ≤ bα(−η(α)) ≤ 8−1b(α). Remembering that τ−1

= bα(−r1) and
that bα(r) is decreasing for r < 0, it follows that if τ−1

≤ (16C4)−1b(α), then
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bα(−r1)= τ
−1
≤ (16C4)−1b(α)≤ bα(−η(α)), and so

(4-17) τ−1
≤ b(α)/(16C4) implies r1 ≤ η(α).

Similarly, if τ−1
≥ 8−1b(α), then bα(−r1)= τ

−1
≥ 8−1b(α)≥ bα(−η(α)), and so

(4-18) τ−1
≥ b(α)/8 implies r1 ≥ η(α).

Now bα(−2α)=b(−α)−b(α)+2αb′(α)=2h(α)+2b(α). Since 0≤b(α)≤h(α)
by Proposition 4.4, it follows that 2h(α)≤ bα(−2α)≤ 4h(α). If τ−1

≤ 2h(α), then
bα(−r1)= τ

−1
≤ 2h(α)≤ bα(−2α), and so

(4-19) τ−1
≤ 2h(α) implies r1 ≤ 2α,

while if τ−1
≥ 4h(α), then bα(−r1)= τ

−1
≥ bα(−2α), and so

(4-20) τ−1
≥ 4h(α) implies r1 ≥ 2α.

The implications in (4-17) and (4-14) establish (4-10) if τ−1
≤ (16C4)−1b(α),

those in (4-17), (4-18) and (4-15) establish (4-11) if b(α)/8 ≤ τ−1
≤ 2h(α), and

those in (4-20) and (4-16), together with Proposition 4.3(a), establish (4-12) if
τ−1
≥ 4h(α).

Thus to complete the proof, it suffices to show that, given constants A≤ 1≤ B,
there is a constant C such that

Ab(α)≤ τ−1
≤ Bb(α) implies C−1

≤ τb′(α)/(τb′′(α))1/2 ≤ C(4-21)

Ah(α)≤ τ−1
≤ Bh(α) implies C−1

≤ τb′(α)b−1(τ−1)≤ C.(4-22)

To check (4-21), observe that τb′(α)/
√
τb′′(α)=

√
τb(α)

√
b′(α)2/(b(α)b′′(α)).

It follows from the hypothesis (3-4) that this last quantity is bounded above and
below by constants independent of α.

To check (4-22), observe that τb′(α)= (τ/α)(h(α)+b(α)), and so the hypoth-
esis of (4-22) gives

1
Bα
≤
τ
α

h(α)≤ τb′(α)= τ
α

h(α)+ τ
α

b(α)≤ 1
Aα
+
τ
α

b(α).

But Ah(α) ≤ τ−1 and Proposition 4.5 imply α ≤ h−1((Aτ)−1) ≤ b−1((Aτ)−1),
and so b(α)≤ (Aτ)−1. Thus the hypothesis of (4-22) implies

(4-23)
1
B

b−1(τ−1)

α
≤ τb′(α)b−1(τ−1)≤

2
A

b−1(τ−1)

α
.

Also, the hypothesis can be written h−1((Bτ)−1) ≤ α ≤ h−1((Aτ)−1), and so
again by Proposition 4.5, it follows that b−1((Bτ)−1)≤ 2α and α ≤ b−1((Aτ)−1).
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Choose m, n > 0 so that 2−m−1 < A ≤ 2−m and 2n−1
≤ B ≤ 2n . Then

b−1
(1
τ

)
= b−1

( 2n

2nτ

)
≤ 2nb−1

( 1
Bτ

)
≤ 2n+1α

so b−1(τ−1)≤ 4Bα. Also

2A−1b−1
(1
τ

)
≥ 2m+1b−1

(1
τ

)
≥ b−1

(2m+1

τ

)
≥ b−1

( 1
Aτ

)
≥ α

so b−1(τ−1) ≥ Aα/2. Combining these estimates with (4-23), it follows that
A(2B)−1

≤ τb′(α)b−1(τ−1)≤ 8A−1 B, which completes the proof. �

4.10. Estimates of integrals. In our analysis, a key role is played by the functions

ϕ(α, τ)=

∫
+∞

−∞

e−2τbα(r)dr, and(4-24)

Nα(η, τ )=
∫
+∞

−∞

e2(ηr−τbα(r))dr,(4-25)

as well as the quantities

µ(α, τ)= |{r ∈ R | bα(r)≤ τ−1
}|, and(4-26)

ν(α, τ )= |{r ∈ R | hα(r)≤ τ−1
}|(4-27)

We will frequently make the substitution η= τb′α(λ) and use the following identity.

Proposition 4.11. Nα(τb′α(λ), τ )= e2τhα(λ)
∫
+∞

−∞

e−2τbα+λ(r)dr.

Proof. We have Nα(τb′α(λ), τ ) =
∫
+∞

−∞
e2τ(b′α(λ)r−bα(r))dr . Making the change of

variables r→ r + λ and then using identity (4-4) gives the stated formula. �

The following simple estimates, in particular, relate ϕ(α, τ) and µ(α, τ).

Proposition 4.12. For j, k ≥ 0 there are constants A j,k (independent of b) such
that if b satisfies (3-1) and µ= |{r ∈ R | b(r)≤ 1}|, then∫

+∞

−∞

b(r) j
|r |ke−b(r)dr ≤ A j,kµ

k+1
≤ A j,kek+1

(∫ +∞
−∞

e−b(r)dr
)k+1

.

Proof. Let [α, β] be the interval on which b(r)≤ 1. Then∫
+∞

−∞

e−b(r)dr ≥
∫ β

α

e−b(r)dr ≥ e−1(β −α)= e−1µ.

This establishes the right side of the inequality in Proposition 4.12. To establish
the left hand side, it suffices to make estimates on the positive real axis. Let rm ≥ 0
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be the point such that b(rm) = m. Then r0 = 0 and r1 = |{r ≥ 0 | b(r) ≤ 1}| ≤ µ.
We have∫

+∞

0
b(r) jr ke−b(r)dr =

∞∑
m=1

∫ rm

rm−1

b(r) jr ke−b(r)dr ≤ e
k+1

∞∑
m=1

r k+1
m m j e−m .

On the other hand, since b′ is monotone increasing and 1 = b(r1) ≤ r1b′(r1), we
have

m = b(rm)= 1+
∫ rm

r1
b′(s)ds ≥ 1+ b′(r1)(rm − r1)≥ 1+ ((rm − r1))/r1.

Thus rm ≤ mr1 ≤ mµ, and it follows that∫
+∞

0
b(r) jr ke−b(r)dr ≤ e

k+1

( ∞∑
m=1

e−mm j+k+1
)
µk+1. �

Corollary 4.13. There is a constant A > 0 independent of b such that

A−1
≤
µ(α, τ)

ϕ(α, τ )
≤ A.

The next result gives additional information about ϕ(α, τ) as a function of α.

Lemma 4.14. Assume that b satisfies (3-1), (3-2), and (3-3), and that ϕ(α, τ) is as
defined in (4-24).

(a) Let τ > 0. Then

∂ϕ
∂α
(α, τ )≤ 0 if α > 0 and ∂ϕ

∂α
(α, τ )≥ 0 if α < 0.

(b) There is a constant A > 0 independent of b such that for all α ∈ R and all
τ > 0, ∣∣∣∂ϕ

∂α
(α, τ )

∣∣∣≤ Aτb′′(α)ϕ(α, τ )2.

(c) There is a constant A > 0 independent of b such that if τ > 0,{
0 ≤ x1 < x2 implies ϕ(x2, τ )

−1
≤ ϕ(x1, τ )

−1
+ Aτ(b′(x2)− b′(x1)),

y1 < y2 ≤ 0 implies ϕ(y1, τ )
−1
≤ ϕ(y2, τ )

−1
+ Aτ(b′(y2)− b′(y1)).

Proof. Since ϕ(α, τ)=
∫
+∞

−∞
e−2τ(b(α+r)−b(α)−rb′(α))dr , we have

∂ϕ

∂α
(α, τ )= (−2τ)

∫
+∞

−∞

e−2τ(b(α+r)−b(α)−rb′(α))(b′(α+ r)− b′(α)− rb′′(α))dr

= (−2τ)
∫
+∞

−∞

e−2τ(b(α+r)−b(α)−rb′(α))(b′(α+ r)− b′(α))dr

+ 2τb′′(α)
∫
+∞

−∞

re−2τbα(r)dr
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=

∫
+∞

−∞

d
dr
(e−2τbα(r))dr + 2τb′′(α)

∫
+∞

−∞

re−2τbα(r)dr

= 2τb′′(α)
∫
+∞

−∞

re−2τbα(r)dr.

It follows from Proposition 4.12 that∣∣∣∂ϕ
∂α
(α, τ )

∣∣∣≤ 2τb′′(α)
∫
+∞

−∞

|r |e−2τbα(r)dr ≤ Aτb′′(α)ϕ(α)2,

which establishes (b). Also,∫
+∞

−∞

re−2τbα(r)dr =
∫
∞

0
r(e−2τbα(r)− e−2τbα(−r))dr.

According to Proposition 4.6, bα(r) > bα(−r) when α > 0 and r > 0. Hence
(∂ϕ/∂α)(α, τ ) is positive for α < 0 and negative for α > 0, which establishes (a).

Now if s > 0 we have

−
∂ϕ

∂s
(s, τ )=

∣∣∣∂ϕ
∂s
(s, τ )

∣∣∣≤ 2τb′′(s)
∫
+∞

−∞

|r |e−2τbs(r)dr ≤ Aτb′′(s)ϕ(s, τ )2,

and so

(4-28) ∂
∂s

( 1
ϕ(s, τ )

)
≤ Aτb′′(s).

On the other hand, if s < 0, we have

∂ϕ

∂s
(s, τ )=

∣∣∣∂ϕ
∂s
(s, τ )

∣∣∣≤ 2τb′′(s)
∫
+∞

−∞

|r |e−2τbs(r)dr ≤ Aτb′′(s)ϕ(s, τ )2,

and so

(4-29) −
∂
∂s

( 1
ϕ(s, τ )

)
≤ Aτb′′(s).

Thus if 0≤ x1 < x2 we can integrate (4-28) from x1 to x2 and obtain

1
ϕ(x1, τ )

≤
1

ϕ(x2, τ )
≤

1
ϕ(x1, τ )

+ Aτ(b′(x2)− b′(x1)).

If y1 < y2 < 0 we can integrate (4-29) from y1 to y2 and obtain

1
ϕ(y1, τ )

≤
1

ϕ(y2, τ )
+ Aτ(b′(y2)− b′(y1)). �

We need one further preliminary estimate.

Proposition 4.15. Suppose that b is subcritical. Then for any β, N > 0∫
+1

−1
e−β|λ|

−1
(b(λ)−N

+ |b′(λ)|−N
+ b′′(λ)−N )dλ <+∞.
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Proof. If b is subcritical, then according to Definition 3.2, there are constants
0 < γ < 1 and C > 0 such that |b′(r)|b(r)−1

≤ C |r |−1−γ . Integration of this
inequality shows that b(r)−1

≤ C1 exp(C2|r |−γ ) for some constants C1 and C2. It
follows that for any N ≥ 0, we have, since γ < 1,∫

+1

−1
e−β|λ|

−1
b(λ)−N dλ≤ C1

∫
+1

−1
e−β|λ|

−1
+NC2|λ|

−γ

dλ <∞.

To deal with the integral involving |b′(λ)|−N or b′′(λ)−N instead of b(λ)−N , we
can use the hypothesis in (3-4). We have

1
|b′(λ)|

=
1

b(λ)
b(λ)
|b′(λ)|

≤
C

b(λ)
|B(λ)|
b(λ)

≤ C
(

sup
|λ|≤1
|B(λ)|

) 1
b(λ)2

≤
C ′

b(λ)2
,

1
b′′(λ)

=
1

b(λ)
b(λ)
|b′(λ)|

|b′(λ)|
b′′(λ)

≤
C2

b(λ)
B(λ)2

b(λ)2
≤ C2

(
sup
|λ|≤1

B(λ)2
) 1

b(λ)3
≤

C ′′

b(λ)3
.

Thus |b′(λ)|−N . b(λ)−2N , and b′′(λ)−N . b(λ)−3N , and we are reduced to a
known case. �

4.16. The key estimates. Recall that we assume b(r) is given by a convex poly-
nomial for |r | ≥ 1, and hence that b(r) . (1 + |r |)N for some positive integer
N . We shall deal with functions like b′(λ)− b′(α) or b′(λ+ α) which then grow
like |λ|N−1, uniformly for |α| bounded. Thus let8(λ, α) be any function such that
if |α| ≤ α0 <∞, we have |8(λ, α)| ≤ C(1+|λ|)N−1, where C can depend on α0.

Lemma 4.17. Let m ≥ n + 1 ≥ 1 be positive, let M0 > 0, and let 0 ≤ α0 < +∞.
Then there is a constant C = C(m, n,M0, α0) < +∞ such that if M ≥ M0 and
|α| ≤ α0 then∫∫

τ>0

e−τ(M+2hα(λ−α))ϕ(λ, τ )−1τm
|8(λ, α)|nb′′(λ)dλdτ < C.

Proof. We can assume that b(r)≤C |r |N for large |r | and b(r)≤Cr2 for small |r |.
It follows that (b−1(λ−1))−1

≤ (Cλ)1/N for λ small, and (b−1(λ−1))−1
≤ (Cλ)1/2

for λ large. Then using Proposition 4.12 and inequality (4-13) of Proposition 4.9,
we have

ϕ(λ, τ )−1
=

(∫
R

e−2τbλ(r)dr
)−1
≤ C |{r ∈ R | bλ(r)≤ τ−1

}|
−1

≤ C(τ 1/2b′′(λ)1/2+ τb′(λ)+ (b−1(τ−1))−1)

≤ C(τ 1/2b′′(λ)1/2+ τb′(λ)+ τ 1/2
+ τ 1/N ).
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Thus to prove Lemma 4.17, it suffices to show that each of the following three
integrals is bounded by a constant depending only on m, n, M0, and α0:

I =
∫∫
τ≥0

e−τ [M0+2hα(λ−α)]τm+1/2b′′(λ)3/2|8(λ, α)|n dλdτ

= Cm

∫
+∞

−∞

|8(λ, α)|nb′′(λ)3/2

(M0+ 2hα(λ−α))m+3/2 dλ,

II =
∫∫
τ≥0

e−τ(M0+2hα(λ−α))b′(λ)τm+1
|8(λ, α)|nb′′(λ)dλdτ

= Cm

∫
+∞

−∞

|8(λ, α)|nb′(λ)b′′(λ)/(M0+ 2hα(λ−α))m+2dλ,

III =
∫∫
τ≥0

e−τ(M0+2hα(λ−α))τm
|8(λ, α)|nb′′(λ)(τ 1/2

+ τ 1/N )dλdτ

.
∫
+∞

−∞

|8(λ, α)|nb′′(λ)
(M0+ 2hα(λ−α))m+3/2 dλ+

∫
+∞

−∞

|8(λ, α)|nb′′(λ)
(M0+ 2hα(λ−α))m+1+1/N dλ.

In all three integrals, the denominator of the integrand never vanishes since M0> 0
and hα(λ−α)≥ 0. The only issue is the convergence of the integral as λ→±∞.
But for large |λ|, we assume that b(λ)∼ |λ|N for some N , and so for |α| bounded,
b′′(λ) ∼ |λ|N−2, |b′(λ)| ∼ |λ|N−1, and hα(λ− α) ∼ |λ|N for large |λ|. Thus all
three integrals converge, and clearly depend continuously on α. �

Lemma 4.18. Let m ≥ 1, n ≥ 0, q ≥ 0, β0 > 0, and 0< α0 < α1 <+∞.

(a) If b is subcritical, then there is a constant C =C(m, n, q, β0, α1) <+∞ such
that if β ≥ β0 and if |α| ≤ α1, then∫∫
τ>0

e−2τhα(λ−α)−β/ϕ(λ,τ )ϕ(λ, τ )−qτm+n
|8(λ, α)|nb′′(λ)dλdτ < C.

(b) If b is supercritical, there is a constant C=C(m, n, q, β0, α0, α1)<+∞ such
that if β ≥ β0 and if α0 ≤ |α| ≤ α1, then∫∫
τ>0

e−2τhα(λ−α)−β/ϕ(λ,τ )ϕ(λ, τ )−qτm+n
|8(λ, α)|nb′′(λ)dλdτ < C.

Note that in (a) the constant C is independent of α0, while in (b), the constant can
depend on α0.
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Proof. First observe that if β ≥ β0 and β ′ = β/2,

ϕ(λ, τ )−q exp
(
−

β

ϕ(λ, τ )

)
≤ Cqβ

−q exp
(
−

β ′

ϕ(λ, τ )

)
≤ Cqβ

−q
0 exp

(
−

β ′

ϕ(λ, τ )

)
,

where Cq depends only on q . But since the constant C in either (a) or (b) is allowed
to depend on β0 and q , it suffices to consider only the case q = 0.

Next, we study the integral in τ . Put

H(λ,α, β,m+ n)=
∫
∞

0
exp

(
−2τhα(λ−α)−

β

ϕ(λ, τ )

)
τm+n dτ

=

∫
∞

b(λ)−1
+

∫ b(λ)−1

h(λ)−1
+

∫ h(λ)−1

0
exp

(
−2τhα(λ−α)−

β

ϕ(λ, τ )

)
τm+n dτ

= I+ II+ III.

It follows from Proposition 4.9 and Corollary 4.13 that

(4-30) ϕ(λ, τ )−1
≥


c
√
τb′′(λ), in integral I,

cτb′(λ) in integral II,
cb−1(τ−1)−1 in integral III.

We analyze each integral separately. We will use the inequality

(4-31)
∫
∞

κ

tρe−δt−µ
√

t dt ≤ Cρ(δ+µ2)−ρ−1(exp[− 1
2κδ] + exp(−1

2

√
κµ))

where κ, ρ, δ, µ > 0 and Cρ is a constant depending only on ρ.

Integral I: It follows from (4-30) that

I ≤
∫
+∞

b(λ)−1
e−2τhα(λ−α)−cβ

√
τ
√

b′′(λ)τm+n dτ.

We make two estimates. We can replace the integral over [b(λ)−1,∞) by the
integral over [0,∞), and obtain

(4-32) I ≤ C(hα(λ−α)+ b′′(λ))−m−n−1,

On the other hand, we can replace the term e−2τhα(λ−α)in the integrand by 1, and
get

(4-33) I ≤ C exp
(
−

cβ
2

√
b′′(λ)
b(λ)

)
b′′(λ)−m−n−1.

In both cases, the constant C depends on m+ n and β.
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Integral II: It follows from (4-30) that

II ≤
∫
∞

h(λ)−1
e−τ(2hα(λ−α)+cβ|b′(λ)|)τm+ndτ

≤
C

(hα(λ−α)+|b′(λ)|)m+n+1 exp
(
−

2hα(λ−α)+β|b′(λ)|
2h(λ)

)
,

where the constant C depends on m+ n and β. Hence in particular,

II ≤ C(hα(λ−α)+ |b′(λ)|)−m−n−1,(4-34)

and

II ≤ C |b′(λ)|−m−n−1 exp
(
−
β|b′(λ)|
2h(λ)

)
.(4-35)

Integral III: In this case it follows from (4-30) that

III ≤
∫ h(λ)−1

0
e−2hα(λ−α)τ−cβ[b−1(τ−1)]−1

τm+n dτ.

Make the substitution b−1(τ−1)=s, so that τ=b(s)−1, and dτ=−(b′(s)/b(s)2)ds.
Then Proposition 4.3(c) and Proposition 4.4, we have b(λ) ≤ h(λ) ≤ b(2λ), so
λ≤ b−1(h(λ))≤ 2λ. Thus we get

III ≤
∫
∞

λ

exp
(
−

2hα(λ−α)
b(s)

−
cβ
s

) b′(s)
b(s)m+n+2 ds

Again we make two estimates. If we drop the term −cβ/(2s) and let b(s)−1
= t ,

we get

(4-36) III ≤
∫ b(λ)−1

0
e−2hα(λ−α)t tm+n dt ≤ C(hα(λ−α)+ b(λ))−m−n−1.

On the other hand, if we drop the term −2hα(λ−α)/b(s), we get

(4-37) III ≤
∫
∞

λ

exp
(
−

cβ
2s

) b′(s)
b(s)m+n+2 ds ≤

∫
∞

0
exp

(
−

cβ
2s

) b′(s)
b(s)m+n+2 ds,

which, if finite, is independent of λ.
We now return to the study of the double integral appearing in parts (a) and (b)

of Lemma 4.18. Recall that when b is supercritical, we require 0< α0 ≤ |α| ≤ α1,
and we must bound the integral by a constant depending on m, n, q , β0, α0, and α1.
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Using (4-32), (4-34) and (4-36), we have

(4-38)
∫
+∞

−∞

H(α, β, λ,m+ n)|8(λ, α)|nb′′(λ)dλ

≤

∫
+∞

−∞

|8(λ, α)|nb′′(λ)
(hα(λ−α)+ b′′(λ))m+n+1 dλ+

∫
+∞

−∞

|8(λ, α)|nb′′(λ)
(hα(λ−α)+ |b′(λ)|)m+n+1 dλ

+

∫
+∞

−∞

|8(λ, α)|nb′′(λ)
[b(λ)+ hα(λ−α)]m+n+1 dλ.

We need to check that all the integrals on the right side of (4-38) converge at
infinity, but this follows as in the proof of Lemma 4.17 since we are assuming that
b(λ)≈ |λ|N for large |λ|, with N ≥ 2 and m ≥ 1. Also, if α 6= 0, the denominators
in these integrals never vanish and clearly depend continuously on α. Thus in
the critical case, when |α| ≥ α0 > 0, we can bound these integrals by a constant
depending on α0.

In the subcritical case, we need to make estimates independent of a lower bound
for |α|. For this we use all the estimates (4-32)–(4-37), and split the integrals
depending on whether |λ| ≥ 1 or |λ| ≤ 1. We have

(4-39)
∫
+∞

−∞

H(α, β, λ,m+ n)|8(λ, α)|nb′′(λ)dλ

≤

∫
|λ|≥1

|8(λ, α)|nb′′(λ)
(hα(λ−α)+ b′′(λ))m+n+1 dλ+

∫
|λ|≤1

exp
(
−

cβ
2

√
b′′(λ)
b(λ)

)
8(λ, α)nb′′(λ)

b′′(λ)m+n+1 dλ

+

∫
|λ|≥1

|8(λ, α)|nb′′(λ)
(hα(λ−α)+ |b′(λ)|)m+n+1 dλ+

∫
|λ|≤1

exp
(
−
β|b′(λ)|
2h(λ)

)
|8(λ, α)|nb′′(λ)
|b′(λ)|m+n+1 dλ

+

∫
|λ|≥1

|8(λ, α)|nb′′(λ)
(b(λ)+ hα(λ−α))m+n+1

+

∫
|λ|≤1

|8(λ, α)|nb′′(λ)dλ
(∫ ∞

0
exp

(
−
β

2s

) b′(s)
b(s)m+n+2 ds

)
.

The integrals for |λ| ≥ 1 still converge. We need to check that the three integrals
for |λ| ≤ 1 converge despite the presence in the denominator of terms b′′(λ)m+n+1,
|b′(λ)|m+n+1, and b(λ)m+n+2. However, b(λ) ≤ λ2b′′(λ) and h(λ) ≤ λ|b′(λ)|, so
in the subcritical case, the integrals converge by Proposition 4.15. �

5. Estimates for the function N

To estimate the Bergman and Szegő kernels, we shall need detailed information
about the behavior of the term Nα(η, τ ), defined in (4-25), which appears in the
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denominator. Indeed, we will need to study this function when the real variable η
is replaced by a complex variable z. Note that, for each real α,

(5-1) Nα(z, τ )=
∫
+∞

−∞

e2(r z−τbα(r))dr

converges absolutely for all z ∈ C and defines an entire function. These functions
are related as follows.

Proposition 5.1. For z ∈ C, τ > 0, and α, β ∈ R,

(5-2) Nα+β(z, τ )= e−2βze−2τhα(β)Nα(z+ τb′α(β), τ ).

In particular, for z = 0,

(5-3) Nα(τb′α(β), τ )= e2τhα(β)
∫
+∞

−∞

e−2τbα+β (r)dr.

Proof. Since bα+β = (bα)β , we have

Nα+β(z, τ )=
∫
+∞

−∞

e2(r z−τbα+β (r))dr

=

∫
+∞

−∞

exp(2(r z− τbα(r +β)+ τbα(β)+ τrb′α(β)))dr

= e2τbα(β)
∫
+∞

−∞

exp(2(r z− τbα(r +β)+ τrb′α(β)))dr

= e2τbα(β)
∫
+∞

−∞

exp(2((s−β)z− τbα(s)+ τ(s−β)b′α(β)))ds

= e−2βze2τbα(β)−2τβb′α(β)
∫
+∞

−∞

exp(2(sz− τbα(s)+ τ sb′α(β)))ds

= e−2βze−2τhα(β)Nα(z+ τb′α(β), τ ). �

5.2. Estimates for Nα(z, τ) for z ∈ R. We begin by studying the behavior of
N (z, τ )= N0(z, τ ) on the real axis. When b is even, we have the following simple
estimate for N0(η, τ ) from below. (Recall from (4-26) that µ(λ, τ) is the measure
of the set where bλ(r)≤ τ−1.)

Proposition 5.3. Suppose that b ∈ C∞(R) satisfies (3-1) and is even. Then

N0(η, τ )≥ e−2
(eµ(0,τ )η−e−µ(0,τ )η

2η

)
= e−2η−1 sinh(µ(0, τ )η).

Proof. Let µ=µ(0, τ ). Then τb(r)≤ 1 on the interval −µ/2≤ r ≤+µ/2, and so

N0(η, τ )≥

∫
+µ/2

−µ/2
e2ηr e−2τb(r)dr ≥ e−2

∫
+µ/2

−µ/2
e2ηr dr = e−2

(eµη−e−µη

2η

)
. �
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We next obtain bounds for η-derivatives of N0(η, τ ) for general convex, not
necessarily even, functions b.

Proposition 5.4. Suppose that b∈C∞(R) satisfies (3-1). There is a constant C>0
such that

(5-4) C−1e2τh(λ)µ(λ, τ)≤ N0(τb′(λ), τ )≤ Ce2τh(λ)µ(λ, τ).

Moreover, for each positive integer n, there is a constant Cn such that

(5-5)
∣∣∣∂nN0

∂ηn (τb′(λ), τ )
∣∣∣≤ Cn N0(τb′(λ), τ )(µ(λ, τ )n + λn).

Proof. Making the change r→ r + λ, we have

∂n N
∂ηn (η, τ )= 2n

∫
+∞

−∞

rne2(ηr−τb(r))dr = 2ne2(ηλ−τb(λ))
∫
+∞

−∞

(r + λ)ne−2τbλ(r)dr.

When n = 0, (5-4) follows from Proposition 4.12 or Corollary 4.13. If n ≥ 1, then
|r + λ|n ≤ Cn(|r |n + |λ|n), and so∣∣∣∂n N
∂ηn (η, τ )

∣∣∣≤ Cne2(ηλ−τb(λ))
(∫ +∞
−∞

|r |ne−2τbλ(r)dr + |λ|n
∫
+∞

−∞

e−2τbλ(r)dr
)
.

Then (5-5) follows from Proposition 4.12 and the inequality in (5-4). �

5.5. The complex zeros of Nα(z, τ). We study Nα(z, τ )=
∫
+∞

−∞
e2(r z−τbα(r))dr as

a function of the complex variable z. Clearly Nα(η, τ ) > 0 for η ∈ R. Our first
objective is to identify a zero-free region for Nα(z, τ ) about the real axis.

Proposition 5.6. Suppose that b ∈ C∞(R) satisfies (3-1). There is an absolute
constant C such that if λ ∈ R,

|e−2λyi N0(τb′(λ)+ iy, τ )− N0(τb′(λ), τ )| ≤ C |y|µ(λ, τ)N0(τb′(λ), τ )(5-6)
for any y ∈ R, and

|y| ≤ σµ(λ, τ)−1 implies |N0(τb′(λ)+ iy, τ )| ≥ 1
2 N0(τb′(λ), τ ),(5-7)

where σ = (2C)−1 and C is the constant in (5-6).

Proof. Consider first the case when λ= 0. We have

∂N0

∂z
(z, τ )= 2

∫
+∞

−∞

re2(r z−τb(r))dr.

Thus

(5-8) |N0(iy, τ )− N0(0, τ )| ≤
∫ y

0

∣∣∣∂N
∂z
(is, τ )

∣∣∣ds

≤ 2|y| sup
|s|≤y

∣∣∣∣∫ +∞
−∞

re2(irs−τb(r))dr
∣∣∣∣≤ C |y|µ(0, τ )N0(0, τ ),
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where the last inequality follows from Proposition 4.12. This gives (5-6) when
λ= 0.

Next, it follows from Proposition 5.1 that for any λ ∈ R,

N0(z, τ )= e2(λz−τb(λ))
∫
+∞

−∞

e2((z−τb′(λ))r−τbλ(r))dr.

In particular,

N0(τb′(λ)+ iy, τ )= e2(λ(τb′(λ)+iy)−τb(λ))
∫
+∞

−∞

e2iyr e−2τbλ(r)dr.

Thus∣∣e−2λyi N0(τb′(λ)+ iy, τ )− N0(τb′(λ), τ )
∣∣

= e2(λτb′(λ)−τb(λ))
∣∣∣∫ +∞
−∞

e2iyr e−2τbλ(r)dr −
∫
+∞

−∞

e−2τbλ(r)dr
∣∣∣

≤ C |y|
∣∣{r ∈ R | bλ(r)≤ τ−1

}
∣∣e2(λτb′(λ)−τb(λ))

∫
+∞

−∞

e−2τbλ(r)dr

= C |y|
∣∣{r ∈ R | bλ(r)≤ τ−1

}
∣∣N0(τb′(λ), τ ),

where the inequality follows from the inequality in (5-8) applied to the function bλ.
This establishes (5-6) in general.

Finally, if 2C |y|µ(λ, τ)≤ 1, it follows that

N0(τb′(λ), τ )

≤ |N0(τb′(λ), τ )− e−2λyi N0(τb′(λ)+ iy, τ )| + |e−2λyi N0(τb′(λ)+ iy, τ )|

≤
1
2 N0(τb′(λ), τ )+ |N0(τb′(λ)+ iy, τ )|

so |N0(τb′(λ)+iy, τ )|≥ 1
2 N0(τb′(λ), τ ). We take σ = (2C)−1 and obtain (5-7). �

If we now apply Proposition 5.6 to b = bα, we obtain the following:

Lemma 5.7. Suppose that b ∈C∞(R) satisfies (3-1). There are absolute constants
C > 0 and σ = (2C)−1 such that for any α, λ ∈ R,

(a) for any y ∈ R,

|e−2λyi Nα(τb′α(λ)+ iy, τ )− Nα(τb′α(λ), τ )| ≤ C |y|µ(λ+α, τ)Nα(τb′α(λ), τ ).

(b) In particular,

|y| ≤ σµ(λ+α, τ)−1 implies |Nα(τb′α(λ)+ iy, τ )| ≥ 1
2 Nα(τb′α(λ), τ ).

Proof. Assertions (a) and (b) follow since the function N0(z, τ ) defined with respect
to the function bα is the function Nα(z, τ ) defined with respect to the function b,
and from the identity in (4-4). �
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Corollary 5.8. Suppose that b ∈ C∞(R) satisfies (3-1) and (3-2). There is an
absolute constant σ > 0 such that

|y| ≤ σµ(0, τ )−1 implies |Nα(η+ iy, τ )| ≥ 1
2 Nα(η, τ ).

In particular, if |y| ≤ σµ(0, τ )−1, then Nα(η+ iy, τ ) 6= 0.

Proof. Under the extra hypotheses of the corollary, it follows from Lemma 4.14
that

∫
+∞

−∞
e−2τbα(r)dr attains its maximum for fixed τ when α = 0. Therefore

|y| ≤ σµ(0, τ )−1 implies |y| ≤ σµ(α, τ)−1 for all α ∈ R. The result now follows
from Lemma 5.7. �

We next study the function N0(z, τ )= N (z, τ ) for τ large, and show that under
suitable hypotheses on b, the function does have zeros on the imaginary axis at
height above and below the origin on the order of µ(0, τ )−1. To simplify notation
in the next result, we write µ(τ)≡ µ(0, τ )= |{r ∈ R | b(r)≤ τ−1

}|.

Theorem 5.9. Assume that b∈C∞(R) satisfies the conditions (3-1)–(3-4) and that
limr→02(r)= 0. Then there are constants η, A, B > 0 such that

(5-9) |N (z, τ )−
sinh(µ(τ)z)

z
| ≤

1
2

∣∣∣sinh(µ(τ)z)
z

∣∣∣
if 2(µ(τ)) < η and if z = x + iy ∈�1 ∪�2, where

�1 =

{
x + iy ∈ C

∣∣∣ |x | ≤ 1
µ(τ)

and
∣∣∣sin(µ(τ)y)
µ(τ)y

∣∣∣≥ B2(µ(τ))
}
,

�2 =

{
x + iy ∈ C

∣∣∣ 1
µ(τ)

≤ |x | ≤ A
µ(τ)2(µ(τ))

and |y| ≤ 3π
2µ(τ)

}
.

Proof. Write

N (z, τ )=
∫

2|r |≤µ(τ)

e2zr dr +
∫

2|r |≤µ(τ)

e2zr (e−2τb(r)
− 1)dr +

∫
2|r |≥µ(τ)

e2(zr−τb(r))dr

= I(z, τ )+ II(z, τ )+ III(z, τ ).

Observe that I (z, τ )= (ezµ(τ)
− e−zµ(τ))/(2z))= sinh(µ(τ)z)/z .

We now estimate |II(z, τ )| and |III(z, τ )|. Write z = x + iy. Since 2τb(r)≥ 0,
it follows that 0≤ 1− e−2τb(r)

≤ 2τb(r). Thus since B(s)=
∫ s

0 b(r)dr , we have

|II(z, τ )| ≤
∫

2|r |≤µ(τ)
e2|x |r (2τb(r))dr≤ 4τe|x |µ(τ)B( 1

2µ(τ)).

Next, for r ≥ µ(τ)/2, since τb(µ(τ)/2)= 1, we have

τb(r)≥ τb( 1
2µ(τ))+ τ(r −

1
2µ(τ))b

′(1
2µ(τ))= 1+ τ(r − 1

2µ(τ))b
′( 1

2µ(τ)),
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so τb(r +µ(τ)/2)≥ 1+ τrb′(µ(τ)/2). Thus for |x | ≤ 1/2τb′(µ(τ)/2), we have

|III(z, τ )| ≤ 2
∫
∞

µ(τ)/2
e2(r |x |−τb(r))dr = 2

∫
∞

0
e2((r+µ(τ)/2)|x |−τb(r+µ(τ)/2))dr

≤ eµ(τ)|x |B ′(µ(τ)/2)
∫
∞

0
e2r(|x |−τb′(µ(τ)/2))dr ≤ 4e|x |µ(τ)

τb′(µ(τ)/2)
.

Since B ′(µ(τ)/2) = b(µ(τ)/2) = τ−1, it follows from these estimates that when
|x | ≤ τ/2b′(µ(τ)/2), we have∣∣∣N (z, τ )− sinh(µ(τ)z)

z

∣∣∣≤ 4e|x |µ(τ)
(
τ B(µ(τ)/2)+ 1

τb′(µ(τ)/2)

)
≤ C1µ(τ)e|x |µ(τ)2(µ(τ)),

where C1 involves the constant appearing in (3-4). (We are using the fact that2(t)
is increasing for small t .) It follows that the estimate in (5-9) holds provided that

2C1|z|µ(τ)eµ(τ)|x |2(µ(τ))≤ |sinh(µ(τ)z)|.(5-10)

Note that

|sinh(µ(τ)z)|

= (sinh2(µ(τ)x)+ sin2(µ(τ)y))1/2 ≥ 1
√

2

(
|sinh(µ(τ)x)| + |sin(µ(τ)y)|

)
.

If z ∈�1, then |x |µ(τ)≤ 1, and so 2C12(µ(τ))(1+2|x |µ(τ))≤ 6C12(µ(τ)).
If z ∈�2, then 1≤ |x |µ(τ) and |x |µ(τ)2(µ(τ))≤ A, so

2C12(µ(τ))(1+ 2|x |µ(τ))≤ 6C1|x |µ(τ)2(µ(τ)/2)≤ 6C1 A.

It follows that

(5-11)
2(µ(τ))+ A ≤ ε(6C1)

−1

z ∈�1 ∪�2

}
implies 2C12(µ(τ))(1+2|x |µ(τ))≤ ε.

Suppose x+ iy ∈�1. Since t ≥ 0 implies tet
≤ (1+2t) sinh(t), it follows from

(5-11) that if 2(µ(τ))+ A ≤ ε(6C1)
−1,

(5-12)

2C1|x |µ(τ)e|x |µ(τ)2(µ(τ))≤ 2C12(µ(τ))(1+ 2µ(τ)|x |) sinh(|x |µ(τ))

≤ ε sinh(µ(τ)|x |).

Also, since µ(τ)|x | ≤ 1 and |sin(µ(τ)y)/(µ(τ)y)| ≥ B2(µ(τ)), if εB ≥ 2C1e2,
it follows that

2C1µ(τ)|y|e2µ(τ)|x |2(µ(τ))≤ 2C1e2 B−1
|sin(µ(τ)y)| ≤ ε|sin(µ(τ)y)|.(5-13)

Thus (5-12) and (5-13) show that if 2(µ(τ))+ A≤ ε(6C1)
−1, if εB ≥ 2C1e2, and

if 2
√

2ε < 1, then (5-10) holds for all x + iy ∈�1.
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Now suppose x + iy ∈�2. Using (5-11) again, we have

(5-14)
2C1|x |µ(τ)e|x |µ(τ)2(µ(τ))≤ 2C12(µ(τ))(1+2µ(τ)|x |) sinh(|x |µ(τ))

≤ ε sinh(µ(τ)|x |).

We also have |y| ≤ 3π |x |/2< 5|x |, and so

(5-15)
2C1µ(τ)|y|e2µ(τ)|x |2(µ(τ))≤ 5 · 2C1|x |µ(τ)e|x |µ(τ)2(µ(τ))

≤ 5ε sinh(µ(τ)|x |).

Thus (5-14) and (5-15) show that if 2(µ(τ))+ A ≤ ε(6C1)
−1 and if 6

√
2ε < 1,

then (5-10) holds for all x + iy ∈�2.
Thus we can choose, for example, ε = 10−2, and then set A = ε(6C1)

−1/2,
B = 4ε−1C1e2, and η = ε(6C1)

−1/2. With these choices, the estimate (5-9) holds
for all z ∈�1 ∪�2. �

Corollary 5.10. Assume that b satisfies the hypotheses of Theorem 5.9. Then there
exists µ0 > 0 and c > 0 such that the following hold if µ(τ)≤ µ0:

(a) The function N (z, τ ) has no zeros in the regions{
x + iy ∈ C

∣∣∣ 1
µ(τ)

≤ |x | ≤ A
µ(τ)2(µ(τ))

, |y| ≤ 3π
2µ(τ)

}
,

and in these regions,

|N (x + iy, τ )| ≥ c
sinh(µ(τ)|x |)

|x |
.

(b) The function N (z, τ ) has precisely two zeros in the region{
x + iy ∈ C

∣∣∣ |x | ≤ 1
µ(τ)

, 0≤ |y| ≤ 3π
2µ(τ)

}
.

These zeros are complex conjugate and purely imaginary, and can be written
±iσ/µ(τ) where 3π/4< σ < 5π/4. Moreover, for |x | ≤ 1/µ(τ), we have∣∣∣N (x ± i 3π

2µ(τ)
, τ )

∣∣∣≥ c
sinh(µ(τ)|x |)+ 1

|x | + 1
.

Proof. The holomorphic function z−1 sinh(µ(τ)z) has only simple zeros located at
the points {nπ iµ(τ)−1

} for n = ±1,±2, . . . . The existence and absence of zeros
for the function N (z, τ ) then follows from Rouché’s theorem and the estimates of
Theorem 5.9. Since N (z, τ ) = N (−z, τ ) = N (z̄, τ ), it follows that the zeros are
purely imaginary. �
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5.11. The complex zeros of ϕ(α,w). Recall that ϕ(α, τ)=
∫
∞

−∞
e−2τbα(r)dr from

(4-24). If we replace the real variable τ by a complex variable w = τ + is, then

(5-16) ϕ(α,w)=

∫
∞

−∞

e−2wbα(r)dr

is a holomorphic function of w in the half-plane <e(w) > 0. Clearly ϕ(α,w) > 0
if w is real. We have (∂/∂s)(ϕ(α, τ + is)) = −2i

∫
∞

−∞
bα(r)e−2(τ+is)bα(r)dr , and

so by Proposition 4.12,∣∣∣ ∂
∂s
(ϕ(α, τ + is))

∣∣∣≤ 2
∫
∞

−∞

bα(r)e−2τbα(r)dr

≤ Cτ−1
∫
∞

−∞

e−2τbα(r)dr = Cτ−1ϕ(α, τ).

Thus |ϕ(α, τ + is)−ϕ(α, τ)| ≤ C |s|τ−1ϕ(α, τ). This proves the following result.

Lemma 5.12. There is a constant σ > 0 such that if |s| ≤ στ , then

|ϕ(α, τ + is)−ϕ(α, τ)| ≤ 1
2ϕ(α, τ).

In particular, the holomorphic function ϕ(α,w) has no zeros in the angular region
about the positive real axis {w ∈ C | |=m(w)| ≤ σ<e(w),w 6= 0}.

6. Proof of Theorem 3.4

Recall that

(3-8) Bρ(z, w)=
21−ρ

4π20(1−ρ)

∫∫
τ>0

eη(z1+w1)+iτ(z2−w2) τ 1−ρ∫
R

e2(ηr−τb(r))dr
dηdτ.

In this section, we establish the absolute convergence of this integral, and identify
it with the Bergman and Szegő kernels.

6.1. Proof of absolute convergence (part (a)). Let C = C(ρ) denote a constant
that depends on ρ and may change from one line to the next. Then with z1= x+iy,
z2 = t + ib(x)+ ih, w1 = u+ iv, and w2 = s+ ib(u)+ ik,

|∂a
z1
∂b
w1
∂c

z2
∂d
w2

Bρ((z1, z2), (w1, w2))|

≤ C
∫∫
τ>0

eη(x+u)−τ(b(x)+b(u))−τ(h+k) |η|
a+bτ c+d+1−ρ∫

R
e2(rη−τb(r))dr

dηdτ

= C
∫∫
τ>0

e−τ(b(x)+b(u)−2b( x+u
2 )+(h+k)) ηa+bτ c+d+1−ρ∫

R
e2(ηr−τ(b(r+ x+u

2 )−b( x+u
2 )−rb′( x+u

2 )))dr
dηdτ.
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If we let α = (x + u)/2, A = b(x)+ b(u)− 2b(α), and δ = h+ k, then

|∂a
z1
∂b
w1
∂c

z2
∂d
w2

Bρ(z, w)| ≤ C
∫∫
τ≥0

e−τ(A+δ)
ηa+bτ c+d+1−ρ∫
R

e2(ηr−τbα(r))dr
dηdτ.

We need to show that this last integral converges for A+ δ > 0.
However, this follows easily from Lemma 4.17. Let a+ b+ c+ d+ 2−ρ =m

and a+b= n, such that m ≥ n+1≥ 1. Make the change of variables η→ τb′α(λ)
and use Proposition 4.11. Then we have

|∂a
z1
∂b
w1
∂c

z2
∂d
w2

Bρ(z, w)|

≤ C
∫∫
τ≥0

e−τ [A+δ]e−2τhα(λ) τmb′α(λ)
n∫

R
e−2τbα+λ(r)dr

b′′α(λ)dλdτ

≤ C
∫∫
τ≥0

e−τ [A+δ]e−2τhα(λ−α) τ
mb′α(λ−α)

n∫
R

e−2τbλ(r)dr
b′′(λ)dλdτ

= C
∫∫
τ≥0

e−τ [A+δ]+2τhα(λ−α)ϕ(λ, τ )−1τm
[b′(λ)− b′(α)]nb′′(λ)dλdτ

< C(ρ,m, n, A+ δ, α),

where the last inequality is the content of Lemma 4.17.

6.2. Proof of part (b). The weighted Bergman spaces B2
ρ(�) for ρ <1 are defined

in Section 2.1. We want to show that the corresponding Bergman kernel is given
by the function Bρ(z, w).

A function f ∈ L2
ρ(�) is holomorphic if and only if f satisfies (in the sense of

distributions) the partial differential equations

(6-1)
(
∂
∂x
+ i ∂

∂y

)
[ f ] = 0 and

(
∂
∂t
+ i ∂

∂s

)
[ f ] = 0.

If we make the nonsingular change of variables

� 3 (x + iy, t + is)→ (x, y, t, s− b(x))= (x, y, t, h),

the domain � is mapped to the domain R4
+
= {(x, y, t, h) ∈R4

| h > 0}, and in the
new coordinates, equations (6-1) become

(6-2)
(
∂
∂x
− b′(x) ∂

∂h
+ i ∂

∂y

)
[ f ] = 0 and

(
∂
∂t
+ i ∂

∂h

)
[ f ] = 0.

These in turn are equivalent to the equations

(6-3) Z1[ f ] =
∂ f
∂x
+ i
(∂ f
∂y
− b′(x)

∂ f
∂t

)
= 0 and Z2[ f ]=

∂ f
∂t
+ i

∂ f
∂h
= 0.
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Thus if we use coordinates (x, y, t, h), the space B2
ρ(�) is identified with the space

of functions B2
ρ(R

4
+
)⊂ L2(R4

+
; h−ρdx dy dt dh)= L2

ρ(R
4
+
), which satisfy the two

equations in (6-3) in the sense of distributions.
In analogy with (2-6), define a partial Fourier transform F and its inverse by

F[ f ](x, η, τ, h)=
∫∫

R2
e−2π i(yη+tτ) f (x, y, t, h)dy dt,

F−1
[ f ](x, y, t, h)=

∫∫
R2

e+2π i(yη+tτ) f (x, η, τ, h)dηdτ
(6-4)

for f ∈ S(R4), the Schwartz space. Then F extends to an isometry of L2(R4).
Also define a multiplication operator M and its inverse by

(6-5)
M[g](x, η, τ, h)= e−2π(ηx−τb(x)−τh)g(x, η, τ, h),

M−1
[g](x, η, τ, h)= e+2π(ηx−τb(x)−τh)g(x, η, τ, h).

Let L̃2
ρ(R

4
+
) denote the weighted space

L2(R4
+
, 0(1− ρ)−1e+4π(ηx−τb(x)−τh)h−ρ dx dηdτdh).

Then M : L2
ρ(R

4
+
)→ L̃2

ρ(R
4
+
) is an isometry. It is now easy to check that

(6-6) Z1 = F−1M−1 ∂
∂x

MF and Z2 = iF−1M−1 ∂
∂h

MF.

Thus the space B2
ρ(R

4
+
) is conjugate via the isometry MF to the subspace B̃2

ρ(R
4
+
)

of the weighted Hilbert space L̃2
ρ(R

4
+
) annihilated by the operators ∂/∂x and ∂/∂h.

Of course, B̃2
ρ(R

4
+
) is just the space of functions in L̃2

ρ(R
4
+
) that are independent

of x and h. Moreover, if Pρ is the orthogonal projection of L̃2
ρ(R

4
+
) onto this

subspace, then

(6-7) Bρ = F−1M−1PρMF.

To understand B̃2
ρ(R

4
+
), suppose φ ∈ L̃2

ρ(R
4
+
) is independent of x and h. Then

‖φ‖2L̃2
ρ(R

4
+)
=

∫∫
R2
|φ(η, τ )|2

(∫∫
h>0

e4π(ηx−τb(x)−τh)h−ρ dh dx
)

dηdτ

= 0(1− ρ)
∫∫
|φ(η, τ )|2(4πτ)ρ−1 N (2πη, 2πτ)dηdτ,

where N (η, τ ) = N0(η, τ ) as defined in (4-25). Since N (η, τ ) = +∞ if τ ≤ 0, it
follows that if ‖φ‖L̃2

ρ(R
4
+)
<+∞, then φ is supported in the set {(η, τ )∈R2

| τ ≥ 0}.
Thus B̃2

ρ(R
4
+
) is identified with the set of functions φ(η, τ ) supported where τ ≥ 0

such that
∫∫
|φ(η, τ )|2τ ρ−1 N (2πη, 2πτ)dηdτ <+∞.
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For each fixed (η, τ ) ∈ R2
+

, let

L̃2
ρ,η,τ (R

2
+
)= L2(R2

+
, 0(1− ρ)−1e4π(ηx−τb(x)−τh)h−ρ dx dh).

Then we can regard L̃2
ρ(R

4
+
) as the space of functions g defined on R2

+
so that

g(η, τ ) ∈ L̃2
ρ,η,τ (R

2
+
) and so that ‖g(η, τ )‖L2

ρ,η,τ (R
2
+)

is square-integrable with re-
spect to the measure dηdτ . With this interpretation, B̃2

ρ(R
4
+
) is the set of square-

integrable functions on R2
+

with values in L̃2
ρ,η,τ (R

2
+
) whose values are constant

functions.
Let 0 and 1 be the functions of (x, h) taking on the constant values 0 and 1.

Then the orthogonal projection of L̃2
ρ,η,τ (R

2
+
) onto the subspace of constants is

given by

(6-8) Pρ,η,τ [g](x, h)=

{
0 if τ < 0,
‖1‖−2

L̃2
ρ,η,τ (R

2
+)
〈g, 1〉L̃2

ρ,η,τ (R
2
+)

1 if τ ≥ 0,

and if g ∈ L̃2
ρ(R

4
+
), then

(6-9) Pρ[g](x, η, τ, h)= Pρ,η,τ [gη,τ ](x, h),

where gη,τ (x, h)= g(x, η, τ, h). But

(6-10) ‖1‖2L̃2
ρ,η,τ (R

2
+)
=

∫∫
R2
+

e4π(ηx−τb(x)−τh)h−ρ dx dh = (4πτ)ρ−1 N (2πη, 2πτ).

Thus from (6-8), if τ ≥ 0,

(6-11) Pη,τ [g](x, h)=
(4πτ)1−ρ

0(1− ρ)N (2πη, 2πτ)

∫∫
R2
+

g(r, k)e4π(ηr−τb(r)−τk)dr dk.

Hence it follows from (6-9) that P[g](x, η, τ, h)= 0 if τ < 0, and, if τ ≥ 0,

(6-12) P[g](x, η, τ, h)

=
(4πτ)1−ρ

0(1− ρ)N (2πη, 2πτ)

∫∫
R2
+

g(r, η, τ, k)e4π(ηr−τb(r)−τk)k−ρ dr dk.

We can now compute Bρ = F−1M−1PρMF. We have

Bρ[ f ](x, y, t, h)=
∫∫

e2π i(ηy+tτ)M−1PρMF[ f ](x, η, τ, h)dηdτ

=

∫∫
e2π i(ηy+tτ)+2π(ηx−τb(x)−τh)PρMF[ f ](x, η, τ, h)dηdτ
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=
1

0(1−ρ)

∫∫∫∫
τ≥0,k≥0

e2π i(ηy+tτ)+2π(ηx−τb(x)−τh)+4π(ηu−τb(u)+τk)

×
(4πτ)1−ρ

N (2πη, 2πτ)
MF[ f ](u, η, τ, k)k−ρ du dk dηdτ

=
1

0(1−ρ)

∫∫∫∫
τ≥0,k≥0

e2π i(ηy+tτ)+2π(ηx−τb(x)−τh)+4π(ηu−τb(u)+τk)−2π(ηu−τb(u)−τk)

×
(4πτ)1−ρ

N (2πη, 2πτ)
F[ f ](u, η, τ, k)k−ρ du dk dηdτ

=
1

0(1−ρ)

∫∫∫∫
τ≥0,k≥0

e2π i(η(y−v)+τ(t−s))e+2π(η(x+u)−τ(b(x)+b(u))−τ(h+k))

×
(4πτ)1−ρ

N (2πη, 2πτ)
f (u, v, s, k)k−ρ du dk dηdτ dvdv

=
1

0(1− ρ)

∫∫∫
k≥0

f (u, v, s, k)Bρ((x, y, t, h), (u, v, s, k))k−ρdu dvds dk,

where

Bρ((x, y, t, h), (u, v, s, k))

= (2π)−221−ρ
∫∫
τ≥0

ei(η(y−v)+τ(t−s))e+(η(x+u)−τ(b(x)+b(u))−τ(h+k)) τ 1−ρ

N (η, τ )
dηdτ

= (2π)−221−ρ
∫∫
τ≥0

eη((x+iy)+(u−iv))eiτ((t+i(b(x)+h))−(s−i(b(u)+k))) τ 1−ρ

N (η, τ )
dηdτ.

If we go back to complex coordinates in which z1 = x + iy, w1 = r + is,
z2 = t + ib(x) + ih, and w2 = w + ib(r) + ik, the formula for the projection
kernel becomes

Bρ(z, w)=
21−ρ

4π2

∫∫
τ>0

eη(z1+w1)eiτ(z2−w2) τ 1−ρ

N (η, τ )
dηdτ.

This completes the proof of part (b) of Theorem 3.4.

6.3. Proof of part (c). The proof of the formula for the Szegő kernel S is very
similar to that for the Bergman kernels for ρ < 1, except that in view of the dis-
cussion in Section 2.3, the analysis is carried out in L2(∂�) = L2(R3) instead
of L2(R4

+
). Thus we shall be brief. According to Corollary 2.6, we can identify

the space H2(�) with the closed subspace of functions f (x, y, t) in L2(R3) that
are annihilated in the sense of distributions by ∂/∂x + i∂/∂y − ib′(x)∂/∂t . Ac-
cording to Proposition 2.5, the partial Fourier transform F defined in (2-6) is an
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isometry on L2(R3) and identifies H2(�) with the space of functions f̂ (x, η, τ )
satisfying (∂/∂x)(e−2π(ηx−τb(x)) f̂ (x, η, τ )) = 0. Therefore if M[ f̂ ](x, η, τ ) =
e−2π(ηx−τb(x)) f̂ (x, η, τ ), it follows that H2(�) is conjugate via the isometry MF

to the subspace of L2(R3
; e4π(ηx−τb(x))dx dηdτ) consisting of functions that are

independent of x . These are functions φ(η, τ ) supported where τ ≥ 0 such that∫∫
|φ(η, τ )|2 N (2πη, 2πτ)dηdτ < +∞. If P1 is the orthogonal projection onto

this subspace, then the Szegő projection S equals F−1M−1P1MF.
Just as in the analysis of the Bergman projection, consider the space L̃2

η,τ (R)=

L2(R, e4π(ηx−τb(x))dx), and let Pη,τ denote the orthogonal projection onto the sub-
space of constants (which is (0) when τ < 0). We have the analogues of equations
(6-8) and (6-9) in this situation, and the computation of the Szegő kernel B1 is
carried out in exactly the same way as the computations of the Bergman kernels
Bρ for ρ < 1. The final result is

B1(z, w)=
1

4π2

∫∫
τ≥0

eη(z1+w1)eiτ(z2−w2) 1
N (η, τ )

dηdτ,

and this completes the proof of part (c), and hence of Theorem 3.4. �

7. Proof of Theorem 3.6

We estimate the kernel Bρ(z, w) and all of its derivatives, and prove Theorem 3.6.
It follows from Theorem 3.4 that

∂a
z1
∂b
w1
∂c

z2
∂d
w2

Bρ(z, w)

=
21−ρic−d

4π2

∫
∞

0

∫
+∞

−∞

eη(z1+w1)+iτ(z2−w2)
ηa+bτ c+d+1−ρ∫
+∞

−∞
e2(ηr−τb(r))dr

dηdτ.

Let

(7-1)
A = b(x)+ b(u)− 2b(α)≥ 0, α = 1

2(x + u), δ = h+ k > 0,

B = (t − s)+ (y− v)b′(α), β = y− v, cρ =
21−ρ

4π20(1−ρ)
.

Then

∂a
z1
∂b
w1
∂c

z2
∂d
w2

Bρ(z, w)

= cρic−d

∞∫
0

+∞∫
−∞

eη(2α+iβ)−τ(b(x)+b(u)+δ−i(t−s)) ηa+bτ c+d+1−ρ∫
+∞

−∞
e2(ηr−τb(r))dr

dηdτ

= cρic−d

∞∫
0

+∞∫
−∞

eiηβ−τ(A+δ−i(t−s)) ηa+bτ c+d+1−ρ∫
+∞

−∞
e2(ηr−τ(b(r+α)−b(α)))dr

dηdτ
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= cρic−d

∞∫
0

+∞∫
−∞

e−τ(A+δ−i B)eiηβ (η+ τb′(α))a+bτ c+d+1−ρ∫
+∞

−∞
e2(ηr−τbα(r))dr

dηdτ.(7-2)

The integral in (7-2) involves two oscillatory terms: eiτ B and eiηβ . We will make
two estimates of the derivatives |∂a

z1
∂b
w1
∂c

z2
∂d
w2

Bρ(z, w)|; one will take advantage
of the oscillation if B 6= 0, and the other will take advantage if β 6= 0.

Case 1: B 6= 0. Again let a+ b+ c+ d + 2− ρ = m and a+ b = n. Making the
change of variables η = τb′(λ), we have

|∂a
z1
∂b
w1
∂c

z2
∂d
w2

Bρ(z, w)|

≤ cρ

∫
+∞

−∞

∣∣∣∣∫ ∞
0

(η+ τb′(α))a+bτ c+d+1−ρe−τ(A+δ−i B)∫
R

e2(ηr−τbα(r))dr
dτ
∣∣∣∣dη

≤ cρ

∫
+∞

−∞

∣∣∣∣∫ ∞
0

b′(α+ λ)nτme−τ(A+δ−i B)∫
R

e2τ(b′α(λ)r−bα(r))dr
dτ
∣∣∣∣b′′α(λ)dλ

= cρ

∫
+∞

−∞

∣∣∣∣∫ ∞
0

b′(α+ λ)nτme−τ(A+δ−i B)e−2τhα(λ)

ϕ(α+ λ, τ)
dτ
∣∣∣∣b′′α(λ)dλ,

where in the last line we have used Proposition 4.11. According to Lemma 5.12,
there is a σ > 0 such that we can replace the integral in τ along the positive real
axis by an integral parameterized by τ → τ(1± iσ). We choose the sign so that

<e((1± iσ)(A+ δ− i B))= A+ δ+ σ |B|.

If we make this change of contour we get

|∂a
z1
∂b
w1
∂c

z2
∂d
w2

Bρ(z, w)|

.

+∞∫
−∞

∣∣∣∣
∞∫

0

b′(α+ λ)n((1± iσ)τ)me−τ [(1±iσ)[A+δ−i B]−2(1±iσ)hα(λ)]

ϕ(α+ λ, τ(1± iσ))
dτ
∣∣∣∣b′′α(λ)dλ

.

+∞∫
−∞

∞∫
0

|b′(α+ λ)|nτme−τ [A+δ+σ |B|]−2τhα(λ)

ϕ(α+ λ, τ)
b′′α(λ)dτdλ

=

+∞∫
−∞

∞∫
0

|b′(λ)|nτme−τ [A+δ+σ |B|]−2τhα(λ−α)

ϕ(λ, τ )
b′′(λ)dτdλ.

It follows from Lemma 4.17 that this integral is bounded uniformly in δ ≥ 0 if
A+ |B|> 0.
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Case 2: β 6= 0. Using Equation (7-2), we have

|∂a
z1
∂b
w1
∂c

z2
∂d
w2

Bρ(z, w)|

= cρ
∣∣∣∣∫ ∞

0
τ c+d+1−ρe−τ(A+δ−i B)

∫
+∞

−∞

(η+ τb′(α))a+beiηβ∫
R

e2(ηr−τbα(r))dr
dηdτ

∣∣∣∣
≤ cρ

∫
∞

0
τ c+d+1−ρe−τ(A+δ)

∣∣∣∣∫ +∞
−∞

(η+ τb′(α))a+beiηβ∫
R

e2(ηr−τbα(r))dr
dη
∣∣∣∣dτ

= cρ

∫
∞

0
τ c+d+1−ρe−τ(A+δ)

∣∣∣∣∫ +∞
−∞

(η+ τb′(α))a+beiηβNα(η, τ )−1dη
∣∣∣∣dτ.

We want to change the contour in the inner integral, replacing the integral in η
over R by an integral over a curve in the upper or lower half plane. According to
Lemma 5.7, since µ and ϕ are comparable, there is a constant σ > 0 such that if
|y| ≤ σϕ(λ+α, τ)−1, then

|Nα(τb′α(λ)+ iy, τ )| =
∣∣∣∫ +∞
−∞

e2(τb′α(λ)+iy−τbα(r))dr
∣∣∣> 1

2 Nα(τb′α(λ), τ ).

Thus we can deform the integral in η to the curve parameterized by

λ→ z(λ)= τb′α(λ)± iσϕ(α+ λ, τ)−1,

where we choose the sign of the imaginary part so that

eiηβ
→ ei z(λ)β

= exp
(
−

σ |β|

ϕ(α+ λ, τ)

)
eiτb′α(λ)β .

With this change of contour, η+ τb′(α)= τb′(α+ λ)± iσϕ(α+ λ, τ)−1, and so

|(η+ τb′(α))|a+b . τ a+b
|b′(λ+α)|a+b

+ |σ |a+bϕ(α+ λ, τ)−a−b.

Also, dη becomes

dz =
dz
dλ
(λ)dλ=

(
τb′′α(λ)± iσ

ϕ′(α+ λ, τ)

ϕ(α+ λ, τ)2

)
dλ,

where ϕ′(α+λ, τ) means the partial derivative with respect to λ. According to the
inequality in Lemma 4.14(b),∣∣∣∣τb′′α(λ)± iσ

ϕ′(α+ λ, τ)

ϕ(α+ λ, τ)2

∣∣∣∣≤ Cτb′′(α+ λ)= Cτb′′α(λ).
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Thus with this change of contour, we obtain the estimate

|∂a
z1
∂b
w1
∂c

z2
∂d
w2

Bρ(z, w)|

.

∞∫
0

+∞∫
−∞

e−τ(A+δ)−σ |β|/ϕ(λ,τ )
|b′(λ)|nτm

+ σ nϕ(λ, τ )−nτ c+d+2−ρ

Nα(τb′α(λ−α), τ )
b′′α(λ)dλdτ.

Now b′′α(λ−α)= b′′(λ), and according to Proposition 5.1,

Nα(τb′α(λ−α), τ )= exp(2τhα(λ−α))ϕ(λ, τ ).

Thus we get

|∂a
z1
∂b
w1
∂c

z2
∂d
w2

Bρ(z, w)|

.

∞∫
0

+∞∫
−∞

e−τ(A+δ)−σ |β|/ϕ(λ,τ )−2τhα(λ−α) |b
′(λ)|nτmb′′(λ)
ϕ(λ, τ )

dλdτ

+

∞∫
0

+∞∫
−∞

e−τ(A+δ)−σ |β|/ϕ(λ,τ )−2τhα(λ−α) τ
c+d+2−ρb′′(λ)
ϕ(λ, τ )n+1 dλdτ.

Theorem 3.6 now follows from Lemma 4.18. �

8. Proof of Theorem 3.8

Let b ∈ C∞(R) satisfy (3-1), (3-2), and (3-4). In this section we will show that
if b is “sufficiently flat” at the origin, the kernel Bρ(z, w) has singularities when
z, w ∈ ∂� and z 6= w. Again we put

z = (z1, z2)= (x + iy, t + ib(x)+ ih), and

w = (w1, w2)= (u+ iv, s+ ib(u)+ ik).

We will study the case when x = u = 0 and t = s, but y 6= v. Then, as in (7-1),
A = B = α = 0, δ = h + k > 0, and β = y − v > 0. In this case, Equation (7-2)
gives

(8-1) Bρ((iy, t + ih), (iv, t + ik))

= cρ

∫
∞

0
τ 1−ρe−τ(h+k)

(∫ +∞
−∞

eiη(y−v)∫
R

e2(ηr−τb(r)) dη
)

dr.

Put

(8-2) I (δ, τ )=
∫
+∞

−∞

eiηδ∫
R

e2(ηr−τb(r)) dη =
∫
+∞

−∞

eiηδN (η, τ )−1dη.
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The function z→ei zδN (z, τ )−1 is meromorphic, and we can use Cauchy’s theorem
to change the contour of integration in (8-2) from η ∈ R to z ∈ 0 = 0−2+0−1+

00+01+02, where

0−2 =

{
η ∈ R

∣∣∣−∞< η ≤−
A

µ(τ)2(µ̂(τ ))

}
,

0−1 =

{
−

A
µ(τ)2(µ̂(τ ))

+ iy ∈ C

∣∣∣ 0≤ y ≤ 3π
2µ(τ)

}
,

00 =

{
η+ i 3π

2µ(τ)
∈ C

∣∣∣ − A
µ̂(τ )2(µ̂(τ ))

≤ η ≤+
A

µ̂(τ )2(µ̂(τ ))

}
,

01 =

{
+

A
µ(τ)2(µ̂(τ ))

+ iy ∈ C

∣∣∣ 3π
2µ(τ)

≥ y ≥ 0
}
,

02 =

{
η ∈ R

∣∣∣ A
µ̂(τ )2(µ̂(τ ))

≤ η <+∞
}
,

since according to Corollary 5.10, N (z, τ ) 6= 0 when z ∈ 0. Also, Corollary 5.10
shows that N (z, τ )−1 has one pole at iστ/µ(τ) inside the region{

x + iy ∈ C

∣∣∣− A
µ(τ)2(µ̂(τ ))

≤ x ≤+ A
µ(τ)2(µ̂(τ ))

, 0≤ y ≤ 3π
2µ(τ)

}
,

and limτ→∞ στ = π .

Proposition 8.1. Suppose that b ∈C∞(R) satisfies (3-1) and (3-2), and, with2(r)
defined as in (3-6), that limr→02(r)= 0. Then for any |λ|< 1,

(8-3) lim
r→0

b(λr)
b(r)

= 0.

Proof. Since b′ is monotone increasing,

b(r)
b(λr)

=
1

b(λr)

∫ r

0
b′(s)ds = 1+ 1

b(λr)

∫ r

λr
b′(s)ds

≥ 1+
λrb′(λr)

b(λr)
1−λ
λ
≥ 1+ 1−λ

λ
2(λr)−1,

and since limr→02(λr)−1
=+∞, this gives the desired result. �

Proposition 8.2. Suppose again that b ∈C∞(R) satisfies (3-1) and (3-2), and that
limr→02(r)= 0. Let σ > 0. Then for µ(τ)≤ 1,∫

∞

0
r sin(σr)e−2τb(µ̂(τ )r)dr =

∫ 1

0
r sin(σr)dr + E(τ )

where limµ̂(τ )→0+ E(τ )= 0.
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Proof. For r ≥ 1 we have b(µ̂(τ )r)≥ τ−1
+ (r − 1)µ̂(τ )b′(µ̂(τ )). Thus∣∣∣∣∫ ∞

1
r sin(σr)e−2τb(µ̂(τ )r)dr

∣∣∣∣≤ ∫ ∞
1

re−2−2τ(r−1)µ̂(τ )b′(µ̂(τ ))dr

= e−2
∫
∞

0
(r + 1)e−2τrµ̂(τ )b′(µ̂(τ ))dr

. (τ µ̂(τ )b′(µ̂(τ )))−2
+ (τ µ̂(τ )b′(µ̂(τ )))−1

=2(µ̂(τ ))2+2(µ̂(τ )).

Also, it follows from Proposition 8.1 that for 0≤ r < 1,

lim
µ̂(τ )→0

τb(µ̂(τ )r)= lim
µ̂(τ )→0

b(rµ̂(τ ))/b(µ̂(τ ))= 0.

Thus using the Lebesgue dominated convergence theorem, we have

lim
µ̂(τ )→0+

∫ 1

0
r sin(σr)(e−2τb(µ̂(τ )r)

− 1)dr = 0. �

The residue of ei zδN (z, τ )−1 at iστ/µ(τ)= iστ/(2µ̂(τ )) is

e−στβ/µ(τ)N ′(iστ/µ(τ), τ )−1

=
1
2 e−στβ/µ(τ)

(∫ +∞
−∞

re2irστ /µ(τ)e−2τb(r)dr
)−1

=
2

µ(τ)2
e−στβ/µ(τ)

(∫ +∞
−∞

reirστ e−2τb(µ̂(τ )r)dr
)−1

=
1

iµ(τ)2
e−στβ/µ(τ)

(∫ +∞
0

r sin(rστ )e−2τb(µ̂(τ )r)dr
)−1

=
1

iµ(τ)2
e−στβ/µ(τ)

(∫ 1

0
r sin(rστ )dr + E(τ )

)−1
,

where E(τ )→ 0 as µ(τ)→ 0 by Proposition 8.2. Moreover, since στ → π , it
follows that

(8-4) I (β, τ )= π2

µ(τ)2
e−πβ/µ(τ)(1+ o(1))+

∫
0

eiβz N (z, τ )−1dz

We show that the last integral is smaller than the main term. Note that

µ(τ)2(µ̂(τ ))≈
b(µ(τ))
b′(µ(τ))

=
1

τb′(µ̂(τ ))
,

so
A

µ(τ)2(µ̂(τ ))
≈ Bτb′(µ(τ)).
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Proposition 8.3. Let B > 0. Then there are constants C and c depending only
on B such that

(8-5)
∫
∞

Bτb′(µ(τ))
N (η, τ )−1dη ≤ C 1

µ(τ)2
e−c/2(µ̂(τ )).

Proof. Recall that N (τb′(λ), τ ) = e2τh(λ)ϕ(λ, τ ). Thus if we make the change of
variables η = τb′(λ),∫

∞

Bτb′(µ̂(τ ))
N (η, τ )−1dη =

∫
∞

λ0

N (τb′(λ), τ )−1τb′′(λ)dλ

=

∫
∞

λ0

e−2τh(λ) 1
ϕ(λ, τ )

τb′′(λ)dλ,

where b′(λ0) = Bb′(µ̂(τ )). By Lemma 4.14, ϕ(λ, τ )−1
≤ ϕ(0, τ )−1

+ Aτb′(λ),
with A an absolute constant. Thus since

h′(λ)= λb′′(λ) and λ−1h(λ)≤ b′(λ)≤ λ−1(h(λ)+ b(λ))≤ 2λ−1h(λ),

we have∫
∞

Bτb′(µ(τ))
N (η, τ )−1dη ≤ 1

λ0

∫
∞

λ0

e−2τh(λ)((ϕ(0, τ ))−1
+ Aτb′(λ))τλb′′(λ)

≤
1

λ0ϕ(0, τ )
e−2τh(λ0)+

A
λ2

0
τh(λ0)e−2τh(λ0)

≤
1

λ0ϕ(0, τ )
e−τh(λ0) A

λ2
0
τh(λ0)e−τh(λ0).

But now we observe that λ0 ≈ µ(τ). Since b′′(r) is monotone increasing for
r > 0, we know that b′(2r) ≥ 2b′(r), and so for any integer m ≥ 1 we have
2mb′(2−mr) ≤ b′(r) ≤ 2−mb′(2mr). Now if B ≤ 1, then b′(λ0) ≤ b′(µ(τ)), so
λ0 ≤ µ(τ). Let m be the nonnegative integer such that 2−m−1

≤ B < 2−m . Then
b′(λ0) ≥ 2−m−1b′(µ(τ)) ≥ b′(2−m−1µ(τ)), and so λ0 ≥ 2−m−1µ(τ) ≥ Bµ(τ)/2.
Thus we have Bµ(τ)/2≤ λ0 ≤ µ(τ).

On the other hand, if B ≥ 1, then b′(λ0) ≥ b′(µ(τ)) so λ0 ≥ µ(τ). Let m be
the nonnegative integer such that 2m

≤ B < 2m+1. Then b′(λ0)≤ 2m+1b′(µ(τ))≤
b′(2m+1µ(τ)), and so λ0 ≤ 2m+1µ(τ)≤ 2Bµ(τ). Thus µ(τ)≤ λ0 ≤ 2Bµ(τ).

Now for any r ,

(8-6)
b(r)
b′(r)

≤ r2(r)≤ C
b(r)
b′(r)

.
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Thus

(8-7)
τh(λ0)≈ τλ0b′(λ0)= Bτλ0b′(µ(τ))

= Bτλ0
b′(µ(τ))
b(µ(τ))

b(µ(τ))= B
λ0

µ(τ)2(µ(τ))
≈

1
2(µ(τ))

,

where τh(λ0)≈ (2(µ(τ)))
−1 means that the ratio is bounded above and below by

a constant that depends on B. This completes the proof. �

We now estimate the integral over 0. First, by Proposition 8.3, we have

(8-8)
∣∣∣∫
0±2

eiβz N (z, τ )−1dz
∣∣∣≤ ∞∫

A/(µ(τ)2(µ̂(τ )))

N (η, τ )−1dη ≤ A
µ(τ)2

e−c/2(µ(τ)).

Next, if we put S(z, τ ) = z−1 sinh(µ(τ)z), then we know from Theorem 5.9
that |N (z, τ ) − S(z, τ )| ≤ |S(z, τ )|/2 on 0±1. It follows that on 0±1, we have
|N (z, τ )|−1

≤ 2|S(z, τ )|−1. Thus∣∣∣∫
0±1

eiβz N (z, τ )−1dz
∣∣∣≤ ∫

01

|N (z, τ )|−1d|z| ≤ 2
∫
01

|S(z, τ )|−1d|z|.

If z ∈ 01, then z = A/(µ(τ)2(µ̂(τ )))+ iy with 0 ≤ y ≤ 3π/(2µ(τ)). Thus for
such z,

|S(z, τ )|−1
=

∣∣∣ A
µ(τ)2(µ̂(τ ))

+ iy
∣∣∣ 1
|sinh(A/2(µ̂(τ ))+iµ(τ)y)|

=

∣∣∣ A
µ(τ)2(µ̂(τ ))

+ iy
∣∣∣ 1√

sinh2(A/2(µ̂(τ )))+sin2(µ(τ)y)

≤

∣∣∣ A
µ(τ)2(µ̂(τ ))

+ iy
∣∣∣ 1
|sinh(2A/2(µ̂(τ )))|

≤ A
( 1
µ(τ)2(µ̂(τ ))

+
1

µ(τ)

)
e−c/2(µ̂(τ )).

If 2(µ̂(τ )) is small enough and we estimate 2(µ̂(τ ))−1 exp(−c2(µ̂(τ ))−1) by
A exp(−c′2(µ̂(τ ))−1) where c′ < c, it follows that

(8-9)
∣∣∣∫
0±1

eiβz N (z, τ )−1dz
∣∣∣≤ A

µ(τ)2
e−c/2(µ(τ)).

Finally if z ∈ 00, then iβz = iβs− 3πβ/(2µ(τ)), so∣∣∣∫
00

eiβz N (z, τ )−1dz
∣∣∣≤ ∫
|s|<A/(µ(τ)2(µ̂(τ )))

e−3πβ/(2µ(τ))
∣∣∣N(s+ 3π i

2µ(τ)
, τ
)∣∣∣−1

ds

≤ 2e−3πβ/(2µ(τ))
∫

|s|<A/(µ(τ)2(µ̂(τ )))

∣∣∣S(s+ 3π i
2µ(τ)

, τ
)∣∣∣−1

ds.
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But since sinh2(x)+ 1= (cosh(2x)+ 1)/2> e2x/2, we have∣∣∣S(s+ 3π i
2µ(τ)

, τ )
∣∣∣−1
≤

(
|s| + 3π

2µ(τ)

) 1√
sinh2(µ(τ)s)+sin2(3π/2)

=

(
|s| + 3π

2µ(τ)

) 1√
sinh2(µ(τ)s)+1

≤

(
|s| + 3π

2µ(τ)

)
e−2µ(τ)s,

and so ∫
|s|<A/(µ(τ)2(µ̂(τ )))

∣∣∣S(s+ 3π i
2µ(τ)

, τ )
∣∣∣−1

ds ≤ A
∫
∞

0

(
s+ 1

µ(τ)

)
e−2µ(τ)sds ≤ A

µ(τ)2
.

Thus

(8-10)
∣∣∣∫
00

eiβz N (z, τ )−1dz
∣∣∣≤ A

µ(τ)2
exp

(
−

3πβ
2µ(τ)

)
.

It now follows from equations (8-1), (8-2), (8-4), (8-8), (8-9), and (8-10) that
for µ(τ) sufficiently small we have

Bρ((iy, t + ih), (iv, t + ik))≥ c
∫
∞

0
τ 1−ρe−τδe−πβ/µ(τ)µ(τ)−2dτ.

If we make the change of variables r = µ(τ), then b(r) = τ−1, and so dτ =
−b(r)−2b′(r)dr . Thus we need to consider the integral

H(δ, β)=
∫
∞

0
exp

(
−

δ
b(r)
−
πβ

r

) b′(r)
b(r)3−ρ

dr
r2 .

However, if b is supercritical, limδ→0 H(δ, β)=+∞. �

Appendix: The H p(�) spaces

In this appendix, we use the ideas in [Stein 1993] to develop the theory of the
Hardy spaces Hp(�) for model unbounded domains. For simplicity, we restrict
attention to 1< p <∞, although the results are also true if p = 1 or p =∞.

A.1. Definitions and statement of results.
Let ϕ : Cn

→ R be upper semicontinuous, and put

�ϕ =�= {(z, zn+1) ∈ Cn+1
| =m(zn+1) > ϕ(z)}.

Identify the boundary ∂� with Cn
×R so that a point (z, x) ∈Cn

×R corresponds
to (z, x + iϕ(z)) ∈ ∂�. Let dz dx denote Lebesgue measure on Cn

× R. Then
integration on the boundary of � means integration with respect to dz dx .
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Notation A.2. • For each z ∈ Cn and each ε > 0, let

(A-1) r(z, ε)= sup{r ≥ 0 | |z−w| ≤ r implies ϕ(w) < ϕ(z)+ ε}.

Since ϕ is upper semicontinuous, it follows that r(z, ε) > 0.

• Let F : �→ C. For ε > 0, put Fε(z, zn+1) = F(z, zn+1+ iε). Fε is defined
in a neighborhood of the closure � of �. We use the same notation to denote
the restriction Fε : ∂�→ C of this function to the boundary.

• The upper half-plane in C is U= {x + iy ∈ C | y > 0}.

• Let F :�→C. For z∈Cn and ε≥0, put fz,ε(x+iy)= F(z, x+iy+iϕ(z)+iε).
Then fz,ε :U→ C.

• Let F :�→ C. The “radial” maximal function is

N0[F](z, x)= sup
y>0
|F(z, x + iϕ(z)+ iy)|.

Remark A.3. If F : �→ C is holomorphic, then Fε is holomorphic on a neigh-
borhood of � if ε > 0, and fz,ε is holomorphic on a neighborhood of U if z ∈ Cn

and ε > 0.

Definition A.4. For 1 < p < +∞, Hp(�) is the space of holomorphic functions
F on � such that

‖F‖p
Hp(�) = sup

ε>0
‖Fε‖

p
L p(∂�) = sup

ε>0

∫∫
Cn×R

|F(z, x + iϕ(z)+ iε)|p dz dx <+∞.

Our objective is to prove the following:

Lemma A.5. Let F ∈ Hp(�). Then there exists Fb
∈ L p(∂�) with the following

properties.

(a) For almost every (z, x) ∈ Cn
×R,

lim
y→0+

F(z, x + iϕ(z)+ iy)= Fb(z, x + iϕ(z)).

(b) ‖Fb
‖L p(∂�) = ‖F‖Hp(�).

(c) limε→0+‖Fε − Fb
‖L p(∂�) = 0.

(d) There is a constant C0 independent of F with ‖N0[F]‖L p(∂�) ≤ C0‖F‖Hp(�).

(e) The boundary function Fb is annihilated (in the sense of distributions) by all
tangential Cauchy–Riemann operators on ∂�.
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A.6. The one-variable case. As in [Stein 1993], we reduce proving Lemma A.5
to a similar statement in one variable. We first recall the definition and some basic
results about the classical Hardy spaces on the upper half-plane U.

Definition A.7. For 1 < p < +∞, denote by Hp(U) the space of holomorphic
functions F on U such that

‖F‖p
Hp(U) = sup

y>0

∫
R

|F(x + iy)|pdx <+∞.

We use the same notation as in the several-variable case. If F is a complex-valued
function defined on U, the radial maximal function is

N0[F](x)= sup
y>0
|F(x + iy)|.(A-2)

For F ∈Hp(U) and ε > 0, set

(A-3) Fε(x + iy)= F(x + iy+ iε).

Fε is defined in a neighborhood of U, and when restricted to the boundary R, we
have Fε ∈ L p(R), and ‖F‖Hp(U) = supε>0‖Fε‖L p(R).

The following result describes some of the basic properties of the spaces Hp(U).
A proof of the more general statements for harmonic functions can be found in
[Stein and Weiss 1971].

Lemma A.8. Let 1< p <∞, and let F ∈Hp(U).

(a) There exists Fb
∈ L p(R) such that limε→0+‖Fb

− Fε‖L p(R) = 0.

(b) There is a constant C0 independent of F with ‖N0[F]‖L p(R) ≤ C0‖F‖Hp(U).

(c) There exists a subset E ⊂ R of Lebesgue measure zero such that for x /∈ E ,
limy→0+ F(x + iy)= Fb(x).

(d) ‖F‖Hp(U) = ‖Fb
‖L p(R).

(e) If z = x + iy ∈U, then

F(z)= 1
2π i

∫
R

Fb(t)
t − z

dt = 1
π

∫
R

y
y2+ (t − x)2

Fb(t)dt.

A.9. Proof of Lemma A.5. The key fact that allows us to reduce the situation in
several variables to the one-variable case is the following.

Proposition A.10. Let 1 < p <∞, and let F ∈Hp(�). For every z ∈ Cn and for
every ε > 0, the function fz,ε ∈Hp(U), and

‖ fz,ε‖Hp(U) ≤ 41/p(πωnr(z, ε)2n)−1/p
‖F‖Hp(�),

where ωn is the volume of the unit ball in Cn .
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Proof. Let z ∈ Cn , ε > 0, and x + iy ∈ U. Let χ be the characteristic function of
the set

4= {(w,wn+1) ∈ Cn+1
| |w|< r(z, ε) and |wn+1|< y},

which is the Cartesian product of a ball of radius r(z, ε) in Cn and a disk of ra-
dius y in C. It follows from (A-1) that if χ(z − w, (x + iy) − (u + iv)) 6= 0,
then ϕ(z) > ϕ(w) − ε and v > 0, so v + ϕ(z) + ε > ϕ(w). In particular, the
inequality χ(z −w, x − u + i(y − v)) 6= 0 implies (w, u + iv+ iϕ(z)+ iε) ∈ �.
The volume of 4 is πωnr(z, ε)2n y2. It follows from the plurisubharmonicity (that
is, the submean-value property) of |Fε |p that

πωnr(z, ε)2n y2
| fz,ε(x + iy)|p

= πωnr(z, ε)2n y2
|F(z, x + iy+ iϕ(z)+ iε)|p

≤

∫
Cn+1

χ(z−w, x − u+ i(y− v))|F(w, u+ iv+ iϕ(z)+ iε)|p dwdu dv

=

∫
Cn+1

χ(z−w, u+ i(y− v))|F(w, x − u+ iv+ iϕ(z)+ iε)|p dwdu dv.

Integrating with respect to x ∈ R then gives

πωnr(z, ε)2n y2
∫

R

| fz,ε(x + iy)|pdx

≤

∫
Cn+1

χ(z−w, u+ i(y− v))
∫

x∈R

|F(w, x − u+ iv+ iϕ(z)+ iε)|pdx dwdu dv

≤

∫
|y−v|<y
|u|<y

∫
w∈Cn

∫
x∈R

|F(w, x + iv+ iϕ(z)+ iε)|pdx dwdu dv ≤ 4y2
‖F‖p

Hp(�).

Taking the supremum in y gives ‖ fz,ε‖
p
Hp(U) ≤ 4(πωnr(z, ε)2n)−1

‖F‖p
Hp(�), as

claimed. �

Recall that if F ∈Hp(�), then

N0[F](z, x + iϕ(z))= sup
y>0
|F(z, x + iϕ(z)+ iy)|.

We then can now prove Lemma A.5(d), the analogue of Lemma A.8(b).

Corollary A.11. Let 1< p <∞, and let F ∈Hp(�). Then∫
Cn×R

|N0[F](z, x + iϕ(z))|p dz dx ≤ C p
0 ‖F‖

p
Hp(�).
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Proof. Let z ∈ Cn and ε > 0. Since fz,ε ∈ Hp(U), it follows from Lemma A.8(b)
that∫

x∈R

sup
y>0
|F(z, x + iy+ iε+ iϕ(z))|pdx ≤ C p

0

∫
x∈R

|F(z, x + iε+ iϕ(z))|pdx .

Integrating with respect to z ∈ Cn then gives∫
Cn×R

sup
y>0
|F(z, x + iy+ iε+ iϕ(z))|pdzdx ≤C p

0

∫
Cn×R

|F(z, x + iε+ iϕ(z))|pdzdx

≤ C p
0 ‖F‖

p
Hp(�).

Since the right hand side is independent of ε, we can let ε→ 0 and obtain∫∫
Cn×R

sup
y>0
|F(z, x + iϕ(z)+ iy)|p dz dx ≤ C p

0 ‖F‖
p
Hp(�). �

We turn to the proof of the other parts of Lemma A.5. It follows from the
inequality in Corollary A.11 that if F ∈Hp(�), then for almost every z ∈ Cn , the
function fz(x + iy)= F(z, x + iϕ(z)+ iy) belongs to Hp(U). Let E ⊆ Cn be the
set where fz /∈Hp(U), so |E | = 0. Then for each z /∈ E , we can apply Lemma A.8
to the function fz . In particular, since functions in Hp(U) have boundary values,
the limit

(A-4) Fb(z, x + iϕ(z))= lim
y→0+

F(z, x + iϕ(z)+ iy)

exists for almost every x ∈ R if z /∈ E . In particular, Fb(z, x + iϕ(z)) exists for
almost every (z, x + iϕ(z)) ∈ ∂�. Moreover, for z /∈ E ,

(A-5) lim
y→0+

∫
R

|F(z, x + iϕ(z)+ iy)− Fb(z, x + iϕ(z))|pdx = 0,

and

(A-6)
∫

R

sup
y>0
|F(z, x + iϕ(z)+ iy)|p ≤ C p

0

∫
R

|Fb(z, x + iϕ(z))|pdx .

Proposition A.12. Let 1< p <∞, and let F ∈Hp(�).

(a) limε→0+‖Fb
− Fε‖L p(∂�) = 0.

(b) ‖Fb
‖L p(∂�) = ‖F‖Hp(�).
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Proof. It follows from (A-4) that limε→0+ Fε(z, x) = Fb(z, x) for almost every
(z, x)∈∂�. Also, we have supε>0 |Fε(z, x)|=N0[F](z, x), and by Corollary A.11,
N0[F] ∈ L p(∂�). Thus (a) follows from the Lebesgue dominated convergence
theorem.

To establish (b), first note that it follows from Fatou’s lemma that∫∫
Cn×R

|Fb(z, x + iϕ(z))|p dz dx =
∫∫

Cn×R

lim
ε→0+
|Fb(z, x + iϕ(z)+ iε)|p dz dx

≤ lim sup
ε→0+

∫∫
Cn×R

|Fb(z, x + iϕ(z)+ iε)|p dz dx

≤ ‖F‖p
Hp(�).

On the other hand, if z /∈ E so that fz ∈Hp(U),∫
R

|Fb(z, x + iϕ(z))|pdx =
∫

R

| f b
z (x)|

pdx = sup
ε>0

∫
R

| fz(x + iε)|pdx

= sup
ε>0

∫
R

|F(z, x + iϕ(z)+ iε)|pdx .

Since this holds for almost every z ∈ Cn , integrating with respect to z ∈ Cn gives∫∫
Cn×R

|F(z, x + iϕ(z)+ iε)|p dz dx ≤
∫

Cn

(
sup
ε>0

∫
R

|F(z, x + iϕ(z)+ iε)|pdx
)

dz

=

∫
Cn

(∫
R

|Fb(z, x + iϕ(z))|pdx
)

dz

=

∫∫
Cn×R

|Fb(z, x + iϕ(z))|p dz dx .

This shows that ‖Fb
‖L p(∂�) = ‖F‖Hp(�), and completes the proof. �
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