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A cohomogeneity one manifold is a manifold whose quotient by the action
of a compact Lie group is one-dimensional. Such manifolds are of interest
in Riemannian geometry in the context of nonnegative sectional curvature,
as well as in other areas of geometry and in physics. We classify compact
simply connected cohomogeneity one manifolds in dimensions 5, 6 and 7.
We also show that all such manifolds admit metrics of nonnegative sectional
curvature, with the possible exception of two families of manifolds.

Introduction

Manifolds with nonnegative curvature play a special role in Riemannian geometry,
but finding new examples is particularly difficult. Recently, Grove and Ziller [2000]
constructed a large class of nonnegatively curved metrics on certain cohomogeneity
one manifolds, that is, manifolds with an action by a compact Lie group whose orbit
space is one-dimensional. In particular, they showed that all principal S3 bundles
over S4 can be written as cohomogeneity one manifolds with metrics of nonnega-
tive sectional curvature. They also showed that every compact cohomogeneity one
manifold admits a metric of nonnegative Ricci curvature and admits a metric of pos-
itive Ricci curvature if and only if its fundamental group is finite. So cohomogene-
ity one manifolds provide a good setting for examples of manifolds with certain
curvature restrictions. Cohomogeneity one actions are of independent interest in
the field of group actions since they are the simplest examples of inhomogeneous
actions. They also arise in physics as new examples of Einstein and Einstein–
Sasaki manifolds [Conti 2007, Gibbons et al. 2004, Gauntlett et al. 2004] and as
manifolds with G2 and Spin(7)-holonomy [Cleyton and Swann 2002, Cvetič et al.
2004, Reidegeld 2009]. It is then interesting to ask how big the class of coho-
mogeneity one manifolds is. Such manifolds where classified in dimensions four
and lower in [Parker 1986] and [Neumann 1968], and some partial results for di-
mension eight can be found in [Gambioli 2008]. Physicists are interested in those
of dimension 5, 7 and 8, and many of the most interesting examples appearing in
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[Grove and Ziller 2000] were 7-dimensional. This paper mainly classifies compact
simply connected cohomogeneity one manifolds in dimensions 5, 6 and 7.

Before we state the theorem we will review some facts about cohomogeneity
one manifolds. A compact cohomogeneity one manifold with finite fundamental
group has a description in terms of its group diagram

G ⊃ K−, K+ ⊃ H

where G is the group that acts, that is assumed to be compact, H is a principal
isotropy subgroup, and K± are certain nonprincipal isotropy subgroups that both
contain H ; see Section 1.1 for details. We will henceforth describe actions in terms
of their corresponding group diagrams.

If the group G is disconnected then the identity component still acts by cohomo-
geneity one. Further, since the isometry group of a compact Riemannian manifold
is a compact Lie group, it is natural to restrict our attention to actions by compact
groups. So we will always assume that G is compact and connected.

Cohomogeneity one actions can be easily built from lower-dimensional actions
by taking products. Say G1 acts by cohomogeneity one on M1, and G2 acts transi-
tively on M2. Then it is clear that G1×G2 acts by cohomogeneity one on M1×M2,
as a product. Such actions are referred to as product actions.

We call a cohomogeneity one action of G on M reducible if there is a proper
normal subgroup of G that still acts by cohomogeneity one with the same orbits.
This gives a way of reducing these actions to simpler actions. Conversely, there is
a natural way of extending an arbitrary cohomogeneity one action to an action by
a possibly larger group. Such extensions, called normal extensions, are described
in more detail in Section 1.11. It turns out that every reducible action is a normal
extension of its restricted action. Therefore it is natural to restrict ourselves to
nonreducible actions in the classification.

Recall that a cohomogeneity one action is nonprimitive if all the isotropy sub-
groups, K−, K+ and H for some group diagram representation, are all contained
in some proper subgroup L in G. Such a nonprimitive action is well known to be
equivalent to the usual G action on G×L ML , where ML is the cohomogeneity one
manifold given by the group diagram L ⊃ K−, K+ ⊃ H . With these definitions in
place, we are ready to state the main result.

Theorem A. Every nonreducible cohomogeneity one action on a compact simply
connected manifold of dimension 5, 6 or 7 by a compact connected group is equiv-
alent to one of the following:

(i) an isometric action on a symmetric space,

(ii) a product action,

(iii) the SO(2)SO(n) action on the Brieskorn variety B2n−1
d ,
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(iv) one of the primitive actions listed in Table I or a nonprimitive action from
Table II.

Hence every cohomogeneity one action on such a manifold by a compact connected
group is a normal extension of one of these actions.

Remark. When reading the tables below, we observe the following conventions
and notations. In all cases we denote H± := H ∩ K±0 . Here H+ is either H0 in the
case that dim K+/H > 1, or H0 ·Zn for some n ∈ Z in the case dim K+/H = 1,
and similarly for H−. Here and throughout, L0 denotes the identity component of
a given Lie group L . Next, we always know that H ⊂ K±, and this puts some
unstated restrictions on the groups in the tables. We understand H0 to be trivial
unless otherwise stated. In the tables, we also assume, when we have a group of
the form {(ei pθ , eiqθ )}, that gcd(p, q) = 1, and similarly for other such groups.
Furthermore θ, φ ∈R and z, w ∈ S1

⊂C⊂H are taken to vary arbitrarily, while in-
tegers a, b, c,m, n, p, q, r, s, λ, µ are understood to be fixed within a given group
diagram. Finally, i, j, k ∈ S3

⊂ H are the usual unit quaternions.
Notice that many of the diagrams are not effective, since G and H share a

finite normal subgroup. We have allowed this possibility so that our descriptions
are simpler. The effective version of each action can always be determined by
quotienting each group in the diagram by Z(G) ∩ H , where Z(G) is the center
of G. See Section 1.1 for details.

In Section 5.3, we collect some facts about each family of actions in Tables I
and II. This section would be of interest to the reader who wants to quickly know
what can be easily said about these actions. For example some of these actions are
of types (i), (ii) and (iii) of Theorem A for special choices of parameters. In fact, it
has since been shown in [Hoelscher 2010a] that all actions of type N 6

A are isometric
actions on S3

× S3 and hence this entry could have been left out of Table II. See
Section 5.3 for more details. We also describe the isometric actions on symmetric
spaces from Theorem A in Section 5.1 and the Brieskorn actions in Section 5.2.

The next theorem addresses nonnegative sectional curvature. Verdiani [2004]
and Grove, Wilking, and Ziller [2008] classified simply connected cohomogeneity
one manifolds admitting invariant metrics of positive sectional curvature. Since
it is very difficult to distinguish between manifolds admitting positive curvature
and those that merely admit nonnegative curvature, it is interesting to see which
cohomogeneity one manifolds admit invariant metrics of nonnegative curvature.

One particularly interesting example in this context is the Brieskorn variety
B2n−1

d with the cohomogeneity one action by SO(n)SO(2); see Section 5.2. In
[Grove et al. 2006], it was shown that B2n−1

d admits an invariant metric of nonneg-
ative sectional curvature if and only if n ≤ 3 or d ≤ 2. So most of these actions do
not admit invariant nonnegatively curved metrics.
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P5 S3
× S1
⊃ {(eiθ , 1)} · H, {(e j pθ , eiθ )} ⊃ 〈( j, i)〉,

where p ≡ 1 mod 4

P7
A S3

× S3
⊃ {(ei p−θ , eiq−θ )}, {(e j p+θ , e jq+θ )} · H ⊃ 〈(i, i)〉,

where p−, q− ≡ 1 mod 4

P7
B S3

× S3
⊃ {(ei p−θ , eiq−θ )} · H, {(e j p+θ , e jq+θ )} · H ⊃ 〈(i, i), (1,−1)〉,

where p−, q− ≡ 1 mod 4, p+ even

P7
C S3

× S3
⊃ {(ei p−θ , eiq−θ )} · H, {(e j p+θ , e jq+θ )} · H ⊃1Q,

where p±, q± ≡ 1 mod 4

P7
D S3

× S3
⊃ {(ei pθ , eiqθ )},1S3

·Zn ⊃ Zn ,
where n = 2 and p or q even; or n = 1 and p and q arbitrary

Table I. Primitive cohomogeneity one manifolds of Theorem A

On the other hand, Grove and Ziller [2000] described a construction for metrics
of nonnegative sectional curvature on a large class of cohomogeneity one mani-
folds. They showed that every cohomogeneity one manifold with two nonprincipal
orbits of codimension 2 admits an invariant metric of nonnegative sectional curva-
ture. The following theorem relies heavily on that result.

Theorem B. Every nonreducible cohomogeneity one action of a compact con-
nected group on a compact simply connected manifold of dimension 7 or less
admits an invariant metric of nonnegative sectional curvature, except the Brieskorn
variety B7

d for d ≥ 3, and possibly some of the members of the family

S3
× S3
⊃ {(ei pθ , eiqθ )},1S3

·Zn ⊃ Zn

of actions, where (p, q)= 1 and either n = 1, or else p or q is even and n = 2.

Remark. In the case n = 2 and q = p+ 1, these actions are isometric actions on
certain positively curved Eschenburg spaces ([Ziller 1998] or [Grove et al. 2008]).
So in fact, many of the members of this exceptional family are already known
to admit invariant metrics of positive sectional curvature. It is then reasonable to
expect many more of them to admit nonnegative curvature as well.

Determining the full topology of all the manifolds appearing in the classification
above is a difficult problem. However, in dimension 5 we can give a complete
answer here.

Theorem C. Every compact simply connected cohomogeneity one manifold of
dimension 5 must be diffeomorphic to S5, SU(3)/SO(3), or one of the two S3

bundles over S2.
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N 5 S3
× S1
⊃ {(ei p−θ , eiq−θ )} · H, {(ei p+θ , eiq+θ )} · H ⊃ H− · H+,

where K− 6= K+, (q−, q+) 6= 0, gcd(q−, q+, d)= 1,
d = #(K−0 ∩ K+0 )/#(H ∩ K−0 ∩ K+0 )

N 6
A S3

× T 2
⊃ {(eia−θ , eib−θ , eic−θ )} · H, {(eia+θ , eib+θ , eic+θ )} · H ⊃ H

where K− 6= K+, H = H− · H+, gcd(b±, c±)= 1,
a± = rb±+ sc±, K−0 ∩ K+0 ⊂ H

N 6
B S3

× S3
⊃ {(eiθ , eiφ)}, {(eiθ , eiφ)} ⊃ {(ei pθ , eiqθ )} ·Zn

N 6
C S3

× S3
⊃ T 2, S3

×Zn ⊃ S1
×Zn

N 6
D S3

× S3
⊃ T 2, S3

× S1
⊃ {(ei pθ , eiθ )}

N 6
E S3

× S3
⊃ S3
× S1, S3

× S1
⊃ {(ei pθ , eiθ )}

N 6
F SU(3)⊃ S(U(2)U(1)),S(U(2)U(1))⊃ SU(2)SU(1) ·Zn

N 7
A S3

× S3
⊃ {(ei p−θ , eiq−θ )} · H+, {(ei p+θ , eiq+θ )} · H− ⊃ H− · H+

N 7
B S3

× S3
⊃ {(ei pθ , eiqθ )} · H+, {(e jθ , 1)} · H− ⊃ H− · H+
where H± = Zn± ⊂ K±0 , n+ ≤ 2, 4|n−, p− ≡±n−/4 mod n−

N 7
C S3

× S3
⊃ {(ei pθ , eiqθ )}, S3

×Zn ⊃ H

where (q, n)= 1 and Zn ' H ⊂ {(ei pθ , eiqθ )}

N 7
D S3

× S3
× S1
⊃ {(z pwλm, zqwµm, w)}, {(z pwλm, zqwµm, w)} ⊃ H0 ·Zn

where H0 = {(z p, zq , 1)}, pµ− qλ= 1 and Zn ⊂ {(w
λm, wµm, w)}

N 7
E S3

× S3
× S1

⊃ {(z pwλm−, zqwµm−, wn−)}H, {(z pwλm+, zqwµm+, wn+)}H ⊃ H

where H = H− · H+, H0 = {(z p, zq , 1)}, K− 6= K+, pµ− qλ= 1
gcd(n−, n+, d)= 1, where d is the index of H ∩ K−0 ∩ K+0 in K−0 ∩ K+0

N 7
F S3

× S3
× S1
⊃ {(ei pφeiaθ , eiφ, eiθ )}, S3

× S1
×Zn ⊃ {(ei pφ, eiφ, 1)} · Ĥ

Zn ' Ĥ ⊂ {(eiaθ , 1, eiθ )}

N 7
G SU(3)⊃ S(U(1)U(2)),S(U(1)U(2))⊃ T 2

N 7
H SU(3)× S1

⊃ {(β(m−θ), ein−θ )} · H, {(β(m+θ), ein+θ )} · H ⊃ H
H0 = SU(1)SU(2)× 1, H = H− · H+, K− 6= K+,

β(θ)= diag(e−iθ , eiθ , 1), gcd(n−, n+, d)= 1
where d is the index of H ∩ K−0 ∩ K+0 in K−0 ∩ K+0

N 7
I Sp(2)⊃ Sp(1)Sp(1),Sp(1)Sp(1)⊃ Sp(1)SO(2)

Table II. The nonprimitive cohomogeneity one manifolds from
Theorem A.
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In particular, the actions of type P5 are all actions on SU(3)/SO(3), and the
actions of type N 5 are either on S3

× S2 or the nontrivial S3 bundle over S2,
depending on the parameters.

For dimension 6, Hoelscher [2010a] found the analogous result by identifying
the 6-manifolds that remain from Theorem A up to diffeomorphism. Such a result
in dimension 7 would be much more difficult; however the first steps are taken in
[Escher and Ultman 2008], where the cohomology rings of the 7-manifolds from
Table I are computed, and in [Hoelscher 2010b], where the homology groups of
the 7-manifolds from Table II are computed up to a group extension problem in a
few cases.

The paper is organized as follows. In Section 1, we discuss cohomogeneity one
manifolds in general and develop some basic facts that will be useful throughout.
The classification will take place in Sections 2 to 4. Next, in Sections 5 through 7
we look at some of the actions in more detail and prove the main theorems.

1. Cohomogeneity one manifolds

In this section we will discuss the cohomogeneity one action of a Lie group G on
a manifold M in general. We first review the basic structure of such actions, and
see that they are completely determined by certain isotropy subgroups. We will
then discuss how we can determine the fundamental group of the manifold from
these isotropy groups. We will also give some helpful restrictions on the possible
groups that can occur in our situation.

Throughout this section, G will denote a compact connected Lie group and M
will be a closed and connected manifold, unless explicitly stated otherwise.

1.1. Basic structure. The action of a compact Lie group G on a manifold M is
said to be cohomogeneity one if there are orbits of codimension 1, or equivalently
if the orbit space M/G is one-dimensional. If M is connected it follows that M/G
is either (−∞,∞), [0,∞), [−1, 1] or S1. In the first two cases, M will not be
compact and in the last case M will not be simply connected, since it will be fibered
over a circle. We are only interested in compact simply connected manifolds so
we will henceforth restrict our attention to those M with M/G ≈ [−1, 1]. We will
refer to such manifolds as interval cohomogeneity one manifolds.

To review the well-known structure of M further, choose an arbitrary but fixed
G-invariant Riemannian metric on M , and let π : M → M/G ≈ [−1, 1] denote
the projection. Let c : [−1, 1] → M be a minimal geodesic between the two
nonprincipal orbits π−1(−1) and π−1(1). It then follows that c meets all orbits
orthogonally and that the isotropy group of G is constant on the interior of c.
For convenience, reparameterize the quotient interval M/G ≈ [−1, 1] so that π ◦
c = id[−1,1]. Denote the isotropy groups by H = Gc(0) = Gc(t) for t ∈ (−1, 1) and
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K± = Gc(±1) and let D± denote the disk of radius 1 normal to the nonprincipal
orbits π−1(±1) = G · c(±1) at c(±1). One can see then that K± acts on D± and
does so transitively on ∂D± with isotropy H at c(0). Therefore Sl± := ∂D± =
K± · c(0) ≈ K±/H . The slice theorem [Bredon 1972] tells us that the tubular
neighborhoods of the nonprincipal orbits have the form π−1

[−1, 0] ≈ G×K− D−
and π−1

[0, 1]≈G×K+ D+. Therefore we have decomposed our manifold into two
disk bundles G×K± D± glued along their common boundary π−1(0)=G ·c(0)≈
G/H . That is,

(1-1) M ≈ G×K− D− ∪G/H G×K+ D+, where Sl± = ∂D± ≈ K±/H.

This describes M entirely in terms of G and the isotropy groups K± ⊃ H . The
collection of G with its isotropy groups G ⊃ K+, K− ⊃ H is called the group
diagram of the cohomogeneity one manifold. Note: In the group diagram we
understand that G contains both subgroups K− and K+ and that both K− and K+

contain H as a subgroup.
Conversely, let G ⊃ K+, K− ⊃ H be compact groups with K±/H ≈ Sl± . We

know from the classification of transitive actions on spheres [Besse 1978, page 195]
that the K± action on Sl± must be linear and hence it extends to an action on the disk
D± bounded by Sl± for each ±. Therefore one can construct a cohomogeneity one
manifold M using (1-1). So a cohomogeneity one manifold M with M/G≈[−1, 1]
determines a group diagram G⊃K+, K−⊃H with K±/H≈ Sl±; conversely, such
a group diagram determines a cohomogeneity one action. This reduces classifying
such cohomogeneity one manifolds to finding subgroups of compact groups with
certain properties.

Recall an action of G on M is effective if no element g ∈ G fixes M pointwise,
except g = 1. We claim that a cohomogeneity one action, as above, is effective
if and only if G and H do not share any nontrivial normal subgroups. It is clear
that if N is the ineffective kernel of the G action, that is, N = ker(G→Diff(M)),
then N will be a normal subgroup of both G and H . Conversely, let N be the
largest normal subgroup shared by G and H . Then, as above, N fixes the entire
geodesic c pointwise. Therefore, since N is normal, it fixes all of M pointwise. So
it is easy to determine the effective version of any cohomogeneity one action from
its group diagram alone. Because of this, we will generally allow our actions to
be ineffective; however we will be most interested in the almost effective actions,
that is, actions with at most a finite ineffective kernel. In this case, N is a discrete
normal subgroup and hence N ⊂ Z(G), where Z(G) is the center of G. Then in
fact N = H ∩ Z(G) in this case, by what we said above.

The question of whether or not two different group diagrams determine the same
action will be important to understand. We say the action of G1 on M1 is strictly
equivalent to the action of G2 on M2 if there is a diffeomorphism f :M1→M2 and
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an isomorphism φ : G1→ G2 such that f (g · x)= φ(g) · f (x) for all x ∈ M1 and
g ∈ G1. Similarly we say the actions of G1 and G2 on M1 and M2, respectively,
are (effectively) equivalent if their effective versions are strictly equivalent. We
will classify cohomogeneity one actions up to this type of equivalence. However,
when G1 = G2, a stronger type of equivalence is sometimes preferred: A map
f : M1→ M2 between G-manifolds is G-equivariant if f (g · x)= g · f (x) for all
x ∈ M1 and g ∈ G. The next proposition, taken from [Grove et al. 2008], applies
to G-equivariant diffeomorphisms.

Proposition 1.2. Let a cohomogeneity one action of G on M be given by the group
diagram G ⊃ K−, K+ ⊃ H. Then any of the following operations on the group
diagram will result in a G-equivariantly diffeomorphic manifold.

(i) Switching K− and K+.

(ii) Conjugating each group in the diagram by the same element of G.

(iii) Replacing K− with aK−a−1 for a ∈ N (H)0.

Conversely, the group diagrams for two G-equivariantly diffeomorphic manifolds
must be taken to each other by some combination of these three operations.

The next corollary is particularly helpful when finding the group diagram for a
given cohomogeneity one action. Recall that the groups K−, K+ and H are the
isotropy groups along a minimal geodesic between nonprincipal orbits, with respect
to some G invariant metric on M . In most cases it is not convenient to explicitly
find such a metric and geodesic. The following corollary solves this problem.

Corollary 1.3. Let M be an interval cohomogeneity one manifold for the group G
and let γ : [−1, 1] → M be any continuous curve between nonprincipal orbits
that meets each orbit precisely once and that is differentiable at the nonprincipal
orbits with derivative transverse to these orbits. If γ satisfies the further property
Gγ(t) = Gγ(0) for all t ∈ (−1, 1), then G ⊃ Gγ(−1),Gγ(1) ⊃ Gγ(0) is a valid group
diagram for the action of G on M.

Proof. Fix a G invariant metric on M , and let c : [−1, 1] → M be a minimal
geodesic between nonprincipal orbits. Then the group diagram along c is given
by K± = Gc(±1) and H = Gc(0). After reparameterizing γ we can assume that
γ(t) and c(t) are in the same G-orbit for each t ∈ [−1, 1]. This reparametrization
will not affect the property of the derivative of γ at the nonprincipal orbits. After
applying some element of G to c, we can also assume that c(0)= γ(0).

Since the principal part of M is G equivariantly diffeomorphic to G/H×(−1, 1),
we can write γ(t) = g(t)c(t) for some continuous curve g : (−1, 1)→ G, with
g(0) = e. That γ′(±1) exists and is transverse to the nonprincipal orbits means
that we can extend g(t) to a continuous function on [−1, 1] with γ(t)= g(t)c(t).
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We have Gγ(t) = Gg(t)c(t) = g(t)Gc(t)g(t)−1 for all t . Since γ(0)= c(0) and by
our hypothesis, we also know Gγ(t) = Gγ(0) = H for all t ∈ (−1, 1). Therefore
H = Gγ(t) = g(t)Gc(t)g(t)−1

= g(t)Hg(t)−1 for all t ∈ (−1, 1). Since g(0) = e
it follows that g(t) ∈ N (H)0 for all t ∈ (−1, 1). By continuity it follows that
n± := g(±1) ∈ N (H)0 as well. Putting this together we find that the diagram
G ⊃ Gγ(−1),Gγ(1) ⊃ Gγ(0) is the diagram G ⊃ n−K−n−1

− , n+K+n−1
+ ⊃ H , which

represents our original action by Proposition 1.2. �

Definition 1.4. We say the cohomogeneity one manifold MG is nonprimitive if it
has some group diagram representation G ⊃ K−, K+ ⊃ H for which there is a
proper connected closed subgroup L ⊂ G with L ⊃ K−, K+. It then follows that
L ⊃ K−, K+ ⊃ H is a group diagram that determines some cohomogeneity one
manifold ML .

Example. As an example, consider the group diagram S3
⊃ {eiθ

}, {e jθ
} ⊃ {±1}.

There is no proper subgroup L that contains both K− = {eiθ
} and K+ = {e jθ

}.
However, by Proposition 1.2 this action is equivalent to the action with group
diagram S3

⊃ {eiθ
}, {eiθ

} ⊃ {±1}. So in fact, this action is primitive.

Proposition 1.5. Take a nonprimitive cohomogeneity one manifold MG with L and
ML as in Definition 1.4. Then MG is G-equivariantly diffeomorphic to G×L ML =

(G ×ML)/L , where L acts on G ×ML by ` ? (g, x)= (g`−1, `x). Hence there is
a fiber bundle ML → MG→ G/L.

Proof. Let c be a minimal geodesic in ML between nonprincipal orbits. Then it is
clear that the curve c̃(t)= (1, c(t))∈G×ML is a geodesic where we equip G×ML

with the product metric for the biinvariant metric on G. It is also clear that c̃ is
perpendicular to the L orbits in G ×ML . Therefore c descends to a geodesic ĉ in
G ×L ML , which is perpendicular to the G orbits. The isotropy groups of the G
actions on G×L ML are clearly given by G ĉ(t) = Lc(t), and hence this G action on
G×L ML is cohomogeneity one with group diagram G ⊃ K−, K+ ⊃ H . �

1.6. The fundamental group. We will generally be looking at cohomogeneity one
actions in terms of their group diagrams. Since this paper is concerned with simply
connected cohomogeneity one manifolds, it will be important to be able to deter-
mine the fundamental group of the manifold using only the group diagram. In this
section we will show how to do this and give strong but simple conditions on which
group diagrams can give simply connected manifolds. Recall we are assuming that
G is compact and connected throughout this section.

Proposition 1.7 [Grove et al. 2008, Lemma 1.6]. Let M be a compact simply
connected cohomogeneity one manifold for the group G as above. Then M has
no exceptional orbits, and hence, in the notation above, l± ≥ 1, or equivalently
dim K± > dim H.
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This next proposition can be considered as the van Kampen theorem for coho-
mogeneity one manifolds, and tells us precisely how to compute the fundamental
groups from the group diagrams alone.

Proposition 1.8 (van Kampen). Let M be the cohomogeneity one manifold given
by the group diagram G ⊃ K+, K− ⊃ H with K±/H = Sl± and assume l± ≥ 1.
Then π1(M)≈ π1(G/H)/N−N+, where

N± = ker{π1(G/H)→ π1(G/K±)} = Im{π1(K±/H)→ π1(G/H)}.

In particular M is simply connected if and only if the images of K±/H = Sl±

generate π1(G/H) under the natural inclusions.

Proof. We compute the fundamental group of M using van Kampen’s theorem. In
the notation of Section 1.1, we can decompose M as π−1([−1, 0])∪ π−1([0, 1]),
where π−1([−1, 0])∩π−1([0, 1])=G ·x0≈G/H . We also know that, with a slight
abuse of notation, π−1([0,±1]) deformation retracts to π−1(±1)=G·x±≈G/K±.
So in fact we have the homotopy equivalence

π−1([0,±1])→ G/K±, g · c(t) 7→ gK±.

Therefore we may use the map induced by the projection π1(G/H)→ π1(G/K±)
in place of the map induced by the inclusion π1(G ·x0, x0)→π1(π

−1([0,±1]), x0),
for van Kampen’s theorem.

Now look at the fiber bundle

(1-2) K±/H → G/H → G/K±, where K±/H ≈ Sl± .

This gives a long exact sequence of homotopy groups:

(1-3) · · · → πi (Sl±)
i±∗ // πi (G/H)

ρ±∗ // πi (G/K±)
∂∗ // πi−1(Sl±)→ · · ·

· · · → π1(Sl±)
i±∗ // π1(G/H)

ρ±∗ // π1(G/K±)
∂∗ // π0(Sl±)

Notice that this implies ρ±
∗
: π1(G/H)→ π1(G/K±) is onto, since l± > 0. In fact

it follows G/H → G/K± is l±-connected, but we will not need this.
By van Kampen’s theorem, π1(M)≈ π1(G/H)/N−N+, where N± = ker(ρ±

∗
).

Finally, by (1-3), we see N±= ker(ρ±
∗
)= Im(i±

∗
), and this concludes the proof. �

We now give a reformulation of [Grove et al. 2008, Lemma 1.6], which will be
very convenient for dealing with the case that l− or l+ is greater than 1.

Corollary 1.9. Suppose M is the cohomogeneity one manifold given by the group
diagram G ⊃ K+, K− ⊃ H with K±/H = Sl± .

(i) Suppose l−≥1 and l+>1 and hence H∩K+0 =H0. Then π1(M)≈π1(G/K−)
and in particular, if M is simply connected, K− is connected.
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(ii) Suppose l−, l+> 1. Then π1(M)≈π1(G/H)≈π1(G/K±) and in particular,
if M is simply connected, all of H , K− and K+ are connected.

This corollary tells us how to deal with the case that l− or l+ is greater than one.
For the case that both l± = 1 the following lemma will be very helpful.

Lemma 1.10. Suppose M is the cohomogeneity one manifold given by the group
diagram G ⊃ K+, K− ⊃ H. Denote H± = H ∩ K±0 and let α± : [0, 1] → K±0 be
curves that generate π1(K±/H), with α±(0) = 1 ∈ G. M is simply connected if
and only if

(i) H is generated as a subgroup by H− and H+, and

(ii) α− and α+ generate π1(G/H0).

Remark. The curves α± are, in general, not loops in G/H0. However we can
compose them in G/H0 either via pointwise multiplication in G or via lifting their
compositions in G/H , where they are loops, to G/H0. When we say α± generate
π1(G/H0), we mean the combinations of these curves that form loops in G/H0

generate π1(G/H0). Also notice that if dim(K−/H) > 1, we can simply take
α−(t)= 1 for all t , and similarly for α+.

The fact that π1(M)=0 implies (i) is equivalent to [Grove et al. 2008, Lemma 1.7].
Our independent proof here leads to the full version of this lemma.

Proof. By Proposition 1.8, M is simply connected if and only if π1(G/H) =
〈α−〉 · 〈α+〉, where α± are considered as loops in G/H . Furthermore, since α±
are loops in K±/H , it follows that a± := α±(1) ∈ K±0 ∩ H = H±. It is clear that
the group generated by H− and H+ is the same as the group generated by a−, a+
and H0. Therefore condition (i) is equivalent to the statement that H is generated
by a−, a+ and H0.

First assume that M is simply connected, so that π1(G/H)= 〈α−〉 · 〈α+〉. Since
the map G/H0→ G/H is a cover, it is clear that α− and α+ generate π1(G/H0).
We must only show that H is generated by a−, a+ and H0.

Choose an arbitrary component h H0 of H . We claim that some product of a−
and a+ will lie in h H0. For this, let γ : [0, 1] → G be an arbitrary path with
γ(0)= 1 and γ(1)∈ h H0. Then γ represents a loop in G/H and since π1(G/H)=
〈α−〉 · 〈α+〉, we must have [γ] = [α−]n[α+]m for some m, n ∈ Z, where [ · ] denotes
the corresponding class in π1(G/H).

We now make use of the following observation. In general, for compact Lie
groups J ⊂ L , take paths β± : [0, 1] → L , with β±(0) = 1 and β±(1) ∈ J . Then
we see that (β− ·β+(1)) ◦ β+ is fixed endpoint homotopic to β− · β+ in L , where
β− · β+(1) is the path t 7→ β−(t) · β+(1), the symbol ◦ denotes path composition,
and β− ·β+ is the path t 7→β−(t)·β+(t). Therefore [β−][β+]= [β− ·β+] as classes
in π1(J/L).
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In our case, this implies [γ] = [α−]n[α+]m = [αn
−
·αm
+
] in π1(G/H). Now look

at the cover G/H0→ G/H . Since the paths γ and αn
−
· αm
+

both start at 1 ∈ G, it
follows that γ and αn

−
·αm
+

both end in the same component of H . Hence

(αn
−
·αm
+
)(1)= α−(1)n ·α+(1)m = an

−
· am
+
∈ h H0.

Therefore, a−, a+ and H0 generate H , proving (i).
Next suppose (i) and (ii) hold. Again, since the map G/H0→ G/H is a cover,

π1(G/H) is generated by π1(G/H0) and a collection of curves in G/H0 that
go from H0 to each component of H . The curves α− and α+ already generate
π1(G/H0) by assumption. Saying a−, a+ and H0 generate H is equivalent to
saying that combinations of α− and α+ can reach any component of H , when
considered as paths in G/H0. Hence α± generate π1(G/H), and M is simply
connected by Proposition 1.8. �

1.11. Extensions and reductions. In this section we will describe a natural way
of reducing certain cohomogeneity one actions to actions by smaller groups with
the same orbits. We will also describe a way of extending actions to larger groups,
and we will see that these two processes are inverses of each other.

Proposition 1.12. Let M be the cohomogeneity one manifold given by the group
diagram G ⊃ K+, K− ⊃ H and suppose G = G1×G2 with proj2(H)= G2. Then
the subaction of G1× 1 on M is also by cohomogeneity one, with the same orbits,
and with isotropy groups K±1 = K± ∩ (G1× 1) and H1 = H ∩ (G1× 1).

Proof. Recall that the action of G on each orbit G · x is equivalent to the G action
on G/Gx . So it is enough to test the claim on each type of orbit: G/K+, G/K−

and G/H . Let G/Gx be one such orbit and notice that H ⊂ Gx . Then for each
element (g1, g2)Gx ∈G/Gx , there is some element of H of the form (h1, g2) since
proj2(H) = G2. Then (g1, g2)Gx = (g1h−1

1 , 1) · (h1, g2)Gx = (g1h−1
1 , 1)Gx and

hence an arbitrary point (g1, g2)Gx is in the G1×1 orbit of (1, 1)Gx . This proves
G1×1 acts on M with the same orbits as G and hence still acts by cohomogeneity
one. The fact that the isotropy groups of the G1×1 action are K±1 = K±∩(G1×1)
and H1 = H ∩ (G1× 1) is then clear. �

We will now describe a way of extending a given cohomogeneity one action to
an action by a possibly larger group. Let M be a cohomogeneity one manifold with
group diagram G1 ⊃ K−1 , K+1 ⊃ H1, and let L be a compact connected subgroup
of N (H1) ∩ N (K−1 ) ∩ N (K+1 ). Notice that L ∩ H1 is normal in L and define
G2 := L/(L ∩ H1). We then define an action by G1 × G2 on M orbitwise by
(ĝ1, [l])?g1(G1)x = ĝ1g1l−1(G1)x on each orbit G1/(G1)x for (G1)x = H1 or K±1 .

Definition 1.13. Such an extension is called a normal extension.
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Proposition 1.14. This extension describes a smooth action of G := G1 ×G2 on
M with the same orbits as G1 and with group diagram

(1-4) G1×G2 ⊃ (K−1 × 1) ·1L , (K+1 × 1) ·1L ⊃ (H1× 1) ·1L ,

where 1L = {(l, [l]) | l ∈ L}.

Proof. Clearly this action is well defined and has the same orbits as the original
G1 action. Now let c : [−1, 1] → M be a minimal geodesic between nonprincipal
orbits in M such that (G1)c(t) = H1 for t ∈ (−1, 1) and (G1)c(±1) = K±1 . Then it
is clear that the isotropy subgroups of G = G1×G2 are

H := Gc(t) = H1 ·1L for t ∈ (−1, 1) and K± := Gc(±1) = K±1 ·1L ,

where we are identifying G1 with G1 × 1. So if we can show that the action
is smooth and that there is a G-invariant metric on M such that c is a minimal
geodesic, we will be done.

Let M be the manifold with group diagram G ⊃ K−, K+ ⊃ H , with the corre-
sponding geodesic c̄, as above. Note that proj2(H)= proj2(H1 ·1L)=G2. Hence
by Proposition 1.12, G1 still acts isometrically on M by cohomogeneity one with
isotropy groups

(H1 ·1L)∩ (G1× 1)= H1× 1 and (K±1 ·1L)∩ (G1× 1)= K±1 × 1.

So M and M are G1-equivariantly diffeomorphic, by the map φ : g1·c̄(t) 7→ g1·c(t).
We now claim that φ is also G-equivariant. To see this define the set-theoretic

map ψ : M → M , g · c̄(t) 7→ g · c(t). This is well defined since G has the same
isotropy group at c̄(t) as at c(t). This set map is clearly G-equivariant, by defi-
nition. By restricting to elements of the form g1 · c̄(t) for g1 ∈ G1, we see that
ψ(g1 · c̄(t)) = φ(g1 · c̄(t)). Since the G1 orbits are equal to the G orbits in M by
Proposition 1.12, ψ = φ as maps. In particular, ψ is a diffeomorphism since φ is.
Therefore M is G-equivariantly diffeomorphic to M . �

Proposition 1.15. For M as in Proposition 1.12, the action by G=G1×G2 occurs
as a normal extension of the reduced action of G1× 1 on M.

Proof. We first claim that we can assume H ∩ (1×G2)= 1, which will be useful
for technical reasons. To see this, suppose H2 := H ∩ (1×G2) is nontrivial. H2

is obviously normal in H , and it is also normal in G since proj2(H) = G2. Then
there is a more effective version of the same action by

(G1×G2)/H2 ≈ G1× (G2/H2)=: G1× G̃2.

We still have proj2(H̃)= G̃2 for this action, where H̃ is the new principal isotropy
group, and this time H̃ ∩ (1× G̃2)= 1. So assume H ∩ (1×G2)= 1.
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Consider the reduced action with diagram G1× 1⊃ K−1 × 1, K+1 × 1⊃ H1× 1
from Proposition 1.12. Let L=proj1(H0)⊂G1. We claim that the original G1×G2

action is equivalent to the normal extension of the G1 action via L . First notice
that since H1 is normal in H , it is also normal in L = proj1(H0). Similarly L is in
the normalizer of K±1 . So in fact L ⊂ N (H1)∩ N (K−1 )∩ N (K+1 ).

Now, notice the map proj1 : H0 → L = proj1(H0) is onto with trivial kernel,
since we assumed H ∩ (1×G2)= 1. Therefore proj1 is a Lie group isomorphism
and hence has an inverse ψ : L→ H0 which must have the form ψ(l) = (l, φ(l))
for some map φ : L → G2. Notice that φ maps L onto G2 with kernel H1 ∩ L .
Therefore G2 ≈ L/(H1 ∩ L), via φ.

Notice that H0=ψ(L)={(l, φ(l))}. It is also clear that H=H1·H0 and similarly
K±= K±1 ·H0. Therefore we can write the group diagram for our original G1×G2

action as

G1×G2 ⊃ K−1 · H0, K+1 · H0 ⊃ H1 · H0.

Then, after the isomorphism G1×G2→G1×(L/(H1∩L)), (g1, φ(l)) 7→ (g1, [l]),
H0 becomes1L :={(l, [l])} and this diagram becomes exactly the diagram in (1-4).
Therefore the original action by G1×G2 is equivalent to the normal extension of
the G1 action along L . �

Definition 1.16. We say the cohomogeneity one action of a group G on a manifold
M is reducible if there is a proper closed normal subgroup of G that acts on M
with the same orbits.

Every compact connected Lie group has a cover of the form G1×· · ·×Gl×T n ,
where the Gi are simple Lie groups. Therefore every cohomogeneity one action
can be given almost effectively with G = G1 × · · · × Gl × T n . In this case, we
claim the action is reducible if and only if H projects onto some factor of G.
Proposition 1.12 proves this claim in one direction. Conversely, suppose that some
proper closed normal subgroup N of G acts by cohomogeneity one with the same
orbits. Since the orbits of G are connected, we can assume that N is connected.
Therefore N =

∏
i∈I Gi × T p for some subset I ⊂ {1, . . . , l} and some T p

⊂ T n .
Then let L =

∏
i /∈I Gi × T q , where T p

× T q
= T n , so that G = N × L . The

assumption that N acts on M with the same orbits means that N acts transitively
on G/H = (N × L)/H . This means we can write any element (n, `)H ∈ G/H as
(ñ, 1)H , and hence H must project onto L .

Most importantly, this section shows that the classification of cohomogeneity
one manifolds is quickly reduced to the classification of the nonreducible ones.
Therefore we will assume in our classification that all our actions are nonreducible
and we will loose little generality, since every other cohomogeneity one action will
be a normal extension of a nonreducible action.
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1.17. More limitations on the groups. This section gives a few more restrictions
on the groups that can act by cohomogeneity one on simply connected manifolds.
The first addresses the case that the group has an abelian factor.

Proposition 1.18. Let M be the cohomogeneity one manifold given by the group
diagram G ⊃ K+, K− ⊃ H , where G = G1 × T m acts almost effectively and
nonreducibly and G1 is semisimple. Then we know H0= H1×1⊂G1×1. Further,
if M is simply connected, then m ≤ 2 and we have the following:

(i) If m = 1, then at least one of proj2(K
±

0 ) is equal to S1, say proj2(K
−

0 ). Then
K−/H ≈ S1 and K− = S1

−
· H for a circle group S1

−
, with proj2(S

1
−
) = S1.

Furthermore, if rank(H) = rank(G1) or if H1 is maximal-connected in G1,
then H , K− and K+ are all connected, K− = H1 × S1, and K+ is either
H1× S1 or has the form K1× 1 for K1/H1 ≈ Sl+ .

(ii) If m = 2, then K±/H are both circles and K± = S1
±
· H for circle groups S1

±
,

with proj2(S
1
−
) · proj2(S

1
+
) = T 2. Furthermore, if rank(H) = rank(G1), then

the G action is equivalent to the product action of G1×T 2 on (G1/H1)× S3,
where T 2 acts on S3

⊂ C2 by component-wise multiplication.

Proof. In all cases proj2(K
±

0 ) is a compact connected subgroup of T m . Now
say proj2(K

−

0 ) is nontrivial. It must then be a torus T n
⊂ T m . Then we have

proj2 : K
−

0 � T n with kernel K−0 ∩ (G1× 1). Therefore we have the fiber bundle

(K−0 ∩ (G1× 1))/(H1× 1)→ K−0 /(H1× 1)→ K−0 /(K
−

0 ∩ (G1× 1))≈ T n,

which gives a piece of a long exact sequence:

π1(K−0 /(H1× 1))→ π1(T n)→ π0(
(
K−0 ∩ (G1× 1)

)
/(H1× 1)).

The last group in this sequence is finite and the middle group is infinite. This means
that K−0 /H0 has infinite fundamental group. Given that this space is a sphere, it
follows that K−/H ≈ S1. Therefore K−0 = H0 · S1

−
for some circle group S1

−
with

proj2(S
1
−
) = S1

⊂ T m . Similarly, if proj2(K
+

0 ) is nontrivial, then K+0 = H0 · S1
+

for S1
+

with proj2(S
1
+
)= S1

⊂ T m .
We know that proj2(K

−

0 ) and proj2(K
+

0 ) generate some torus T n in T m , with
n ≤ 2. It is clear that if m > n then K−/H and K+/H will not generate π1(G/H)
and hence M will not be simply connected, by Proposition 1.8. Therefore, m ≤ 2,
and if m = 1 then one of K± must be a circle as above, and if m = 2 then both K±

must be circles as above. This proves the first part of the proposition.
For the second part, if rank H1 = rank G1 or if H1 is maximal-connected in G1,

we first claim that proj1(K
−

0 )=H1 if K−/H≈ S1. In the case that H1 is maximal in
G1 this is clear since if proj1(K

−

0 ) is larger than H1 it would be all of G1. Yet there
is no compact semisimple group G1 with subgroup H1 where G1/H1≈ S1. For the
case that rank(H1)= rank(G1), recall that for a general compact Lie group, the rank
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and the dimension have the same parity modulo 2. Since K−= S1
−
·H , proj1(K

−

0 ) is
at most one dimension larger than H1. But if proj1(K

−

0 ) is of one higher dimension
than H1 it would follow that rank(proj1(K

−

0 )) = rank(H1)+ 1 = rank(G1)+ 1, a
contradiction since proj1(K

−

0 ) ⊂ G1. Therefore proj1(K
−

0 ) = H1 in either case.
Then since K− = S1

−
· H , it follows that K−0 = H1× S1

−
⊂ G1× T m . Similarly if

K+/H ≈ S1, then K+0 = H1× S1
+

.
To see that all the groups are connected in this case, we note that if K−0 ∩ H

is not H0, then H ∩ 1× S1 is nontrivial and there is a more effective action for
the same groups with H ∩ 1× S1

= 1. So we can assume that K−0 ∩ H = H0.
If in addition K+/H ≈ S1, then by the same argument K+0 ∩ H = H0 as well.
If dim(K+/H) > 1 then K+0 ∩ H = H0 already, since K+0 /(H ∩ K+0 ) would be
a simply connected sphere. In any case we know that K±0 ∩ H = H0. Then, by
Lemma 1.10, H must be connected, forcing K− and K+ to be connected as well.

Now, it only remains to prove the last statement of (ii). In this case we already
know K− = H1× S1

−
and K+ = H1× S1

+
. It is then clear that K−/H and K+/H

generate π1(G/H)≈π1((G1/H1)×T 2) if and only if S1
−

and S1
+

generate π1(T 2).
This happens precisely when there is an automorphism of T 2 taking S1

−
to S1

× 1
and S1

+
to 1× S1. From Proposition 1.8 we can assume this automorphism exists.

After this automorphism the group diagram has the form

G1× S1
× S1
⊃ H1× S1

× 1, H1× 1× S1
⊃ H1× 1× 1.

It is easy to check that this action is the action described in the proposition (see
Section 1.21 for more details). �

The next two propositions give the possible dimensions that the group G can
have, if it acts by cohomogeneity one.

Proposition 1.19. If a Lie group G acts almost effectively and by cohomogeneity
one on the manifold Mn , then n− 1≤ dim(G)≤ n(n− 1)/2.

Proof. Recall that dim G/H = n−1 for a principal orbit G · x ≈ G/H , so the first
inequality is trivial. Now we claim that G also acts almost effectively on a principal
orbit G · x ≈ G/H . So suppose an element g ∈ G fixes G · x pointwise. Then in
particular g ∈ H . We saw above that H fixes the geodesic c pointwise and hence
g fixes all of M pointwise. So, in fact, G acts almost effectively on G/H . Now
equip G/H with a G invariant metric. It then follows that G maps into Isom G/H
with finite kernel. Since dim G/H = n−1, we know dim(Isom G/H)≤ n(n−1)/2
and this proves the second inequality. �

The following treats the special case where G has the largest possible dimension.

Proposition 1.20. Suppose G is a compact Lie group that acts almost effectively
and by cohomogeneity one on the manifold Mn with n > 2, with group diagram
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G ⊃ K−, K+ ⊃ H and no exceptional orbits. If dim(G) = n(n − 1)/2 and G is
simply connected, then G is isomorphic to Spin(n) and the action is equivalent to
the Spin(n) action on Sn

⊂ Rn
×R, where Spin(n) acts on Rn via SO(n), leaving

R pointwise fixed.

Proof. First, since G acts on M almost effectively, we know that G also acts almost
effectively on the principal orbits that are equivariantly diffeomorphic to G/H .
Now endow G/H with the metric induced from a biinvariant metric on G, so that G
acts by isometry. Therefore we have a Lie group homomorphism G→ Isom G/H
with finite kernel. Since dim G = n(n−1)/2 and dim G/H = n−1, it follows that
G/H must be a space form [Petersen 1998]. Further, since G is simply connected,
it follows that G/H0 is a compact simply connected space form. Hence G/H0

is isometric to Sn−1 and G still acts almost effectively and by isometry on Sn−1.
So in fact G → Isom Sn−1

= SO(n) as a Lie group homomorphism with finite
kernel. Since dim G = dim SO(n), it follows that G is isomorphic to Spin(n).
We also know that the only way Spin(n) can act transitively on an (n−1)-sphere
is with Spin(n − 1) isotropy; see [Besse 1978, page 195]. Therefore there is an
isomorphism G→ Spin(n) taking H0 to Spin(n− 1).

We also see that Spin(n−1) is maximal among connected subgroups of Spin(n).
Hence K± must both be Spin(n) and hence H is connected since n> 2. Therefore
the group diagram for this action is Spin(n)⊃Spin(n),Spin(n)⊃Spin(n−1). It is
easy to check that the Spin(n) action on Sn described in the proposition also gives
this diagram. Hence the two actions are equivalent. �

1.21. Special types of actions. Several types of actions are easily understood and
recognized from their group diagrams. We will discuss these here so that we can
exclude them in our classification.

Product actions. Say G acts on M by cohomogeneity one with group diagram
G ⊃ K−, K+ ⊃ H , and L acts transitively on the homogeneous space L/J . Then
the action of G×L on M×(L/J ) as a product, that is, (g, l)?(p, `J )= (gp, l`J ),
is cohomogeneity one. Suppose c is a minimal geodesic in M between nonprincipal
orbits, which gives the group diagram above. If we fix an L-invariant metric on
L/J , then in the product metric on M × (L/J ) the curve c̃ = (c, 1) is a minimal
geodesic between nonprincipal orbits. Clearly, the resulting group diagram is

(1-5) G× L ⊃ K−× J, K+× J ⊃ H × J.

Conversely, any diagram of this form will give a product action as described above.
These diagrams are easy to recognize from the J factor that appears in each of the
isotropy groups.
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Sum actions. Suppose Gi acts transitively, linearly and isometrically on the sphere
Smi ⊂ Rmi+1 with isotropy subgroup Hi , for i = 1, 2. Then we have an ac-
tion of G := G1 × G2 on Sm1+m2+1

⊂ Rm1+1
× Rm2+1 by taking the product

action: (g1, g2) ? (x, y) = (g1 · x, g2 · y). Such actions are called sum actions.
Now, fix two unit vectors ei ∈ Smi with (Gi )ei = Hi , for i = 1, 2, and define
c(θ)= (cos(θ)e1, sin(θ)e2). Upon computing the isotropy groups we find that the
orbits through c(θ) for θ ∈ (0, π/2) are codimension one and hence this action is
cohomogeneity one. We easily find the group diagram to be

(1-6) G1×G2 ⊃ G1× H2, H1×G2 ⊃ H1× H2.

Conversely, take a group diagram of this form. Then Gi/Hi are spheres and hence
by the classification of transitive actions on spheres, Gi actually acts linearly and
isometrically on Smi ⊂Rmi+1. Hence this action is a sum action as described above.
Diagrams of the form (1-6) are easy to recognize from the H1 and H2 factors in
the “middle” and the G1 and G2 factors on the “outside” of the pair K−, K+. In
particular these actions are always isometric actions on symmetric spheres.

Fixed point actions. Here we will completely characterize the cohomogeneity one
actions that have a fixed point. In fact we will not put any dimension restrictions
on the actions in this subsection. Say G acts effectively and by cohomogeneity one
on the simply connected manifold M and assume there is a fixed point p− ∈ M ,
that is, G p− = G. It is clear that the point p− cannot be in a principal orbit, so we
can assume that K− = G. Therefore the group diagram for this action will have
the form

(1-7) G ⊃ G, K+ ⊃ H.

Conversely, such a diagram clearly gives an action with a fixed point. Therefore
to classify fixed point cohomogeneity one actions we must only classify diagrams
of type (1-7).

Because we assumed the action is effective, it follows that the G action on
G/H ≈ Sl− is an effective transitive action on a sphere. Such actions were clas-
sified by Montgomery, Samelson and Borel (see [Besse 1978, page 195]). Up to
equivalence, this gives us the possibilities for G and H . In particular H and hence
K+ must be connected. Grove and Ziller [2002, Section 2] list all possible closed
connected subgroups K+ between H and G for each pair G, H .

In the case where K+ = G, we have

(1-8) G ⊃ G,G ⊃ H.

To see what this action is, identify G/H with the unit sphere Sl
⊂Rl+1. We know

from the classification of transitive actions on spheres mentioned above that G acts



CLASSIFICATION OF COHOMOGENEITY ONE MANIFOLDS IN LOW DIMENSIONS 147

linearly and isometrically on Rl+1. It is easy to check that M = Sl+1
⊂ Rl+1

×R

with the action given by g ? (x, t) = (gx, t). We will call such actions two-fixed-
point actions. In particular this is an isometric action on the sphere Sl+1. Notice
that if H0 is maximal among connected subgroups of G, then (1-8) is the only
possible diagram for this G and H0, assuming there are no exceptional orbits. This
gives the following convenient proposition.

Proposition 1.22. Let M be a simply connected cohomogeneity one manifold for
the group G, with principal isotropy group H , as above. If H0 is maximal among
connected subgroups of G, then the action is equivalent to an isometric two-fixed-
point action on a sphere.

Therefore we must only consider the case in which K+ is a subgroup strictly
between H and G. Following the tables given in [Grove and Ziller 2002], we
address these cases one by one. We first list the diagram, then the corresponding
action. In each case it is easy to check that the action listed gives the corresponding
diagram.

• SU(n)⊃ SU(n),S(U(n− 1)U(1))⊃ SU(n− 1):
SU(n) on CPn given by A ? [z0, z1, . . . , zn] = [z0, A(z1, . . . , zn)].

• U(n)⊃ U(n),U(n− 1)U(1)⊃ U(n− 1):
U(n) on CPn given by A ? [z0, z1, . . . , zn] = [z0, A(z1, . . . , zn)].

• Sp(n)⊃ Sp(n),Sp(n− 1)Sp(1)⊃ Sp(n− 1):
Sp(n) on HPn given by A ? [x0, x1, . . . , xn] = [x0, A(x1, . . . , xn)].

• Sp(n)⊃ Sp(n),Sp(n− 1)U(1)⊃ Sp(n− 1):
Sp(n) on CP2n+1

= S4n+3/S1 for S4n+3
⊂ Hn+1 given by

A ? [x0, x1, . . . , xn] = [x0, A(x1, . . . , xn)]

• Sp(n)×Sp(1)⊃ Sp(n)×Sp(1),Sp(n−1)Sp(1)×Sp(1)⊃ Sp(n−1)1Sp(1):
Sp(n)×Sp(1) on HPn given by

(A, p) ? [x0, x1, . . . , xn] = [px0, A(x1, . . . , xn)].

• Sp(n)×U(1)⊃ Sp(n)×U(1),Sp(n− 1)Sp(1)×U(1)⊃ Sp(n− 1)1U(1):
Sp(n)×U(1) on HPn given by

(A, z) ? [x0, x1, . . . , xn] = [zx0, A(x1, . . . , xn)].

• Sp(n)×U(1)⊃ Sp(n)×U(1),Sp(n− 1)U(1)×U(1)⊃ Sp(n− 1)1U(1):
Sp(n)×U(1) on CP2n+1

= S4n+3/S1 for S4n+3
⊂ Hn+1 given by

(A, z) ? [x0, x1, . . . , xn] = [zx0, A(x1, . . . , xn)].

• Spin(9)⊃ Spin(9),Spin(8)⊃ Spin(7):
Spin(9) on CaP2

= F4/Spin(9); see [Iwata 1981].

In conclusion, we have shown the following.
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Proposition 1.23. Every cohomogeneity one action on a compact simply con-
nected manifold with a fixed point is equivalent to one of the isometric actions
on a compact rank one symmetric space described above.

1.24. Important Lie groups. It is well known that every compact connected Lie
group has a finite cover of the form Gss × T k , where Gss is semisimple and sim-
ply connected and T k is a torus. The classification of compact simply connected
semisimple Lie groups is also well known. In dimensions 21 and less, such a
group must be a product of the following: the 3-dimensional S3

≈SU(2)≈Sp(1)≈
Spin(3)with rank 1; the 8-dimensional SU(3), the 10-dimensional Sp(2)≈Spin(5)
and 14-dimensional G2, all with rank 2; and the 15-dimensional SU(4)≈ Spin(6),
the 21-dimensional Sp(3) and the 21-dimensional Spin(7), all with rank 3.

If an arbitrary compact group G acts on a manifold M , then every cover G̃
of G still acts on M , although less effectively. So allowing for a finite ineffec-
tive kernel, and since G will always have dimension 21 or less in our case by
Proposition 1.19, we can assume that G is the product of groups listed above,
together with a torus T k .

For the classifications of cohomogeneity one diagrams we will also need to know
the subgroups of the groups listed above, for certain dimensions. These subgroups
are well known; see for example [Dynkin 1952]. For the above groups, we will now
list the proper connected closed subgroups in the dimensions that will be relevant
for our study, for future reference. In T 2 we have only {(ei pθ , eiqθ )} and for S3 we
only have {exθ

= cos θ + x sin θ} where x ∈ Im(S3). In S3
× S3 we have S1

⊂ T 2,
T 2, S3

× 1, 1× S3, 1S3
= {(g, g)}, S3

× S1, and S1
× S3. The group SU(3) has

S1
⊂ T 2, T 2, SO(3), SU(2), and U(2)= S(U(2)U(1)). For Sp(2), in dimensions 4

and higher we have U(2), Sp(1)SO(2), and Sp(1)Sp(1). In dimensions 8 or greater
SU(3) is the only such subgroup of G2. And finally SU(4) has the subgroups U(3)
and Sp(2) in dimensions 9 or higher.

We can use this information about the subgroups of the classical Lie groups to
make the following claim.

Proposition 1.25. Let M be the cohomogeneity one manifold given by the group
diagram G ⊃ K+, K− ⊃ H , where G acts nonreducibly on M. Suppose G is the
product of groups

G =
i∏

t=1

(SU(4))×
j∏

t=1

(G2)×

k∏
t=1

(Sp(2))×
l∏

t=1

(SU(3))×
m∏

t=1

(S3)× (S1)n

where i, j, k, l,m and n are allowed to be zero and where we imagine most of them
are zero. Then

dim(H)≤ 10i + 8 j + 6k+ 4l +m.
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Of course the most important applications of this proposition will be in the case
that i, j, k, l,m and n are all small and mostly zero. Although this might not seem
to be of much use, we will see that it will help to rule out many product groups.

Proof. Since the action is nonreducible, we know that H does not project onto
any of the factors in this product. That means each projν(H) is a proper subgroup.
Therefore

H0 ⊂

i∏
t=1

(It)×

j∏
t=1

(Jt)×

k∏
t=1

(Kt)×

l∏
t=1

(L t)×

m∏
t=1

(S1
t )× 1.

We listed the largest possible dimension of each of these subgroups at the beginning
of this section. In particular

dim(It)≤ 10, dim(Jt)≤ 8, dim(Kt)≤ 6, dim(L t)≤ 4. �

2. Classification in dimension five

Throughout this section, M will denote a 5-dimensional compact simply connected
cohomogeneity one manifold for the compact connected group G that acts al-
most effectively and nonreducibly, with group diagram G ⊃ K−, K+ ⊃ H , where
K±/H ≈ Sl± .

We will complete the classification by finding all such group diagrams that give
simply connected manifolds. The first step is to find the possibilities for G. Since
we allow the action to have finite ineffective kernel, after lifting the action to a
covering group of G, we can assume G is a product of groups from Section 1.24.
In fact we have the following proposition.

Proposition 2.1. G and H0 must be one of the pairs of groups listed in Table III,
up to equivalence.

Proof. We will first show that all the possibilities for G are listed in the table. We
know from Proposition 1.19 that 4 ≤ dim G ≤ 10 and dim H = dim G − 4 since
the principal orbits G/H are codimension one in M . Further, since G is a product
of groups from Section 1.24, G must have the form (S3)m × T n , SU(3)× T n or
Spin(5). From Proposition 1.18 we can assume n ≤ 2 in all cases. First suppose
that G = (S3)m×T n . Then by Proposition 1.25 we have 3m+n−4= dim H ≤m,
which means 0 ≤ 4− 2m − n. Hence m ≤ 2 and if m = 2 then n = 0. So all the
possibilities for groups of the form (S3)m × T n are in fact listed in the table. Next
suppose G=SU(3)×T n . Then by Proposition 1.25 again we know that dim H ≤4,
which means dim G = dim H + 4≤ 8. Hence SU(3) is the only possibility of this
form. Therefore all of the possible groups G are listed in Table III.

Now we will show that for each possible G described above we have listed all
the possible subgroups H0 of the right dimension. It is clear that if G = S3

× S1,
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Case G H0

15 S3
× S1

{1}
25 S3

× T 2 S1
× 1

35 S3
× S3 T 2

45 SU(3) U(2)
55 Spin(5) Spin(4)

Table III. Possibilities for G and H0 in the 5-dimensional case.

then H is discrete. Next, if G = S3
× T 2, then for the action to be nonreducible,

proj2(H) ⊂ T 2 must be trivial. Hence, H0 is a closed connected one-dimensional
subgroup of S3, as stated. If G= S3

×S3, then it is clear that T 2 must be a maximal
torus in G. If G = SU(3), we see from Section 1.24 that H0 must be U(2) up to
conjugation. Finally, Proposition 1.20 deals with the last case dim G = 10. �

In the rest of the section we proceed case by case to find all possible diagrams
for the pairs of groups listed in Table III. We will do this by finding the possibilities
for K±, with K±/H a sphere. Recall from Propositions 1.7 and 1.23 that we can
assume

dim G > dim K± > dim H.

Case 15 (G = S3
× S1). In this case H must be discrete. It then follows that for

K/H to be a sphere, K0 itself must be a cover of a sphere. Then from Section 1.24,
the only compact connected subgroups of S3

× S1 that cover spheres are S3
×1 or

circle groups of the form {(expθ , eiqθ )} where x ∈ Im(H). From Proposition 1.18,
we know that at least one of K±0 is a circle. This leads us into the following cases:
both K±0 are circles or K−0 is a circle and K+0 = S3

× 1.

Case 15A (K−0 is a circle and K+0 = S3
× 1). First, from Corollary 1.9, K− must

be connected with H ⊂ K− and H ∩ K+0 = 1. After conjugation of G, we may
assume K− = {(ei pθ , eiqθ )} and p, q ≥ 0. We also know from Corollary 1.9 that
for M to be simply connected, G/K−= S3

×S1/{(ei pθ , eiqθ )}must also be simply
connected. It is not hard to see that this happens precisely when q = 1. Finally,
if H = Zn ⊂ K− the condition that H ∩ (1× S1) = e means (p, n) = 1. Then
K+ = K+0 · H = (S

3
× 1) ·Zn = S3

×Zn . In conclusion, such an action must have
the following type of group diagram:

(Q5
C ) S3

× S1
⊃ {(ei pθ , eiθ )}, (S3

× 1) ·Zn ⊃ Zn

Conversely, such groups clearly determine a simply connected cohomogeneity
one manifold, by Proposition 1.8. This family Q5

C is described in more detail in
Section 5.1.
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Case 15B (both K±0 are circle groups). After conjugation we can take

(2-2) K−0 = {(e
i p−θ , eiq−θ )} and K+0 = {(e

xp+θ , eiq+θ )}

for some x ∈ Im(H) ∩ S3 and (p±, q±) = 1. From Lemma 1.10, we know that
H must be generated by H− = H ∩ K−0 and H+ = H ∩ K+0 , which are cyclic
subgroups of the circles K−0 and K+0 , respectively.

We will now have to break this into two more cases, depending on whether K−0
and K+0 are both contained in a torus T 2 in G.

Case 15B1 (K−0 and K+0 are not both contained in any torus T 2
⊂G). Here we can

assume that x 6=±i . Further, from (2-2), we see p± 6=0 in this case, since otherwise
K±0 would be contained in the same torus. Further, from Proposition 1.18, we know
that at least one of q± must be nonzero, say q+ 6= 0. A computation shows that
N (K+0 )= {(e

xθ , eiφ)}, since p+q+ 6= 0. Therefore K+ ⊂ {(exθ , eiφ)}, since every
compact subgroup of a Lie group is contained in the normalizer of its identity
component. Similarly,

K− ⊂ N (K−0 )=
{
{(eiθ , eiφ)} if q− 6= 0,
{(eiθ , eiφ)} ∪ {( jeiθ , eiφ)} if q− = 0.

Therefore H ⊂ K− ∩ K+ ⊂ N (K−0 ) ∩ N (K+0 ). If q− 6= 0, then this means
H ⊂ {(eiθ , eiφ)} ∩ {(exθ , eiφ)} = {(±1, eiφ)}. Then H lies in the center of G and
so by Proposition 1.2, we can conjugate K+ by any element of G and still have
the same action. In particular we can conjugate K+ to lie in the same torus as K−,
hence reducing such actions to Case 15B2. So we can assume that q− = 0 and
hence K−0 = {(e

iθ , 1)}.
Then, we have

H ⊂ N (K−0 )∩ N (K+0 )= ({(e
iθ , eiφ)} ∪ {( jeiθ , eiφ)})∩ {(exθ , eiφ)}.

This intersection will again be {(±1, eiφ)} unless x ⊥ i . As above, we can again
assume x ⊥ i . Further, after conjugation of G by (eiθ0, 1) for a certain value of θ0,
K−0 will remain fixed and K+0 will be taken to {(e j p+θ , eiq+θ )}, with p+, q+ > 0.
So we can assume

K−0 = {(e
iθ , 1)} and K+0 = {(e

j p+θ , eiq+θ )}.

and therefore, H ⊂ N (K−0 ) ∩ N (K+0 ) = {±1,± j} × S1
⊂ S3

× S1. We saw
above that we can assume H is not contained in {(±1, eiφ)}, and hence H must
contain an element of the form ( j, z0), which we can assume also lies in K+0 , by
Lemma 1.10. We can also assume that H∩(1×S1)= 1, so that #(z0)|#( j)= 4 and
hence z0 ∈ {±1,±i}, where #(g) denotes the order of the element g. So H ∩ K+0
is generated by ( j, z0). Similarly, H ∩ K−0 must also be a subset of {±1,± j}× 1
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and is therefore either trivial or {(±1, 1)}. For convenience we break this up into
three more cases, depending on the order of z0.

Case 15B1a (the order of z0 is one, that is, z0 = 1). In this case H = 〈( j, 1)〉,
K−0 ∩H ={(±1, 1)} and K+0 ∩H = H . Hence K+ is connected. The condition that
H ⊂ K+ means 4|q+ and p+ is odd. We can represent π1(K+/H) with the curve
α+ : [0, 1] → K+, t 7→ (e2π j p+t/4, e2π iq+t/4), and we can represent π1(K−/H)
with the curve α− : [0, 1] → K−, t 7→ (e2π i t/2, 1). From Lemma 1.10, M will be
simply connected if and only if α± generate π1(G). We see that the possible loops
in G that α± can form are combinations of α2

−
, α4
+

and α− ◦α2
+

. Yet each of these
loops can only give an even multiple of the loop 1× S1

⊂ S3
× S1

= G, which
generates π1(G). Hence M will never be simply connected in this case.

Case 15B1b (the order of z0 is two, that is, z0 =−1). In this case H = 〈( j,−1)〉,
and again K−0 ∩ H = {(±1, 1)} and K+0 ∩ H = H , so that K+ is connected.
This time, the condition that H ⊂ K+ means that p+ is odd and q+ ≡ 2 mod 4.
Then, we can represent π1(K+/H) with the curve α+ : [0, 1] → K+ mapping
t 7→ (e2π j p+t/4, e2π iq+t/4) and π1(K−/H)with the curve α− : [0, 1]→K− mapping
t 7→ (e2π i t/2, 1), and again M will be simply connected if and only if α± generate
π1(G), by Lemma 1.10. The loops that α± can generate are again combinations of
α2
−

, α4
+

and α− ◦α2
+

but in this case α2
−

corresponds to zero times around the loop
1× S1, α4

+
corresponds to q+ times around 1× S1, and α− ◦ α2

+
corresponds to

q+/2 times around 1×S1. Together with the constraints q+≡ 2 mod 4 and q+> 0,
we see that M will be simply connected if and only if q+ = 2. Therefore this case
gives this family of actions:

(Q5
B) S3

×S1
⊃{(eiθ , 1)}·H, {(e j p+θ , e2iθ )}⊃〈( j,−1)〉, where p+>0 is odd.

These actions are described in more detail in Section 5.2.

Case 15B1c (the order of z0 is four, that is, z0 = ±i). After a conjugation of G,
which will not effect the form of K±, we can assume z0= i , that is, ( j, i)∈H∩K+0 ,
although we can no longer assume p+ > 0. As above, H ∩K−0 ⊂ {(±1, 1)}. Yet if
(−1, 1) ∈ H , then (−1,−1) · (−1, 1) = (1,−1) ∈ H , violating our assumption
that H ∩ 1 × S1

= 1. Therefore H = 〈( j, i)〉 ⊂ K+, K+ is connected and
K−0 ∩ H = 1. This also implies that p+ and q+ are odd and p+ ≡ q+ mod 4.
In this case π1(K+/H) can be represented by the curve α+ : [0, 1]→ K+ mapping
t 7→ (e2π j p+t/4, e2π iq+t/4) and π1(K−/H) can be represented by α− : [0, 1]→ K−,
t 7→ (e2π i t , 1). As above, by Lemma 1.10, M will be simply connected if and only
if the α± generate π1(G). We see that the only loops in G that α± can generate are
α− and α4

+
, where α− in trivial in π1(G) and α4

+
represents q+ times around the

loop 1× S1, which generates π1(G). Together with our assumption that q+ > 0,
we get that M is simply connected if and only if q+ = 1. This case gives precisely
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the family P5 of actions (from the introduction):

(P5) S3
× S1
⊃ {(eiθ , 1)} · H, {(e j p+θ , eiθ )} ⊃ 〈( j, i)〉 where p+ ≡ 1 mod 4.

Case 15B2 (K−0 and K+0 are both contained in a torus T 2
⊂ G). After conjugation

of G, we may assume that K±0 ⊂{(e
iθ , eiφ)}. It then follows from Lemma 1.10 that

K±, H ⊂ {(eiθ , eiφ)}. Here again there will be two cases depending on whether or
not K−0 and K+0 are distinct circles.

Case 15B2a (K−0 = K+0 ). Then we can take K−0 = K+0 = {(e
i pθ , eiqθ )} with q > 0.

From Lemma 1.10, it follows that H is a cyclic subgroup of K±0 and that K± is
connected. It is then clear from Lemma 1.10 that q = 1 and hence we have this
family of actions:

(Q5
A) S3

× S1
⊃ {(ei pθ , eiθ )}, {(ei pθ , eiθ )} ⊃ Zn.

Conversely, the resulting manifolds will all be simply connected by Lemma 1.10.

Case 15B2b (K−0 6= K+0 ). Here, say K±0 = {(e
i p±θ , eiq±θ )} and then H = H− · H+

for cyclic subgroups H± ⊂ K±0 , by Lemma 1.10. Now let α± : [0, 1] → K±0 be
curves with α±(0) = 1 that represent π1(K±/H). Then by Lemma 1.10, M will
be simply connected if and only if the combinations of α± that form loops in G
generate π1(G). Let δ± : [0, 1] → K±0 , t 7→ (e2π i p±t , e2π iq±t) be curves that pass
once around the circles K±0 . Then δ± = α

m±
± are two such loops.

To find all such loops, consider the covering map ℘ : R2
→ T 2

⊂ S3
× S1,

(x, y) 7→ (e2π i x , e2π iy) and let K̃± be the line through the origin and through the
point (p±, q±) in R2. Then it is clear that ℘−1(K±0 ) = K̃± + Z2, the discrete
collection of lines in R2 that are parallel to K̃± and that pass through an integer
lattice point.

Now let γ̃ be a path in R2 that starts at (0, 0) follows K̃− until the first point of
the intersection K̃− ∩ (K̃++Z2), then follows K̃++Z2 to the first integer lattice
point (λ, µ). Then γ := ℘(γ̃) gives a loop in G. Notice that K−0 ∩ K+0 is a cyclic
subgroup of both K±0 , and any curve in K−0 ∪ K+0 is homotopic within T 2 to a
curve in K−0 followed by a curve in K+0 . It then follows that δ−, δ+ and γ generate
all possible loops in K−0 ∪ K+0 . Similarly, if d is the index of H ∩ K−0 ∩ K+0 in
K−0 ∩ K+0 , then γd can be imagined as a curve that starts at 1, travels along K−0 to
the first element of H in H ∩ K−0 ∩ K+0 , and then follows K+0 back to the identity.
Then δ−, δ+ and γd generate the same homotopy classes of loops as α− and α+.
Therefore M will be simply connected if and only if δ−, δ+ and γd generate π1(G).

Let c : [0, 1] → G = S3
× S1, t 7→ (1, e2π i t) represent the generator of π1(G).

Then it is clear that δ± is homotopic to cq± in G and that γ is homotopic to cµ

in G. Therefore M is simply connected if and only if 〈cq−, cq+, cdµ
〉 = 〈c〉. Notice

further that there are no integer lattice points strictly between the lines K̃+ and
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(λ, µ)+ K̃+ since there are no lines of K̃++Z2 in this region, by the construction
of γ̃. Therefore (p+, q+) and (λ, µ) generate all of Z2 and in particular q+ and
µ are relatively prime. Hence 〈cq−, cq+, cdµ

〉 = 〈cq−, cq+, cd
〉 and therefore M is

simply connected if and only if gcd(q−, q+, d) = 1. Therefore, we get precisely
the family N 5 of simply connected diagrams:

(N 5) S3
× S1
⊃ {(ei p−θ , eiq−θ )} · H, {(ei p+θ , eiq+θ )} · H ⊃ H− · H+

K− 6=K+, gcd(q−, q+, d)=1, where d=#(K−0 ∩K+0 )/#(H∩K−0 ∩K+0 ).

The referee pointed out that the condition gcd(q−, q+, d)= 1 can be replaced by
either condition gcd(q−, d)= 1 or gcd(q+, d)= 1. Notice that d |#(K−0 ∩ K+0 )=
|p−q+− p+q−|. Therefore gcd(d, q+) divides both p−q+− p+q− and p−q+ and
hence gcd(d, q+)| p+q−. Therefore gcd(d, q+)|q− since gcd(p+, q+) = 1. In
particular gcd(q−, q+, d)= gcd(q+, d) and similarly gcd(q−, q+, d)= gcd(q−, d).

We next examine the remaining possibilities for G: Cases 25–55 from Table III.

Cases 25, 45 and 55. In Case 25, G = S3
× T 2 and H0 = S1

× 1 where rank S3
=

rank S1. Proposition 1.18 then says that the resulting action must be a product
action. In Case 45, we know from Section 1.24 that H0 =U(2) is maximal among
connected subgroups of G = SU(3). Hence any action with these groups would
be an isometric two-fixed-point action on a sphere, by Proposition 1.22. Finally,
Case 55 is fully described by Proposition 1.20.

Case 35. Now G = S3
× S3 and H0 = S1

× S1. Then from Section 1.24, any
proper connected subgroup K of G, containing H0 and of higher dimension, must
be S3

×S1 or S1
×S3. Then, since our only possibilities for K have dim(K/H)=2,

Corollary 1.9 implies that all of H , K− and K+ are connected. Therefore, up to
equivalence, we only have the following possible diagrams:

S3
× S3
⊃ S3
× S1, S3

× S1
⊃ S1
× S1,

S3
× S3
⊃ S3
× S1, S1

× S3
⊃ S1
× S1.

Conversely, it is clear that these both give simply connected manifolds. The first
of these actions is a product action and the second is a sum action.

3. Classification in dimension six

Throughout this section we will keep the notations and conventions established at
the beginning of Section 2, this time for a 6-dimensional manifold M . As in the
previous case we have the following result to describe the possible groups.

Proposition 3.1. G and H0 must be one of the pairs of groups listed in Table IV,
up to equivalence.
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Case G H0

16 S3
× T 2

{1}
26 S3

× S3
{(ei pθ , eiqθ )}

36 S3
× S3
× S1 T 2

× 1
46 SU(3) SU(2), SO(3)
56 SU(3)× S1 U(2)× 1
66 Sp(2)× S1 Sp(1)Sp(1)× 1
76 Spin(6) Spin(5)

Table IV. Possibilities for G and H0 in the 6-dimensional case.

Proof. We first show that all the possibilities for G are listed in the table. We know
from Proposition 1.19 that 5 ≤ dim G ≤ 15 in this case and dim G = dim H + 5
since dim(G/H) = 5. From Section 1.24, G must have the form (S3)m × T n ,
SU(3) × (S3)m × T n , Sp(2) × (S3)m × T n , G2 × T n , or Spin(6). Further, by
Proposition 1.18, we can assume n ≤ 2 in all cases.

First suppose G= (S3)m×T n . Then 3m+n−5=dim H ≤m by Proposition 1.25
and hence 0≤5−2m−n. Therefore m≤2 and if m=2 then n≤1. We see that all of
these possibilities are recorded in the table. Next assume G=SU(3)×(S3)m×T n .
Then by Proposition 1.25 again we know 8+ 3m + n − 5 = dim H ≤ 4+ m or
0 ≤ 1− 2m − n. Hence m = 0 and n ≤ 1. Note again that these two possibilities
for G are listed in the table. Next if G = Sp(2)× (S3)m × T n , Proposition 1.25
gives 0 ≤ 1− 2m − n again. So again m = 0 and n ≤ 1. However, if G = Sp(2)
then dim H = 5 and rank H ≤ rank G = 2. Yet, from Section 1.24, there are
no 5-dimensional compact groups of rank two or less. So in fact, Sp(2) is not a
possibility for G. Finally suppose that G = G2 × T n . Then by Proposition 1.25,
dim H ≤ 8 and yet H would have to be 9+n-dimensional in this case. Hence this
is not a possibility either.

Now we will show that for each G in the table, all the possibilities for H0 are
listed. First, if G = G1 × T m , then for the action to be nonreducible, we can
assume proj2(H0) is trivial in these cases. Then, we use the list in Section 1.24
to find the possibilities for H0 in each case, up to conjugation. For the last case,
Proposition 1.20 tells us the full story. �

We will now continue with the classification case by case. As in dimension 5,
the case that H is discrete is the most difficult.

Case 16 (G = S3
× T 2). Here H is discrete. By Proposition 1.18, we see that K±0

must both be circle groups in G, say K±0 = {(e
x±a±θ , eib±θ , eic±θ )} for x± ∈ Im S3,

where (b−, c−) and (b+, c+) are linearly independent. After conjugation, we can
assume that x− = i and we claim we can also assume that x+ = i . If one of
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a± is zero then this is clear. Otherwise we have N (K−0 ) = {(e
iθ , eiφ, eiψ)} and

N (K+0 )= {(e
x+θ , eiφ, eiψ)} and H ⊂ N (K−0 )∩N (K+0 )= {(±1, eiφ, eiψ)} if x+ 6=

±i . But then H would be normal in G and by Proposition 1.2, we would be able
to conjugate K+ to make x+ = i without affecting the resulting manifold. So we
can assume K±0 = {(e

ia±θ , eib±θ , eic±θ )}.
Let α± : [0, 1] → K±0 be curves with α±(0) = 1 that represent π1(K±/H).

Lemma 1.10 says that M will be simply connected if and only if H is generated
by α±(1) as a group and the α± generate π1(G). Assuming that H is generated by
the α±(1), we will find the conditions under which the α± generate π1(G).

Notice that Lemma 1.10 implies that K± and H must all be contained in T 3
=

{(eiθ , eiφ, eiψ)} in order for M to be simply connected. Now consider the cover
℘ : R3

→ T 3, (x, y, z) 7→ (e2π i x , e2π iy, e2π i z). In R3, let K̃± be the line through
the origin and the point (a±, b±, c±). Then it is clear that ℘−1(K±0 ) = K̃±+Z3.
Next, denote the plane spanned by K̃− and K̃+ by Q and the lattice Q ∩Z3 by L .

We then see that any loop generated by α± will lift to a path in Q from the origin
to a point in L = Q ∩Z3. Finally define the map p : R3

→ R2, (x, y, z) 7→ (y, z).
Then we have an isomorphism of π1(G)→ Z2 given as follows: For [c] ∈ π1(G)
lift c to a curve c̃ in R3 starting from the origin via ℘, then take [c] 7→ p(c̃(1)). It
is clear that for the combinations of α± that form loops in G to generate π1(G),
we must at least have p(L)= Z2. This means that L must have the form

L = {( f (i, j), i, j) | i, j ∈ Z}

for some function f of the form f (i, j) = ri + s j with fixed r, s ∈ Z. In partic-
ular, it follows that a± = f (b±, c±) = rb± + sc± since (a±, b±, c±) ∈ L . Hence
gcd(b±, c±)= 1 since we assumed that gcd(a±, b±, c±)= 1.

Now define the curve γ̃ : [0, 1] → R3 as follows: γ̃ starts at the origin, follows
K̃− to the first point of intersection in (K̃++Z3)∩ K̃−, then follows K̃++Z3 to
the first integer lattice point ( f (λ, µ), λ, µ) in Z3. We now claim that (a+, b+, c+)
and ( f (λ, µ), λ, µ) generate L . This follows from the fact that there are no points
of L in the region of Q strictly between the lines K̃+ and ( f (λ, µ), λ, µ)+ K̃+

since there are no lines of K̃++Z3 in this region, by the construction of γ̃. Since
(a+, b+, c+) and ( f (λ, µ), λ, µ) generate L , (b+, c+) and (λ, µ) generate Z2.

Define δ̃± : [0, 1] → R3, t 7→ t (a±, b±, c±) and let γ = ℘(γ̃) and δ± = ℘(δ̃±).
If d denotes the index of H ∩ K−0 ∩ K+0 in K−0 ∩ K+0 , then we claim that δ+ and
γd generate the same subgroup of π1(G) as α− and α+. To see this, notice that α±
can be taken to be paths in K±0 from the identity to the first element of H ∩ K±0
and that any combination of α± that forms a loop in G can be expressed as a curve
in K−0 , from the identity to an element of H ∩ K−0 ∩ K+0 , followed by a curve in
K+0 back to the identity. We see from the construction of γ̃ that γd is a loop from
the identity, along K−0 to the first element of H ∩K−0 ∩K+0 , then around K+0 some
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number of times before returning to the identity. Since H ∩K−0 ∩K+0 ⊂ K−0 ∩K+0
are both cyclic subgroups of K−0 , we see that any loop generated by α− and α+ can
be expressed as a power of γd followed by a power of δ+. So δ+ and γd generate
the same subgroup of π1(G) as α− and α+.

Then by Lemma 1.10, M will be simply connected if and only if δ+ and γd

generate π1(G). Via the isomorphism π1(G)→ Z2 described above, δ+ and γd

correspond to (b+, c+) and d(λ, µ), respectively. Since (b+, c+) and (λ, µ) gen-
erate Z2, from above, it follows that M will be simply connected if and only if
d = 1, or equivalently if K−0 ∩ K+0 ⊂ H .

Hence we have precisely the family N 6
A of diagrams:

(N 6
A) S3

× T 2
⊃ {(eia−θ , eib−θ , eic−θ )} · H, {(eia+θ , eib+θ , eic+θ )} · H ⊃ H

where K− 6= K+, H = H− · H+, gcd(b±, c±)= 1,

a± = rb±+ sc±, and K−0 ∩ K+0 ⊂ H .

We can eliminate several parameters from the expression of the group diagram
above. After an automorphism of G, we can assume that K−0 ⊂ S3

× S1
× 1 and

hence (a−, b−, c−) = (r, 1, 0). However the symmetric presentation in (N 6
A) will

be preferred for our purposes.

We will now address Cases 26–76 from Table IV.

Case 26 (G = S3
× S3). Here H0 = {(ei pθ , eiqθ )}, for (p, q) = 1 and p, q ≥ 0,

after conjugation of G. Then, from Section 1.24, the possible compact connected
proper subgroups K containing H with K/H ≈ Sl are: any torus T 2

⊃ H ; S3
× 1

if q = 0; 1× S3 if p= 0; 1S3 if p= q = 1; S3
× S1 where S3

× S1/H ≈ S3 if and
only if q = 1; or S1

× S3 where S1
× S3/H ≈ S3 if and only if p = 1.

We will now break this into cases by pairing together all of the possibilities for
K±, remembering that we can switch the places of K− and K+ without affecting
the resulting action.

Case 26A (K−0 and K+0 are both tori). Here we need to break this up further into
two more cases depending on whether or not K−0 and K+0 are the same torus.

Case 26A1 (K−0 and K+0 are the same torus). Here K−0 = K+0 = T 2 and hence, by
Lemma 1.10, H ⊂ K±0 and K± are both connected. We also see from Lemma 1.10
that any H ⊂ K± with H0 = S1 will give a simply connected manifold. In general
such groups H will have the form {(ei pθ , eiqθ )} · Zn after a conjugation of G.
Therefore we get the family N 6

B of actions in this case:

(N 6
B) S3

× S3
⊃ {(eiθ , eiφ)}, {(eiθ , eiφ)} ⊃ {(ei pθ , eiqθ )} ·Zn

Case 26A2 (K−0 and K+0 are different tori). For K−0 and K+0 to be different tori,
both containing the circle H0 = {(ei pθ , eiqθ )}, it follows that either p or q must be
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zero. Suppose, without loss of generality that q = 0, so that H0={(eiθ , 1)}. It then
follows that K±0 must have the form K±0 ={(e

iθ , ex±φ)} for some x± ∈ Im(S3). For
M to be simply connected H ⊂ {(eiθ , g)} = S1

× S3 by Lemma 1.10. Therefore H
and K± all have the form H = S1

× Ĥ and K± = S1
× K̂±, where K̂±/Ĥ ≈ S1.

That means S3
⊃ K̂+, K̂−⊃ Ĥ gives a four-dimensional cohomogeneity one man-

ifold. Further, from Lemma 1.10, it follows that this 4-manifold will be simply
connected if and only if M is. Hence our action is a product action with some
simply connected 4-manifold.

Case 26B (K−0 = T 2 and K+0 = S3
× 1). Then q = 0 and H0 = {(eiθ , 1)}.

From Lemma 1.10, H must be of the form S1
×Zn ⊂ T 2. This gives the family

N 6
C of group diagrams:

(N 6
C ) S3

× S3
⊃ T 2, S3

×Zn ⊃ S1
×Zn

Conversely, these diagrams obviously determine simply connected manifolds, by
Lemma 1.10.

Case 26C (K−0 = T 2 and K+0 =1S3). Then p = q = 1 and H0 =1S1.
Again, by Lemma 1.10, H will have the form 1S1

· Zn . Yet, every compact
Lie group is contained in the normalizer of its identity component. In particular
K+⊂ N (1S3)=±1S3

={(g,±g)}. This means that n is at most two. Therefore,
we have the following two possibilities for group diagrams:

(Q6
A) S3

× S3
⊃ T 2,1S3

·Zn ⊃1S1
·Zn, where n = 1 or 2.

From Lemma 1.10, we see that these are both in fact simply connected.

Case 26D (K−0 = T 2 and K+0 = S3
× S1). Then q = 1 and H0 = {(ei pθ , eiθ )}.

It is clear in this case that K−0 ⊂ K+0 . Further, for K+/H to be a 3-sphere,
H ∩ K+0 = H0. Therefore H and K± are all connected. We then have the family
N 6

D of diagrams, which all give simply connected manifolds by Lemma 1.10:

(N 6
D) S3

× S3
⊃ T 2, S3

× S1
⊃ {(ei pθ , eiθ )}.

Case 26E (K−0 = S3
× 1 and K+0 = S3

× 1). Then q = 0 and H0 = {(eiθ , 1)}.
From Corollary 1.9, we know that H and K± must all be connected in this

case. We then have the following group diagram, which gives a simply connected
manifold by Lemma 1.10:

S3
× S3
⊃ S3
× 1, S3

× 1⊃ S1
× 1.

We note that this is a product action.
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Case 26F (K−0 = S3
×1 and K+0 = S1

×S3). Then q= 0, p= 1 and H0={(eiθ , 1)}.
As in the previous case, we get the following simply connected group diagram:

S3
× S3
⊃ S3
× 1, S1

× S3
⊃ S1
× 1.

We see that this is a sum action.

Case 26G (K−0 =1S3 and K+0 =1S3). Then p = q = 1 and H0 =1S1.
As above we have the following group diagram:

(Q6
B) S3

× S3
⊃1S3,1S3

⊃1S1.

Case 26H (K−0 =1S3 and K+0 = S3
× S1). Then p = q = 1 and H0 =1S1.

Again, we have

(Q6
C ) S3

× S3
⊃1S3, S3

× S1
⊃1S1.

Case 26I (K−0 = S3
× S1 and K+0 = S3

× S1). Then q = 1 and H0 = {(ei pθ , eiθ )}.
Here, as above, we have the family N 6

E :

(N 6
E ) S3

× S3
⊃ S3
× S1, S3

× S1
⊃ {(ei pθ , eiθ )}.

Case 26J (K−0 = S3
× S1 and K+0 = S1

× S3). Then p = q = 1 and H0 =1S1.
Our last possibility in this case is the following diagram:

(Q6
D) S3

× S3
⊃ S3
× S1, S1

× S3
⊃1S1.

Case 36 (G= S3
×S3
×S1). Here H0=T 2

×1⊂ S3
×S3
×S1. By Proposition 1.18,

one of K±/H must be a circle, say K−/H ≈ S1. Furthermore, since rank(H) =
rank(S3

× S3), Proposition 1.18 says K− = T 2
× S1, and all of H , K− and K+

are connected. We will now find the possibilities for K+. Notice that if proj3(K
+)

is nontrivial, then by Proposition 1.18, K+ = T 2
× S1, giving one possibility.

Otherwise K+⊂ S3
×S3
×1. In this case, K+, which must contain H , must be one

of S3
×S1
×1, S1

×S3
×1 or S3

×S3
×1. But S3

×S3
×1/S1

×S1
×1≈ S2

×S2, which
is not a sphere. Putting this together, we see our only possible group diagrams, up
to automorphism, are

S3
× S3
× S1
⊃ S1
× S1
× S1, S1

× S1
× S1
⊃ S1
× S1
× 1,

S3
× S3
× S1
⊃ S1
× S1
× S1, S3

× S1
× 1⊃ S1

× S1
× 1.

We see, however, that both of these actions are product actions.

Case 46 (G=SU(3)). Here H0 must be SO(3) or SU(2). Since SO(3) is maximal-
connected in SU(3), we may disregard this case by Proposition 1.22. So assume
H0 = SU(2)= {diag(A, 1)}.

Then a proper closed subgroup K with K/H ≈ Sl must be a conjugate of
U(2), from Section 1.24. Now notice that the only conjugate of U(2) that contains
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SU(2) = {diag(A, 1)} is U(2) = {diag(A, det( Ā))}. So we can assume K±0 =
U(2)= {diag(A, det( Ā))}.

Recall that H must be generated by a subgroup of K±0 = {diag(A, det( Ā))}.
Therefore H = H0 ·Zn ⊂ K±0 and K± are connected. We then get the family N 6

F
of diagrams:

(N 6
F ) SU(3)⊃ {diag(A, det( Ā))}, {diag(A, det( Ā))} ⊃ {diag(A, 1)} ·Zn

Conversely these all give simply connected manifolds by Lemma 1.10.

Case 56 (G = SU(3)× S1). Now H0 = U(2)× 1 = {diag(A, det( Ā))} × 1. Since
rank(U(2))= rank(SU(3)) we may assume K− = U(2)× S1 by Proposition 1.18,
and that H and K+ are connected. Then from Section 1.24, proj1(K

+) is either
U(2) or SU(3). However SU(3)/U(2) is not a sphere so K+ = U(2) × S1 by
Proposition 1.18. Therefore we have the following possibility:

SU(3)× S1
⊃ U(2)× S1,U(2)× S1

⊃ U(2)× 1

which we see is simply connected by Lemma 1.10. However, we see this is a
product action.

Case 66 (G = Sp(2)×S1). Here H0= Sp(1)Sp(1)×1. To find the possibilities for
connected groups K with K/H ≈ Sl , note that if proj2(K )⊂ S1 is nontrivial then
K = Sp(1)Sp(1)× S1, by Proposition 1.18. Otherwise K ⊂ Sp(2)× 1 and hence
from Section 1.24, K = Sp(2)× 1. In either case K/H ≈ Sl , in fact. Further by
Proposition 1.18, we can assume K− = Sp(1)Sp(1)× S1 and all of K± and H are
connected. Therefore we have the two possibilities

Sp(2)× S1
⊃ Sp(1)Sp(1)× S1,Sp(1)Sp(1)× S1

⊃ Sp(1)Sp(1)× 1,

Sp(2)× S1
⊃ Sp(1)Sp(1)× S1,Sp(2)× 1⊃ Sp(1)Sp(1)× 1,

both of which are simply connected by Lemma 1.10. We easily see that the first
action is a product action and the second action is a sum action.

Case 76 (G = Spin(6)). In this case we know from Proposition 1.20 that this gives
a two-fixed-point action on a sphere.

4. Classification in dimension seven

As in the previous section we keep the notation and conventions established in Sec-
tion 2, this time for a 7-dimensional manifold M . In this case, the next proposition
gives us the possibilities for G and H0.

Proposition 4.1. Table V lists all the possibilities for G and H0, up to equivalence.
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Case G H0

17 S3
× S3

{1}
27 S3

× S3
× S1

{(ei pθ , eiqθ )}× 1
37 S3

× S3
× T 2 T 2

× 1
47 SU(3) T 2

57 S3
× S3
× S3 T 3

67 SU(3)× S1 SU(2)× 1, SO(3)× 1
77 SU(3)× T 2 U(2)× 1
87 Sp(2) U(2)max, Sp(1)SO(2)
97 SU(3)× S3 U(2)× S1

107 Sp(2)× T 2 Sp(1)Sp(1)× 1
117 Sp(2)× S3 Sp(1)Sp(1)× S1

127 G2 SU(3)
137 SU(4) U(3)
147 SU(4)× S1 Sp(2)× 1
157 Spin(7) Spin(6)

Table V. Possibilities for G and H0 in the 7-dimensional case.

Proof. We will first show that all the possibilities for G are listed in Table V.
Recall that 6 ≤ dim(G) ≤ 21 by Proposition 1.19 and that dim H = dim G − 6,
since dim G/H = dim M−1= 6 in this case. A priori, from Section 1.24, we need
to check all of the possibilities for G of the form (S3)m×T n , (SU(3))l×(S3)m×T n ,
(Sp(2))k × (S3)m × T n , G2× (S3)m × T n , SU(4)× (S3)m × T n , Sp(2)×SU(3)×
(S3)m×T n , Sp(3) and Spin(7). Note that by Proposition 1.18 we can assume that
n ≤ 2 in all cases.

First suppose G = (S3)m×T n . By Proposition 1.25, 3m+n−6= dim(H)≤m,
which means 0≤ 6−2m−n and so m ≤ 3 and if m = 3 then n = 0. Notice that all
of these possibilities are listed in the table. Next if G = (SU(3))l× (S3)m×T n for
l > 0, then as before 8l+ 3m+ n− 6= dim(H)≤ 4l+m or 0≤ 6− 4l− 2m− n.
Hence l = 1, and m = 1 and n = 0, or m = 0 and n ≤ 2. All of these possibilities
are listed in the table. Next suppose G = (Sp(2))k × (S3)m × T n . Then we get
10k+3m+n−6= dim(H)≤ 6k+m or 0≤ 6−4k−2m−n. As before k = 1, and
m = 1 and n= 0, or m = 0 and n ≤ 2. However, if G = Sp(2)× S1 then dim H = 5
and by Proposition 1.18, H0 ⊂ Sp(2)× 1. Then rank H ≤ rank Sp(2) = 2 and yet
there are no compact 5-dimensional groups of rank 2 or less. So Sp(2)×S1 is not a
possibility for G. Next, if G = Sp(2)×SU(3)×(S3)m×T n then 0≤−2−2m−n,
which is impossible. Now say G=G2×(S3)m×T n . We get 14+3m+n−6≤8+m
or 0 ≤ −2m − n and hence m = n = 0. Lastly, if G = SU(4)× (S3)m × T n then
15 + 3m + n − 6 ≤ 10 + m or 0 ≤ 1 − 2m − n. Therefore m = 0 and n ≤ 1.
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Finally if dim(G)= 21 we know from Proposition 1.20 that G must be isomorphic
to Spin(7) and in this case H will be Spin(6).

Next we check that in the rest of the cases, we have listed all the possibilities
for H0. Again, we can assume that H0 ⊂ G1× 1 in the cases that G = G1× T m .
Then we use Section 1.24 to find the possibilities for H0. The only exceptional
cases are 97 and 117, where G = G1 × S3. By Proposition 1.25, H0 ⊂ L × S1,
where L is of dimension 4 or less in Case 97 and dimension 6 or less in Case 117.
However, since dim H = dim G − 6, we see that H0 = L × S1 where L is of
maximal dimension in each case. From Section 1.24, we see that H0 must be one
of the groups listed below. �

As in the previous sections we find all possible diagrams case by case.

Cases 27 and 67. Both cases involve the same difficulty that arises in the case of
G = S3

× S1 in dimension 5.

Lemma 4.2. Let M be a simply connected cohomogeneity one manifold given by
the group diagram G ⊃ K−, K+ ⊃ H , with G = G1× S1 for G1 simply connected
and H0 = H1 × 1. Suppose further that there is a compact subgroup L ⊂ G1 of
the form L = H1 · {β(θ)}, where {β(θ)} is a circle group of G parameterized once
around by β : [0, 1]→G1 and {β(θ)}∩H1=1. Define δ : [0, 1]→G, t 7→ (1, e2π i t)

to be a loop once around 1× S1. If K±0 ⊂ L × S1, then the group diagram for M
has one of the following forms, all of which give simply connected manifolds:

G1× S1
⊃ H+ · {(β(m−θ), δ(n−θ))}, H− · {(β(m+θ), δ(n+θ))} ⊃ H,

where H = H− · H+, K− 6= K+, gcd(n−, n+, d)= 1

and d is the index of H ∩ K−0 ∩ K+0 in K−0 ∩ K+0 ,

G1× S1
⊃ {(β(mθ), δ(θ))} · H0, {(β(mθ), δ(θ))} · H0 ⊃ H0 ·Zn,

where Zn ⊂ {(β(mθ), δ(θ))}.

Proof. It is clear, as in Proposition 1.18, that K±/H must be circles and hence
K±0 = H0 · {(β(m±θ), δ(n±θ))}. From Lemma 1.10, H must have the form H =
H− · H+ for H± = K±0 ∩ H = H0 · Zk± , with Zk± ⊂ {(β(m±θ), δ(n±θ))}. Then
with the notation of Lemma 1.10, we see that the α± can be taken as α±(t) =
(β(m±t/k±), δ(n±t/k±)). Then Lemma 1.10 says that M is simply connected if
and only if the α± generate π1(G/H0). Since {β(θ)} ∩ H1 = 1 we see that {β(θ)}
injects onto a circle in G/H0 that is contractible since G1 is simply connected. We
also see that δ generates π1(G/H0) since H0 ⊂ G1× 1.

This brings us precisely to the situation we encountered in Case 15B2. The
argument there shows that if K−0 = K+0 we get the second diagram from the lemma,
and if K−0 6= K+0 , then M is simply connected if and only if gcd(n−, n+, d) = 1,
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where d is the index of H/H0 ∩ K−0 /H0 ∩ K+0 /H0 in K−0 /H0 ∩ K+0 /H0. We can
also write d as the index of H ∩ K−0 ∩ K+0 in K−0 ∩ K+0 . �

We now address Cases 27 and 67 individually, using the lemma when needed.

Case 27 (G = S3
× S3
× S1). Here H0 = {(ei pθ , eiqθ , 1)}. After an automorphism

of G we can assume that p ≥ q ≥ 0 and in particular p 6= 0. We know from
Proposition 1.18 that K−0 , say, is a two torus. After conjugation we can assume that
K−0 ={(e

ia−θ , eib−θ , eic−θ )}·{(ei pθ , eiqθ , 1)} even if q = 0. From Proposition 1.18,
if proj3(K

+

0 ) is nontrivial then K+0 is also a torus. Otherwise K+0 ⊂ S3
× S3
× 1.

Therefore from Section 1.24, we see that K+0 must be one of the following groups:
T 2, S3

×1×1 if q = 0, 1S3
×1 if p= q = 1, or S3

× S1
×1 if q = 1 and allowing

arbitrary p. We will now break this up into cases depending on what K+0 is.

Case 27A (dim K+> 2). Then by Corollary 1.9, K− is connected and M is simply
connected if and only if G/K− is. So we can assume K− = {(eiaθ , eibθ , eiθ )} ·

{(ei pθ , eiqθ , 1)}, that is, c = 1. We also know that H is a subgroup of K− of the
form {(ei pθ , eiqθ , 1)} ·Zn for Zn ⊂ {(eiaθ , eibθ , eiθ )} such that Zn ∩K+0 = 1, which
is automatic, and Zn ⊂ N (K+0 ).

Case 27A1 (K+0 = S3
× 1 × 1 and q = 0). Then H0 = S1

× 1 × 1 and K− =
{(1, eibθ , eiθ )} · {(eiθ , 1, 1)}. Then we see that the Zn in H can be arbitrary and we
get the family:

(Q7
C ) S3

× S3
× S1
⊃ {(eiφ, eibθ , eiθ )}, S3

× 1× 1 ·Zn ⊃ S1
× 1× 1 ·Zn,

where Zn ⊂ {(1, eibθ , eiθ )}.

Case 27A2 (K+0 =1S3
×1 and p = q = 1). Here H0 = {(eiθ , eiθ , 1)} and we can

take K−= {(1, eibθ , eiθ )}·{(eiθ , eiθ , 1)} for a new b. Then for Zn ⊂ {(1, eibθ , eiθ )}

to satisfy Zn ⊂ N (K+0 ) simply means that n |2b. Then the further condition that
H ∩ 1× 1× S1

= 1 for the action to be effective means that n is 1 or 2. Therefore
we have these diagrams in this case:

(Q7
D) S3

× S3
× S1
⊃ {(eiφ, eiφeibθ , eiθ )},1S3

× 1 ·Zn ⊃1S1
× 1 ·Zn,

with Zn ⊂ {(1, eibθ , eiθ )}, where n is 1 or 2.

This family will be described in more detail in Section 5.2.

Case 27A3 (K+0 = S3
× S1
× 1, q = 1 and p arbitrary). Here H0 = {(ei pθ , eiθ , 1)}

and we can take K− = {(eiaθ , 1, eiθ )} · {(ei pθ , eiθ , 1)} for a new a. Then the
Zn⊂{(eiaθ , 1, eiθ )} in H automatically satisfies the condition Zn⊂ N (K+0 ). Hence
we have the diagrams

(N 7
F ) S3

× S3
× S1
⊃ {(ei pφeiaθ , eiφ, eiθ )}, S3

× S1
×Zn ⊃ {(ei pφ, eiφ, 1)} ·Zn

Zn ⊂ {(eiaθ , 1, eiθ )}.
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Case 27B (dim K+ = 2 so K+0 ≈ T 2). Here H0 = {(ei pθ , eiqθ , 1)}, again where
we assume p ≥ q ≥ 0 and K−0 = {(e

ia−θ , eib−θ , eic−θ )} · {(ei pθ , eiqθ , 1)}. We now
break this into two cases depending on whether or not q is zero.

Case 27B1 (q = 0). Here H0= S1
×1×1 and so we know that K±0 = S1

×K±0 for
some groups K±0 ⊂ S3

× S1. Then from Lemma 1.10, H has the form S1
× H for

a subgroup H generated by H ∩ K−0 and H ∩ K+0 . Similarly, by Lemma 1.10, the
manifold M will be simply connected if and only if the 5-manifold M given by the
group diagram S3

× S1
⊃ K−, K+ ⊃ H is simply connected. So these actions are

product actions with some simply connected 5-dimensional cohomogeneity one
manifold.

Case 27B2 (p, q 6= 0). We can take K±0 = {(e
ia±θ , eib±θ , eic±θ )} · {(ei pθ , eiqθ , 1)}

although there is a more convenient way to write these groups in our case. Note
that for pµ − qλ = 1, we can write any element of the torus T 2 uniquely as
(ei pθ , eiqθ )(eiλφ, eiµφ)= (z p, zq)(wλ, wµ). Then we can write

K±0 = {(z
p, zq , 1)(wm±λ, wm±µ, wn±)}

for some m±, n± ∈ Z with gcd(m±, n±)= 1. Then letting β(t)= (e2π iλt , e2π iµt),
we see this satisfies the conditions of Lemma 4.2. By that lemma, we have precisely
these two families of diagrams:

S3
× S3
× S1
⊃ {(z pwλm−, zqwµm−, wn−)}H, {(z pwλm+, zqwµm+, wn+)}H ⊃ H,

where H = H− · H+, H0 = {(z p, zq , 1)}, K− 6= K+, pµ− qλ= 1,

gcd(n−, n+, d)= 1, where d is the index of H ∩ K−0 ∩ K+0 in K−0 ∩ K+0 ,

S3
× S3
× S1
⊃ {(z pwλm, zqwµm, w)}, {(z pwλm, zqwµm, w)} ⊃ H0 ·Zn,

where H0 = {(z p, zq , 1)}, pµ− qλ= 1 and Zn ⊂ {(w
λm, wµm, w)}.

These two families are N 7
E and N 7

D , respectively.

Case 67 (G=SU(3)×S1). Here H0 is either SU(2)×1 or SO(3)×1. First, if H0=

SO(3)×1 then H1=SO(3) is maximal in SU(3) and so by Proposition 1.18, H , K−

and K+ are all connected, K−, say, is SO(3)× S1 and K+ is either SO(3)× S1 or
SU(3)×1. Since SU(3)/SO(3) is not a sphere we have only one possible diagram,

SU(3)× S1
⊃ SO(3)× S1,SO(3)× S1

⊃ SO(3)× 1,

which comes from a product action.
For the other case assume H0 = SU(2)× 1 where SU(2) = SU(1)SU(2) is the

lower right block. From Section 1.24, proj1(K
±

0 ) is either SU(2), U(2) or SU(3).
As in Proposition 1.18, if proj2(K

±

0 ) is nontrivial then K±0 = H0 · S1 and hence
has the form {(β(m±θ), ein±θ )} · H0 where β(θ) = diag(e−iθ , eiθ , 1) ∈ SU(3). In
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fact K−0 must have this form, so assume K−0 = {(β(m−θ), ein−θ )} · H0. The other
possibility for K+0 is SU(3)× 1, which does give K+0 /H0 ≈ S5.

First suppose K+0 = SU(3)×1. Then from Corollary 1.9, K− is connected and
π1(M)≈ π1(G/K−). It then follows that n− = 1, so K− = {(β(mθ), eiθ )} · H0 in
this case. From Lemma 1.10, H = H0 ·Zn for Zn ⊂ {(β(mθ), eiθ )}. The condition
that H ∩ SU(3)× 1 = H0 means that gcd(m, n) = 1. Therefore we get the family
Q7

G of diagrams

(Q7
G) SU(3)× S1

⊃ {(β(mθ), eiθ )} · H0,SU(3)×Zn ⊃ H0 ·Zn,

H0 = SU(1)SU(2)× 1, Zn ⊂ {(β(mθ), eiθ )},

β(θ)= diag(e−iθ , eiθ , 1), gcd(m, n)= 1.

Next assume K±0 = {(β(m±θ), ein±θ )} · H0. Notice that {β(θ)} ∩ H0 = 1 and
hence this situation satisfies the hypotheses of Lemma 4.2, for L = U(2). Then,
by that lemma, we have precisely the family

(N 7
H ) SU(3)× S1

⊃ {(β(m−θ), ein−θ )} · H, {(β(m+θ), ein+θ )} · H ⊃ H

H0 = SU(1)SU(2)× 1, H = H− · H+, K− 6= K+,

β(θ)= diag(e−iθ , eiθ , 1), gcd(n−, n+, d)= 1,

where d is the index of H ∩ K−0 ∩ K+0 in K−0 ∩ K+0 ,

and the family

(Q7
F ) SU(3)× S1

⊃ {(β(mθ), eiθ )} · H0, {(β(mθ), eiθ )} · H0 ⊃ H0 ·Zn

H0 = SU(1)SU(2)× 1, Zn ⊂ {(β(mθ), eiθ )},

β(θ)= diag(e−iθ , eiθ , 1).

Now we address the remaining cases from Table V.

Cases 37, 77, 107 and 147. In the first three cases, we have G = Gss × T 2, where
Gss is semisimple and rank(H) = rank(Gss). Therefore by Proposition 1.18, the
resulting actions must all be product actions.

In Case 147 we see from Section 1.24 that H1 = Sp(2) is maximal among con-
nected subgroups in SU(4). Therefore, Proposition 1.18 says K−, K+ and H are
connected. Further, we can assume K−= H1×S1 and that K+ is either H1×S1 or
has the form K1× 1 for K1/H1 ≈ Sl . If K+ = K1× 1 then from Section 1.24, K1

would have to be SU(4) and in this case we do have SU(4)/Sp(2)≈ S5. Therefore
we have the possibilities

SU(4)× S1
⊃ Sp(2)× S1,Sp(2)× S1

⊃ Sp(2)× 1,

and
SU(4)× S1

⊃ Sp(2)× S1,SU(4)× 1⊃ Sp(2)× 1,
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both of which give simply connected manifolds. The first is a product action and
the second is a sum action.

Cases 97 and 117. In both cases G = G1 × S3 and H0 = H1 × S1, where H1 is
maximal among connected subgroups of G1. Then proj1(K

±

0 ) are either H1 or G1

and proj2(K
±

0 ) are either S1 or S3. It is also clear that if proj2(K
±

0 )= S3 then K±0 ⊃
1× S3 and so if proj1(K

±

0 )= G1 then K±0 ⊃ G1×1 as well. Therefore the proper
subgroups K±0 must each be either G1×S1 or H1×S3. Note that H1×S3/H1×S1

is always a sphere. In Case 97, G1 × S1/H1 × S1
≈ SU(3)/U(2) ≈ CP2 so this

is not a possibility for K± but in Case 117, G1× S1/H1× S1 is a sphere. Notice
that in all cases l± > 1 so H , K− and K+ must all be connected by Corollary 1.9.
Therefore we have these possible diagrams:

SU(3)× S3
⊃ U(2)× S3,U(2)× S3

⊃ U(2)× S1,

Sp(2)× S3
⊃ Sp(1)Sp(1)× S3,Sp(1)Sp(1)× S3

⊃ Sp(1)Sp(1)× S1,

Sp(2)× S3
⊃ Sp(1)Sp(1)× S3,Sp(2)× S1

⊃ Sp(1)Sp(1)× S1,

Sp(2)× S3
⊃ Sp(2)× S1,Sp(2)× S1

⊃ Sp(1)Sp(1)× S1,

all of which are simply connected by Lemma 1.10. The third is a sum action and
the remaining three actions are product actions.

Cases 127, 137 and 157. In each of these cases, H0 is maximal in G among con-
nected subgroups. Therefore, Proposition 1.22 gives a full description of these
types of actions. Proposition 1.20 also deals with Case 157 separately.

Case 17 (G = S3
× S3). Here H is discrete. From this it follows that for K±/H to

be spheres, K±0 must themselves be covers of spheres. From Section 1.24 we see
that K±0 must be one of {(ex± p±θ , ey±q±θ )} for x±, y± ∈ Im(H), S3

× 1, 1× S3 or
1g0 S3

= {(g, g0gg−1
0 )} for g0 ∈ S3. We break this into cases of K±.

Case 17A (K−0 ≈ S3 and K+0 ≈ S3). In this case we know from Corollary 1.9
that H , K− and K+ must all be connected. Hence N (H)0 = S3

× S3 and we can
conjugate K− and K+ by anything in S3

× S3 without changing the manifold, by
Proposition 1.2. In particular if K±=1g0 S3 then we can assume g0=1. Therefore
we get the following possible groups diagrams up to automorphism of G, all of
which are clearly simply connected by Lemma 1.10:

S3
× S3
⊃ S3
× 1, S3

× 1⊃ 1,

S3
× S3
⊃ S3
× 1, 1× S3

⊃ 1,

S3
× S3
⊃ S3
× 1,1S3

⊃ 1,(Q7
A)

S3
× S3
⊃1S3,1S3

⊃ 1(Q7
B)

The first of these actions is a product action and the second is a sum action.
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Case 17B (K−0 ≈ S1 and K+0 ≈ S3). From Lemma 1.10, we know that K− is
connected and H = Zn ⊂ K− such that H ∩ K+0 = 1. After conjugation of G we
can assume that K−={(ei pθ , eiqθ )}. If K+0 = S3

×1 then the condition H∩K+0 =1
means that n and q are relatively prime. Therefore we have this family of diagrams:

(N 7
C ) S3

× S3
⊃ {(ei pθ , eiqθ )}, S3

×Zn ⊃ Zn, where (q, n)= 1

which all give simply connected manifolds by Lemma 1.10.
Next suppose that K+0 = 1g0 S3 for some g0 ∈ S3. Notice that N (K+0 ) =
{(±g, g0gg−1

0 )} and since L ⊂ N (L0) for every subgroup L , it follows that K+

can have at most two components and hence H can have at most two elements.
In particular this means that H is normal in G and hence by Proposition 1.2, we
can conjugate K+ by (1, g−1

0 ) without changing the resulting manifold. Lastly, if
n = 2 the condition that H ∩ K+0 = 1 means that p and q are not both odd and
not both even since (p, q) = 1. Without loss of generality we can assume that p
is even and p is odd. Therefore we have the following family of diagrams, all of
which are simply connected by Lemma 1.10:

(P7
D) S3

× S3
⊃ {(ei pθ , eiqθ )},1S3

·Zn ⊃ Zn

where (p, q)= 1; and n is 1 and p and q arbitrary, or n is 2 and p even.

Case 17C (K−0 ≈ S1 and K+0 ≈ S1). Here we have K±0 = {(e
x± p±θ , ey±q±θ )}. To

address this case we will break it up into further cases depending on how big the
group generated by K−0 and K−0 is.

Case 17C1 (K−0 and K+0 are both contained in some torus). After conjugation we
can assume that K±0 = {(e

i p±θ , eiq±θ )}. By Lemma 1.10, H = H− · H+, where
H± = Zn± ⊂ K±0 , and conversely by Lemma 1.10, such groups will always give
simply connected manifolds. Therefore we have these possibilities: .

(N 7
A) S3

× S3
⊃ {(ei p−θ , eiq−θ )} · H+, {(ei p+θ , eiq+θ )} · H− ⊃ H− · H+,

where H± = Zn± ⊂ K±0 .

Case 17C2 (K−0 and K+0 are both contained in S3
× 1). Here it follows from

Lemma 1.10 that H , K− and K+ are all contained in S3
× 1. It also follows from

Lemma 1.10 that M7, given by the diagram G⊃ K−, K+⊃ H , will be simply con-
nected if and only if the manifold N 4 given by the diagram S3

×1⊃ K−, K+⊃ H
is simply connected. Therefore this gives a product action.

Case 17C3 (K−0 and K+0 are both contained in S3
× S1 but not in T 2 or S3

×1). It
follows from Lemma 1.10 that H , K− and K+ must all be contained in S3

× S1 in
this case. Notice further that if both p−q− = 0 and p+q+ = 0, then we would be
back in one of the previous cases. So after conjugation of G and switching of −
and +, we can assume that K−0 = {(e

i p−θ , eiq−θ )}, where p−q− 6= 0. For K+0 we
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can assume that y+= i and denote x+= x . It also follows that p+ 6= 0 and x 6= ±i
since otherwise we would be in a previous case again.

Notice that N (K−0 )= {(e
iθ , eiφ)}∪ {( jeiθ , jeiφ)} and K− ⊂ S3

× S1 and hence
K−⊂ {(eiθ , eiφ)}. Similarly if q+ 6= 0 then N (K+0 )= {(e

xθ , eiφ)}∪{(wexθ , jeiφ)}

for w ∈ x⊥ ∩ Im S3. Therefore K+ ⊂ {(exθ , eiφ)} in this case as well. However
H would then be a subset of the intersection of these two sets, H ⊂ {(±1, eiφ)},
and N (H)0 would contain S3

× 1. We would then be able to conjugate K+ into
the set {(eiθ , eiφ)} without changing the resulting manifold, by Proposition 1.2.
This would put us back into Case 17C1, so we can assume that q+ = 0 and
K+0 = {(e

xθ , 1)}.
Therefore N (K+0 )= ({e

xθ
}∪{wexθ

})×S3. Again we see for N (K−0 )∩N (K+0 )*
{(±1, eiφ)} we need x⊥i . So after conjugation we can assume K+0 = {(e

jθ , 1)}.
Then H ⊂ {±1,±i} × S1. By Lemma 1.10, H = H− · H+ for H± = Zn± ⊂ K±0 .
We see then that n+ is 1 or 2 and the conditions that H ⊂ {±1,±i} × S1 but
H * {±1}× S1 mean that 4|n− and p− ≡±n−/4 mod n−. Conversely we see we
get the following possible diagrams:

(N 7
B) S3

× S3
⊃ {(ei pθ , eiqθ )} · H+, {(e jθ , 1)} · H− ⊃ H− · H+,

where H± = Zn± ⊂ K±0 , n+ ≤ 2, 4|n− and p ≡± 1
4 n− mod n−,

all of which give simply connected manifolds by Lemma 1.10.

Case 17C4 (K−0 and K+0 are not both contained in S3
× S1 or S1

× S3). As in
the previous case, we can assume here that both p−q− 6= 0 and p+q+ 6= 0 and
after conjugation K−0 = {(e

i p−θ , eiq−θ )} and K+0 = {(e
xp+θ , eyq+θ )}. Then if u ∈

x⊥∩Im S3 and w ∈ y⊥∩Im S3 then we have N (K−0 )={(e
iθ , eiφ)}∪{( jeiθ , jeiφ)},

N (K+0 )= {(e
xθ , eyφ)} ∪ {(uexθ , veyφ)} and H ⊂ N (K−0 )∩ N (K+0 ).

We now claim that we can assume x and i are perpendicular. Suppose they
are not. Then if we denote the two elements in i⊥∩ x⊥∩ Im S3 by ±w, we would
have H ⊂{±1,±w}×S3. Notice that conjugation by (ewα, 1) fixes {±1,±w}×S3

pointwise and hence (ewα, 1)∈ N (H)0 for all α ∈R. Therefore, by Proposition 1.2
we can conjugate K+ by (ewα, 1) without changing the resulting manifold. Since
w⊥{x, i}, conjugation by (ewα, 1) fixes the 1w-space and rotates the i x-space
by 2α. So for the right choice of α we can rotate x into i . Therefore we could
assume that K+0 = {(e

i p+θ , eyq+θ )}, bringing us back to an earlier case. Hence we
can assume that x⊥i and similarly y⊥i . Then after conjugation of G we can take
K+0 = {(e

j p+θ , e jq+θ )}, without affecting K−.
Then the condition H ⊂ N (K+0 )∩ N (K−0 ) becomes

H ⊂ {±1}× {±1} ∪ {±i}× {±i} ∪ {± j}× {± j} ∪ {±k}× {±k} =1Q ∪1−Q
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where

Q = {±1,±i,± j,±k} and 1−Q = {±(1,−1),±(i,−i),±( j,− j),±(k,−k)}.

In particular, if (h1, h2) ∈ H then h1 =±h2.
We also know from Lemma 1.10 that H is generated by H ∩ K−0 =: H− and

H ∩ K+0 =: H+, where H± are both cyclic subgroups of the circles K±0 . Let
h± = (h±1 , h±2 ) be generators of H±, so that h− and h+ generate H . If both h±
were to have order 1 or 2, then H would be contained in {±1} × {±1} and we
would be back in a previous case, as before. So assume that h− has order 4. After
conjugation of G we can assume that h− = (i, i). The condition that h− ∈ K−0
means that p−, q− ≡ ±1 mod 4; however, after switching the sign of both p−
and q−, we can assume that p−, q− ≡ 1 mod 4.

We will now break our study into further cases depending on the order of h+,
which is either 1, 2 or 4.

Case 17C4a (h+ ∈ 〈(i, i)〉). Then H = 〈(i, i)〉. Hence we get the family

(P7
A) S3

× S3
⊃ {(ei p−θ , eiq−θ )}, {(e j p+θ , e jq+θ )} · H ⊃ 〈(i, i),

where p−, q− ≡ 1 mod 4.

Case 17C4b (#(h+) = 2 but h+ /∈ 〈(i, i)〉). It follows that h+ must be (1,−1) or
(−1, 1); after switching the factors of G = S3

× S3 we can assume the former. The
condition that h+ ∈ K+0 means that p+ is even. Therefore we have the following
family of possibilities:

(P7
B) S3

× S3
⊃ {(ei p−θ , eiq−θ )} · H, {(e j p+θ , e jq+θ )} · H ⊃ 〈(i, i), (1,−1)〉,

where p−, q− ≡ 1 mod 4 and p+ is even.

Case 17C4c (#(h+) = 4). In this last case, h+ must be one of ( j, j), ( j,− j),
(− j, j) or (− j,− j); after conjugation of G by (±i,±i) we can assume the first.
As before, the condition that h+ ∈ K+0 means that p+, q+ ≡ ±1 mod 4 but we
can assume that p+, q+ ≡ 1 mod 4, after a change of signs on p+ and q+. Then
H =1Q and we have the possibilities

(P7
C ) S3

× S3
⊃ {(ei p−θ , eiq−θ )} · H, {(e j p+θ , e jq+θ )} · H ⊃1Q,

where p±, q± ≡ 1 mod 4.

By Lemma 1.10, all of the diagrams above do give simply connected manifolds.

Case 47 (G = SU(3)). In this case, H0 = T 2. From Section 1.24, the proper sub-
groups K±0 must both be U(2) up to conjugacy. It then follows from Corollary 1.9
that H , K− and K+ are all connected. Now fix H = diag(SU(3)) ≈ T 2. If K±

contains this T 2, then it must be a conjugate of U(2) by an element of the Weyl
group W = N (T 2)/T 2. We see that there are precisely three such conjugates of
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U(2) and they are permuted by the elements of W . Therefore, there are two pos-
sibilities for the pair K−, K+ up to conjugacy of G: S(U(1)U(2)),S(U(1)U(2))
or S(U(1)U(2)),S(U(2)U(1)). This gives us precisely these two simply connected
diagrams:

(N 7
G) SU(3)⊃ S(U(1)U(2)),S(U(1)U(2))⊃ T 2,

and

(Q7
E ) SU(3)⊃ S(U(1)U(2)),S(U(2)U(1))⊃ T 2.

Case 57 (G= S3
×S3
×S3). It is clear that if proj1(K

±

0 ) 6= S1, then K±0 ⊃ S3
×1×1

and similarly for the other factors. Hence each K±0 will be a product of S3 factors
and S1 factors. Further, it is clear that for K±0 /H to be a sphere we need K±0 to
be one of S3

× S1
× S1, S1

× S3
× S1 or S1

× S1
× S3. Then by Corollary 1.9, all

of H , K− and K+ must be connected. Putting this together, we see we have the
following possible simply connected diagrams, up to G-automorphism:

S3
× S3
× S3
⊃ S3
× S1
× S1, S3

× S1
× S1
⊃ S1
× S1
× S1,

S3
× S3
× S3
⊃ S3
× S1
× S1, S1

× S3
× S1
⊃ S1
× S1
× S1.

It is clear that both of these are product actions.

Case 87 (G = Sp(2)). Here H0 is either U(2)max = {diag(zg, z̄g)} or Sp(1)SO(2).
Since U(2)max is maximal among connected subgroups, and Sp(2)/U(2)max is not
a sphere, we see this is not a possibility for H0. So assume H0 = Sp(1)SO(2).
Then from Section 1.24, we see the proper subgroups K±0 must be conjugates of
Sp(1)Sp(1). Since the only conjugate of Sp(1)Sp(1) that contains Sp(1)SO(2) is
the usual Sp(1)Sp(1), we see K±0 = Sp(1)Sp(1). Then by Corollary 1.9, H , K−

and K+ must all be connected. Therefore we get the one possible diagram:

(N 7
I ) Sp(2)⊃ Sp(1)Sp(1),Sp(1)Sp(1)⊃ Sp(1)SO(2).

5. Identifying some actions

Here we will identify many of the actions arising from the classification. We will
review what is known about the remaining unidentified actions.

5.1. Isometric actions on symmetric spaces. In this section we will list all isomet-
ric cohomogeneity one actions on compact simply connected symmetric spaces of
dimension seven or less. Hsiang and Lawson [1971] classified cohomogeneity
one actions on symmetric spheres in (see [Straume 1996] for correction) and later
Uchida [1977] did the same for complex projective spaces. Kollross [2002] gener-
alized these results to a classification of cohomogeneity one actions on irreducible
symmetric spaces of compact type.
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The only maximal isometric cohomogeneity one actions on compact simply
connected irreducible symmetric spaces of dimension 7 or less are the following,
up to equivalence: the sum actions of SO(k1)× SO(k2) on Sk1+k2−1

⊂ Rk1 ×Rk2

for ki ≥ 1; the tensor actions of SO(k)×SO(2) on S2k−1
⊂Rk×2 via (A, B)?M =

AM B−1 for k= 3, 4; the irreducible linear action of SO(3) on S4, the SU(3) action
on S7

⊂ su(3) via Ad, and the SO(4) action on S7 via the isotropy representation
of G2/SO(4); the linear actions on complex projective spaces of U(n) or SO(n+1)
on CPn

= SU(n + 1)/U(n), or S(U(2)×U(2)) on CP3
= SU(4)/U(3); and the

two remaining symmetric space actions of U(2) on SU(3)/SO(3) and SO(4) on
SO(5)/SO(2)SO(3). Here, a maximal cohomogeneity one action is one that cannot
be extended to a cohomogeneity one action by a larger connected group.

Several actions do not appear in this list since they are equivalent to actions that
do appear. For example, the complex tensor action of SU(2)×U(2) on S7

⊂C2×2

via (A, B)?M = AM B−1 is equivalent to the real tensor action of SO(4)×SO(2)
on S7

⊂ R4×2.
For each action of G on M , it is not difficult to see which subgroups of G act

on M with the same orbits. Many of these actions are simply sum actions or fixed-
point actions as described in Section 1.21. Since we have already examined these
special cases we will not address them again here. In Table VI we list the remaining
nonreducible cohomogeneity one actions on irreducible symmetric spaces.

For a complete list of cohomogeneity one actions on compact simply connected
symmetric spaces we must only find such actions on product symmetric spaces. By
looking at each such product individually, considering its full isometry group, then
determining which subgroups of the isometry group can act by cohomogeneity one
on the product, we can get a list of all possible actions. Many of these actions will
be simple product actions, and since we have already addressed those in general
in Section 1.21, we will not consider them again here. The remaining actions that
are also nonreducible are listed in Tables VII and VIII.

In Tables VI, VII and VIII, we also list the families these actions belong to.
These families are easily determined by computing the group diagrams for each
action. The group diagram for the last entry in Table VI is described [Grove et al.
2008, Section 4]. In one case, the action is equivalent to a product action, even
though the action itself is not a product action; here the word “product” is printed
in the left-hand column.

5.2. Brieskorn varieties. The group S1
×SO(n) has a well-known cohomogeneity

one action on the Brieskorn variety

B2n−1
d = {z ∈ Cn+1

| zd
0 + z2

1+ z2
2+ · · ·+ z2

n = 0,
∑n

i=0|zi |
2
= 1},

given by (w, A) ? (z0, z1, z2, . . . , zn)= (w
2z0, w

d A(z1, z2, . . . , zn)
t).
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Q5
B (part) SO(3)×SO(2) on S5

⊂ R3×2 via (A, B) ?M = AM B−1

P5 (part) U(2) on SU(3)/SO(3)

Q5
C (all) S3

× S1 on S5
⊂ H×C via (g, z) ? (p, w)= (gpz̄n, zmw)

Q6
A (all)

SO(4) on CP3
= SU(4)/U(3)

SO(4) on SO(5)/SO(2)SO(3)

Q6
C (all) S3

× S3 on S6
⊂ H× Im(H) via (g1, g2) ? (p, q)= (g1 pg−1

2 , g2qg−1
2 )

Q6
D (all) SU(2)×SU(2) on CP3

= SU(4)/U(3)

Q7
A (all) S3

× S3 on S7
⊂ H×H via (g1, g2) ? (p, q)= (g1 pg−1

2 , g2q)

Q7
D (part) SO(4)×SO(2) on S7

⊂ R4×2 via (A, B) ?M = AM B−1

Q7
E (all) SU(3) on S7

⊂ su(3) via Ad

Q7
G (all) SU(3)× S1 on S7

⊂ C3
×C via (A, z) ? (x, w)= (zn Ax, zmw)

P7
C (part) SO(4) on S7 via the isotropy representation of G2/SO(4)

Table VI. Nonreducible isometric cohomogeneity one actions on
compact simply connected irreducible symmetric spaces in dimen-
sions 5, 6 and 7 that are not sum actions or fixed-point actions.
Also indicated is whether the family of actions listed in the right
column makes up all or part of the family listed in the left.

These actions were extensively studied in [Grove et al. 2006]. In particular they
describe the group diagrams for the actions. In dimension 5 the group diagrams
are

S3
× S1
⊃ {(eiθ , 1)} · H , {(e jdθ , e2iθ )} ⊃ 〈( j,−1)〉 for d odd,

S3
× S1
⊃ {(eiθ , 1)}, {(e jdθ , eiθ )} ⊃ 1 for d even,

where we have taken a more effective version of the diagram in the second case.
The first diagram is precisely the diagram of Q5

B for d = p and hence Q5
B ≈ B5

d for
d odd. Since H is trivial in the second diagram, Proposition 1.2 says this diagram
is equivalent to one of type N 5 for certain parameters.

In dimension 7, after lifting the action to S3
× S3
× S1, the group diagrams are

given by

S3
× S3
× S1
⊃ {(eiφ, eiφeidθ , eiθ )},±1S3

×±1⊃±1S1
×±1 if d is odd,

where the ±1S3
= {(g,±g)} and where the ± signs are correlated, and

S3
× S3
× S1
⊃ {(eiφ, eiφeidθ , e2iθ )},1S3

× 1⊃1S1
× 1 if d is even.
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Q5
A S3

× S1 on S2
× S3
⊂ Im(H)×H

(part) via (g, z) ? (p, q)= (gpg−1, gqz−1)

Q5
A S3

× S1 on S2
× S3
⊂ Im(H)×H

(all) via (g, z) ? (p, q)= (zn pz̄n, gqz̄m)

N 6
A S3

× T 2 on S3
× S3
⊂ H×H

(all [Hoelscher 2010a]) via (g, z, w) ? (p, q)= (zawb pz̄cw̄d , gqz̄nw̄m)

N 6
A S3

× T 2 on S3
× S3
⊂ H×H

(part) via (g, z, w) ? (p, q)= (gpz̄, gqw̄)

Q6
B S3

× S3 on S3
× S3
⊂ H×H

(all) via (g1, g2) ? (p, q)= (g1 pg−1
1 , g1qg−1

2 )

Q6
B (all) SO(4) on S3

× S3 via A ? (x, y)= (Ax, Ay)

N 6
E S3

× S3 on S2
× S4
⊂ Im(H)× (H×R)

(part) via (g1, g2) ? (p, q, t)= (g1 pg−1
1 , g1qg−1

2 , t)

product S3
× S3 on S3

× S4
⊂ H× (H×R)

via (g1, g2) ? (p, q, t)= (g1 p, g1qg−1
2 , t)

N 7
A S3

× S3 on S2
× S2
× S3
⊂ Im(H)× Im(H)×H

(part) via (g1, g2) ? (p1, p2, q)= (g1 p1g−1
1 , g1 p2g−1

1 , g1qg−1
2 )

N 7
A S3

× S3 on S2
× S2
× S3
⊂ Im(H)× Im(H)×H

(part) via (g1, g2) ? (p1, p2, q)= (g1 p1g−1
1 , g2 p2g−1

2 , g1qg−1
2 )

Table VII. Nonreducible isometric cohomogeneity one actions
on compact simply connected products of irreducible symmetric
spaces in dimensions 5, 6 and 7; these are not product actions.
Also indicated is whether the family of actions listed in the right-
hand column makes up all or part of the family listed in the left.
(First of two tables.)

This first diagram is exactly diagram Q7
D in the case that n = 2 for d = b, since

if n = 2, then b must be odd for the diagram to be effective. The second diagram
above, is exactly Q7

D in the case n = 1 since if d is even we can take d = 2b for
b in diagram Q7

D . So the family Q7
D exactly corresponds to these actions on the

Brieskorn varieties.

5.3. Important actions in more detail. We will now look at each of the actions in
Tables I and II and summarize various facts that we have collected about them.

Primitive actions of Table I.
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P7
A S3

× S3 on S3
×CP2 via (g1, g2) ? (p, x)= (g1 pg−1

2 , g2 ?1 x)
(part) where ?1 is the action of SO(3) on CP2

P7
C S3

× S3 on S3
× S4
⊂ H×R5 via (g1, g2) ? (p, y)= (g1 pg−1

2 , g2 ?1 y)
(part) where ?1 is the irreducible linear action of SO(3) on S4

P7
D S3

× S3 on S3
×CP2 via (g1, g2) ? (p, x)= (g1 pg−1

2 , g2 ?1 x)
(part) where ?1 is the action of SU(2) on CP2

Q7
B S3

× S3 on S3
× S4
⊂ H× (H×R)

(all) via (g1, g2) ? (p, q, t)= (g1 pg−1
2 , g2q, t)

Q7
C S3

× S3
× S1 on S3

× S4
⊂ H× (Im(H)×C)

(all) via (g1, g2, z) ? (p, q, w)= (g1 pz̄n, g2qg−1
2 , zmw)

Q7
D S3

× S3
× S1 on S3

× S4
⊂ H× (Im(H)×C)

(part) via (g1, g2, z) ? (p, q, w)= (g1 pg−1
2 , g2qg−1

2 , zw)

N 7
F S3

× S3
× S1 on S2

× S5
⊂ Im(H)× (H×C)

(part) via (g1, g2, z) ? (p, q, w)= (g1 pg−1
1 , g1qg−1

2 , zw)

Q7
F SU(3)× S1 on S2

× S5
⊂ Im(H)×C3

(all) via (A, z) ? (p, x)= (zn pz̄n, zm Ax)

Table VIII. Nonreducible isometric cohomogeneity one actions
on compact simply connected products of irreducible symmetric
spaces in dimensions 5, 6 and 7; these are not product actions.
Also indicated is whether the family of actions listed in the right
column makes up all or part of the family listed in the left. (Sequel
to Table VII.)

P5: One example of this family is the usual S(U(2)U(1)) ⊂ SU(3) action on
SU(3)/SO(3). This gives P5 in the case p= 1. In Section 7 we will show that P5

is in fact always diffeomorphic to SU(3)/SO(3).

P7
A: This family is interesting because of its similarity to the families P7

B and P7
C .

One very special case of this family is the action of S3
× S3 on S3

×CP2 given
by (g1, g2) ? (p, x) = (g1 pg−1

2 , g2 ?1 x), where ?1 is the action of SO(3) on CP2,
which corresponds to the case p− = q− = p+ = q+ = 1.

P7
B and P7

C : Grove, Wilking and Ziller [2008] computed the homology groups
of these families. They showed that these two classes contain all the new can-
didates for compact simply connected cohomogeneity one manifolds with invari-
ant metrics of positive curvature, with one exception. Grove and Ziller [2000]
showed that the class P7

C contains all S3 principal bundles over S4. Two ex-
plicit actions of type P7

C are the isometric actions on S7 and on S3
× S4 listed
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in Tables VI and VIII, respectively. An example of the family P7
B is the action

of SO(3) × SO(3) on the Aloff–Wallach space W 7
= SU(3)/ diag(z, z, z̄2), as

described in [Grove et al. 2008, Section 4].

P7
D: This family contains the cohomogeneity one Eschenburg spaces

E7
p = diag(z, z, z p)\SU(3)/ diag(1, 1, z̄ p+2),

where SU(2)× SU(2) acts on E7
p with the first factor acting on the left and the

second on the right, both as the upper SU(2) block in SU(3). These actions cor-
respond to the case n = 2 and (p, q) = (p, p + 1) in the family P7

D . It should
be noted that all of these Eschenburg spaces admit invariant metrics of positive
sectional curvature, by [Eschenburg 1984]. For details, see [Grove et al. 2008].

The action on S3
×CP2 given in Table VIII is another example of type P7

D , this
time with n = 1 and p = q = 1.

Nonprimitive actions of Table II. Recall from Proposition 1.5 that for a nonprim-
itive action of G on MG , with G ⊃ L ⊃ K−, K+ ⊃ H , we have the fiber bundle
ML → MG → G/L , where ML is the cohomogeneity one manifold given by the
diagram L ⊃ K−, K+ ⊃ H . Having such a fiber bundle says something about the
topology of the manifold MG . Because of this, we will list these bundles below.
For more details about how we get the specific fiber bundles below, see Section 6.

N 5: We saw in Section 5.2 that the Brieskorn varieties for d even are all examples of
this family. There is one more explicit action that is also of this type. Let S3

×S1 act
on S3
×S2
⊂H×Im H via (g, eiθ )?(q, v)= (gqḡegvḡθ , gvḡ). Here, we are using the

notation exθ
=cos θ+x sin θ ∈ S3 for x ∈ S3

∩Im(H), so for example gexθ ḡ=egx ḡθ .
This action gives the diagram S3

× S1
⊃ {(eiθ , 1)}, {(eiθ , e2iθ )} ⊃ {(±1, 1)}, which

is a special case of N 5. In Section 7, we will show every manifold of this type is
either S3

× S2 or the nontrivial S3 bundle over S2.

N 6
A: Consider the family of actions of S3

× S1
× S1 on S3

× S3 given by (g, z, w)?
(x, y) = (gx z̄r w̄s, (zc−w̄b−, zc+w̄b+) ?1 y), where ?1 is the usual torus action on
S3
⊂ C2. This action gives the diagram

S3
× T 2

⊃ {(zrws, z, w) | zc−w̄b− = 1}, {(zrws, z, w) | zc+w̄b+ = 1} ⊃

{(zrws, z, w) | zc−w̄b− = 1= zc+w̄b+},

which is an action of type N 6
A. In fact, it was shown in [Hoelscher 2010a] that

every action of type N 6
A can be obtained in this way. Therefore the family N 6

A
consists entirely of isometric actions on S3

× S3.1

1In particular, N 6
A could have been left out of Table II entirely; however I did not know this when

first making the table. The notation has already been cited in the literature so I have left Table II
unchanged.
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N 6
B : Here, if we take L = T 2 we get the fiber bundle S2

→ M→ S2
× S2 for any

M in the family N 6
B . If p= 0 in this family, we get the product action on S2

×M4,
where M4 is either S2

× S2 or CP2#−CP2, depending on whether n is even or
odd, respectively (see [Parker 1986]).

N 6
C : For each M of this type, we can take L = S3

× S1 to get the fiber bundle
S4
→ M→ S2.

N 6
D: If we let L = S3

×S1 in this case too, we get the fiber bundle CP2
→M→ S2

for manifolds M of this type. If p = 0, N 6
D is the product action on CP2

× S2.

N 6
E : In the case that p= 1 we get the S3

× S3 action on S2
× S4
⊂ Im H× (H×R)

given by (g1, g2) ? (x, (y, t)) = (g1xg−1
1 , (g1 yg−1

2 , t)). In this case we get the
diagram

S3
× S3
⊃ S3
× S1, S3

× S1
⊃1S1.

Similarly, when p = 0 this is a product action on S2
× S4.

For a general M in this family, if we take L = S3
× S1 we get the nonprimitivity

fiber bundle S4
→ M→ S2.

N 6
F : One special case of this class of actions is the SU(3) action on CP3#−CP3

obtained by gluing two copies of the SU(3) action on CP3 along the fixed point.
We get

SU(3)⊃ S(U(2)U(1)),S(U(2)U(1))⊃ SU(2)SU(1).

In general, for any M in this family, we can take L = S(U(2)×U(1)) and get
the fiber bundle S2

→ M→ CP2.

N 7
A: One special case of this family is the S3

× S3 action on S2
× S2

× S3
⊂

Im(H)× Im(H)×H via (g1, g2) ? (p1, p2, q) = (g1 p1g−1
1 , g1 p2g−1

1 , g1qg−1
2 ), or

the equivalent action of (g1, g2)?(p1, p2, q)= (g1 p1g−1
1 , g2 p2g−1

2 , g1qg−1
2 ). Also,

the case (p±, q±)= (0, 1) and H =Zn gives the product action on S3
×M4, where

M4 is either CP2#−CP2 or S2
× S2 depending on whether n is odd or even.

For this family, the nonprimitivity fiber bundle depends heavily on the param-
eters of the action. For any M in the family N 7

A corresponding to a diagram with
K− 6= K+, we can take L = T 2 to get the fiber bundle Lm(n)→ M → S2

× S2,
where Lm(n) is some lens space that depends on the parameters of M in N 7

A. If
M is a member of this family with K− = K+, then taking L = T 2 gives the fiber
bundle S2

× S1
→ M→ S2

× S2, and taking L = K− = K+ in this case gives the
bundle S2

→ M→ S3
× S2.

N 7
B : For each M in this family, we can take L = S3

× S1 to get the fiber bundle
ML → M → S2, where ML is the cohomogeneity one manifold given by the
diagram

S3
× S1
⊃ {(ei pθ , eiqθ )} · H, {(e jθ , 1)} · H ⊃ H
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with the same restrictions on H as in N 7
B . The manifolds ML will depend greatly on

the parameters in the diagram. For example the actions Q5
B and P5, the Brieskorn

actions and the family of actions on SU(3)/SO(3) respectively, as described in
Sections 5.2 and 7.4 respectively, are both actions of this type. In fact these are
the only cases when ML will be simply connected, assuming p 6= 0. Of course if
p = 0 then the original action would be of type N 7

A.
In the case q = 0, the action N 7

B becomes the product action on S4
× S3 or on

CP2
× S3, depending on H .

N 7
C : For a manifold M of this type, we can take L = S3

× S1 to get the fiber
bundle S5/Zq→ M→ S2 if q 6= 0, where S5/Zq is the lens space, as described in
Section 6. If q = 0 then the original action is just a product action on CP2

× S3.

N 7
D: In this case we can take L = T 2

= K+ = K− to get the fiber bundle S2
→

M→ S3
× S2 for any M in this family. We can also take L = T 3

⊂ S3
× S3
× S1

to get the bundle S2
× S1
→ M→ S2

× S2 for any such M .
If q = λ = 0, then this action is the product action on S2

× Q5
A, where Q5

A is
the family of actions on S2

× S3 described above. Also if m = 0, this is another
product action on S3

×S2
×S2, since it is known that S3

×S3/{(z p, zq)}= S3
×S2;

see [Wang and Ziller 1990].

N 7
E : For each M in this family, let L = T 3

⊂ S3
× S3
× S1. This gives the fiber

bundle La(b)→ M → S2
× S2, where La(b) is some lens space that depends on

the parameters of M in N 7
E in a complicated way.

As in the previous case, if we take q = λ = 0 we get a product action on
S2
× N 5. Later, we will show that the actions of type N 5 are always on S3

× S2 or
the nontrivial S3 bundle over S2.

N 7
F : One example of this family is the action of S3

× S3
× S1 on S2

× S5
⊂

Im(H)× (H×C) given by (g1, g2, z) ? (p, q, w) = (g1 pg−1
1 , g1qg−1

2 , zw). Also,
in the case p = 0, we get the product action on S2

× Q5
C , where Q5

C is an action
on S5.

For a general M in this family, taking L = S3
× S1
× S1 gives the fiber bundle

S5
→ M→ S2.

N 7
G : For this manifold, we have the bundle S3

→ N 7
G → CP2, after taking L =

U (2)= K±.

N 7
H : In this case, if we take L = U(2)× S1

⊂ SU(3)× S1 we get the fiber bundle
La(b)→ M → CP2 for each M in this family, where La(b) is some lens space
that depends on the parameters of M in the class N 7

H .

N 7
I : Finally, we have the fiber bundle S3

→ N 7
I → S4 for this manifold after taking

L = Sp(1)Sp(1)= K±.
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6. Curvature properties

Here we will prove Theorem B. First, we have shown, through the classification,
that every nonreducible cohomogeneity one action on a simply connected manifold
in dimension 5, 6 or 7 must be a product action, a sum action, a fixed-point action or
one of the actions found in the classification above. We know from Section 1.21 that
sum actions and fixed-point actions are isometric actions on symmetric spaces, and
hence they admit invariant metrics of nonnegative curvature. For product actions,
let M = N × L/J , where N is a lower-dimensional cohomogeneity one manifold,
L/J is a homogeneous space, and G =G1×L acts as a product. It is clear that the
action of G1 on N is nonreducible if and only if the original action of G on M is.
Further, L/J admits an L invariant metric of nonnegative sectional curvature, so if
N admits a G1-invariant metric of nonnegative sectional curvature, M = N × L/J
also has a G-invariant metric of nonnegative curvature from the product. To see that
N has such a metric in lower dimensions, recall from the classification of cohomo-
geneity one manifolds in dimensions 4 and lower [Parker 1986; Neumann 1968]
that every nonreducible compact simply connected cohomogeneity one manifold in
these dimensions is an isometric action on a symmetric space, with one exception:
the manifolds given by the diagram S3

⊃ S1, S1
⊃ Zn . However, these manifolds

admit invariant metrics of nonnegative sectional curvature by the main result in
[Grove and Ziller 2000]. Therefore, all our nonreducible product actions will admit
G invariant metrics of nonnegative sectional curvature.

Therefore we must only check that the remaining actions admit invariant met-
rics of nonnegative sectional curvature, except for the two exceptional families
P7

D and Q7
D listed in Theorem B. Section 5.1 shows that many of these actions

are isometric actions on symmetric spaces, and hence admit invariant metrics of
nonnegative curvature. Many of the actions also have codimension two singular
orbits. Therefore, by the main result in [Grove and Ziller 2000], these also admit
invariant nonnegative curvature. After these two considerations, we are only left
with these actions to check: N 6

C , N 6
D , N 6

E , N 7
C , N 7

F , N 7
G and N 7

I .
These seven actions are all nonprimitive. We will use Proposition 1.5 to write

each manifold M of these types in the form G ×L ML , and in each case we will
see that the L action on ML admits an invariant metric of nonnegative sectional
curvature. This will show that M ≈ G ×L ML admits a G invariant metric of
nonnegative sectional curvature, since we can take the metric mentioned above on
ML and a biinvariant metric on G to induce a submersed metric on M . This metric
will still be nonnegatively curved by O’Niell’s formula; see [Petersen 1998]. We
will proceed to do this case by case.

In the case of N 6
C , the subdiagram corresponding to ML is given by (N 6

C ), but
with S3

×S1 in place of S3
×S3. This action is ineffective, with the effective version
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given by taking n= 1. We then recognize this effective version as an isometric sum
action on S4. Therefore ML admits an L invariant metric of nonnegative sectional
curvature.

We can do a similar thing for actions N 6
D and N 6

E . The primitive subdiagram for
N 6

D is given by (N 6
D), but with S3

× S1 in place of S3
× S3. This is the action of

SU(2)× S1 on CP2 given by (A, w) ? [z1, z2, z3] = [w
pz1, A(z2, z3)

t
]. Since this

is an isometric action for the usual metric on ML = CP2, this gives an invariant
metric on M ≈ G×L ML . Similarly the primitive subdiagram for N 6

E is (N 6
E ), but

with S3
× S1 in place of S3

× S3. This is the action of S3
× S1 on S4

⊂ H× R

by (g, z) ? (p, t) = (gpz̄ p, t). As above this also gives N 6
E an invariant metric of

nonnegative sectional curvature.
For N 7

C , the primitive subdiagram is given by (N 7
C ), but with S3

× S1 in place
of S3

× S3, where gcd(p, q)= 1 and gcd(q, n)= 1. We claim this is an isometric
action on the lens space S5/Zq . It is easy to check that the special case of this
action, when q = 1, is the modified sum action of SU(2)× S1 on S5

⊂ C2
×C by

(A, w)?(x, z)= (w p Ax, wnz). Then consider S5/Zq , where Zq acts as Zq ⊂1×Zq

with this same action, ?. Then SU(2)×S1 still acts on the quotient S5/Zq and does
so isometrically in the induced metric. If the original group diagram is taken along
the geodesic c in S5 then we can take the group diagram of the induced action on
S5/Zq along the image of c. When we do this we see we get exactly the diagram
shown above. Hence this is an isometric action on S5/Zq in the usual, positively
curved, metric. As above, this induces an invariant metric of nonnegative sectional
curvature on N 7

C .
The last three cases are slightly easier to handle. For N 7

F the primitive subdia-
gram is given by

S3
× S1
× S1
⊃ {(ei pφeiaθ , eiφ, eiθ )}, S3

× S1
×Zn ⊃ {(ei pφ, eiφ, 1)} ·Zn.

We see this is the modified sum action of S3
× S1
× S1 on S5

⊂ H×C given by
(g, z1, z2) ? (y, w) = (gyz̄ p

1 z̄a
2, zn

2w). Similarly the primitive subdiagram for N 7
G

is given by the action of U(2) on SU(2) ≈ S3 by conjugation and the subdiagram
for N 7

I corresponds to the action of Sp(1) on Sp(1) by conjugation. Both of these
are isometries in the positively curved biinvariant metric on Sp(1)≈ SU(2)≈ S3.
Therefore these seven remaining cases do admit invariant metrics of nonnegative
sectional curvature. This proves Theorem B. �

7. Topology of the 5-dimensional manifolds

In this section we will determine the diffeomorphism type of the five-dimensional
manifolds appearing in the classification and prove Theorem C. By the results
of Smale and Barden [Barden 1965], the diffeomorphism type of a closed simply
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connected 5-manifold is determined by the second homology group and the second
Stiefel–Whitney class. As we will see, we can compute the homology of our man-
ifolds relatively easily. To compute the second Stiefel–Whitney class, we will use
the topology of the frame bundle. Recall that the second Stiefel–Whitney class of
a simply connected manifold is zero if and only if the manifold is a Spin-manifold,
that is, the orthonormal frame bundle lifts to a Spin-bundle; see [Petersen 1998].
With this motivation, we will now look at the frame bundle in more detail.

Suppose Mn is an oriented cohomogeneity one manifold with the group diagram
G⊃K−, K+⊃H as usual. Assume further that G is connected so that the G action
preserves the orientation of M . Then let

FM = { f = ( f1, . . . , fn) | f1, . . . , fn is an oriented orthonormal frame at p ∈ M}

denote the orthonormal oriented-frame bundle of M . Recall that SO(n) acts on
FM from the left as

(7-1) (ai j )i j ? ( f1, . . . , fn)= (
∑

j a1 j f j , . . . ,
∑

j anj f j ).

This action makes FM into an SO(n)-principal bundle over M . We can put a metric
on FM by choosing a biinvariant metric on SO(n), keeping the original metric on
M and specifying a horizontal distribution. To describe this distribution, fix a point
p0 ∈M and a frame fp0 at p0. For each p in a normal neighborhood of p0, let f p be
the frame gotten by parallel translating fp0 to p along the minimal geodesic from
p0 to p. This gives a local orthonormal frame field, and we define the horizontal
space at fp0 ∈FM to be the tangent space of this frame field. Since parallel transport
is an isometry, the action of SO(n) preserves this horizontal distribution.

Recall that G acts on M by isometry and hence takes orthonormal frames to
orthonormal frames, while preserving orientation. Therefore we have an induced
action of G on FM given by g ? (p, f ) = (gp, dg f ) = (gp, (dg f1, . . . , dg fn)).
This action is isometric since it takes the horizontal space to the horizontal space
and acts by isometry on both the vertical and horizontal spaces. This G-action
also commutes with the action by SO(n), and so we have an action by G×SO(n)
on FM. Furthermore, this G×SO(n) action on FM is clearly cohomogeneity one
since SO(n) acts transitively on the fibers of FM. If c denotes a minimal geodesic
in M between nonprincipal orbits, then choose f (t) to be a parallel orthonormal
frame along c. Then f is a horizontal curve in FM and therefore a geodesic.
f (t) is clearly perpendicular to the SO(n) orbits, and it is perpendicular to the G
orbits since c(t) is in M . Therefore f (t) is a minimal geodesic in FM between
nonprincipal orbits.

Our next goal is to determine the isotropy groups of G×SO(n) along f (t). We
see (g, A) ? (p, f ) = (p, f ) if and only if g ∈ G p and A ? dg f = f , where ? is
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from (7-1). To understand this second equality we rewrite it as

(dg−1 f1, . . . , dg−1 fn)= dg−1 f = A ? f = (
∑

j a1 j f j , . . . ,
∑

j anj f j ).

This precisely means At
=[dg−1

] f or A=[dg] f where [dg] f is the representation
of the linear operator dg : Tp M → Tp M as a matrix in the basis f1, . . . , fn . In
conclusion, the isotropy group of G × SO(n) at (p, f ) is {(g, [dg] f ) | g ∈ G p}.
We have proved the following proposition.

Proposition 7.1. Let Mn be an oriented cohomogeneity one manifold with group
diagram G⊃ K−, K+⊃ H for the normal geodesic c, and assume G is connected.
The orthonormal oriented frame bundle FM of M admits a natural cohomogeneity
one action with group diagram

(7-2) G×SO(n)⊃ {(k, [dk] f (−1)) | k ∈ K−}, {(k, [dk] f (1)) | k ∈ K+}

⊃ {(h, [dh] f (0)) | h ∈ H},
where f (t) is a parallel frame along c(t).

Corollary 7.2. Let M be a cohomogeneity one manifold as in Proposition 7.1 and
assume that H is discrete. Let α± : [0, 1] → K± be paths, based at the identity,
that generate π1(K±/H). If M is simply connected, then FM is simply connected
if and only if there is some curve γ = αn

−
· αm
+

that gives a contractible loop in G
and where [dαn

−
] f (−1) · [dαm

+
] f (1) generates π1(SO(n)).

Proof. Notice that the maps k 7→ (k, [dk] f (±1)) give isomorphisms of K± with
K̂± := {(k, [dk] f (±1)) | k ∈ K±}, the nonprincipal isotropy subgroups of the Ĝ :=
G×SO(n) action on FM. Also, this map takes H to Ĥ := {(h, [dh] f (0)) | h ∈ H},
the principal isotropy group of this action. Thus we see that Ĥ is generated by
Ĥ ∩ K̂−0 and Ĥ ∩ K̂+0 by Lemma 1.10, since M is already assumed to be simply
connected. Then by Lemma 1.10, FM is simply connected if and only if the curves
α̂±(t) = (α±(t), [dα±(t)] f (±1)) generate π1(Ĝ/Ĥ0). Further, since H is discrete,
π1(Ĝ/Ĥ0)= π1(Ĝ)≈ π1(G)×π1(SO(n)).

Therefore, if π1(FM) = 0 then the claimed curve γ must exist. Conversely,
suppose such a curve γ exists. We already know from Lemma 1.10 that α− and α+
generate π1(G), since M is simply connected. Then it is clear that α̂−, α̂+ and γ
would generate all of π1(Ĝ), proving π1(FM)= 0. �

7.3. The family P5. We will now compute the homology of the manifolds P5

using the Mayer–Vietoris sequence. As in the proof of Proposition 1.8, we have
the Mayer–Vietoris sequence for the spaces M , with G/K−, G/K+ and G/H as
follows.

(7-3) · · · → Hn(G/H)
(ρ−∗ ,ρ

+
∗ )// Hn(G/K−)⊕ Hn(G/K+)

i−∗ −i+∗ // Hn(M)→ · · ·
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To compute Hn(P5) in our case, first note that G/K+= S3
×S1/{(e j pθ , eiθ )}≈ S3,

since S3 acts transitively on this space with trivial isotropy group.
Next we claim that G/H = S3

× S1/〈( j, i)〉 is S3
× S1. For this, denote

α : S3
× S1
→ S3

× S1, (g, z) 7→ (g j, zi),

so that G/H = G/〈α〉. Then define the map

φ : S3
× S1
→ S3

× S1, (g, eiθ ) 7→ (ge− jθ , eiθ ),

a diffeomorphism of manifolds. We notice that β := φαφ−1
: (g, z) 7→ (g, zi).

Therefore G/〈α〉 is diffeomorphic to G/〈β〉 ≈ S3
× S1.

Finally we study G/K−= S3
×S1/{(eiθ , 1)}·〈( j, i)〉. Since K−0 is normal in K−,

we have G/K− ≈ (G/K−0 )/(K
−/K−0 ). We see G/K−0 = S3

× S1/{(eiθ , 1)} ≈
S2
× S1

= Im(S3)× S1 via (gS1, z) 7→ (gig−1, z). Further, it is easy to see that
( j, i) acts on S2

× S1 as (− Id, i), via this correspondence. Therefore we have
G/K−≈ S2

×S1/〈(− Id, i)〉. We can identify this space with S2
×[0, 1]/∼ where

(x, 0)∼ (−x, 1). Using Mayer–Vietoris for this space, we can easily compute that
Hi (G/K−) is equal to Z if i = 1, to Z2 if i = 2, and to 0 otherwise.

We are now ready to use the Mayer–Vietoris sequence for P5. Equation (7-3)
becomes

· · · → 0→ Z2⊕ 0→ H2(P5)→ Z→ Z⊕ 0→ 0→ · · · ,

since we know H1(P5)= 0. Since the map Z→ Z⊕0 is onto, it must have trivial
kernel and hence the map from H2(P5)must be trivial. Therefore Z2⊕0→H2(P5)

must be an isomorphism. That is, H2(P5)= Z2. Poincaré duality then determines
the rest of the homology groups.

To determine the second Steifel–Whitney class, we look at the fundamental
group of the frame bundle F(P5). In the notation of Corollary 7.2, we can take
α−(θ)= (eiθ , 1), in this case, since this is a curve in K− that generates π1(K−/H).
We need to determine how d(α−(θ)) acts on Tc(−1)M ≈ TK−(G/K−) ⊕ T0 D−,
where D− is the disk normal to the orbit G · c(−1) at c(−1). On TK−(G/K−),
d(α−(θ)) has the form diag(R(2θ), 1) in the basis {( j, 0), (k, 0), (0, 1)}, and since
d(α−(θ)) is an isometry of TK−(G/K−) there must be an orthonormal basis of
TK−(G/K−) in which d(α−(θ)) still has this form. Now, d(α−(θ)) on D− acts
isometrically as R(θ). Therefore there is an oriented orthonormal basis f− of
Tc(−1)M for which [d(α−(θ))] f− = diag(R(2θ), 1, R(θ)). Since this generates
π1(SO(5)) and since α− is contractible in G, it follows from Corollary 7.2 that
F(P5) is simply connected, independent of p.

Therefore P5 is not Spin and hence has nontrivial second Steifel–Whitney class
for each p. By the results of Smale and Barden mentioned above this proves that
the diffeomorphism type of P5 is independent of p. In Section 5.3, we showed
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that SU(3)/SO(3) is one example in this family. Hence P5 is diffeomorphic to
SU(3)/SO(3) for all p.

7.4. The family N5. We now compute the topology of the manifolds N 5, this
time using the nonprimitive fiber bundle. Notice first that these manifolds are
not primitive. In fact if we take L = T 2 then K−, K+, H ⊂ L . Therefore, by
Proposition 1.5, N 5 is fibered over G/L ≈ S2 with fiber ML , the cohomogeneity
one manifold given by

S1
× S1
⊃ {(ei p−θ , eiq−θ )} · H, {(ei p+θ , eiq+θ )} · H ⊃ H− · H+.

Since H is normal in T 2, it follows that the effective version of the L action on
ML is given by

(7-4) S1
× S1
⊃ {(eiθ , 1)}, {(ei pθ , eiqθ )} ⊃ 1

after taking an automorphism of T 2, where q 6= 0 since K+ 6= K− in the original
diagram. To identify this action first recall that T 2 acts by cohomogeneity one on
S3
⊂ C2, by multiplication on each factor. If we take S3/〈(ξq , ξ

p
q )〉, where ξq is

a q-th root of unity, this gives the lens space Lq(p). Since the T 2 action on S3

commutes with this subaction by Zq , we get an induced action on Lq(p). It is not
difficult to see that the effective version of this action is precisely the action given
by (7-4). Therefore ML is Lq(p) and we have the fibration Lq(p)→ N 5

→ S2.
Given that N 5 is simply connected, the long exact sequence of homotopy groups

induced from this fibration contains the short exact sequence

0→ π2(N 5)→ π2(S2)→ π1(Lq(p))→ 0.

Since the middle group is Z and the last group is Zq for q 6= 0, it follows that
π2(N 5)≈ Z and hence H2(N 5)≈ Z, by the Hurewicz theorem.

We claim here that the frame bundle F(N 5) can either be simply connected
or not, depending on the parameters of the diagram. In Section 5.3, we saw one
example of an action in this family on S3

× S2. This shows that some of these
actions are on spin manifolds. To see that some of these manifolds are not spin we
take a simple example. The manifold M1 with group diagram

(7-5) S3
× S1
⊃ S1
× 1, 1× S1

⊃ 1

is an example of type N 5. If we let α−(θ)= (eiθ , 1), then α− generates π1(K−/H).
By precisely the same argument as in the case of P5, we see that F(M1) is simply
connected. Therefore the family N 5 contains both spin and nonspin manifolds,
but always with the homology of S3

× S2. Using [Barden 1965] again, this proves
Theorem C. �
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