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We prove that one-sided topological Markov shifts (X A, σA) and (X B, σB)

for matrices A and B with entries in {0, 1} are continuously orbit equiva-
lent if and only if there exists an isomorphism between the Cuntz–Krieger
algebras OA and OB keeping their commutative C∗-subalgebras C(X A) and
C(X B). The “if” part (and hence the “only if” part) above is equivalent
to the condition that there exists a homeomorphism from X A to X B inter-
twining their topological full groups. We will also study structure of the
automorphisms of OA preserving the commutative C∗-algebra C(X A).

1. Introduction

The study of orbit equivalence of ergodic finite measure preserving transformations
was initiated by H. Dye [1959; 1963], who proved that two such transformations
are orbit equivalent. W. Krieger [1976] has proved that two ergodic nonsingular
transformations are orbit equivalent if and only if the associated von Neumann
crossed products are isomorphic. In topological setting, Giordano, Putnam and
Skau [Giordano et al. 1995; 1999] (see also [Herman et al. 1992]) have proved
that two minimal homeomorphisms on Cantor sets are strong orbit equivalent if
and only if the associated C∗-crossed products are isomorphic. In a more general
setting, J. Tomiyama [1996] (see [Boyle and Tomiyama 1998; Tomiyama 1998])
has proved that two topological free homeomorphisms (X, φ) and (Y, ψ) on com-
pact Hausdorff spaces are continuously orbit equivalent if and only if there exists
an isomorphism between the associated C∗-crossed products preserving their com-
mutative C∗-subalgebras C(X) and C(Y ). He also proved that it is equivalent to
the condition that there exists a homeomorphism h : X→ Y such that h preserves
their topological full groups.

In this paper we study the relationship between the orbit structure of one-sided
topological Markov shifts and the algebraic structure of the associated Cuntz–
Krieger algebras. Let (X A, σA) be the right one-sided topological Markov shift
defined by an N × N square matrix A with entries in {0, 1}, where σA denotes
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the shift transformation on X A. The one-sided topological Markov shifts are no
longer homeomorphisms in general and the Cuntz–Krieger algebras cannot natu-
rally be written as a crossed product by Z. Hence Giordano, Putnam and Skau’s
and Tomiyama’s method cannot be applied to study one-sided topological Markov
shifts and Cuntz–Krieger algebras. However, in this paper, theorems similar to
theirs will be proved in our setting by using a representation of OA on a Hilbert
space having its complete orthonormal basis consisting of all points of the shift
space X A.

Let DA be the C∗-subalgebra consisting of all diagonal elements of the canonical
AF-algebra FA inside of OA. It is naturally isomorphic to the commutative C∗-
algebra C(X A) of all complex-valued continuous functions on X A. Let [σA]c be the
topological full group of (X A, σA) whose elements consist of homeomorphisms τ
on X A such that τ(x) is contained in the orbit orbσA(x) of x under σA for all x ∈ X A

and such that its orbit cocycles are continuous. We say that (X A, σA) and (X B, σB)

are continuously orbit equivalent if there exists a homeomorphism h : X A→ X B

such that h(orbσA(x)) = orbσB (h(x)) for x ∈ X A and if their orbit cocycles are
continuous.

We will prove the next three theorems, where condition (I) is that of [Cuntz and
Krieger 1980, page 254].

Theorem 1.1. Let A and B be irreducible square matrices with entries in {0, 1}
satisfying condition (I). Then the following three assertions are equivalent:

• There exists an isomorphism 9 : OA→ OB such that 9(DA)=DB .

• (X A, σA) and (X B, σB) are continuously orbit equivalent.

• There exists a homeomorphism h : X A→ X B such that h◦[σA]c◦h−1
=[σB]c.

To prove this theorem, we study the normalizer N (OA,DA) of DA in OA, which
is defined as the group of all unitaries u ∈DA such that uDAu∗ =DA. We denote
by U(DA) the group of all unitaries in DA.

Theorem 1.2. Let A be a square matrix with entries in {0, 1} satisfying condi-
tion (I). Then there exists a splitting short exact sequence

1→U(DA)
id
−→ N (OA,DA)

τ
−→ [σA]c→ 1.

Let Aut(OA,DA) be the group of automorphisms α of OA such that α(DA)=DA.
Denote by Inn(OA,DA) the subgroup of Aut(OA,DA) of inner automorphisms
on OA. We set Out(OA,DA) to be the quotient Aut(OA,DA)/Inn(OA,DA).
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Theorem 1.3. Let A be an irreducible square matrix with entries in {0, 1} satisfy-
ing condition (I). Then there exist short exact sequences

1→ Z1
σA
(U(DA))

λ
−→ Aut(OA,DA)

φ
−→ N ([σA]c)→ 1,

1→ B1
σA
(U(DA))

λ
−→ Inn(OA,DA)

φ
−→ [σA]c→ 1,

1→ H 1
σA
(U(DA))

λ
−→ Out(OA,DA)

φ
−→ N ([σA]c)/[σA]c→ 1.

They all split. Hence Out(OA,DA) is a semidirect product

Out(OA,DA)= N ([σA]c)/[σA]c · H 1
σA
(U(DA)).

where N ([σA]c) denotes the normalizer of [σA]c in the group Homeo(X A) of all
homeomorphisms on X A, and Z1

σA
(U(DA)), B1

σA
(U(DA)) and H 1

σA
(U(DA)) are

the group of unitary one-cocycles for σA, the subgroup of Z1
σA
(U(DA)) of cobound-

aries and the cohomology group Z1
σA
(U(DA))/B1

σA
(U(DA)) respectively.

Similar theorems hold for the pair of the canonical AF-algebra FA inside of OA

and its diagonal algebra DA; these are studied in Section 7.
In [Matsumoto 2009], the results of this paper have been generalized.
Throughout the paper, we denote by Z+ and N the set of nonnegative integers

and the set of positive integers respectively.

2. Preliminaries

Let A= [A(i, j)]Ni, j=1 be an N×N matrix with entries in {0, 1}, where 1< N ∈N.
Throughout the paper, we always assume that A satisfies condition (I) in the sense
of Cuntz and Krieger [1980]. We denote by X A the shift space

X A = {(xn)n∈N ∈ {1, . . . , N }N | A(xn, xn+1)= 1 for all n ∈ N}

over {1, . . . , N } of the right one-sided topological Markov shift for A. It is a
compact Hausdorff space in natural product topology. The shift transformation
σA on X A is defined by σA((xn)n∈N) = (xn+1)n∈N and is a continuous surjective
map on X A. The topological dynamical system (X A, σA) is called the (right one-
sided) topological Markov shift for A. The condition (I) for A is equivalent to the
condition that X A is homeomorphic to a Cantor discontinuum.

A word µ= µ1 · · ·µk for µi ∈ {1, . . . , N } is said to be admissible for X A if µ
appears somewhere in some element x in X A. The length of µ is k and denoted
by |µ|. We denote by Bk(X A) the set of all admissible words of length k ∈ N.
We denote by B0(X A) the empty word ∅. We set B∗(X A) =

⋃
∞

k=0 Bk(X A), the
set of admissible words of X A. For x = (xn)n∈N ∈ X A and positive integers k, l
with k ≤ l, we put the word x[k,l] = (xk, xk+1, . . . , xl) ∈ Bl−k+1(X A) and the right
infinite sequence x[k,∞) = (xk, xk+1, . . . ) ∈ X A.



202 KENGO MATSUMOTO

The Cuntz–Krieger algebra OA for the matrix A has been defined by the universal
C∗-algebra generated by N partial isometries S1, . . . , SN subject to the relations

N∑
j=1

S j S∗j = 1 and S∗i Si =

N∑
j=1

A(i, j)S j S∗j for i = 1, . . . , N

[Cuntz and Krieger 1980]. If A satisfies condition (I), the algebra OA is the unique
C∗-algebra subject to these relations. For a word µ = µ1 · · ·µk ∈ Bk(X A), we
let Sµ = Sµ1 · · · Sµk . By the universality of the relations above, we get an action
ρ : T→Aut(OA), called the gauge action, from the correspondence Si → e

√
−1t Si

for i = 1, . . . , N and e
√
−1t
∈ T = {e

√
−1t
| t ∈ [0, 2π ]}. It is well known that the

fixed point algebra of OA under ρ is the AF-algebra FA generated by elements
SµS∗ν with µ, ν ∈ B∗(X A) and |µ| = |ν| [Cuntz and Krieger 1980]. Let Fn

A be the
C∗-subalgebra of FA generated by elements SµS∗ν , with µ, ν ∈ Bn(X A). Hence
F

alg
A =

⋃
∞

n=1 Fn
A is a dense ∗-subalgebra of FA. We denote by E : OA→ FA the

conditional expectation defined by E(a) =
∫

T
ρt(a)dt for a ∈ OA. Let DA be the

C∗-subalgebra of FA consisting of all diagonal elements of FA. It is generated
by elements SµS∗µ for µ ∈ B∗(X A) and is isomorphic to the commutative C∗-
algebra C(X A) of all complex valued continuous functions on X A through the
correspondence SµS∗µ ∈ DA ↔ χµ ∈ C(X A), where χµ denotes the characteristic
function on X A for the cylinder set Uµ = {(xn)n∈N ∈ X A | x1 = µ1, . . . , xk = µk}

for µ = µ1 · · ·µk ∈ Bk(X A). We identify C(X A) with the subalgebra DA of OA.
Then the following lemma is well known and basic in our further discussions.

Lemma 2.1 [Cuntz and Krieger 1980, Remark 2.18], and see [Matsumoto 2000,
Proposition 3.3]. The algebra DA is maximal abelian in OA.

In [1996; 1998], Tomiyama has used the structure of pure state extensions of
point evaluations of the underlying space to study the orbit structure of topological
dynamical systems of homeomorphisms on compact Hausdorff spaces; see also
[Tomiyama 1992a; 1992b]. However for the Cuntz–Krieger algebras, the structure
of the pure state extensions of point evaluations of the underlying shift space is
not clear. Instead of point evaluations, we will use a representation of the Cuntz–
Krieger algebra OA on a Hilbert space having the shift space X A as a complete
orthonormal basis, as follows. Let HA be the Hilbert space with complete or-
thonormal system ex for x ∈ X A. This Hilbert space is not separable. Consider the
partial isometries Ti for i = 1, . . . , N defined by

Ti ex =

{
ei x if i x ∈ X A,

0 otherwise,
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where i x denotes i x = (i, x1, x2, . . . ) for x = (xn)n∈N ∈ X A. It is easy to see that
these isometries satisfy the relations

N∑
j=1

T j T
∗

j = 1 and T ∗i Ti =

N∑
j=1

A(i, j)T j T
∗

j for i = 1, . . . , N .

Since A satisfies condition (I), the operator Ti is nonzero for each i = 1, . . . , N ,
so the correspondence Si → Ti yields a faithful representation of OA on HA. We
regard the algebra OA as the C∗-algebra generated by Ti for i = 1, . . . , N on the
Hilbert space HA by this representation, and write Ti as Si ; see [Matsumoto 2000,
Lemma 4.1].

3. Topological full groups of Markov shifts

For x = (xn)n∈N ∈ X A, the orbit orbσA(x) of x under σA is defined by

orbσA(x)=
∞⋃

k=0

∞⋃
l=0

σ−k
A (σ l

A(x))⊂ X A.

Hence y = (yn)n∈N ∈ X A belongs to orbσA(x) if and only if there exists an admis-
sible word µ1 · · ·µk ∈ Bk(X A) such that

y = (µ1, . . . , µk, xl+1, xl+2, . . . ) for some k, l ∈ Z+.

We denote by Homeo(X A) the group of all homeomorphisms on X A. We define
the full group [σA] and the topological full group [σA]c for (X A, σA) as follows.

Definition. Let [σA] be the set of all homeomorphism τ ∈ Homeo(X A) such that
τ(x) ∈ orbσA(x) for all x ∈ X A. We call [σA] the full group of (X A, σA). Let [σA]c

be the set of all τ in [σA] such that there exist continuous functions k, l : X A→Z+

such that

(3-1) σ
k(x)
A (τ (x))= σ l(x)

A (x) for all x ∈ X A.

We call [σA]c the topological full group for (X A, σA). The functions k and l above
are called orbit cocycles for τ , and are sometimes written as kτ and lτ respectively.
We remark that the orbit cocyles are not necessarily uniquely determined by τ .

Examples. (i) Put F =
[

1 1
1 0

]
. Define τ ∈ Homeo(X F ) by setting

τ(x1, x2, . . . )=


(2, 1, 1, x4, x5, . . . ) if (x1, x2, x3)= (1, 1, 1),
(1, 1, 1, x4, x5, . . . ) if (x1, x2, x3)= (2, 1, 1),
(x1, x2, x3, x4, x5, . . . ) otherwise.

Since σF (τ (x))= σF (x) for all x ∈ X F , by putting k(x)= l(x)= 1 for all x ∈ X F ,
we see that τ belongs to [σF ]c.
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(ii) More generally, suppose A is an N × N matrix with entries in {0, 1}. For
i ∈ {1, . . . , N } and p ∈ N, we put

Wp(i)= {(µ1, . . . , µp) ∈ Bp(X A) | A(µp, i)= 1}.

We denote by S(Wp(i)) the group of all permutations on the set Wp(i). Put
Sp(A) = S(Wp(1))× · · · ×S(Wp(N )). Then an N -family s = (s1, . . . , sN ) ∈

Sp(A) of permutations defines a homeomorphism τs ∈ Homeo(X A) by setting

τs(x1, . . . , x p, x p+1, . . . )= (sx p+1(x1, . . . , x p), x p+1, . . . ) for x ∈ X A.

For all x ∈ X A, it is easy to see that τs(x) belongs to orbσA(x) and satisfies (3-1)
for k(x)= l(x)= p. Hence τs yields an element of [σA]c.

Let A be an arbitrary fixed N × N matrix with entries in {0, 1} and satisfying
condition (I). The following lemma is direct.

Lemma 3.1. [σA] is a subgroup of Homeo(X A) and [σA]c is a subgroup of [σA].

Although σA itself does not belong to [σA], the following lemma shows that σA

locally belongs to [σA]c, and the group [σA]c is not trivial in any case.

Lemma 3.2. Assume that A is irreducible. For any µ ∈ B2(X A), there exist
τµ ∈ [σA]c and continuous functions kτµ, lτµ : X A→ Z+ such that

(3-2)


σ

kτµ (x)
A (τµ(x))= σ

lτµ (x)
A (x) for x ∈ X A,

τµ(y)= σA(y) for y ∈Uµ,

kτµ(y)= 0, lτµ(y)= 1 for y ∈Uµ.

Proof. For µ= (µ1, µ2) ∈ B2(X A), we have two cases.

Case 1: µ1 =µ2. Put a =µ1. Since A is irreducible, there exists b1 ∈ {1, . . . , N }
such that b1 6= a and A(b1, a) = 1. Put {b1, . . . , bN−1} = {1, . . . , N }\{a}. Let
{bi1, . . . , biM } be the set of elements of {b1, . . . , bN−1} satisfying A(a, bi1)= · · ·=

A(a, biM )=1. The set {bi1, . . . , biM } is nonempty because A satisfies condition (I).
Define a homeomorphism τµ : X A→ X A by setting

τµ(x)=



σA(x) ∈Ua if x ∈Uaa,

b1abi1 x[3,∞) ∈Ub1abi1
if x = abi1 x[3,∞) ∈Uabi1

,
...

...

b1abiM x[3,∞) ∈Ub1abiM
if x = abiM x[3,∞) ∈UabiM

,

b1aax[3,∞) ∈Ub1aa if x = b1ax[3,∞) ∈Ub1a,

x otherwise.
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We set

kτµ(x)=



0 if x ∈Uaa,

1 if x ∈Uabi1
,

...
...

1 if x ∈UabiM
,

2 if x ∈Ub1a,

0 otherwise,

lτµ(x)=



1 if x ∈Uaa,

0 if x ∈Uabi1
,

...
...

0 if x ∈UabiM
,

1 if x ∈Ub1a,

0 otherwise,

so that

σ
kτµ (x)
A (τµ(x))= σ

lτµ (x)
A (x) for x ∈ X A.

Hence τµ ∈ [σA]c and τµ(y)= σA(y), kτµ(y)= 0, and lτµ(y)= 1 for y ∈Uµ=Uaa .

Case 2: µ1 6=µ2. Put a=µ1 and b=µ2. Define a homeomorphism τµ : X A→ X A

by setting

τµ(x)=


σA(x) ∈Ub if x ∈Uab,

ax ∈Uab if x ∈Ub,

x otherwise.

We set

kτµ(x)=


0 if x ∈Uab,

1 if x ∈Ub,

0 otherwise,
lτµ(x)=


1 if x ∈Uab,

0 if x ∈Ub,

0 otherwise,

so that

σ
kτµ (x)
A (τµ(x))= σ

lτµ (x)
A (x) for x ∈ X A.

Hence τµ ∈ [σA]c and

τµ(y)= σA(y), kτµ(y)= 0, lτµ(y)= 1 for y ∈Uµ =Uab. �

By a similar argument, this lemma holds for any word µwith any length |µ|≥2.

Lemma 3.3. For x = (xn)n∈N ∈ X A and j ∈ {1, . . . , N } with j x = ( j, x1, x2, . . .)

in X A, there exists τ ∈ [σA]c such that τ(x)= j x.

Proof. If x = j∞ = ( j, j, . . . ), we may choose id as τ . If x 6= j∞, there exists
k ∈N and i ∈ {1, . . . , N } with i 6= j such that xn = j for 1≤ n ≤ k−1 and xk = i .
Put

µ= ( j, . . . , j︸ ︷︷ ︸
k−1

, i) ∈ Bk(X A) and ν = ( j, . . . , j︸ ︷︷ ︸
k

, i)= jµ ∈ Bk+1(X A),



206 KENGO MATSUMOTO

so that x ∈Uµ. Define τ : X A→ X A by setting

τ(y1, y2, y3, . . . )=


( j, y1, y2, . . . ) if y ∈Uµ,

(y2, y3, y4, . . . ) if y ∈Uν,

(y1, y2, y3, . . . ) otherwise.

Since Uµ ∩Uν =∅, we see that τ : X A→ X A yields an element of [σA]c. �

Put [σA]c(x)= {τ(x) ∈ X A | τ ∈ [σA]c} for x ∈ X A.

Lemma 3.4. [σA]c(x)= orbσA(x) for x ∈ X A.

Proof. For any τ ∈ [σA], there exist continuous functions k, l : X A→ Z+ such that
τ(x)= (µ1(x), . . . , µk(x)(x), xl(x)+1, xl(x)+2, . . . ) for some (µ1(x), . . . , µk(x)(x))
in Bk(x)(X A). Thus τ(x) ∈ orbσA(x) is clear, and hence [σA]c(x)⊂ orbσA(x).

Now for the other inclusion. By the previous lemmas, for x = (xn)n∈N ∈ X A

and j = {1, . . . , N } with j x ∈ X A, there exist τ1, τ2 ∈ [σA]c such that

τ1(x)= ( j, x1, x2, . . . ) and τ2(x)= (x2, x3, . . . ),

so that [σA]c(x)3 ( j, x1, x2, . . . ), (x2, x3, . . . ). Since [σA]c is a group, we see that

[σA]c(x) 3 (µ1, . . . , µk, xl+1, xl+2, . . . ) for all k, l ∈ Z+, and

(µ1, . . . , µk) ∈ Bk(X A) with (µ1, . . . , µk, xl+1, xl+2, . . . ) ∈ X A.

Hence [σA]c(x)⊃ orbσA(x). �

4. Full groups and normalizers

In this section, we will study the topological full group [σA]c and the normalizer
N (OA,DA). We denote by U(OA) and U(DA) the groups of unitaries of OA and DA

respectively. The normalizer N (OA,DA) of DA in OA is defined by

N (OA,DA)= {v ∈U(OA) | vDAv
∗
=DA}.

We will identify the algebra C(X A) with the subalgebra DA of OA. For v ∈U(OA),
we put Ad(v)(a)= vav∗ for a ∈ OA.

Proposition 4.1. For τ ∈ [σA]c, there exists a unitary uτ ∈ N (OA,DA) such that

Ad(uτ )( f )= f ◦ τ−1 for f ∈DA,

and τ ∈ [σA]c→ uτ ∈ N (OA,DA) is a group homomorphism.

Proof. Let the C∗-algebra OA be represented on the Hilbert space HA with complete
orthonormal basis {ex | x ∈ X A}. Then the generating partial isometries Si for
i = 1, . . . , N act on HA by Si ex = ei x if i x ∈ X A, and otherwise Si ex = 0. Since
τ : X A→ X A is a homeomorphism, the operator uτ on HA defined by uτ ex = eτ(x)
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for x ∈ X A yields a unitary on HA. We will prove that uτ belongs to OA. Let
l, k : X A → Z+ be continuous functions satisfying (3-1). Since both k(X A) and
l(X A) are finite sets of Z+, there exist

k̃ =max{k(x) | x ∈ X A} and l̃ =max{l(x) | x ∈ X A} in Z+.

Take µ(x)= (µ1(x), . . . , µk(x)(x)) ∈ Bk(x)(X A) such that

τ(x)= (µ1(x), . . . , µk(x)(x), xl(x)+1, xl(x)+2, xl(x)+3, . . . ).

The set of words {(µ1(x), . . . , µk(x)(x))∈ Bk(x)(X A) | x ∈ X A} is a finite subset of

Wk̃(X A)=
⋃

j=0,...,k̃

B j (X A).

The map x ∈ X A→ (µ1(x), . . . , µk(x)(x))∈Wk̃(X A) is continuous, where Wk̃(X A)

is endowed with discrete topology. For any word ν=ν1 · · · ν j ∈Wk̃(X A)with j ≤ k̃
and 0≤ n ≤ l̃, the sets

Eν = {x ∈ X A | µ1(x)= ν1, . . . , µk(x)(x)= ν j } and Fn = {x ∈ X A | l(x)= n}

are clopen in X A. Define the projections Qν = χEν and Pn = χFn in DA. Since X A

is composed of disjoint unions

X A =
⋃

ν∈Wk̃(X A)

Eν =
⋃

n=0,...,l̃

Fn,

we have ∑
ν∈Wk̃(X A)

Qν =

∑
n=0,...,l̃

Pn = 1.

For x ∈ X A and ν ∈ Wk̃ with 0 ≤ n ≤ l̃, we have x ∈ Eν ∩ Fn if and only if
eτ(x) = Sνeσ n

A(x), so that

eτ(x) =
∑

n=0,...,l̃

∑
ν∈Wk̃

(
Sν

∑
ξ∈Bn(X A)

S∗ξ
)

Pn Qνex for x ∈ X A.

Therefore
uτ =

∑
n=0,...,l̃

∑
ν∈Wk̃

(
Sν

∑
ξ∈Bn(X A)

S∗ξ
)

Pn Qν,

which belongs to the algebra OA. The equality

Ad(uτ )( f )= f ◦ τ−1 for f ∈DA.

is straightforward from the definition uτ ex = eτ(x) for x ∈ X A of uτ . �
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For v ∈ N (OA,DA), Ad(v) induces an automorphism on the algebras OA and DA.
Let τv denote the homeomorphism on X A induced by Ad(v) :DA→DA satisfying
Ad(v)( f ) = f ◦ τv−1 for f ∈ DA. We will prove that τv gives rise to an element
of [σA]c. We fix v ∈ N (OA,DA) for a while.

Lemma 4.2. There exists a family vm for m ∈ Z of partial isometries in OA such
that all but finitely many vm for m ∈ Z are zero, and with these properties:

(1) v =
∑

m∈Z vm , where the nonzero vm,m ∈ Z are finite.

(2) vmDAv
∗
m ⊂DA and v∗mDAvm ⊂DA for m ∈ Z.

(3) v∗mvm and vmv
∗
m are projections in DA for m ∈ Z.

(4) v∗mvm′ = vmv
∗

m′ = 0 for m 6= m′.

(5) v0 ∈ FA.

Proof. Put g(t)= v∗ρt(v) ∈ OA for t ∈ T. For f ∈DA, we have

ρt(v) fρt(v)
∗
= ρt(v f v∗)= v f v∗,

so that v∗ρt(v) commutes with each element of DA. By Lemma 2.1, g(t) belongs
to the algebra DA. We put

vm =

∫ 2π

0
ρt(v)e−

√
−1mt dt and ĝ(m)=

∫ 2π

0
g(t)e−

√
−1mt dt for m ∈ Z.

Then vm = vĝ(m). Since g(t) ∈DA, we have

g(t)∗ =ρt(v
∗ρ−t(v))= g(−t) and g(t)g(s)=v∗ρt(v)ρt(v

∗ρs(v))= g(t + s),

so that ĝ(m) for m ∈Z are projections in DA such that ĝ(m)ĝ(m′)= 0 for m 6=m′.
Regard g(t) ∈ DA as a function on X A. For x ∈ X A, we see that |g(t)(x)|2 =
〈g(t)ex | g(t)ex 〉 = 1, so that by Parseval’s identity

1=
∫ 2π

0
|g(t)(x)|2dt =

∑
m∈Z

∣∣∣∫ 2π

0
g(t)(x)e−

√
−1mt dt

∣∣∣2 =∑
m∈Z

‖ĝ(m)(x)ex‖
2.

Put Em = supp(ĝ(m)) a clopen set in X A for m ∈Z. By the equality above, we have
X A =

⋃
m∈Z Em and Em∩Em′ =∅ for m 6=m′. By the compactness of X A, all but

finitely many Em are empty. Then elements v∗mvm = ĝ(m) and vmv
∗
m = vĝ(m)v∗

are both projections in DA. It follows that

vmDAv
∗

m = vĝ(m)DA ĝ(m)v∗ ⊂DA and v∗mDAvm = ĝ(m)v∗DAvĝ(m)⊂DA,

because ĝ(m) ∈ DA. Therefore parts (1), (2), (3) and (4) hold. For part (5), we
have

v0 = vĝ(0)= v
∫ 2π

0
v∗ρt(v)dt = E(v) ∈ FA. �
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Lemma 4.3. For a fixed n ∈ N, there exist partial isometries vµ, v−µ ∈ FA for
each µ ∈ Bn(X A) satisfying the following conditions:

(1) vn =
∑

µ∈Bn(X A)
Sµvµ and v

−n =
∑

µ∈Bn(X A)
v
−µS∗µ.

(2) v∗µvµ, Sµvµv
∗
µS∗µ, Sµv

∗
−µv−µS∗µ and v

−µv
∗
−µ are projections in DA such that

v∗nvn =
∑

v∗µvµ, vnv
∗

n =
∑

Sµvµv
∗

µS∗µ,

v∗
−nv−n =

∑
Sµv∗−µv−µS∗µ, v

−nv
∗

−n =
∑

v
−µv

∗

−µ,

where the sums are over all µ ∈ Bn(Xn).

(3) vµv
∗
ν = v

∗
−µv−ν = 0 for µ, ν ∈ Bn(X A) with µ 6= ν.

(4) vµDAv
∗
µ, v∗µDAvµ, v

−µDAv
∗
−µ and v∗

−µDAv−µ are contained in DA.

Proof. For µ ∈ Bn(X A), put vµ = E(S∗µv) and v−µ = E(vSµ). They belong to FA

and satisfy S∗µSµvµ = vµ and v
−µS∗µSµ = v−µ. Then we have

S∗µvn =

∫ 2π

0
S∗µρt(v)e−

√
−1nt dt = E(S∗µv)= vµ,

v−n Sµ =
∫ 2π

0
ρt(v)e

√
−1nt Sµdt = E(vSµ)= v−µ.

Hence we have vn =
∑

µ∈Bn(X A)
Sµvµ and v−n =

∑
µ∈Bn(X A)

v−µS∗µ. Thus (1)
holds. We then have

v∗µvµ = v
∗

n SµS∗µvn = ĝ(n)v∗SµS∗µvĝ(n),

Sµvµv∗µS∗µ = SµS∗µvnv
∗

n SµS∗µ = SµS∗µvĝ(n)v∗SµS∗µ,

Sµv
∗

−µv−µS∗µ = SµS∗µv
∗

−nv−n SµS∗µ = SµS∗µĝ(−n)SµS∗µ,

v
−µv

∗

−µ = v−n SµS∗µv
∗

−n = vĝ(−n)SµS∗µĝ(−n)v∗.

Since ĝ(n) and ĝ(−n) are projections in DA, and vDAv
∗
=DA, the elements above

are projections in DA, so that (2) and (3) hold. Since

vµ = S∗µvn = S∗µvĝ(n) and v−µ = v−n Sµ = vĝ(−n)Sµ

the assertion (4) is immediate. �

Let u ∈ OA be a partial isometry satisfying

uDAu∗ ⊂DA and u∗DAu ⊂DA.

Define the projections pu=u∗u and qu=uu∗ ∈DA and clopen sets Xu= supp(pu)

and Yu = supp(qu) ⊂ X A. Then Ad(u) : DA pu → DAqu yields an isomorphism
and induces a homeomorphism hu : Xu→ Yu such that

Ad(u)(g)= g ◦ hu
−1
∈DAqu(= C(Yu)) for g ∈DA pu(= C(Xu)).
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Lemma 4.4. Keep the notation above. For x ∈ Xu , put y = hu(x) ∈ Yu . Then we
have

‖S∗y[1,n]uSx [1,n]‖ = 1 for all n ∈ N.

Proof. Since S∗Sy[1,n]uSx[1,n] is a partial isometry, we see that ‖S∗Sy[1,n]uSx[1,n]‖ = 1 for
all n ∈N or ‖S∗Sy[1,n]uSx[1,n]‖ = 0 for all n > N0 for some N0. It suffices to show that
S∗Sy[1,n]uSx[1,n] 6= 0 for all n ∈ N. One then sees that

(S∗Sy[1,n]uSx[1,n]S
∗Sx[1,n]u

∗Sy[1,n]eσAn(y) | eσAn(y))= (Ad(u)(χ)ey | ey),

where χ denotes the characteristic function on X A for the cylinder set Ux[1,n] of the
word x[1,n]. Since

Ad(u)(χ)ey = (χ ◦ h−1
u )(y)ey = χ(x)ey = ey,

we obtain

(S∗Sy[1,n]uSx[1,n]S
∗

x[1,n]u
∗Sy[1,n]eσAn(y) | eσAn(y))= (ey | ey)= 1,

so that S∗Sy[1,n]uSx[1,n] 6= 0. �

The following is key:

Lemma 4.5. Keep the situation above. Assume that u ∈ FA. Then there exists
k ∈ N such that for all x = (xn)n∈N ∈ Xu , we have yn = xn for all n > k, where
y = (yn)n∈N = hu(x).

Proof. Suppose that for any k ∈N there exist x ∈ Xu and N > k such that yN 6= xN .
Now u ∈ FA, and take u′ ∈ Fk0

A for some k0 such that ‖u− u′‖ < 1
2 . Take x ∈ Xu

and N0 > k0 such that yN0
6= xN0

. Since u′ belongs to FN0−1
A , it can be written as

u′ =
∑

ξ,η∈BN0−1(X A)

cξ,ηSξ S∗η ∈ FN0−1
A for some cξ,η ∈ C.

Hence we have

S∗y[1,N0−1]
u′Sx[1,N0−1] = cy[1,N0−1],x[1,N0−1]S

∗

y[1,N0−1]
Sy[1,N0−1]S

∗

x[1,N0−1]
Sx[1,N0−1]

so that

S∗y[1,N0]
u′Sx[1,N0]

= cy[1,N0−1],x[1,N0−1]S
∗

yN0
S∗y[1,N0−1]

Sy[1,N0−1]S
∗

x[1,N0−1]
Sx[1,N0−1]SxN0

= 0

because yN0 6= xN0 . Hence we have S∗y[1,n]u
′Sx[1,n] = 0 for n > N0. For n > N0, it

then follows that

‖S∗y[1,n]uSx[1,n]‖ = ‖S
∗

y[1,n](u− u′)Sx[1,n]‖<
1
2 .

This contradicts the preceding lemma. �

Thus we have this:
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Lemma 4.6. For a partial isometry u ∈ FA satisfying

uDAu∗ ⊂DA and u∗DAu ⊂DA,

there exists ku ∈ N such that the homeomorphism hu : supp(u∗u)→ supp(uu∗)
defined by Ad(u)(g)= g ◦ h−1

u for g ∈DAu∗u satisfies the condition

σ ku
A (hu(x))= σ

ku
A (x) for x ∈ supp(u∗u).

Proposition 4.7. For any v ∈ N (OA,DA), the homeomorphism τv on X A induced
by the automorphism of DA defined by the restriction of Ad(v) to DA gives rise to
an element of the topological full group [σA]c.

Proof. For v ∈ N (OA,DA), let vm,m ∈ Z be the partial isometries in OA as in
Lemma 4.2. Take K ∈ N such that vm = 0 for all m ∈ Z with |m|> K , and hence
v =

∑K
m=−K vm . We have

Ad(v)( f )=
K∑

n=1

vn f v∗n + v0 f v∗0 +
K∑

n=1

v−n f v∗
−n for f ∈DA.

Since v∗mvm and vmv
∗
m are projections in DA, we may put clopen sets

X (m)
A = supp(v∗mvm) and Y (m)A = supp(vmv

∗

m) for m ∈ Z with |m| ≤ K

in X A such that X A is made of disjoint unions: X A=
⋃
|m|≤K X (m)

A =
⋃
|m|≤K Y (m)A .

Since v0 ∈ FA, by Lemma 4.6, there exists k0 ∈ N such that

(4-1) σ k0
A (τ0(x))= σ

k0
A (x) for x ∈ X (0)

A ,

where τ0 : X
(0)
A → Y (0)A is the homeomorphism satisfying Ad(v0)( f )= f ◦ τ−1

0 for
f ∈DAv

∗

0v0. For vn, v−n and 1≤ n ≤ K , by Lemma 4.3, we have, for f ∈DA

vn f v∗n =
∑

µ∈Bn(X A)

Sµvµ f v∗µS∗µ and v−n f v∗
−n=

∑
µ∈Bn(X A)

v−µS∗µ f Sµv∗−µ.

Put
X (n,µ)

A = supp(v∗µvµ) X (−n,µ)
A = supp(Sµv∗−µv−µS∗µ),

Y (n,µ)A = supp(Sµvµv∗µS∗µ), Y (−n,µ)
A = supp(v−µv∗−µ).

By Lemma 4.3, X (m)
A =

⋃
µ∈B|m|(X A)

X (m,µ)
A and Y (m)A =

⋃
µ∈B|m|(X A)

Y (m,µ)A for
|m| ≤ K . There exists a homeomorphism

τ(m,µ) : X
(m,µ)
A → Y (m,µ)A for m ∈ Z with |m| ≤ K
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such that

Ad(Sµvµ)( f )= f ◦ τ−1
(n,µ) for f ∈DAv

∗

µvµ,

Ad(v−µS∗µ)(g)= g ◦ τ−1
(−n,µ) for g ∈DA Sµv∗−µv−µS∗µ

for n ∈ N with 1 ≤ n ≤ K . As vµ, v−µ ∈ FA, there exist k(n,µ), k(−n,µ) ∈ N such
that

σ
k(n,µ)
A (τ(n,µ)(x))= σ

k(n,µ)+n
A (x) for x ∈ X (n,µ)

A ,

σ
k(n,µ)+n
A (τ(−n,µ)(x))= σ

k(n,µ)
A (x) for x ∈ X (−n,µ)

A .

Since we have

τv(x)=


τ(n,µ)(x) for x ∈ X (n,µ)

A ,

τ0(x) for x ∈ X (0)
A ,

τ(−n,µ)(x) for x ∈ X (−n,µ)
A

and X A is made of disjoint unions as

X A = X (0)
A ∪

⋃
1≤|m|≤K

⋃
µ∈B|m|(X A)

X (m,µ)
A = Y (0)A ∪

⋃
1≤|m|≤K

⋃
µ∈B|m|(X A)

Y (m,µ)A ,

where X (0)
A , X (m,µ)

A and Y (0)A , Y (m,µ)A for 1≤ |m| ≤ K and µ ∈ B|m|(X A) are clopen
sets, we conclude that τv ∈ [σA]c. �

There is a natural embedding id of the unitaries U(DA) into N (OA,DA). For
v ∈ N (OA,DA), the induced homeomorphism τv on X A gives rise to an element
of [σA]c by the above proposition.

Theorem 4.8. The sequence 1→U(DA)
id
−→ N (OA,DA)

τ
−→ [σA]c→ 1 is exact

and splits.

Proof. By Proposition 4.7, the map τ : v ∈ N (OA,DA)→ τv ∈ [σA]c defines a
homomorphism. It is surjective by Proposition 4.1. Suppose that τv = id on X A

for some v ∈ N (OA,DA). This means that Ad(v)= id on DA. Hence v commutes
with all of elements of DA. By Lemma 2.1, v belongs to DA. Therefore the
sequence is exact. As in Proposition 4.1, for τ ∈ [σA]c, the unitary uτ defined by
setting uτ ex = eτ(x) for x ∈ X A gives rise to a section of the exact sequence. Hence
the sequence splits. �

5. Orbit equivalence

Definition. Two topological Markov shifts (X A, σA) and (X B, σB) are said to be
topologically orbit equivalent if there exists a homeomorphism h : X A→ X B such
that h(orbσA(x))=orbσB (h(x)) for x ∈ X A. In this case, h(σA(x))∈orbσB (h(x)) for
x ∈ X A, so that h(σA(x)) ∈

⋃
∞

k=0
⋃
∞

l=0 σ
−k
B σ l

B(h(x)). Hence there exist functions

k1, l1 : X A→ Z+ such that σ k1(x)
B (h(σA(x)))= σ

l1(x)
B (h(x)),
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and similarly there exists functions

k2, l2 : X B→ Z+ such that σ k2(y)
A (h−1(σB(y)))= σ

l2(y)
A (h−1(y)).

We say that (X A, σA) and (X B, σB) are continuously orbit equivalent if there
exists a homeomorphism h : X A→ X B and continuous functions k1, l1 : X A→Z+

and k2, l2 : X B→ Z+ such that, for x ∈ X A and y ∈ X B ,

(5-1) σ
k1(x)
B (h(σA(x)))= σ

l1(x)
B (h(x)), σ

k2(y)
A (h−1(σB(y)))= σ

l2(y)
A (h−1(y)).

Example. Let A[2] =
[

1 1
1 1

]
and F =

[
1 1
1 0

]
. The subshift X F is the set of all

sequences (xn)n∈N of 1, 2 such that the word (2, 2) is forbidden. Define a homeo-
morphism h : X F → X A[2] by substituting the word 2 for the word (2, 1) from the
leftmost in order; for example

h(1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, . . . )

= (1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, . . . ) ∈ X A[2] .

For i = 1, 2, put

UF,i = {x = (xn)n∈N ∈ X A[2] | x1 = i},

UA[2],i = {y = (yn)n∈N ∈ X A[2] | y1 = i}.

By setting{
k1(x)= 0, l1(x)= 1 for x ∈UF,1,

k1(x)= 1, l1(x)= 1 for x ∈UF,2,

{
k2(y)= 0, l2(y)= 1 for y ∈UA[2],1,

k2(y)= 0, l2(y)= 2 for y ∈UA[2],2,

we see that (X F , σF ) and (X A[2], σA[2]) are continuously orbit equivalent.

The following lemma is straightforward.

Lemma 5.1. If h : X A → X B is a homeomorphism satisfying σ k(x)
B (h(σA(x))) =

σ
l(x)
B (h(x)) for x ∈ X A for some functions k, l : X A→ Z+, then by putting

kn(x)=
n−1∑
i=0

k(σ i
A(x)) and ln(x)=

n−1∑
i=0

l(σ i
A(x)),

we have

σ
kn(x)
B (h(σ n

A(x)))= σ
ln(x)
B (h(x)) for x ∈ X A and n ∈ N.

Lemma 5.2. If h : X A → X B is a homeomorphism, and k1, l1 : X A → Z+ and
k2, l2 : X B→ Z+ are continuous functions satisfying

σ
k1(x)
B (h(σA(x)))= σ

l1(x)
B (h(x)) and σ

k2(y)
A (h−1(σB(y)))= σ

l2(y)
A (h−1(y))
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for x ∈ X A and y ∈ X B , then

h(orbσA(x))= orbσB (h(x)) for x ∈ X A.

Hence if (X A, σA) and (X B, σB) are continuously orbit equivalent, then they are
topologically orbit equivalent.

Proof. By Lemma 5.1, we have

h(σ n
A(x))⊂ σ

−kn
1 (x)

B σ
ln
1 (x)

B (h(x)) for x ∈ X A and n ∈ N

so that h(σ n
A(x)))⊂ orbσB (h(x)). For z = (µ1, . . . , µm, x1, x2, . . . ) ∈ σ

−m
A (x), we

have again by Lemma 5.1

σ
lm
1 (z)

B (h(µ1, . . . , µm, x1, x2, . . . ))= σ
km

1 (z)
B (h(σm

A (z))= σ
km

1 (z)
B (h(x)).

Hence h(µ1, . . . , µm, x1, x2, . . . ) ⊂ σ
−lm

1 (z)
B σ

km
1 (z)

B (h(x)) ⊂ orbσB (h(x)). Thus we
have h(orbσA(x))⊂orbσB (h(x)). For the other inclusion relation, we similarly have
h−1(orbσB (y)) ⊂ orbσA(h

−1(y)) for y ∈ X B . This implies that orbσB (h(x))) ⊂
h(orbσA(x)), so that h(orbσA(x))= orbσB (h(x)). � �

Proposition 5.3. If h◦[σA]c◦h−1
=[σB]c for some homeomorphism h : X A→ X B ,

then (X A, σA) and (X B, σB) are continuously orbit equivalent.

Proof. Assume that h ◦ [σA]c ◦ h−1
= [σB]c. For any y ∈ X B , put x = h−1(y), so

that h([σA]c(x))= [σB]c(h(x)). By Lemma 3.3, we have [σA]c(x)= orbσA(x) and
[σB]c(h(x))= orbσB (h(x)), so h(orbσA(x))= orbσB (h(x)).

We will next show that there exist continuous cocycle functions for h. By
Lemma 3.2, For any µ ∈ B2(X A), there exist τµ ∈ [σA]c and kτµ, lτµ : X A → Z+

satisfying (3-2). Put τh = h ◦ τµ ◦ h−1
∈ h ◦ [σA]c ◦ h−1

= [σB]c. For x ∈ Uµ, we
have h(σA(x))= τh(h(x)). Since τh ∈ [σB]c, one may find kµτh , l

µ
τh : X B→Z+ such

that
σ

kµτh (y)
B (τh(y))= σ

lµτh (y)
B (y).

For y ∈ h(Uµ), put x = h−1(y) so that

σ
kµτh (h(x))
B (h ◦ σA(x))= σ

lµτh (h(x))
B (h(x)) for x ∈Uµ.

Let {µ(1), . . . , µ(M)} be the set B2(X A) of all admissible words of length 2. Define
kh

1 , l
h
1 : X A→ Z+ by setting

kh
1 (x)= kµ

(i)

τh
(h(x)) and lh

1 (x)= lµ
(i)

τh
(h(x)) for x ∈Uµ(i) .

They are continuous and satisfy

σ
kh

1 (x)
B (h ◦ σA(x))= σ

lh
1 (x)

B (h(x)) for x ∈ X A.
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Similarly there exist continuous functions kh
2 , l

h
2 : X B→ Z+ such that

σ
kh

2 (y)
A (h−1

◦ σB(y))= σ
lh
2 (y)

A (h−1(y)) for y ∈ X B .

Hence (X A, σA) and (X B, σB) are continuously orbit equivalent. �

We also have the converse:

Proposition 5.4. If (X A, σA) and (X B, σB) are continuously orbit equivalent, then
there exists a homeomorphism h : X A→ X B such that h ◦ [σA]c ◦ h−1

= [σB]c.

Proof. Suppose there exists a homeomorphism h : X A → X B , h(orbσA(x)) =
orbσB (h(x)) for x ∈ X A and there exist continuous functions k1, l1 : X A → Z+

and k2, l2 : X B → Z+ satisfying (5-1). For n ∈ N, let kn
1 , l

n
1 : X A → Z+ and

kn
2 , l

n
2 : X B→ Z+ be continuous functions as in Lemma 5.1 such that

(5-2) σ
kn

1 (x)
B (h(σ n

A(x)))= σ
ln
1 (x)

B (h(x)), σ
kn

2 (y)
A (h−1(σ n

B(y)))= σ
ln
2 (y)

A (h−1(y))

for x ∈ X A and y ∈ X B . For any τ ∈ [σA]c, there exist continuous functions
kτ , lτ : X A→ Z+ such that

(5-3) σ
kτ (x)
A (τ (x))= σ lτ (x)

A (x) x ∈ X A.

For y ∈ X B , put x = h−1(y). We set m = kτ (x) ∈ N. By (5-2) and (5-3), we have

σ
lm
1 (τ (x))

B (h(τ (x)))= σ
km

1 (τ (x))
B (h(σm

A (τ (x))))= σ
km

1 (τ (x))
B (h(σ lτ (x)

A (x))).

We set n = lτ (x) ∈ N. By applying σ
kn

1 (x)
B to the equality above, we have by (5-2)

σ
kn

1 (x)+lm
1 (τ (x))

B (h(τ (x)))= σ
km

1 (τ (x))
B σ

kn
1 (x)

B (h(σ n
A(x)))

= σ
km

1 (τ (x))
B σ

ln
1 (x)

B (h(x))= σ
km

1 (τ (x))+ln
1 (x)

B (h(x))

and hence
σ

kn
1 (x)+lm

1 (τ (x))
B (h ◦ τ ◦ h−1(y))= σ

km
1 (τ (x))+ln

1 (x)
B (y).

By putting

kh
τ (y)= kn

1 (x)+ lm
1 (τ (x))= klτ (h−1(y))

1 (h−1(y))+ lkτ (h−1(y))
1 (τ (h−1(y))),

lh
τ (y)= km

1 (τ (x))+ ln
1 (x)= kkτ (h−1(y))

1 (τ (h−1(y)))+ llτ (h−1(y))
1 (h−1(y)),

we have
σ

kh
τ (y)

B (h ◦ τ ◦ h−1(y))= σ lh
τ (y)

B (y) for all y ∈ X B,

so that h◦τ◦h−1
∈[σB]c and h◦[σA]c◦h−1

⊂[σB]c. Similarly h−1
◦[σB]c◦h⊂[σA]c,

and we conclude that h ◦ [σA]c ◦ h−1
= [σB]c. �
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Proposition 5.5. If there is an isomorphism9 : OA→ OB such that9(DA)=DB ,
then there is a homeomorphism h : X A→ X B such that h ◦ [σA]c ◦ h−1

= [σB]c.

Proof. By Theorem 4.8, there exists a group isomorphism 9̃ : [σA]c→[σB]c such
that the following diagram is commutative:

1→U(DA)
id //

9|U(DA)

��

N (OA,DA)

9
��

τ // [σA]c→ 1

9̃
��

1→U(DB) //id // N (OB,DB)
τ // [σB]c→ 1

For any v ∈ N (OA,DA), put Ad(v)( f )= v f v∗ for f ∈DA. Let τv ∈Homeo(X A)

be the homeomorphism on X A satisfying Ad(v)( f ) = f ◦ τ−1
v for f ∈ DA. Let

h : X A→ X B be the homeomorphism satisfying9( f )= f ◦h−1 for f ∈DA. Since
9 :N (OA,DA)→N (OB,DB) is an isomorphism and {τv |v∈N (OA,DA)}=[σA]c,
the identity 9 ◦Ad(v) ◦9−1

=Ad(9(v)) implies that h ◦ [σA]c ◦ h−1
= [σB]c. �

Proposition 5.6. If (X A, σA) and (X B, σB) are continuously orbit equivalent, then
there exists an isomorphism 9 : OA→ OB such that 9(DA)=DB .

Proof. Although the proof is essentially same as that of Proposition 4.1, we give
a complete proof for completeness. Let h : X A→ X B be a homeomorphism giv-
ing rise to continuous orbit equivalence between (X A, σA) and (X B, σB). Take
continuous functions k1, l1 : X A → Z+ and k2, l2 : X B → Z+ satisfying (5-1).
Represent OA on HA and OB on HB as usual. We will prove that there exists a
unitary uh : HA→ HB such that

Ad(uh)(OA)= OB and Ad(uh)( f )= f ◦ h−1 for f ∈DA.

We respectively denote by eA
x for x ∈ X A and eB

y for y ∈ X B the complete ortho-
normal systems on HA and HB coming from the shift spaces. Define the unitary
uh : HA → HB by setting uheA

x = eB
h(x) for x ∈ X A. We will first prove that

Ad(uh)(OA) = OB . Denote by S A
i and SB

i the canonical generating partial iso-
metries for Si in OA and in OB respectively. For y ∈ X B , we have

uh S A
i u∗heB

y =

{
eB

h(ih−1(y)) if ih−1(y) ∈ X A,

0 otherwise.

Set X (i)
B = {y ∈ X B | ih−1(y) ∈ X A}. Put z = ih−1(y) ∈ X A. By the equality

h(σA(z))= y with (5-1), we have h(z) ∈ σ−l1(z)
B (σ

k1(z)
B (y)). Thus

h(z)= (µ1(z), . . . , µl1(z)(z), yk1(z)+1, yk2(z)+1, . . . )

for some µ1(z) · · ·µl1(z)(z) ∈ Bl1(z)(X B). Since both the maps k1, l1 : X A → Z+

and the map y→ z = ih−1(y) are continuous, there exist finite numbers

k̃1 =max{k1(z) | y ∈ X (i)
B } and l̃1 =max{l1(z) | y ∈ X (i)

B }.
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The set {(µ1(z), . . . , µl1(z)(z)) ∈ Bl1(z)(X B) | y ∈ X (i)
B } of words is a finite subset

of Wl̃1
(X B)=

⋃
j=0,...,l̃1

B j (X B). The map

y ∈ X (i)
B → (µ1(z), . . . , µl1(z)(z)) ∈Wl̃1

(X B)

is continuous, where Wl̃1
(X B) is endowed with discrete topology. For a word

ν = ν1 · · · ν j ∈Wl̃1
(X B) and 0≤ n ≤ k̃1, the sets

E (i)ν ={y∈ X (i)
B |µ1(z)=ν1, . . . , µl1(z)(z)=ν j } and F (i)n ={y∈ X (i)

B |k1(z)=n}

are clopen in X (i)
B , where z = ih−1(y). We define projections in DB :

Q(i)
ν = χE (i)ν

, P (i)n = χF (i)n
, P (i) = χX (i)B

.

Since we have disjoint unions

X (i)
B =

⋃
ν∈Wl̃1

(X B)

E (i)ν =
⋃

n=0,...,k̃1

F (i)n ,

we have
P (i) =

∑
ν∈Wl̃1

(X B)

Q(i)
ν =

∑
n=0,...,k̃1

P (i)n .

For y ∈ X (i)
B and ν ∈Wl̃1

(X B) with 0≤ n ≤ k̃1, we have y ∈ E (i)ν ∩ F (i)n if and only
if h(ih−1(y))= νσ n

B(y), and the latter condition is equivalent to the condition that

eB
h(ih−1(y)) = SB

ν eB
σ n

B(y)
.

Since y∈ E (i)ν ∩F (i)n if and only if P (i)n Q(i)
ν eB

y =eB
y , and eB

σ n
B(y)
=
∑

ξ∈Bn(X B)
SB
ξ
∗eB

y ,

we have

eB
h(ih−1(y)) =

∑
n=0,...,k̃1

∑
ν∈Wl̃1

(X B)

(
SB
ν

∑
ξ∈Bn(X B)

SB
ξ
∗
)

P (i)n Q(i)
ν eB

y for y ∈ X (i)
B .

Hence

uh S A
i u∗heB

y =
∑

n=0,...,k̃1

∑
ν∈Wl̃1

(X B)

(
SB
ν

∑
ξ∈Bn(X B)

SB
ξ
∗
)

P (i)n Q(i)
ν eB

y for y ∈ X (i)
B .

Therefore we have

uh S A
i u∗h =

∑
n=0,...,k̃1

∑
ν∈Wl̃1

(X B)

(
SB
ν

∑
ξ∈Bn(X B)

SB
ξ
∗
)

P (i)n Q(i)
ν P (i).

Since P (i)n , Q(i)
ν and P (i) are projections in DB , we have Ad(uh)(S A

i )∈ OB , so that
Ad(uh)(OA)⊂ OB . Since u∗h = uh−1 , we symmetrically have Ad(u∗h)(OB)⊂ OA, so
that Ad(uh)(OA)= OB .
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It is direct to see that Ad(uh)( f ) = f ◦ h−1 for f ∈ DA from the definition
uheA

x = eB
h(x) for x ∈ X A, so we have Ad(uh)(DA)=DB . �

Therefore we have also proved Theorem 1.1.

6. Normalizers of the full groups and automorphisms of OA

In this section, we will study the normalizer subgroup

N ([σA]c)= {ϕ ∈ Homeo(X A) | ϕ ◦ τ ◦ϕ
−1
∈ [σA]c for all τ ∈ [σA]c}

of [σA]c in Homeo(X A), which is related to the automorphism group Aut(OA,DA).
We set

N [σA] = {h ∈ Homeo(X A) | h(orbσA(x))= orbσA(h(x)) for x ∈ X A},

Nc[σA] = {h ∈ Homeo(X A) | there exist continuous functions
k1, l1, k2, l2 : X A→ Z+ such that, for x ∈ X A,

σ
k1(x)
A (h(σA(x)))= σ

l1(x)
A (h(x)),

σ
k2(x)
A (h−1(σA(x)))= σ

l2(x)
A (h−1(x))}

Lemma 6.1. Nc[σA] is a subgroup of N [σA].

Proof. By Lemma 5.2 for X A = X B , we see that Nc[σA] is a subset of N [σA]. It
remains to show that for ϕ,ψ ∈ Nc[σA], the composition ψ ◦ϕ belongs to Nc[σA].
For n ∈ N, take continuous functions kn

1,ϕ, l
n
1,ϕ, kn

1,ψ , l
n
1,ψ : X A→ Z+ such that

σ
kn

1,ϕ(x)
A (ϕ(σ n

A(x)))= σ
ln
1,ϕ(x)

A (ϕ(x)),(6-1)

σ
kn

1,ψ (x)
A (ψ(σ n

A(x)))= σ
ln
1,ψ (x)

A (ψ(x)).(6-2)

As in Lemma 5.1, we write kn
1,ϕ, l

n
1,ϕ, kn

1,ψ , l
n
1,ψ as kn

ϕ, l
n
ϕ, kn

ψ , l
n
ψ respectively. By

applying (6-2) for ϕ(σA(x)) as x , we have

σ
kn
ψ (ϕ(σA(x)))

A (ψ(σ n
A(ϕ(σA(x)))))= σ

ln
ψ (ϕ(σA(x)))

A (ψ(ϕ(σA(x)))).

Put n = k1
ϕ(x) and m = l1

ϕ(x). By (6-1) for n = 1, we have σ n
A(ϕ(σA(x))) =

σm
A (ϕ(x)) so that

σ
kn
ψ (ϕ(σA(x)))

A (ψ(σm
A (ϕ(x))))= σ

ln
ψ (ϕ(σA(x)))

A (ψ(ϕ(σA(x)))),

and hence

σ
kn
ψ (ϕ(σA(x)))

A σ
km
ψ (ϕ(x))

A (ψ(σm
A (ϕ(x))))= σ

km
ψ (ϕ(x))+ln

ψ (ϕ(σA(x)))
A (ψ(ϕ(σA(x)))).

By (6-2) we have

σ
kn
ψ (ϕ(σA(x)))

A σ
lm
ψ (ϕ(x))

A (ψ(ϕ(x)))= σ
km
ψ (ϕ(x))+ln

ψ (ϕ(σA(x)))
A (ψ(ϕ(σA(x)))).
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We put

kψϕ(x)= km
ψ (ϕ(x))+ ln

ψ(ϕ(σA(x))) and lψϕ(x)= lm
ψ (ϕ(x))+ kn

ψ(ϕ(σA(x))),

where n= k1
ϕ(x) and m= l1

ϕ(x). The functions kψϕ, lψϕ : X A→Z+ are continuous
and satisfy

σ
kψϕ(x)
A (ψϕ(σA(x)))= σ

lψϕ(x)
A (ψϕ(x)).

Similarly, we may find continuous functions kϕ−1ψ−1, lϕ−1ψ−1 : X A→Z+ satisfying

σ
kϕ−1ψ−1 (x)
A (ϕ−1ψ−1(σA(x)))= σ

lϕ−1ψ−1 (x)
A (ϕ−1ψ−1(x)),

so that ψ ◦ϕ ∈ Nc[σA]. �

Lemma 6.2. Nc[σA] = N ([σA]c).

Proof. For ϕ ∈ Nc[σA] and τ ∈ [σA]c, we will first prove that ϕ ◦ τ ◦ ϕ−1
∈ [σA]c.

For n ∈ N, take continuous functions kn
1 , l

n
1 , kn

2 , l
n
2 : X A→ Z+ satisfying

σ
kn

1 (x)
A (ϕ(σ n

A(x))= σ
ln
1 (x)

A (ϕ(x)),(6-3)

σ
kn

2 (x)
A (ϕ−1(σ n

A(x))= σ
ln
2 (x)

A (ϕ−1(x))(6-4)

for all x ∈ X A. For τ ∈ [σA]c, let kτ : X A→Z+ be a continuous function satisfying
(3-1). By (6-3) we have

σ
kn

1 (τϕ
−1(x))

A (ϕ(σ n
A(τϕ

−1(x))))= σ
ln
1 (τϕ

−1(x))
A (ϕ(τϕ−1(x))).

Put y = ϕ−1(x), n = kτ (y) and m = lτ (y). By (3-1), we have σ n
A(τ (y))= σ

m
A (y)

so that
σ

ln
1 (τ (y))

A (ϕ(τ (y)))= σ
kn

1 (τ (y))
A (ϕ(σm

A (y))).

By applying σ
km

1 (y)
A to the equality above, we have by (6-3)

σ
km

1 (y)+ln
1 (τ (y))

A (ϕ(τ (y))= σ
kn

1 (τ (y))
A σ

km
1 (y)

A (ϕ(σm
A (y)))= σ

kn
1 (τ (y))

A σ
lm
1 (y)

A (ϕ(y)).

Put

kϕτϕ−1(x)= km
1 (y)+ ln

1 (τ (y)) and lϕτϕ−1(x)= kn
1 (τ (y))+ lm

1 (y),

where y= ϕ−1(x), n= kτ (y), m= lτ (y). The functions kϕτϕ−1, lϕτϕ−1 : X A→Z+

are continuous and satisfy

σ
kϕτϕ−1 (x)
A (ϕ(τ (ϕ−1(x)))= σ

lϕτϕ−1 (x)
A (x).

Hence ϕ ◦ τ ◦ϕ−1
∈ [σA]c, so that ϕ ∈ N ([σA]c).
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We will next prove the other inclusion Nc[σA]⊃ N ([σA]c). For ϕ ∈ N ([σA]c)we
have ϕ◦[σA]c◦ϕ

−1(y)=[σA]c(y) for all y ∈ X A. Put x =ϕ−1(y). By Lemma 3.4,
we see that

ϕ(orbσA(x))= [σA]c(ϕ(x))= orbσA(ϕ(x)).

Let {µ(1), . . . , µ(M)} be the set B2(X A). For each word µ(i), Lemma 3.2 shows
that there exist τi ∈ [σA]c and continuous functions k(i), l(i) : X A→ Z+ such that

τi (y)= σA(y) for y ∈Uµ(i) and σ
k(i)(z)
A (τi (z))= σ

l(i)(z)
A (z) for z ∈ X A.

Put τ̂ = ϕ ◦ τi ◦ϕ
−1, so that

ϕ ◦ σA(y)= τ̂ (ϕ(y)) for y ∈Uµ(i) .

Since τ̂ ∈ [σA]c, we may find continuous functions kτ̂ , lτ̂ : X A→ Z+ such that

σ
kτ̂ (z)
A (τ̂ (z))= σ lτ̂ (z)

A (z) for z ∈ X A.

Hence we have

σ
kτ̂ (y)
A (ϕ ◦ σA(y))= σ

lτ̂ (y)
A (ϕ(y)) for y ∈Uµ(i) .

Define kϕ1 , l
ϕ
1 : X A→ Z+ by setting

kϕ1 (y)= kτ̂ (y) and lϕ1 (y)= lτ̂ (y) for y ∈Uµ(i) .

Since Uµ(i) is clopen and X A is a disjoint union
⋃M

i=1 Uµ(i) , the functions kϕ1 , l
ϕ
1 are

both continuous and satisfy

σ
kϕ1 (y)
A (ϕ ◦ σA(y))= σ

lϕ1 (y)
A (ϕ(y)) for y ∈ X A.

Similarly we may find continuous functions kϕ2 , l
ϕ
2 : X A→ Z+ that satisfy

σ
kϕ2 (y)
A (ϕ−1

◦ σA(x))= σ
lϕ2 (y)
A (ϕ−1(x)) for x ∈ X A,

so that ϕ ∈ Nc[σA]. Therefore Nc[σA] ⊃ N ([σA]c) and hence Nc[σA] = N ([σA]c).
�

Proposition 6.3. For a homeomorphism h ∈ Nc([σA]) there is an automorphism
αh ∈ Aut(OA,DA) such that αh( f ) = f ◦ h−1 for f ∈ DA. The correspondence
h ∈ Nc([σA])→ αh ∈ Aut(OA,DA) is a homomorphism.

Proof. Since a homomorphism h ∈ Nc([σA]) gives rise to a continuous orbit equiv-
alence on (X A, σA), the claim follows from Proposition 5.6 and its proof. �

Conversely, for any automorphism α ∈Aut(OA,DA), we denote by φα the homeo-
morphism on X A induced by the restriction of α to DA such that α( f )= f ◦φ−1

α

for f ∈DA.

Proposition 6.4. φα belongs to N ([σA]c).
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Proof. For τ ∈ [σA]c, define uτ ∈ N (OA,DA) to be the unitary constructed in
Proposition 4.1 such that Ad(uτ )( f ) = f ◦ τ−1 for f ∈ DA. Since Ad(α(uτ )) =
α ◦Ad(uτ ) ◦α−1 on OA, the condition α(DA)=DA implies α(uτ ) ∈ N (OA,DA).
We see that

Ad(α(uτ ))( f )= α ◦Ad(uτ ) ◦α−1( f )= f ◦ (φα ◦ τ−1
◦φ−1

α ).

Since the homeomorphism τα(uτ ) defined by α(uτ ) ∈ N (OA,DA) belongs to [σA]c

and satisfies Ad(α(uτ ))( f )= f ◦ τ−1
α(uτ ), we conclude that

τ−1
α(uτ ) = (φα ◦ τ

−1
◦φ−1

α )−1
= φα ◦ τ ◦φ

−1
α ,

which belongs to [σA]c. �

We denote by ϕA :DA→DA the homomorphism defined by

ϕA(a)=
N∑

i=1

Si aS∗i for a ∈DA.

In identifying DA with C(X A) as usual, we see ϕA( f )= f ◦σA for f ∈C(X A). A
unitary one-cocycle for ϕA is a U(DA)-valued function U :Z+→U(DA) satisfying

U (k+ l)=U (k)ϕk
A(U (l)) for k, l ∈ Z+ (see [Matsumoto 2000]).

Let Z1
σA
(U(DA)) be the set of all unitary one-cocycles for ϕA; it is an abelian

group in natural way. As in [Matsumoto 2000] (see also [Cuntz 1980; Katayama
and Takehana 1998]), for U ∈ Z1

σA
(U(DA)), put

λ(U )(Sµ)=U (k)Sµ for µ ∈ Bk(X A).

Then λ(U ) gives rise to an automorphism of OA such that λ(U )|DA = id. We note
that the correspondence U ∈ Z1

σA
(U(DA))→ U (1) ∈ U(DA) yields an isomor-

phism of abelian groups, and hence we may identify Z1
σA
(U(DA)) with U(DA).

By [Matsumoto 2000, Lemma 4.8], λ : Z1
σA
(U(DA))→Aut(OA,DA) is an injective

homomorphism of groups.
Let V : Z+→U(DA) be a U(DA)-valued function on Z+ satisfying

V (k)= vϕk
A(v
∗) for k ∈ Z+

for some unitary v ∈U(DA). Then V is called a coboundary for ϕA. Since

V (k)ϕk
A(V (l))= vϕ

k
A(v
∗)ϕk

A(vϕ
l
A(v
∗))= V (k+ l),

a coboundary V for ϕA is a unitary one-cocycle for ϕA. Let B1
σA
(U(DA)) be the

set of all coboundaries for ϕA. It is easy to see that B1
σA
(U(DA)) is a subgroup of

Z1
σA
(U(DA)). We remark that if U ∈ Z1

σA
(U(DA)) satisfies U (1) = vϕA(v

∗) for
some v ∈U(DA), then U (k)= vϕk

A(v
∗) for k ∈ N, and hence U ∈ B1

σA
(U(DA)).
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Define H 1
σA
(U(DA)) by the quotient group Z1

σA
(U(DA))/B1

σA
(U(DA)), called

the cohomology group for ϕA.

Theorem 6.5. There exist short exact sequences

(1) 1→ Z1
σA
(U(DA))

λ
−→ Aut(OA,DA)

φ
−→ N ([σA]c)→ 1,

(2) 1→ B1
σA
(U(DA))

λ
−→ Inn(OA,DA)

φ
−→ [σA]c→ 1,

(3) 1→ H 1
σA
(U(DA))

λ
−→ Out(OA,DA)

φ
−→ N ([σA]c)/[σA]c→ 1.

They all split. Hence Out(OA,DA) is a semidirect product

Out(OA,DA)= N ([σA]c)/[σA]c · H 1
σA
(U(DA)).

Proof. (1) Since N ([σA]c)= Nc[σA] by Lemma 6.2, Propositions 6.3 and 6.4 imply
that the homomorphism φ :Aut(OA,DA)→ N ([σA]c) is defined and is surjective.
By [Matsumoto 2000, Lemma 4.8], the map λ : Z1

σA
(U(DA))→ Aut(OA,DA) is

injective. Let α ∈ Aut(OA,DA) be such that φα = id and hence α|DA = id. By
[Matsumoto 2000, Corollary 4.7], α|DA = id if and only if α = λ(U ) for some
U ∈ Z1

σA
(U(DA)). Hence we have Ker(φ) = Z1

σA
(U(DA)). By Proposition 6.3,

for ϕ ∈ Nc[σA], there exists an automorphism αϕ ∈ Aut(OA,DA), which is of the
form αϕ = Ad(uϕ), where uϕ : HA → HA is a unitary as defined in the proof of
Proposition 5.6. It is clear to see that φαϕ = ϕ. Hence the sequence splits.

(2) Theorem 4.8 implies the homomorphism φ : Inn(OA,DA)→ [σA]c is defined
and surjective. For α ∈ Inn(OA,DA), take v ∈U(OA) such that α =Ad(v). Hence
v belongs to N (OA,DA). Suppose that φAd(v) = id in [σA]c. By (1), there ex-
ists a cocycle U ∈ Z1

σA
(U(DA)) such that Ad(v) = λ(U ). By [Matsumoto 2000,

Lemma 5.14], we see that v ∈ U(DA) and U (1) = vϕA(v
∗). Hence U belongs to

B1
σA
(U(DA)). Since the sequence (1) splits, the section in (1) yields a section in

(2). Hence (2) splits.

(3) The exact sequence follows from (1) and (2), and splits. �

7. Orbit equivalence and AF-algebras

In this section, we will show that the discussions in the previous sections can be
applied to the pair (FA,DA) of the AF-algebra FA and its diagonal algebra DA,
instead of the pair (OA,DA) that we have studied. For x = (xn)n∈N ∈ X A, the
uniform orbit orbσA [x] of x under σA is defined by

orbσA [x] =
∞⋃

k=0

σ−k
A (σ k

A(x))⊂ X A.
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Hence y = (yn)n∈N ∈ X A belongs to orbσA [x] if and only if there exist k ∈ Z+ and
an admissible word µ1 · · ·µk ∈ Bk(X A) such that

y = (µ1, . . . , µk, yk+1, yk+2, . . . ).

Let [[σA]] be the set of all τ ∈Homeo(X A) such that τ(x)∈ orbσA [x] for all x ∈ X A.

Let [σA]AF be the set of all τ in [[σA]] such that there exists a continuous function
k : X A→ Z+ such that

(7-1) σ
k(x)
A (τ (x))= σ k(x)

A (x) for all x ∈ X A.

We call [σA]AF the AF-full group for (X A, σA). Since X A is compact, a homeo-
morphism τ ∈ Homeo(X A) belongs to [σA]AF if and only if there exists a con-
stant k ∈ Z+ such that σ k

A(τ (x)) = σ
k
A(x) for all x ∈ X A. We set, for x ∈ X A,

[σA]AF(x) = {τ(x) | τ ∈ [σA]AF}. It is immediate that [σA]AF(x) = orbσA [x]. Let
N (FA,DA) be the normalizer of DA in FA, which is defined as the group of all
unitaries u ∈FA such that uDAu∗ =DA. The algebra DA is also maximal abelian
in FA. By an argument similar to the proof of Proposition 4.1, we have this:

Lemma 7.1. For any τ ∈ [σA]AF, there exists a unitary uτ ∈ N (FA,DA) such that

Ad(uτ )( f )= f ◦ τ−1 for f ∈DA,

and the correspondence τ ∈ [σA]AF→uτ ∈ N (FA,DA) is a group homomorphism.

By Lemma 4.5 we have the following:

Lemma 7.2. For u ∈ N (FA,DA), let hu ∈ Homeo(X A) be the homeomorphism
on X A induced by the restriction of Ad(u) to DA such that Ad(u)( f ) = f ◦ h−1

u
for f ∈ DA. Then there exists a number k ∈ N such that σ k

A(hu(x)) = σ k
A(x) for

x ∈ X A. Namely hu ∈ [σA]AF.

Therefore by a proof similar to that of Theorem 4.8, we have this:

Proposition 7.3. There exists a short exact sequence

1→U(DA)
id
−→ N (FA,DA)

τ
−→ [σA]AF→ 1

that splits.

We say that (X A, σA) and (X B, σB) are uniformly orbit equivalent if there exists
a homeomorphism h : X A→ X B such that h(orbσA [x])= orbσB [h(x)] for x ∈ X A

and for τ1 ∈ [σA]AF and τ2 ∈ [σB]AF there exist constants k1, k2 ∈ Z+ such that

σ k1
B (h(τ1(x))= σ

k1
B (h(x)) and σ k2

A (h
−1(τ2(y))= σ

k2
A (h

−1(y))

for x ∈ X A and y ∈ X B . The next theorem then follows from an argument similar
to those in the proofs of Propositions 5.3, 5.4, 5.5 and 5.6 and Theorem 1.1.
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Theorem 7.4. The following three assertions are equivalent:

• There exists an isomorphism 9 : FA→ FB such that 9(DA)=DB .

• (X A, σA) and (X B, σB) are uniformly orbit equivalent.

• There is a homeomorphism h : X A→ X B such that h ◦[σA]AF ◦h−1
= [σB]AF.

Let Aut(FA,DA) be the group of all α ∈ Aut(FA) such that α(DA) = DA.
Denote by Inn(FA,DA) the subgroup of Aut(FA,DA) of inner automorphisms
on FA. We set Out(FA,DA) to be the quotient group Aut(FA,DA)/Inn(FA,DA).
We may argue as in Section 6, to obtain this:

Theorem 7.5. There exist short exact sequences

• 1→ Z1
σA
(U(DA))

λ
−→ Aut(FA,DA)

φ
−→ N ([σA]AF)→ 1,

• 1→ B1
σA
(U(DA))

λ
−→ Inn(FA,DA)

φ
−→ [σA]AF→ 1,

• 1→ H 1
σA
(U(DA))

λ
−→ Out(FA,DA)

φ
−→ N ([σA]AF)/[σA]AF→ 1.

They all split. Hence Out(FA,DA) is a semidirect product

Out(FA,DA)= N ([σA]AF)/[σA]AF · H 1
σA
(U(DA)),

where N ([σA]AF) is the normalizer subgroup of [σA]AF in [[σA]].

Concluding remarks. After the December 2007 submission of this paper, related
results have appeared in [Matui 2009; Matsumoto 2009; 2007; 2010]. The last
paper shows that if the sizes of the matrices A, B are less than or equal to three,
then the topological Markov shifts (X A, σA) and (X B, σB) are continuously orbit
equivalent if and only if the Cuntz–Krieger algebras OA and OB are isomorphic.
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