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Let X be a Brauer–Severi variety over a field k of characteristic not 2, and
let D be a division algebra over k with a k-linear involution. We investigate
Witt groups of certain hermitian forms over D⊗k OX .

Introduction

Let k be a field. For any Brauer–Severi variety over k with structure morphism
τ : X → Spec(k), the base change morphism τ ∗ : W (k)→ W (X) between the
Witt rings of k and of X was shown to be surjective in [Pumplün 1998b; 2000],
provided that char k 6= 2. The Witt groups of symmetric bilinear forms over X with
values in a line bundle that generates Pic X were calculated in [Pumplün 1999]. In
this paper, we see that the method involved in both proofs, that is, the killing of
certain cohomology groups, carries over to the setting of hermitian forms over finite
separable field extensions of k with a k-linear involution. Moreover, the method
employed in [Pumplün 1998a] to prove that τ ∗ :W (k)→W (X) is an isomorphism,
if X is the Brauer–Severi variety associated to a central simple algebra of odd index,
generalizes to Witt groups of ε-hermitian forms.

The content of the paper is as follows. Let A be an algebra over k together with
a k-linear involution σ . After the preliminaries in Section 1, Section 2 deals with
in certain special cases the injectivity and surjectivity of the group homomorphism
Uτ : W ε(A)→ W ε(A ⊗k OX ). The extension theorem in Section 3 generalizes
[Arason 1980, Erster Schritt] to hermitian space. Section 4 proves Theorem 8,
which generalizes Horrocks’s theorem [Barth and Hulek 1978]. Together with the
results on extension groups in Section 5, the extension theorem is used to prove
that for a separable field extension l/k with a k-linear involution σ with char k 6= 2,

Uτ :W 1(l)→W 1(l⊗k OX )

is surjective. This result can be found in Section 6. We finish in Section 7 with a
brief look at the case that X = P1

k , where k is a field of characteristic not 2 and
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D is a division algebra over k with a k-linear involution σ . Then Uτ : W ε(D)→
W ε(D⊗ OX ) is bijective for ε = ±1. A strategy for a possible proof of the same
result for X = Pn

k is discussed in Section 7.2.
For the basic terminology and results on extension groups, the reader is referred

to [Hartshorne 1977] and [Hilton and Stammbach 1971].

1. Basic terminology

1.1. Let X be a scheme. By an OX -algebra, we will always mean an associative
OX -algebra that is unital and locally free of finite constant rank as OX -module.
Let A be an OX -algebra with an OX -linear involution σ . Let ε ∈ H 0(X,A) be an
element of the center of A such that εσ (ε)= 1. Let M be a vector bundle over X
that is locally free of finite rank as a right A-module. Put M∗ =HomA(M,A) for
the dual sheaf considered as a right A-module ma= σ(a)m through the involution
σ for all a in A, m in M. Then ∗ is an exact contravariant duality functor; see
[Knus 1991, page 75]. We canonically identify M and M∗ ∗.

A isomorphism h : M → M∗ is called a (nondegenerate) ε-hermitian form if
h= εh∗, and (M, h) is called an ε-hermitian space over A. Two ε-hermitian spaces
(M, h) and (M′, h′) over X are isometric, written as (M, h) ∼= (M′, h′), if there is
an OX -linear isomorphism f :M→M′ such that f ∗h f = h′. The orthogonal sum
(M1, h1)⊥ (M2, h2) of two ε-hermitian spaces (M1, h1) and (M2, h2) is defined as
the ε-hermitian space (

M1⊕M2,

[
h1 0
0 h2

])
,

with the element [ h1 0
0 h2

]
∈Hom(M1⊕M2,M∗1 ⊕M∗2 )

denoted by h1 ⊥ h2. Given an ε-hermitian space (M, h) and a right A-submodule
N ⊂ M, always assumed to be locally a direct summand of M that is locally free
of finite rank as a right A-module, with inclusion ι : N ↪→M,

A⊥ = ker(M
h
−→M∗

ι∗
−→ N∗)

is a right A-submodule of M, the orthogonal complement of N in (M, h). An ε-
hermitian space (M, h) is called metabolic if M contains a subbundle N that is
locally free of finite rank as a right A-module such that N=N⊥, making the short
exact sequence

0→ N
ι
−→M

ι∗h
−−→ N∗→ 0

exact. Given a locally free right A-module of finite rank P,

H ε(P)=

(
P⊕P∗,

[
0 1
ε 0

])
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is a metabolic space, the hyperbolic space of P. An ε-hermitian space (M, h) is
hyperbolic if (M, h) ∼= H ε(P) for a suitable P. Two ε-hermitian spaces (M, h)
and (M′, h′) over X are Witt equivalent, written as (M, h)∼ (M′, h′), if there exist
metabolic ε-hermitian spaces (M1, h1) and (M2, h2) such that

(M, h)⊥ (M1, h1)∼= (M
′, h′)⊥ (M2, h2).

Witt equivalence is an equivalence relation and the set of equivalence classes

W ε(A)= { [(M, h)] | (M, h) is an ε-hermitian space },

together with the addition canonically induced by the orthogonal sum, is a group,
the Witt group of ε-hermitian spaces.

1.2. Let Y be a scheme and τ :Y→ X a morphism of schemes. For a vector bundle
F over X , τ ∗F ∼= F⊗OX OY is a vector bundle over Y , and τ ∗A ∼= A⊗OX OY is
an algebra over Y with involution σ ⊗ 1; for every locally free right A-module
M of finite rank, τ ∗M ∼= M⊗OX OY is a locally free right τ ∗A-module of finite
rank. Given an ε-hermitian space (M, h) over A, τ ∗(M, h) ∼= (τ ∗M, τ ∗h) is a
τ ∗ε-hermitian space over τ ∗A. The morphism τ induces a group homomorphism

Uτ :W ε(A)→W ε′(A⊗OX OY ), (M, h) 7→ (M, h)⊗A (A⊗OX OY )

where ε′=τ ∗ε. If π : Z→Y is another morphism of schemes, then Uτ◦π =Uπ◦Uτ .

1.3. Affine schemes. Let X = Spec R be an affine scheme. Under the usual cate-
gorical equivalence, vector bundles over X can be identified with finitely generated
projective R-modules. For an algebra A over R with an R-linear involution σ , with
A always assumed to be finitely generated projective of constant rank as an R-
module, W ε(A) canonically identifies with W ε( Ã), the Witt group of ε-hermitian
forms over the OX -algebra Ã, the sheaf of OX -algebras associated to A. Under
this identification, the base change homomorphism W ε( Ã) → W ε( Ã ⊗OX OY ),
for a morphism Y = Spec R′ → X = Spec R, corresponds to the base change
W ε(A)→W ε(A⊗R R′) from R to the R-algebra R′.

1.4. Brauer–Severi varieties. Let k be a field. If B is a central simple algebra
over k of dimk B = n2, then B ∼=Mats(D) for a central division algebra D over k.
Let r = exp A be the order of B in the Brauer group Br k. Let k ′/k be a finite
separable field extension that is a maximal subfield of D, so [k ′ : k] = d . Let
X be the Brauer–Severi variety associated with B and let X ′ = X ×k k ′. Then
X ′ ∼= Pn−1

k′ . We know that Pic X ∼= Z and that there is an element L generating
Pic X with L⊗OX OX ′ ∼= OX ′(r). X ∼= Pn−1

k if and only if r = 1, if and only if X
has a rational point [Artin 1982]. In that case L = OX (1). We define L(0) = OX ,
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L(m)=L⊗· · ·⊗L (m-times) for m> 0 and L(m)=L∨⊗· · ·⊗L∨ ((−m)-times)
for m < 0, where m ∈ Z.

1.5. Facts on vector bundles over proper schemes. Let X be a proper scheme
over k, and let l/k be an algebraic field extension. The theorem of Krull and
Schmidt holds for vector bundles over X , that is, every vector bundle on X can be
decomposed as a direct sum of indecomposable vector bundles, which is unique up
to isomorphism and order of summands [Arason et al. 1992, p. 1324]. Moreover,
nonisomorphic vector bundles on X extend to nonisomorphic vector bundles on
Xl = X ×k l for every separable algebraic field extension l/k [ibid., p. 1325].

Let l/k be a separable finite field extension of degree s = [l : k]. If N is a vector
bundle on Xl , the direct image π∗N of N under the projection morphism π : Xl→ X
is a vector bundle on X denoted by trl/k(N) [ibid., pp. 1362 and 1329].

The canonical projection π : Xl→ X is an affine flat morphism [ibid., p. 1329],
and the direct image B = π∗OXl is an OX -algebra that is locally free of rank s as
an OX -module, that is,

trl/k(OXl )= π∗OXl
∼= Os

X .

The assignment F→ π∗F gives an equivalence of categories from quasicoherent
OXl -modules to quasicoherent OX -modules that are B-modules at the same time
[Hartshorne 1977, p. 145, Example 5.17]. This equivalence matches locally free
OXl -modules of finite rank with locally free B-modules of finite rank and, in par-
ticular, Pic(Xl) with Pic(B).

2. Certain special cases

2.1. On the injectivity of Uτ . Let A be an algebra over k together with a k-linear
involution σ . Let n ≥ 2.

Theorem 1. Let X be a k-scheme with a rational point. Then

Uτ :W ε(A)→W ε(A⊗k OX ) is injective.

Proof. Pick a k-rational point in X , that is, a k-morphism δ : Spec a, k→ X . Then
τδ= id on Spec k; hence UδUτ = id on W ε(A⊗k OX ), implying that Uτ is injective.

�

A similar trick as used in [Pumplün 1998a] gives us the next result:

Theorem 2. Let X be a Brauer–Severi variety associated to a central simple alge-
bra of odd index. Then

Uτ :W ε(A)→W ε(A⊗k OX ) is injective.

Proof. Let B ∼= Mats(D) be the central simple algebra associated to X and let
k ′/k be a finite separable field extension that is a maximal subfield of the division
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algebra D, which is hence of odd degree. Define X ′ = X ×k k ′. Let (M1, h1) and
(M2, h2) be two ε-hermitian spaces over A such that

(M1, h1)⊗A (A⊗k OX )∼ (M2, h2)⊗A (A⊗k OX ).

Then the same equivalence holds with X replaced by X ′, which implies

(M1, h1)⊗A (A⊗k k ′)∼ (M2, h2)⊗A (A⊗k k ′)

by Theorem 1. The assertion now follows from [Knus 1991, (10.3.1), p. 62]. �

Theorem 3. Let X be a Brauer–Severi variety associated to a central simple alge-
bra of odd index. Let A be a division algebra over k and suppose char k 6= 2. Let
(M1, h1) and (M2, h2) be two ε-hermitian spaces over A that become isometric
over A⊗k OX . Then (M1, h1)∼= (M2, h2).

Proof. Since

(M1, h1)⊗A (A⊗k OX )∼= (M2, h2)⊗A (A⊗k OX )

we have (M1, h1)∼ (M2, h2) by Theorem 1. By [Knus 1991, (10.3.3), p. 63], this
yields (M1, h1)∼= (M2, h2). �

2.2. On the surjectivity of Uτ . Let A be an algebra over k (for example, quadratic
étale or central simple) together with a k-linear involution σ . Let X be a scheme
over k and let k ′/k be a separable odd degree field extension. Let X ′ = X ×k k ′

and A′ = A⊗k k ′. Observe that A′⊗k′ OX ′ ∼= A⊗k OX ′ .

Theorem 4. If Uτ :W ε(A′)→W ε(A⊗k OX ′) is surjective, then so is

Uτ :W ε(A)→W ε(A⊗k OX ).

Proof. Let trk′/k : k ′→ k be the trace of the extension k ′/k. Its A-linear extension
id⊗ trk′/k : A⊗k k ′→ A is an involution trace form in the sense of [Knus 1991,
(7.3.2), p. 41]. Both maps induce group homomorphisms trk′/k :W (k ′)→W (k) and
trk′/k :W (X ′)→W (X), and T :W ε(A⊗k k ′)→W ε(A) and T :W ε(A⊗k OX ′)→

W ε(A⊗k OX ). As in [Knus 1991, p. 62], we can show that

T (Uτ (M, h)⊗ (F, γ ))∼ (M, h)⊗ trk′/k(F, γ )

or, equivalently,

T (((M, h)⊗A (A⊗OX OX ′))⊗ (F, γ ))∼ (M, h)⊗ trk′/k(F, γ )

for all ε-hermitian spaces (M, h) over A= A⊗k OX and symmetric bilinear spaces
(F, γ ) over X ′. Analogously,

T (((M, h)⊗A (A⊗k k ′))⊗ (F, γ ))∼ (M, h)⊗ trk′/k(F, γ )
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for all ε-hermitian spaces (M, h) over A and nonsingular symmetric bilinear spaces
(F, γ ) over k ′. Since [k ′ : k] is odd, we get

trk′/k(〈1〉OX ′
)∼ 〈1〉OX ,

T ((M, h)⊗A (A⊗OX OX ′))∼ (M, h) and T ((M, h)⊗A (A⊗k k ′))∼ (M, h)

as in [Knus 1991, p. 62]. For an ε-hermitian space (M, h) over A it follows that

(M, h)∼= (M, h)⊗〈1〉OX

∼ (M, h)⊗ trk′/k(〈1〉OX ′
)

∼ T (((M, h)⊗A (A⊗OX OX ′))⊗〈1〉OX ′
)

∼ T ((M ′, h′)⊗A′ (A′⊗k′ OX ′))∼ T (M ′, h′)⊗A (A⊗OX )

for a suitable hermitian space (M ′, h′) over A′, where the second to last equivalence
holds by the assumption that Uτ :W ε(A′)→W ε(A⊗k OX ′) is surjective. �

Corollary 5. Let X be a Brauer–Severi variety of odd index. Let Mats(D) be the
central simple algebra associated to X. If k ′/k is a finite separable field extension
that is a maximal subfield of D and such that Uτ : W ε(A′)→ W ε(A ⊗k OX ′) is
surjective (X ′ ∼= Pn−1

k ), then Uτ :W ε(A)→W ε(A⊗k OX ) is surjective.

3. Extension theorem for hermitian spaces

Let X be a scheme such that 2 ∈ H 0(X,O×X ), and let A be an algebra over X
with an OX -linear involution σ . An ε-hermitian space (M, h) with ε = 1 is called
a hermitian space. For a hermitian space (M, h), a subbundle N ⊂ M is called
totally isotropic if N⊂N⊥. For a totally isotropic subbundle N⊂M, we obtain an
induced hermitian space (M, h) by setting M=N⊥/N and writing ι :N⊥ ↪→M for
the inclusion, and π : N⊥→M for the projection. Then h is uniquely determined
by ι∗ ◦ h ◦ ι= π∗ ◦ h ◦π . We get a short exact sequence

0→ N⊥
κ
−−→M⊕M

(κ∗,h⊕−h)
−−−−−−→ N⊥∗→ 0

with κ = (π, id) implying that (M, h) ⊥ (M,−h) is metabolic. Since (M, h) ⊥
(M,−h) is metabolic as well, (M, h) and (M, h) are Witt equivalent. We get a
short exact sequence of locally free right A-modules of constant finite rank

0→ N
ι
−−→ N⊥

π
−→M→ 0.

Analogously to what was observed in [Pumplün 1998b, Section 4], we can reverse
this construction as follows:

For a locally free right A-module M of constant finite rank, let {Exti (M, · )} be
the right derived functor of the group of A-module homomorphisms HomA(M, · ),
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which is a universal contravariant δ-functor from locally free right A-modules of
constant finite rank to abelian groups.

Theorem 6. Let (G, b) be a hermitian space over A and let

(1) 0→ N
ι
−−→B

π
−−→ G→ 0

be a short exact sequence of locally free right A-modules of constant finite rank.
Suppose that

Ext1(N∗,N)= Ext2(N∗,N)= 0.

Then there exists a hermitian space (M, h) and identifications of N and B in M

such that B= N⊥ in (M, h) and (G, b)∼= (M, h). In particular, (G, b) and (M, h)
are Witt equivalent.

Moreover, for (M, h) as in Theorem 6, we have B⊥ = N; hence the sequence

(2) 0→ N→M
ι∗h
−−−→B∗→ 0

is exact, with ι being the inclusion B ↪→M.
For the proof of this result, we need the following elementary results.

Lemma 7. (a) Let (P) and (Q) be two extensions of locally free right A-modules
of constant finite rank such that

(P) 0→M′ //

id
��

M //

α

��

M′′→ 0

α′′

��
(Q) 0→M′

p∗ι // M1κ
∗ // M′′2→ 0

with α′′ : M′′ → M′′1 an A-linear map. If ξ ∈ Ext1(M′′,M′) corresponds to the
extension (P), and if ξ1 ∈ Ext1(M′′1,M′) corresponds to the extension (Q), then the
following statements are equivalent:

(i) There exists an A-linear map α : M → M1 that makes the diagram above
commutative.

(ii) Ext1(α′′,M′)ξ1 = ξ .

(b) Let
(P) 0 // M′ //

��

M

α

��

π // M′′→ 0

��
(Q) 0

ι1 // M′
p∗ι // M1

κ∗ // M′′2→ 0

be a commutative diagram of locally free right A-modules of constant finite rank
with exact rows. Then an A-linear map β : M→ M1 makes the diagram commu-
tative as well if and only if there exists an A-linear map γ : M′′→ M1 such that
β = α+ ι1γπ . In this case γ is unique.
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The proof of Theorem 6 is now analogous to the proof in [Arason 1980, Erster
Schritt]:

Proof. We dualize (1) and replace G∗ by G via b. This yields the short exact
sequence

(3) 0→ G
π∗b
−−−−→B∗

ι∗
−−→N∗→ 0.

By applying {Exti ( ·,N)} to (3) we obtain a long exact sequence. In particular,

(4) 0= Ext1(N∗,N)→ Ext1(B∗,N)

Ext1(π∗b,N)
−−−−−−−−→ Ext1(G,N)→ Ext2(N∗,N)= 0.

Therefore the middle map is an isomorphism. Let ξ ∈Ext1(G,N) correspond to the
isomorphism class of extension (1). Then we thus find a unique ξ1 ∈ Ext1(B∗,N)

such that Ext1(π∗b,N)(ξ1) = ξ . This yields an extension of locally free right
A-modules of constant finite rank

(5) 0→ N→M
p
−−→B∗→ 0

over X ; see (2). Using (1) and (5) we obtain the commutative diagram of Diagram 1
(see Lemma 7(a)): Diagram chasing confirms that the middle column of this is
also exact. Using that b = b∗, we dualize and obtain Diagram 2. By replacing
G∗ with G via b, we replace bπ by π and π∗ by π∗b. We obtain Diagram 3. Let
ξ∗1 ∈ Ext1(B∗,N) correspond to the extension

(6) 0→ N
p∗ι
−−−→M∗

κ∗
−−−→B∗→ .

0

��

0

��
0 // N

ι //

id
��

B
π //

κ
��

G

π∗b
��

// 0

0 // N // M

ι∗ p
��

p // B∗

ι∗

��

// 0

N∗
id //

��

N∗

��
0 0

Diagram 1
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0 0

0 // G∗

OO

π∗ // B∗
ι∗ //

OO

N∗ // 0

0 // B
p∗ //

bπ

OO

M∗ //

κ∗
OO

N∗ //

id

OO

0

N
id //

ι

OO

N

p∗ι
OO

0

OO

0

OO

Diagram 2

0

��

0

��
0 // N

id
��

ι // B

p∗
��

π // G

π∗b
��

// 0

0 // N
p∗ι // M∗

κ∗ //

ι∗ p
��

B∗

ι∗

��

// 0

N∗

��

id // N∗

��
0 // 0

Diagram 3

Then Ext1(π∗b,N)ξ∗1 = ξ by Lemma 7(a); thus ξ∗1 = ξ and the extensions (5)
and (6) are isomorphic. (This step does not generalize to ε-hermitian forms with
ε 6=1.) Therefore there exists an A-linear map h :M→M∗ that makes the following
diagram commutative:

(7)
0→ N

κι //

id
��

M
p //

h
��

B∗→ 0

id
��

0→ N
p∗ι // M∗

κ∗ // B∗→ 0
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h is an isomorphism and is by Lemma 7(b) unique up to summands of the form
p∗ιβp with β ∈HomA(B

∗,N). The diagram

0→ N
ι //

id
��

B
π //

p∗,hκ
��

G→ 0

π∗b
��

0→ N
p∗ι // M∗

κ∗ // B∗→ 0

is made commutative by both maps written next to the arrow in the middle, since
we have hκι = p∗ι by (7) and κ∗ p∗ = π∗bπ = pκ = κ∗hκ by Diagrams 3 and 1
and Equation (7). Lemma 7(b) implies that there exists a γ ∈ Ext1(G,N) such that
hκ = p∗+ p∗ιγ π . Since Ext1(N∗,N)= 0, (3) induces the exact sequence

(8) HomA(N
∗,N)

HomA(ι
∗,N) // HomA(B

∗,N)
HomA(π

∗b,N)// HomA(G,N)→ 0.

Therefore γ = βπ∗b for some β ∈HomA(B
∗,N), which yields

hκ = p∗+ p∗ιβπ∗bπ = p∗+ p∗ιβpκ,

and so (h− p∗ιβp)κ = p∗. Since h is unique up to certain summands (see above),
we may assume that

(9) hκ = p∗.

Moreover, h is uniquely determined by this equation together with (7), up to sum-
mands of the form p∗ιβp with β ∈ HomA(B

∗,N) such that p∗ιβpκ = 0. We
also have p∗ιβpκ = 0 if and only if p∗ιβπ∗bπ = 0 by Diagram 1, if and only
if βπ∗b = 0 (p∗ι is injective, and π is surjective), if and only if β = αι∗ by (8).
Therefore h is uniquely determined up to summands of the form p∗ιαι∗ p with
α ∈HomA(N

∗,N).
Now h∗ :M→M∗ satisfies h∗κ = (κ∗h)∗= p∗ by (7), hence (9), and h∗κι= p∗ι

and κ∗H∗ = (hκ)∗ = p by (9), hence (7). Therefore the fact that h is uniquely
determined up to summands of the form p∗ιαι∗ p with α ∈ HomA(N

∗,N) even
yields a unique α ∈ HomA(N

∗,N) satisfying h∗ = h + p∗ιαι∗ p, and dualizing
implies that α =−α∗. Replacing h by h+ 1

2 p∗ιαι∗ p if necessary, we may assume
in addition that h= h∗. We have thus obtained a hermitian space (M, h) containing
N as a subbundle via κι by Diagram 1, such that

N⊥ = ker(ι∗κ∗h)= ker(ι∗(hκ)∗)= ker(ι∗ p)= im(κ)

and N= im(κι)⊂ im(κ). We conclude that N is totally isotropic and that B, viewed
as a subbundle of M via κ , can be identified with N⊥. Under these identifications,
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the diagram

B
κ //

π

��

M
h // M∗

κ∗ // B∗

π∗

��
G

b // G∗

corresponds to the equation displayed in the first paragraph of Section 3, and it com-
mutes because of Diagram 3. Hence (G, b) and (M, h) are isometric, as claimed.
The last assertion now follows easily. �

Our assumption that 2∈H 0(X,O×X ) is needed in the proof and cannot be omitted.

4. A generalization of Horrocks’s theorem

Let k be a field and D be a division algebra over k. Let X =Pn
k and τ :Pn

k→Spec k
be the structure morphism. Let D= τ ∗D ∼= D⊗k OX .

Given a locally free right D-module E, let E(m) = OX (m)⊗OX E for any inte-
ger m. For a locally free right D-module E, define

Exti (D,E(∗))=
⊕
j∈Z

Exti (D,E( j)) for integers j ≥ 0.

We generalize Horrocks’s theorem [Barth and Hulek 1978, Section 5, Lemma 1],
an important ingredient in the proofs of [Arason 1980] and [Pumplün 1998b]:

Theorem 8. A locally free right D-module E satisfies

E∼= D(m1)⊕ · · ·⊕D(mt)

if and only if

(10) Exti (D,E(∗))= 0 for i ∈ Z with 0< i < n.

Proof. By the cohomology of projective space, the condition (10) is necessary.
We prove that it is sufficient by induction on n. For n = 1, every locally free

right D-module E is of the form

E∼= D(m1)⊕ · · ·⊕D(mt)

[Knus 1991, page 407, VII (3.1.1)], so there is nothing to prove. So suppose n> 1
and assume that the assertion holds for n− 1 in place of n. Z = Pn−1

k is a closed
subscheme of X with inclusion i : Z ↪→ X . Via identification with the hyperplane
xn = 0, we obtain a short exact sequence

0→ OX (−1)→ OX → i∗OZ → 0.
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Let E be a locally free right D-module satisfying (10); then tensor the sequence
above with E( j) to obtain

(11) 0→ E( j − 1)→ E( j)→ i∗[(E|Z )( j)] → 0.

By (10) this yields

Exti (D, (E|Z )( · ))= 0 for 0< i < n− 1,

so, by the induction hypothesis, E|Z is a direct sum of locally free right D|Z -
modules of rank one of the kind D|Z (m): There are integers s1, . . . , st , a sum
F = D(s1)⊕ . . .D(st), and an isomorphism 9 : F|Z → E|Z of locally free right
D|Z -modules. Put j = 0 in (11); then

0→ E(−1)→ E→ i∗(E|Z )→ 0.

is a short exact sequence of locally free right D-modules, where E→ i∗(E|Z ) is the
canonical restriction map. Applying HomD(F, · ) to this yields the exact sequence

HomD(F,E)→HomD(F, i∗(E|Z ))=HomD(F|Z ,E|Z )→ Ext1(F,E(−1))

and since we assume that E satisfies (10),

Ext1(F,E(−1))∼=
t⊕

j=1

Ext1(D(s j ),E(−1))∼=
t⊕

j=1

Ext1(D,E(−s j − 1))= 0.

Therefore the natural map HomD(F,E)→HomD(F|Z ,E|Z ) is surjective, so that
9 extends to a D-linear homomorphism ϕ : F→ E. Now view ϕ as an OX -linear
map between vector bundles F and E over X . Then

detϕ ∈HomOX (det F, det E)∼= H 0(X, (det F)∨⊗ (det E))∼= H 0(X,OX (m))

for some integer m. Restricting this to Z shows that m = 0 and thus detϕ ∈ k×.
Hence ϕ is an isomorphism. �

5. Killing extension groups for X = Pn−1
k

The proof of surjectivity of the base change morphism τ ∗ :W (k)→W (X) between
the Witt rings of k and a Brauer–Severi variety X in [Arason 1980; Pumplün 1998b;
Pumplün 2000] used the killing of cohomology groups. In our setup, this corre-
sponds to the following observations we phrase in terms of extension groups. We
phrase the proofs in a general setting in order to see if and where they could be
used in a more general setup.

Let k be a field of characteristic not 2, and let D be a division algebra over k.
Let X = Pn−1

k , D = τ ∗D ∼= D⊗k OX and F(m) = OX (m)⊗F for any integer m
and any locally free right D-module F.



WITT GROUPS OF HERMITIAN FORMS OVER A BRAUER–SEVERI VARIETY 239

Every right D-module W may be viewed as a right module over Spec D, so for
a right D-module F, the notation F⊗D W = F⊗OSpec D W used in the following
makes sense and is a D-module.

Let � = �X/k be the sheaf of relative differentials of X over k and �l
= 3l�

the sheaf of l-forms over k. Define �l
D =�

l
⊗OX D.

5.1. Let X be a scheme and A an algebra over X . Let α :F1→F2 be an A-linear
map of right A-modules. For any right A-module G and i ∈N0 we get an induced
homomorphism

Exti (α,G) : Exti (F2,G)→ Exti (F1,G),

and
{Exti (α, · )} : {Exti (F2, · )} → {Exti (F1, · )}

is a homomorphism of δ-functors.

Lemma 9. Assume that D is a field extension of k. Let l ∈Z with 0≤ l < n−2 and
F a locally free D-module. Then there exists a finite-dimensional D-vector space
W as well as an extension

0→ F→ P→ (�r
⊗k D)⊗D W → 0.

of locally free D-modules such that the connecting homomorphism

δ :HomD(�
l
D, �

l
D ⊗D W )→ Ext1(�l

D,F)

is an isomorphism.

Proof. Let W be an arbitrary free D-vector space of finite dimension. Multiplica-
tion by x ∈W yields a D-linear map

τx :�
l
D→�l

D ⊗D W, s→ s⊗ x .

For a locally free D-module F, the map

θ = θF :HomD(�
l
D ⊗D W,F)→Hom D(W,Hom(�l

D,F))

defined by [θ(ϕ)](x) = ϕ ◦ τx for ϕ ∈ HomD(�
l
D ⊗D W,F) and x ∈ W is an

isomorphism with inverse satisfying

[θ−1(9)](s⊗ x)=9(x)s

for 9 ∈ HomD(W,Hom(�l
D,F)), s ∈ �l

D , and x ∈ W . The map θ is functorial
in F and since the functor Hom D(W, · ) is exact for a fixed D-vector space W , we
get an induced isomorphism

{θ i
} : {Exti (�l

D ⊗D W, · )} → {HomD(W,Exti (�l
D, · ))}

of universal δ-functors.
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Now
{Exti (τx , · )} : {Exti (�l

D ⊗D W, · )} → {Exti (�l
D, · )}

is a homomorphism of δ-functors by Section 5.1. Let V be a finite-dimensional
D-vector space; then the evaluation map

εx = εx,Z :Hom D(W, V )→ V, α→ α(x)

is functorial in V . We obtain a diagram of δ-functors

{Exti (�l
D ⊗D W, · )}

{Exti (τx ,· )} ))

{θ i
} // {HomD(W,Exti (�l

D, · ))}

{εx,Exti (�l
D ,· )
}uu

{Exti (�l
D, · )},

which commutes since it commutes in degree zero:

εx,Hom(�l
D,F)

θ(ϕ)= [θ(ϕ)](x)= ϕ ◦ τx =Hom(τx ,F)(ϕ).

This implies that

(A) [θ i (ζ )](x)= εxθ
i (ζ )= Exti (τx , ε)(ζ )

for all i ∈ N0, ζ ∈ Exti (�l
D ⊗D W,F) and x ∈W .

Let λ :W → Exti (�l
D,F) be a D-linear map, put

ζ = (θ1)−1(λ) ∈ Ext1(�l
D ⊗D W,F),

and write

(B) 0→ F→ P→ (�l
D)⊗D W → 0.

for the extension of (�l
D)⊗D W by F corresponding to ζ [Hartshorne 1977, Section

III, Example 6.1]. Using the canonical maps

µ :Hom(�l
D, �

l
D)⊗D W →Hom(�l

D, �
l
D ⊗D W ), ϕ⊗ x→ τx ◦ϕ

and
κ :W →Hom(�l

D, �
l
D)⊗D W, x→ id⊗ x,

the diagram

W
λ //

κ

��

Ext1(�l
D,F)

δ
��

Hom(�l
D, �

l
D)⊗D W

µ // Hom(�l
D, �

l
D ⊗D W )
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commutes, where δ is the connecting homomorphism arising from (B). Indeed,
given x ∈W ,

{Exti (τx , · )} : {Exti (�l
D ⊗D W, · )} → {Exti (�l

D, · )}

is a homomorphism of δ-functors by Section 5.1. Thus the diagram

Hom(�l
D ⊗D W, �l

D ⊗D W )
δ //

Hom(τx ,�
l
D⊗D W )

��

Ext1(�l
D ⊗D W,F)V V

Ext1(τx ,F)
��

Hom(�l
D, �

l
D ⊗D W )

δ // Ext1(�l
D,F)

commutes, yielding

δµκ(x)= δµ(id�l
D
⊗ x)= δ(τx)= δHom(τx , �

l
D ⊗D W )

Ext1(τx ,F) δ (id�l
D⊗W )= Ext1(τx ,F)(ζ )= [θ1(ζ )](x)= λ(x)

by (A). The map κ is an isomorphism since Hom(�l, �l) ∼= k (see for instance
[Pumplün 1998b, 3.3(b)]), thus Hom(�l

D, �
l
D)
∼= D. Because µ is functorial in

W and commutes with direct sums, it is an isomorphism as well since it obviously
is so for V = D. Taking W = Ext1(�l

D,F) and λ = idW , the map δ behaves as
desired. �

Note that in this last step of the proof, we need W = Ext1(�l
D,F) to be a free

D-module, which is guaranteed if D is a field extension. It is not clear how to
generalize this proof if D is not a field extension, even if we assume that every
finitely generated projective right D-module is free. The result is needed to prove
both Lemma 10 and Proposition 11.

5.2. In the ensuing lemma we will use the following property of Ext-functors: Let

0→M j → F j → N j → 0

for j = 1, 2 be two short exact sequences of locally free right D-modules. Then
the diagram

Exti (M2,N1)
δ //

δ
��

Exti+1(M2,M1)V V

−δ
��

Exti+1(N2,N1)
δ // Exti+2(N2,M1)

commutes for all i ≥ 0; see [Hilton and Stammbach 1971, IV.9.9], or just adapt
[Neukirch 1969, Satz 3.6].
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Lemma 10. Assume that D is a field extension of k. Let l ∈ Z with 0 ≤ l < n− 2
and m = 0, and let F be a locally free D-module such that

Exti (D,F(∗))= 0 for 0< i < l + 1,

Extl+1(D,F( j))= 0 for j > m.

Then, in the situation of Lemma 9, the connecting homomorphism

δ : Extl(D, �l
D ⊗W,F)→ Extl+1(D,F)

is an isomorphism.

Proof. For l = 0, this is shown in Lemma 9; thus we assume l > 0. Let E be a
D-module, let i, j, p ∈ Z be such that i ≥ 0 and 1≤ p ≤ l, and let

0→�l
→ OX (−l)(

n
l)→�l−1

→ 0

be the extended Euler sequence of X [Pumplün 1998b, 3.1]. Tensoring by D yields
the short exact sequence

0→�l
D→ D(−l)(

n
l)→�l−1

D → 0

of D-modules and twisting it by OX ( j) the short exact sequence

0→�l
D( j)→ D(−l + j)(

n
l)→�l−1

D ( j)→ 0

of D-modules.
This induces a long exact Ext-sequence, part of it looking as follows:

Exti+l−p(D(−p+ j),E)(
n
p) −→ Exti+l−p(�

p
D( j),E)(

n
p)

δp
−−−→ Exti+l−(p−1)(�

p−1
D ( j),E)−→ Exti+l−p+1(�

p
D( j),E).

Combining for p = 1, . . . , l, we get a homomorphism

δ : δ1 . . . δl : Exti (�l
D( j),E)→ Exti+l(D( j),E)

which is injective if each δp is, and surjective if each δp is. This is the case if

Exti+l−p(D(−p+ j),E)= Exti+l−p(D,E(−p+ j))= 0

and respectively

Exti+l−p+1(D(−p+ j),E)= Exti+l−p+1(D,E(−p+ j))= 0

for 1≤ p ≤ l.
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Applying this to the special cases i = j = 0, E=�l
D ⊗D W and i = 1, j = 0,

E= F, we obtain that the diagram

Hom(�l
D, �

l
D ⊗D W )

δ //

δ
��

Extl(D, �l
D ⊗D W )

δ
��

Ext1(�l
D,F)

δ // Extl+1(D,F)

commutes up to a sign by Section 5.2. For 1≤ p ≤ l, we have

Extl−p+1(D, �l
D ⊗D W ⊗OX (p))= Extl−p+1(D, �l

D ⊗OX (p))rank W
= 0

since Extl−p+1(OX , �
l(p))= 0 by [Pumplün 1998b, 3.3(c)], and also

Extl−p+2(D, �l
D ⊗D W ⊗OZ (p))= Extl−p+2(D, �l

D ⊗OX (p))rank W
= 0

since Extl−p+2(OX , �
l(p)) = 0 by [Pumplün 1998b, 3.3(d)], so the upper map δ

is injective.
For 1≤ p ≤ l, we have

Extl−p+1(D,F(p))= 0

and also

Extl−p+2(D,F(p))= 0

by the hypothesis on F, so the lower map δ is an isomorphism. The left map δ
is an isomorphism by Lemma 9; therefore also the right side map δ must be an
isomorphism, as desired. �

Proposition 11. Assume that D is a field extension of k.
Let l,m ∈ Z with 0≤ l ≤ n− 2 and let F be a locally free D-module such that

Exti (D,F(∗))= 0 for 0< i < l + 1,

Extl+1(D,F( j))= 0 for j > m.

Then there is a finite-dimensional D-vector space W and an extension

0→ F→ P→�l
D(−m)⊗D W → 0.

such that

Exti (D,P( j))= 0 for i, j ∈ Z with 0< i < l + 1,

Extl+1(D,P( j))= 0 for j ∈ Z with j ≥ m,

Extl+1(D,P( j))∼= Extl+1(D,F( j)) for j ∈ Z with j < m.
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Proof. By twisting by OX (m), we may assume that m = 0.
Twisting the short exact sequence of Lemma 9 by OX ( j) yields the short exact

sequence
0→ F( j)→ P( j)→ (�r

D ⊗D W )( j)→ 0.

By the hypotheses on F, Exti (D,F(∗)) = 0 for 0 < i < l + 1. Moreover, unless
i = l and j = 0, we have Exti (D, �l

D( j)⊗D W ) = 0 [Pumplün 1998b, 3.3(d)],
forcing Exti (D,P( j))= 0 for 0< i < l+1, i 6= l or j 6= 0. In case i = l and j = 0,
the exact sequence

0→ Extl(D,P)→ Extl(D, �r
D ⊗D W )

δ
−−→ Extl+1(D,F)

together with Lemma 10 implies that Extl(D,P) = 0. Summing up, we have
Exti (D,P( j))= 0 for 0< i < l + 1.

Now consider the exact sequence

Extl(D, �r
D ⊗D W ( j))

δ
−−→ Extl+1(D,F( j))

−→ Extl+1(D,P( j))−→ Extl+1(D, (�l
D ⊗D W )( j))= 0,

the last extension group being zero by [Pumplün 1998b, 3.3(d)]. If j 6= 0, also
Extl(D, (�r

D⊗D W )( j))=0 which implies Extl+1(D,P( j))∼=Extl+1(D,F( j))=0
for j > 0. If j = 0, δ is an isomorphism by Lemma 10, which shows that
Extl+1(D,P)= 0 and completes the proof. �

Lemma 12. Let D be a field extension of k. Let l,m ∈ Z with 0≤ l ≤ 1
2(n−1)−1

and m ≥ −l − 1 for l = 1
2(n − 1) − 1. Given any finite-dimensional D-vector

space W , put R=�l
D(−m)⊗D W . Then

Ext1(R,R∗)= Ext2(R,R∗)= 0.

Proof. Exti is additive in both variables, so we may assume that W = D and have
to show that

Exti (�l
D(−m), (�l

D(−m))∗)= 0 for i = 1, 2.

Put j = −m and F = �l
D(−m)∗; then as in the proof of Lemma 10 we obtain a

homomorphism

δ : Exti (�l
D(−m), (�l

D(−m))∗)→ Exti+l(D, (�l
D(−2m))∗).

Since n − 1 ≥ 2l + 1 we have l < n − 1 − i − l + p for all p = 1, . . . , l.
By Serre duality, we know that H i+l−p(X, �l(−m)∨(p + m)) = 0; therefore
Exti+l−p(D, �l

D(−m)∗(p+m))=0, which together with [Pumplün 1998b, 3.3(d)],
proves injectivity of δ as in the proof of Lemma 10. Using Serre duality and
[Pumplün 1998b, 3.3(d)], we can check that H i+l(X, �l(−2m)∨) = 0; therefore
Exti+l(D, �l

D(−2m)∗)= 0 for i = 1, 2. Hence δ is surjective as well. �
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6. Hermitian forms over field extensions of k

6.1. Let k be a field of characteristic not 2 and X a Brauer–Severi variety over k.
Let l/k be a separable field extension with a k-linear involution σ . Put Y = X×k l
and Xs = X ×k ks ∼= Pn−1

ks
, where ks is a separable closure of k. Recall from

[Pumplün 1998b, 5.2] that every line bundle OXs (m) has a G-invariant isomorphism
class, where G =Gal (ks/k) is the Galois group of ks/k. Thus OXs (m)∼= OXs (m)

τ

for all τ ∈ G. We look at (σ )-hermitian spaces (M, h) over D= l⊗k OX , pointing
out that l ⊗k OX = π∗OY ; see Section 1.5. In other words, Y is affine over X and
defined by the sheaf of OX -algebras l⊗k OX :

Y = Spec
X
(l⊗k OX );

see [Hartshorne 1977, II, Example 5.17].
Let M be a right D-module that is locally free of finite rank. Then M canonically

is an OX -module, and we denote the associated OY -module by M̃ as in [Hartshorne
1977, II, Example 5.17].

Proposition 13. Suppose Y = Pn−1
l . Then every hermitian space (M, h) over

l ⊗k OX such that M̃ splits into a direct sum of line bundles is Witt equivalent
to a hermitian space extended from l.

Proof. If M̃ splits into the direct sum of line bundles, then

M̃∼=

t⊕
i=1

OY (si ) as OY -module.

We have OY (m) ∼= OY (m)∗ if and only if m = 0 [Pumplün 1998b, 5.2]. Hence
there is no nontrivial line bundle over Y that is selfdual with respect to ∗. By the
Krull–Schmidt theorem for hermitian spaces [Knus 1991, (6.3.1), page 98], and by
[Knus 1991, (6.4.1), page 99],

(M, h)∼= (M0, h0)⊗l (l⊗OY )⊥ a hyperbolic space. �

Theorem 14. Suppose X = Pn−1
k . Then Uτ :W 1(l)→W 1(l⊗k OX ) is surjective.

The proof is similar to the one given in [Arason 1980] or [Pumplün 1998b, 5.1]:

Proof. In the case n = 2, for every hermitian space (M, h) over l⊗k OX , the vector
bundle M splits into a direct sum of line bundles; hence surjectivity follows from
Proposition 13, and we may assume n ≥ 3.

We show by induction on a≥ 0: If (M, h) is a hermitian space over D= l⊗k OX

such that

a =max{i ∈ Z | 0≤ i < n− 1, Extn−i−1(D,M(∗)) 6= 0},



246 SUSANNE PUMPLÜN

then (M, h), up to Witt equivalence, is a hermitian space extended from l. Note
that the set on the right hand side is not empty here.

If a = 0, then Extn−i−1(D,M(∗)) = 0 for 0 < i < n− 1, so by the generaliza-
tion of Horrocks’s theorem, M ∼= D(s1)⊕ · · · ⊕D(st) for some of the si and, by
Proposition 13, (M, h) is Witt equivalent to some hermitian space extended from l.
This settles the induction beginning.

In the induction step, let a > 0 and suppose the induction hypothesis holds for
all nonnegative integers a′ < a.

There is no harm in assuming a < n− 1, so if l = n− 2− a, then

(12) 0≤ l < n− 2.

It suffices to show that a hermitian space (M, h) with

Exti (D,M(∗))= 0 for 0< i < l + 1

is, up to Witt equivalence, extended from l. This will be done by induction on

s = dim Extl+1(D,M(∗)).

If s = 0, then Extl+1(D,M(∗))= Extn−a−1(D,M(∗))= 0; therefore

max{i ∈ Z | 0≤ i < n− 1, Extn−i−1(D,M(∗)) 6= 0}< a

and we are done by induction hypothesis on a. If s > 0, then

(13) l is the least nonnegative integer such that Extl+1(D,M(∗)) 6= 0.

By [Hartshorne 1977, III, Example 6.10], Extq(D,M( j)) = Extq(OY , M̃( j)) =
Hq(Y, M̃( j)). Thus (13) is equivalent to saying that

(15′) l is the least nonnegative integer such that H l+1(Y, M̃(∗)) 6= 0.

Using that M∼=M∗ and Serre duality, we obtain

H i (Y, M̃( j))∼= H i (Y, M̃
∨
( j))∼= H n−1−i (Y, M̃(−n− 2− j))∨

and may conclude that

(14) l + 1≤ 1
2(n− 1).

Picking m ∈ Z maximal such that Extl+1(D,M(m)) 6= 0, we obtain

(15) m ≥−l − 1 if l + 1= 1
2(n− 1).

(This is because m ≥−n−2−m for l+1= 1
2(n−1); thus 2m ≥−n−2=−2l−4,

implying m ≥−l − 1.) In particular,

(16) Extl+1(D,M( j))= 0 for j > m.
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Because of (12), (13) and (16), M satisfies the hypothesis of Proposition 11 and
there exists a locally free D-module E and an extension

(17) 0→M→ P→ E→ 0.

such that P satisfies the conditions listed in Proposition 11. Hence

Ext1(E,E∗)= Ext1(E,E∗)= 0.

Thus we may apply the extension theorem to the dual of (17) with M replaced by
M∗ via h, that is, to

(18) 0→ E∗→ P∗→M→ 0.

This way we obtain a hermitian space (S, b)Witt equivalent to (M, h) and an exact
sequence of D-modules

(19) 0→ E∗→ S→ P→ 0.

Since Exti (D, �l
D(−m)∗( j))= 0 for 0< i ≤ l + 1, this together with (18) yields

Exti (D,S(∗))= 0 for 0< i < l + 1

and that Extl+1(D,S( j))→ Extl+1(D,P( j)) is injective for all j ∈ Z. The latter
shows by using Proposition 11 that

Extl+1(D,S( j))= 0 for j ≥ m′,

dim Extl+1(D,S( j))≤ dim Extl+1(D,M( j)) for j < m′.

Together this yields dim Extl+1(D,S(∗)) ≤ s. Applying the induction hypothesis
yields the assertion that (S, b) and hence also (M, h) is up to Witt equivalence
extended from l. �

By Theorems 1, 2 and 4, this settles the case where X is associated to a central
simple algebra of odd index:

Corollary 15. (i) Let X = Pn−1
k . Then Uτ :W 1(l)→W 1(l⊗k OX ) is bijective.

(ii) Let X be a Brauer–Severi variety associated to a central simple algebra of
odd index. Then Uτ :W 1(l)→W 1(l⊗k OX ) is bijective.

6.2. Let X be a Brauer–Severi variety over k with associated central simple algebra
Mats(E), where E is a division algebra over k.

Proposition 16. (i) Suppose there is a separable maximal subfield k ′ of E contain-
ing l. Let X ′ = X ×k k ′. Then every hermitian space (M, h) over l⊗k OX such that
M̃⊗ OX ′ splits into the direct sum of line bundles is Witt equivalent to a hermitian
space (M0, h0) over l.
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(ii) Suppose there is a separable maximal subfield k ′ of E such that l and k ′ are
linearly disjoint. Let Y ′ = X ×k l ′ with l ′ = l ⊗k k ′. Then every hermitian space
(M, h) over l ⊗k OX such that M̃⊗ OY ′ splits into the direct sum of line bundles is
Witt equivalent to a hermitian space (M0, h0) over l.

Proof. (i) Obviously, X ′ ∼= Pn−1
k′ . If M̃⊗OY OX ′ splits into the direct sum of line

bundles
M̃⊗OY OX ′ ∼=

t⊕
i=1

OX ′(si ),

then, by the theory developed in [Arason et al. 1992],

M̃∼=

t⊕
i=1

L(si )⊕

h⊕
j=1

trl j/ l(N j )

as OY -module, where the N j are line bundles over Y j = Y ×l l j that are not already
defined over Y , the l j/ l are proper field extensions, and the trl j/ l(N j ) are indecom-
posable. Now OX ′(m)∼=OX ′(m)∗ if and only if m=0 [Pumplün 1998b, 5.2]. Hence
there is no nontrivial line bundle over Y that is selfdual with respect to ∗. Consider
an indecomposable vector bundle trl j/ l(N j ). Then trl j/ l(N j )∼= trl j/ l(N j )

∗ implies
that OX ′(m)⊕ · · · ⊕ OX ′(m) ∼= OX ′(−m)⊕ · · · ⊕ OX ′(−m) [Pumplün 1998b, 5.2];
hence m = 0 and so there are no indecomposable OY -modules of rank > 1 that
are selfdual with respect to ∗. By the Krull–Schmidt theorem for hermitian spaces
[Knus 1991, (6.3.1), page 98],

(M̃, h̃)∼= (M, h)⊗l (l⊗OY )⊕ a hyperbolic space

and thus also (M, h) is Witt equivalent to a hermitian space (M0, h0) over l (we
canonically identify hermitian forms over l⊗k OX with hermitian forms over D).

Part (ii) is proved analogously. �

Theorem 17. Let E have even index. Then Uτ :W 1(l)→W 1(l⊗k OX ) is surjective.

Proof. If l is a finite field extension of k with an involution σ and invariant field lσ ,
for a Brauer–Severi variety X over k, we may identify lσ -algebras and modules over
X with OXlσ -algebras and modules over Xlσ , analogous to the M→ M̃ construction.
In particular, we may identify hermitian forms over l ⊗k OX with hermitian forms
over l ⊗lσ OXlσ . This way we may restrict without loss of generality to the case
that [l : k] = 2. In this case, either there is a separable maximal subfield k ′ of E
containing l, or there is a maximal separable subfield k ′ of E such that k ′ is linearly
disjoint with l over k.

(i) Suppose that there is a separable maximal subfield k ′ of E containing l. For
n = 2, we have Y ′ ∼= P1

l ′ and the assertion is proved in Proposition 16(i). So we
may assume n ≥ 3. Let M′ = M̃⊗OY OY ′ .
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We show by induction on a ≥ 0: If (M, h) is a hermitian space such that

a =max{i ∈ Z | 0≤ i ≤ n− 1, H n−i−1(Y ′,M′) 6= 0}

then (M, h) is, up to Witt equivalence, a hermitian space (M0, h0) over l.
If a = 0, then H n−i−1(Y ′,M′( j)) = 0 for all j and for 0 ≤ i ≤ n − 1. Then

by Horrocks’s [Barth and Hulek 1978, Section 5, Lemma 1], M′ splits into the
direct sum of line bundles and, by Proposition 16(i), (M, h) is Witt equivalent to
some hermitian space (M0, h0) over l. This settles the induction beginning. In the
induction step, let a > 0 and suppose the induction hypothesis holds for all non-
negative integers a′ < a. Then the assertion is proved analogously as Theorem 14
was using [Pumplün 2000, Proposition 4.1] (there use Xl instead of X ), [Pumplün
2000, Lemma 4.4], Lemma 10 and Theorem 6.

(ii) Suppose there is a maximal separable subfield k ′ of E such that k ′ is linearly
disjoint with l over k. Then the proof is analogous to the one in (i), but works over
Pn−1

l ′ instead. �

Remark 18. Let X = Pn−1
R , and let σ be the standard involution on C. Then

W 1(C)∼=W 1(C⊗R OX ). Since W−1(C)∼=W 1(C)∼= Z [Knus 1991, page 63], this
implies

W±1(C)∼=W 1(C⊗R OX )∼= Z.

7. Hermitian spaces over division algebras

7.1. Let k be a field of characteristic not 2, and let D be a division algebra over k
with a k-linear involution σ . Let X = P1

k , and let D = τ ∗D ∼= D ⊗k OX and
D(m)= OX (m)⊗D for any integer m.

The theorem of Krull and Schmidt holds for locally free right D-modules by
[Knus 1991, page 96], and for ε-hermitian spaces over D if we restrict to ε =±1,
by [Knus 1991, page 99, (6.5.1)].

Proposition 19. Let X = P1
k and ε = ±1. Every ε-hermitian space (M, h) over

D⊗k OX such that
M∼= D(m1)⊕ · · ·⊕D(mt)

is Witt equivalent to an ε-hermitian space (M0, h0)⊗D (D⊗OX ), where (M0, h0)

is an ε-hermitian space over D.

Note that for the possible extension of these results described in Section 7.2, we
would need this proposition also for X = Pn

k (and ε = 1).

Proof. We have D(m)∼=D(m)∗ if and only if m = 0 [Knus 1991, page 96, (5.4.1)].
Hence D itself is the only locally free right D-module of rank 1 that is selfd-
ual with respect to ∗. Any ε-hermitian space with underlying vector bundle of
type {D(m),D(m)∗} with m 6= 0 is isometric to a hyperbolic space [Knus 1991,
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page 99, (6.4.2)]. By the Krull–Schmidt theorem for ε-hermitian spaces ([Scharlau
1985, page 272] or [Knus 1991, pages 96 and 99]), M ∼= D(m1)⊕ · · · ⊕ D(mt)

implies that

(M, h)∼= (M0, h0)⊗D (D⊗OX )⊥⊥
h
j=1(D(m j )⊕D(−m j ),

[
0 1
ε 0

]
)

for a suitable ε-hermitian space over D and suitable m j 6= 0. We conclude that

(M, h)∼= (M0, h0)⊗D (D⊗OX )⊥ a hyperbolic space. �

Corollary 20. Let X = P1
k and ε = ±1. Every ε-hermitian space (M, h) over

D ⊗k OX is Witt equivalent to an ε-hermitian space (M0, h0)⊗D (D ⊗ OX ) with
(M0, h0) an ε-hermitian space over D. In particular, Uτ :W ε(D)→W ε(D⊗OX )

is bijective.

Proof. For X = P1
k , every ε-hermitian space (M, h) over D ⊗k OX satisfies M ∼=

D(m1)⊕ · · ·⊕D(mt) [Knus 1991, page 407, VII.(3.1.1)]. �

7.2. Let X = Pn
k and char k 6= 2. It would be desirable to prove that for a division

algebra D with a k-linear involution σ , the group homomorphism

Uτ :W 1(D)→W 1(D⊗OX )

is surjective. However, we will leave this open for now and only briefly discuss
the problems arising in a possible proof.

First, we need to assume that Extl+1(D,M(∗)) is of finite rank as a right D-
module and that Extn−1(D,M(∗)) 6= 0.

For n = 1 the assertion has been proved in Corollary 20, so let n ≥ 2. Imitating
the proofs in [Pumplün 1998b] or [Arason 1980], we proceed as follows: it would
suffice to show by induction on a ≥ 0 that if (M, h) is a hermitian space satisfying

a =max{ i ∈ Z | 0≤ i < n, Extn−i−1(D,M(∗)) 6= 0},

then (M, h) is Witt equivalent to a hermitian space (M0, h0)⊗D (D⊗OX ).
If a=0, then Extn−i (D,M( j))=0 for all j and 0< i <n and by Theorem 8 (the

generalized Horrocks theorem), M∼= D(m1)⊕ · · ·⊕D(mt). If Proposition 19 can
be generalized to Pn

k , this would imply that (M, h) is Witt equivalent to a hermitian
space (M0, h0)⊗D (D⊗OX ) and settle the induction beginning.

In the induction step, let a > 0 and suppose that the induction hypothesis holds
for all nonnegative integers a′ < a. There is no harm in assuming a < n; thus we
have 0 ≤ l = n− 1− a < n− 1. It suffices to show that a hermitian space (M, h)
with Exti (D,M(∗)) = 0 for 0 < i < l + 1 is Witt equivalent to a hermitian space
that is extended from D. This is done by induction on s = dim Extl+1(D,M(∗)).
If s = 0, then we are done by the induction hypothesis on a. If s > 0, then l is the
least nonnegative integer such that Extl+1(X,M(∗)) 6= 0. We next would have to
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be able to conclude that l+1≤ n/2. It is not clear if we can show it by using Serre
duality. Let m ∈ Z be maximal such that Extl+1(D,M(m)) 6= 0. If l + 1 = n/2,
m ≥−m−1−m; hence 2m ≥−n−1=−2l−3, forcing m ≥−l−1 if l+1= n/2.

We would now need to apply a similar result as Proposition 11 in our setting
here if we want to proceed with our proof along the same lines as in Theorem 14.
However, it is not clear how to prove a statement like this; see Section 5. At this
point, all we can say is that (M, qh), the quadratic space over X induced by (M, h),
is Witt equivalent to a quadratic space defined over k. We leave it open if it is
possible to fix these gaps in the proof.
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