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We prove that all the derivatives of a D-solution (u, p) of the Navier–Stokes
equations in a plane neighborhood of infinity {CR0 decay more rapidly than
|x|ε−1/2 for every positive ε. Moreover, we show that if the flux of u through
the boundary of CR0 is zero, the second derivatives of p are summable over
the complement of CR0 .

In the theory of the steady-state Navier–Stokes equations a D-solution is an
analytic pair (u, p)1 which satisfies the equations [Galdi 1994]2

(1)
1u− u · ∇u−∇ p = 0,

div u = 0,

in a neighborhood of infinity {CR0 ⊂ R2 and has a finite Dirichlet integral:∫
{CR0

|∇u|2 <+∞.

An open problem in viscous hydrodynamics concerns the behavior at infinity of
these solutions. Thanks to the celebrated results of D. Gilbarg and H. W. Wein-
berger [1978] and G. P. Galdi [1994], we know that

(2)
|u|2 = o(log r), ∇u = o(r−3/4 log9/8 r),

∇k−1 p(x)= o(1), ∇k u(x)= o(1),

for all k ∈ N.

MSC2000: primary 76D05; secondary 35Q30, 76D03.
Keywords: steady-state Navier–Stokes equations, D-solutions, behavior at infinity.

1We use a standard vector notation as in, for example, [Galdi 1994]. We set CR = {x ∈ R2
:

r = |x| < R}. If f is a function defined in a neighborhood of infinity {CR0 and ϕ(r) is a positive
function, f = o(ϕ) and f = O(ϕ) mean respectively that limr→+∞ f/g = 0 and f/g is bounded in
{CR0 . Dk,q ({CR0) = {u ∈ L1

loc({CR0) : ‖∇ku‖Lq ({CR0 )
< +∞}, where k ∈ N0, q ∈ [1,+∞) and

∇ku =∇ . . .∇u (k times), ∇0u = u; H1 denotes the Hardy space on R2 [Stein 1993].
2u(x) and p(x) are the velocity field and the pressure field respectively, and u · ∇u is the vector

with components ui ∂i u j . Since our results are independent of kinematical viscosity ν, we shall put
ν = 1.
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The aim of this paper is to improve (2)3 and to establish some summability
properties of the derivatives of the pressure field p. To be precise, we prove the
following:

Theorem. If (u, p) is a D-solution, then

(3) ∇ p = O(r ε−1/2)

for every positive ε. Moreover, if

(4)
∫
∂CR0

u · n= 0,

then

(5) p ∈ D2,1({CR0).

To prove the theorem we need some well-known results, which we state in the
form of lemmas.

Lemma 1 [Galdi 1994]. Let v(x) =
∫

R2

1
|x − y|λ|y|µ

day, with λ < 2, µ < 2. If
λ+µ > 2, then

v(x)= cr2−λ−µ

for a suitable constant c = c(λ, µ).

Lemma 2 [Stein 1993]. If f ∈H1, then the problem

1p = f in R2, lim
x→∞

p(x)= 0,

admits the unique solution

p(x)=
1

2π

∫
R2

f (y) log |x − y| day ∈ D2,1(R2)∩ D1,2(R2).

Lemma 3 [Coifman et al. 1993]. If u ∈ D1,2(R2) is divergence-free, then

∇u · ∇uT
∈H1.

Proof of (3). Taking the divergence in (1)1 and taking into account (1)2, we see
that p satisfies the Poisson equation

(6) 1p+∇u · ∇uT
= 0 in {CR0 .

Writing the classical Stokes formula in the shell T =CR \CR0 (R� R0), we have

2πp(x)=
∫
∂T
∂n p(ξ) log |x − ξ | dsξ

−

∫
∂T

p(ξ)(x − ξ) · n(ξ)
|x − ξ |2

dsξ −
∫

T
(∇u · ∇uT)(y) log |x − y| day,
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where n denotes the outward unit normal to ∂T . Hence, taking the gradient shows
that

(7) 2π∇ p(x)=
∫
∂T

(x − ξ)∂n p(ξ)
|x − ξ |2

dsξ −∇
∫
∂T

p(ξ)(x − ξ) · n(ξ)
|x − ξ |2

dsξ

−

∫
T

(∇u · ∇uT)(y)(x − y)
|x − y|2

day .

By virtue of (2), we are allowed to let R→+∞ in (7) to have

(8) 2π∇ p(x)=
∫
∂CR0

(x − ξ)∂n p(ξ)
|x − ξ |2

dsξ −∇
∫
∂CR0

p(ξ)(x − ξ) · n(ξ)
|x − ξ |2

dsξ

−

∫
{CR0

(∇u · ∇uT)(y)(x − y)
|x − y|2

day

=−

∫
{CR0

(∇u · ∇uT)(y)(x − y)
|x − y|2

day + O(r−1).

Therefore, taking into account (2)2 and Lemma 1, (8) implies (3). �

Proof of (5). Let g be a regular cut-off function in R2, vanishing in C R̄ and equal
to 1 outside C2R̄ , with R̄� R0. By (4), the problem

div h+ div(gu)= 0 in C2R̄ \C R̄

has a solution h∈C∞0 (C2R̄\C R̄) [Galdi 1994]. From (6) it follows that the function
Q = g2 p is a solution of the equation

(9) 1Q+ div f +ϕ = 0 in R2,

where ϕ ∈ C∞0 (C2R̄ \C R̄) and

f = (gu+ h) · ∇(gu+ h).

By virtue of Lemma 2, Q is expressed by

(10) 2πQ(x)=−
∫

R2
(log |x − y|) div f (y) day −

∫
R2
ϕ(y) log |x − y| day

= Q1+ Q2.

By Lemma 3 div f ∈H1 so that Lemma 2 implies that Q1 ∈ D2,1(R2)∩ D1,2(R2).
Since Q tends to zero at infinity, we must have∫

R2
ϕ = 0,

otherwise Q = O(log r). It follows that ∇k Q2 = O(r−1−k), and (5) is proved. �
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Remark. The higher gradients of u and p can be estimated in the same way.
Precisely, it holds

∇k p(x), ∇k u(x)= O(r ε−1/2),

for all positive ε and for all k ∈ N.

Remark. By the embedding theorem and (2)3, (5) implies that p ∈ D1,2({CR0).
Since by the basic calculus∫ 2π

0
|∇ p|(R, θ) dθ =

∫ 2π

0

∣∣∣∣∫ +∞
R

∂r∇ p(r, θ) dθ
∣∣∣∣≤ 1

R

∫
{CR

|∇∇ p|,

we see that if (4) holds, then

(11)
∫ 2π

0
|∇ p|(R, θ)= o(R−1).
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