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We prove that any contact metric (κ, µ)-space (M, ϕ, ξ, η, g) admits a ca-
nonical paracontact metric structure that is compatible with the contact
form η. We study this canonical paracontact structure, proving that it sat-
isfies a nullity condition and induces on the underlying contact manifold
(M, η) a sequence of compatible contact and paracontact metric structures
satisfying nullity conditions. We then study the behavior of that sequence,
which is related to the Boeckx invariant IM and to the bi-Legendrian struc-
ture of (M, ϕ, ξ, η, g). Finally we are able to define a canonical Sasakian
structure on any contact metric (κ, µ)-space whose Boeckx invariant satis-
fies |IM |> 1.

1. Introduction

A contact metric (κ, µ)-space is a contact metric manifold (M, ϕ, ξ, η, g) such that
the Reeb vector field belongs to the so-called “(κ, µ)-nullity distribution”, that is,
it satisfies the condition

(1-1) RXY ξ = κ(η(Y )X − η(X)Y )+µ(η(Y )h X − η(X)hY ),

for some real numbers κ , µ and for any X, Y ∈ 0(T M); here R denotes the cur-
vature tensor field of the Levi-Civita connection and 2h the Lie derivative of the
structure tensor ϕ in the direction of the Reeb vector field ξ . This definition was
introduced by Blair, Kouforgiorgos and Papantoniou [1995] as a generalization
both of the Sasakian condition RXY ξ = η(Y )X − η(X)Y and of those contact
metric manifolds satisfying RXY ξ = 0, which were studied by Blair [1977].

Recently contact metric (κ, µ)-spaces have attracted the attention of many au-
thors, and various papers have appeared on this topic, for example [Boeckx and
Cho 2008; Cappelletti Montano et al. 2008; Koufogiorgos et al. 2008]. In fact
there are many motivations for studying (κ, µ)-manifolds: the first is that, in the
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non-Sasakian case (that is for κ 6= 1), the condition (1-1) determines the curva-
ture completely; moreover, while the values of κ and µ may change, the form of
(1-1) is invariant under D-homothetic deformations; finally, there are nontrivial
examples of such manifolds, the most important being the unit tangent bundle of
a Riemannian manifold of constant sectional curvature endowed with its standard
contact metric structure.

Boeckx [2000] provided a complete (local) classification of non-Sasakian con-
tact metric (κ, µ)-spaces based on the invariant

IM =
1−µ/2
√

1−κ
.

The recent paper [Cappelletti Montano 2009b] gives a geometric interpretation of
this invariant in terms of Legendre foliations.

In this paper we study mainly those (non-Sasakian) contact metric (κ, µ)-spaces
such that IM 6= ±1, showing how rich the geometry of this wide class of contact
metric (κ, µ)-spaces is. In fact we prove that any such contact metric (κ, µ)-
manifold is endowed with a nonflat pair of bi-Legendrian structures, a 3-web struc-
ture and a canonical family of contact and paracontact metric structures satisfying
nullity conditions. Such geometric structures are related to each other and depend
on the sign of the Boeckx invariant IM .

The main part of the article is devoted to the study of the interplays between
the theory of contact metric (κ, µ)-spaces and paracontact geometry. The link
is given by the theory of bi-Legendrian structures. Indeed, Cappelletti Montano
[2009a] proved that there is a biunivocal correspondence between the set of al-
most bi-Legendrian structures and the set of paracontact metric structures on the
same contact manifold (M, η). This bijection maps bi-Legendrian structures onto
integrable paracontact metric structures and flat bi-Legendrian structures onto para-
Sasakian structures. Thus, since any contact metric (κ, µ)-manifold (M, ϕ, ξ, η, g)
is canonically endowed with the bi-Legendrian structure given by the eigendistribu-
tions corresponding to the nonzero eigenvalues of the operator h, one can associate
to (M, ϕ, ξ, η, g) a paracontact metric structure (ϕ̃, ξ, η, g̃), which we prove is
given by

(1-2) ϕ̃ :=
1

2
√

1−κ
Lξϕ, g̃ := dη( · , ϕ̃ · )+ η⊗ η,

and which we call the canonical paracontact metric structure of the contact metric
(κ, µ)-space (M, ϕ, ξ, η, g). We study this paracontact structure and we prove that
its curvature tensor field satisfies the relation

R̃XY ξ = κ̃(η(Y )X − η(X)Y )+ µ̃(η(Y )h̃ X − η(X)h̃Y ),
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with κ̃ = (1−µ/2)2+ κ − 2 and µ̃= 2 and where h̃ := (1/2)Lξ ϕ̃. The next step
is the study of the structure defined by the Lie derivative of ϕ̃ in the direction of
the Reeb vector field. In fact we prove that if |IM |< 1, the structure (ϕ1, ξ, η, g1)

given by

ϕ1 :=
1

2
√
−1−κ̃

Lξ ϕ̃, g1 := −dη( · , ϕ1· )+ η⊗ η,

is a contact metric (κ1, µ1)-structure on (M, η), where κ1 = κ + (1−µ/2)2 and
µ1 = 2. In the case |IM |> 1, the structure (ϕ̃1, ξ, η, g̃1), defined by

ϕ̃1 :=
1

2
√

1+κ̃
Lξ ϕ̃, g̃1 := dη( · , ϕ̃1· )+ η⊗ η,

is a paracontact metric (κ̃1, µ̃1)-structure, with κ̃1= (1−µ/2)2+κ−2 and µ̃1= 2.
Furthermore, we prove that it is just the canonical paracontact structure induced by
a suitable contact metric (κ ′, µ′)-structure on M . Then we show that this procedure
can be iterated and gives rise to a sequence of contact and paracontact structures
associated with the initial contact metric (κ, µ)-structure (ϕ, ξ, η, g). The behavior
of this canonical sequence essentially depends on the Boeckx invariant IM of the
contact metric (κ, µ)-manifold (M, ϕ, ξ, η, g). If |IM | > 1, the sequence consists
only of paracontact structures, whereas in the case |IM |< 1 we have an alternation
of contact and paracontact structures; see Theorem 5.6 for all details. Moreover,
all the new contact metric structures on M obtained in this way are in fact Tanaka–
Webster parallel structures [Boeckx and Cho 2008], that is, the Tanaka–Webster
connection parallelizes both the Tanaka–Webster torsion and the Tanaka–Webster
curvature.

Thus in a contact metric (κ, µ)-space (M, ϕ, ξ, η, g), the k-th Lie derivative
Lξ · · ·Lξϕ of the structure tensor ϕ in the direction ξ , once suitably normalized,
defines a new contact or paracontact structure, depending on the value of IM . This
last property shows another surprising geometric feature of the invariant IM , linked
to the paracontact geometry of the contact metric (κ, µ)-manifold M .

Finally we prove that every contact metric (κ, µ)-space such that |IM |>1 admits
a canonical compatible Sasakian structure, explicitly given by

ϕ− := −
1√

(1−µ/2)2−(1−κ)
((1− 1

2µ)ϕ+ϕh), g− := dη( · , ϕ− · )+ η⊗ η,

in the case IM <−1 and

ϕ+ :=
1√

(1−µ/2)2−(1−κ)
((1− 1

2µ)ϕ+ϕh), g+ := −dη( · , ϕ+ · )+ η⊗ η,

in the case IM >1. Such Sasakian structures are related to the paracontact structures
above by the formulas ϕ− = ϕ̃ ◦ ϕ̃1 and ϕ+ = ϕ̃1 ◦ ϕ̃. In particular, (ϕ−, ϕ̃, ϕ̃1) or
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(ϕ+, ϕ̃1, ϕ̃), according to IM <−1 or IM > 1, respectively, induce an almost anti-
hypercomplex structure, and hence a 3-web, on the contact distribution of (M, η).

Therefore it appears that a further geometrical interpretation of the Boeckx in-
variant is the fact that any contact metric (κ, µ)-space such that |IM |< 1 can admit
compatible Tanaka–Webster parallel structures, whereas any contact metric (κ, µ)-
space such that |IM |> 1 can admit compatible Sasakian structures.

All manifolds considered here are assumed to be smooth, that is, of the class C∞,
and connected; we denote by 0( · , ) the set of all sections of a corresponding
bundle. We use the convention that 2u ∧ v = u⊗ v− v⊗ u.

2. Preliminaries

Contact and paracontact structures. A contact manifold is a (2n+1)-dimensional
smooth manifold M that carries a 1-form η, called a contact form, that satisfies
η∧(dη)n 6= 0 everywhere on M . It is well known that given η there exists a unique
vector field ξ , called the Reeb vector field, such that iξη = 1 and iξdη = 0. In
the sequel we will denote by D the 2n-dimensional distribution defined by ker(η),
called the contact distribution. It is easy to see that the Reeb vector field is an
infinitesimal automorphism with respect to the contact distribution, and the tangent
bundle of M splits as the direct sum T M = D⊕Rξ .

Given a contact manifold (M, η) one can consider two different geometric struc-
tures associated with the contact form η, namely a contact metric structure and a
paracontact metric structure.

It is well known that (M, η) admits a Riemannian metric g and a (1, 1)-tensor
field ϕ such that

(2-1)

ϕ2
=−I + η⊗ ξ,

dη(X, Y )= g(X, ϕY ),

g(ϕX, ϕY )= g(X, Y )− η(X)η(Y )

for all X, Y ∈0(T M), from which it follows that ϕξ =0, η◦ϕ=0 and η= g( · , ξ).
The structure (ϕ, ξ, η, g) is called a contact metric structure and the manifold M
endowed with such a structure is said to be a contact metric manifold. In a contact
metric manifold M , the (1, 1)-tensor field h := (1/2)Lξϕ is symmetric and satisfies

(2-2) hξ =0, η◦h=0, hϕ+ϕh=0, ∇ξ =−ϕ−ϕh, tr(h)= tr(ϕh)=0,

where ∇ is the Levi-Civita connection of (M, g). The tensor field h vanishes
identically if and only if the Reeb vector field is Killing, and in this case the contact
metric manifold is said to be K-contact.
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In any (almost) contact (metric) manifold, one can consider the tensor field Nϕ
defined by

(2-3) Nϕ(X, Y ) := ϕ2
[X, Y ]+ [ϕX, ϕY ]−ϕ[ϕX, Y ]−ϕ[X, ϕY ]+2dη(X, Y )ξ.

The tensor field Nϕ satisfies the formula, which will be very useful in the sequel,

(2-4) ϕNϕ(X, Y )+ Nϕ(ϕX, Y )= 2η(X)hY

for all X, Y ∈ 0(T M), from which it follows that

(2-5) η(Nϕ(ϕX, Y ))= 0.

Any contact metric manifold where Nϕ vanishes identically is said to be Sasakian.
In terms of the curvature tensor field, the Sasakian condition is expressed by the
relation

(2-6) RXY ξ = η(Y )X − η(X)Y.

Any Sasakian manifold is K -contact, and in dimension 3 the converse also holds;
see [Blair 2002] for details. A natural generalization of the Sasakian condition
(2-6) leads to the notion of “contact metric (κ, µ)-manifold” [Blair et al. 1995].
Let (M, ϕ, ξ, η, g) be a contact metric manifold. If the curvature tensor field of
the Levi-Civita connection satisfies

(2-7) RXY ξ = κ(η(Y )X − η(X)Y )+µ(η(Y )h X − η(X)hY )

for some κ, µ ∈ R, we say that (M, ϕ, ξ, η, g) is a contact metric (κ, µ)-manifold
(or that ξ belongs to the (κ, µ)-nullity distribution). This definition was introduced
and deeply studied by Blair, Koufogiorgos and Papantoniou [1995], who proved
the following fundamental results.

Theorem 2.1 [Blair et al. 1995]. Let (M, ϕ, ξ, η, g) be a contact metric (κ, µ)-
manifold. Then necessarily κ≤1. Moreover, if κ=1 then h=0 and (M, ϕ, ξ, η, g)
is Sasakian; if κ < 1, the contact metric structure is not Sasakian and M admits
three mutually orthogonal integrable distributions, D(0) = Rξ , D(λ) and D(−λ),
corresponding to the eigenspaces of h, where λ=

√
1− κ .

Theorem 2.2 [Blair et al. 1995]. Let (M, ϕ, ξ, η, g) be a contact metric (κ, µ)-
manifold. Then the following relations hold, for any X, Y ∈ 0(T M):

(∇Xϕ)Y = g(X, Y+hY )ξ−η(Y )(X+h X),(2-8)

(∇X h)Y = ((1−κ)g(X, ϕY )+g(X, ϕhY ))ξ+η(Y )h(ϕX+ϕh X)−µϕhY,(2-9)

(∇Xϕh)Y(2-10)

=
(
g(X, hY )−(1−κ)g(X, ϕ2Y )

)
ξ+η(Y )

(
h X−(1−κ)ϕ2 X

)
+µη(X)hY.
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Given a non-Sasakian contact metric (κ, µ)-manifold M , Boeckx [2000] proved
that the number IM := (1 − µ/2)/

√
1− κ , is an invariant of the contact metric

(κ, µ)-structure, and proved that two non-Sasakian contact metric (κ, µ)-manifolds
(M1, ϕ1, ξ1, η1, g1) and (M2, ϕ2, ξ2, η2, g2) are locally isometric as contact metric
manifolds if and only if IM1 = IM2 . Then Boeckx used the invariant IM for pro-
viding a full classification of contact metric (κ, µ)-spaces. The standard example
of contact metric (κ, µ)-manifold is given by the tangent sphere bundle T1 N of a
Riemannian manifold of constant curvature c endowed with its standard contact
metric structure. In this case κ = c(2− c), µ = −2c and IT1 N = (1+ c)/|1− c|.
Therefore as c varies over the reals, IT1 N takes on every value strictly greater
than −1. Moreover, one can easily find that IT1 N < 1 if and only if c < 0.

On the other hand on a contact manifold (M, η) one can consider also compat-
ible paracontact metric structures. We recall [Kaneyuki and Williams 1985] that
an almost paracontact structure on a (2n+1)-dimensional smooth manifold M
is given by a (1, 1)-tensor field ϕ̃, a vector field ξ and a 1-form η satisfying the
following conditions:

(i) η(ξ)= 1 and ϕ̃2
= I − η⊗ ξ .

(ii) Denoting by D the 2n-dimensional distribution defined by η, the tensor field ϕ̃
induces an almost paracomplex structure on each fiber on D.

Recall that an almost paracomplex structure on a 2n-dimensional smooth manifold
is a tensor field J of type (1, 1) such that J 6= I , J 2

= I and the eigendistributions
T+ and T− corresponding to the eigenvalues 1 and −1 of J , respectively, have
dimension n.

As an immediate consequence of the definition, ϕ̃ξ = 0, η ◦ ϕ̃ = 0 and the
field of endomorphisms ϕ̃ has constant rank 2n. Any almost paracontact manifold
admits a semi-Riemannian metric g̃ such that

(2-11) g̃(ϕ̃X, ϕ̃Y )=−g̃(X, Y )+ η(X)η(Y )

for all X, Y ∈0(T M). Then (M, ϕ̃, ξ, η, g̃) is called an almost paracontact metric
manifold. Any such semi-Riemannian metric is necessarily of signature (n+1, n).
If also dη(X, Y )= g̃(X, ϕ̃Y ) for all X, Y ∈ 0(T M), then (M, ϕ̃, ξ, η, g̃) is said to
be a paracontact metric manifold. On an almost paracontact manifold one defines
the tensor field

Nϕ̃(X, Y ) := ϕ̃2
[X, Y ] + [ϕ̃X, ϕ̃Y ] − ϕ̃[ϕ̃X, Y ] − ϕ̃[X, ϕ̃Y ] − 2dη(X, Y )ξ.

If Nϕ̃ vanishes identically the almost paracontact manifold is said to be normal.
Moreover, in a paracontact metric manifold one defines a symmetric, trace-free

operator h̃ by setting h̃ = (1/2)Lξ ϕ̃. One can prove (see [Zamkovoy 2009]) that h̃
is a symmetric operator that anticommutes with ϕ̃ and satisfies h̃ξ =0, η◦h̃=0 and
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∇̃ξ = −ϕ̃ + ϕ̃h̃, where ∇̃ denotes the Levi-Civita connection of (M, g̃). Further-
more, h̃ vanishes identically if and only if ξ is a Killing vector field and in this case
(M, ϕ̃, ξ, η, g̃) is called a K -paracontact manifold. A normal paracontact metric
manifold is said to be a para-Sasakian manifold. Also in this context, the para-
Sasakian condition implies the K -paracontact condition and the converse holds in
dimension 3. In terms of the covariant derivative of ϕ̃, the para-Sasakian condition
may be expressed by

(2-12) (∇̃X ϕ̃)Y =−g̃(X, Y )ξ + η(Y )X.

On the other hand one can prove (see [Zamkovoy 2009]) that in any para-Sasakian
manifold,

(2-13) R̃XY ξ = η(Y )X − η(X)Y,

but, unlike contact metric structures, the condition (2-13) does not necessarily im-
ply that the manifold is para-Sasakian.

In any paracontact metric manifold Zamkovoy [2009] introduced a canonical
connection that plays the same role in paracontact geometry that the generalized
Tanaka–Webster connection [Tanno 1989] does in a contact metric manifold.

Theorem 2.3 [Zamkovoy 2009]. On a paracontact metric manifold there exists a
unique connection ∇̃ pc, called the canonical paracontact connection, satisfying the
properties

(i) ∇̃ pcη = 0, ∇̃ pcξ = 0, ∇̃ pc g̃ = 0;

(ii) (∇̃ pc
X ϕ̃)Y = (∇̃X ϕ̃)Y − η(Y )(X − h̃ X)+ g̃(X − h̃ X, Y )ξ ;

(iii) T̃ pc(ξ, ϕ̃Y )=−ϕ̃T̃ pc(ξ, Y );

(iv) T̃ pc(X, Y )= 2dη(X, Y )ξ on D= ker(η).

The explicit expression of this connection is

(2-14) ∇̃
pc
X Y = ∇̃X Y + η(X)ϕ̃Y + η(Y )(ϕ̃X − ϕ̃h̃ X)+ g̃(X − h̃ X, ϕ̃Y )ξ.

The torsion tensor field is given by

(2-15) T̃ pc(X, Y )= η(X)ϕ̃h̃Y − η(Y )ϕ̃h̃ X + 2g(X, ϕ̃Y )ξ.

An almost paracontact structure (ϕ̃, ξ, η) is integrable [Zamkovoy 2009] if the
almost paracomplex structure ϕ̃|D satisfies the condition Nϕ̃(X, Y ) ∈ 0(Rξ) for
all X, Y ∈ 0(D). This is equivalent to requiring that the eigendistributions T± of
ϕ̃ satisfy [T±, T±] ⊂ T± ⊕ Rξ . For an integrable paracontact metric manifold,
the canonical paracontact connection shares many of the properties of the Tanaka–
Webster connection on CR-manifolds. For instance we have the following result.
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Theorem 2.4 [Zamkovoy 2009]. A paracontact metric manifold (M, ϕ̃, ξ, η, g̃)
is integrable if and only if the canonical paracontact connection parallelizes the
structure tensor ϕ̃.

In particular, by Theorem 2.4 and (2-12) it follows that any para-Sasakian manifold
is integrable.

Bi-Legendrian manifolds. Let (M, η) be a (2n+1)-dimensional contact manifold.
It is well known that the contact condition η∧ (dη)n 6= 0 geometrically means that
the contact distribution D is as far as possible from being integrable. In fact one can
prove that the maximal dimension of any involutive subbundle of D is n. Such n-
dimensional integrable distributions are called Legendre foliations of (M, η). More
generally, a Legendre distribution on a contact manifold (M, η) is an n-dimensional
subbundle L of the contact distribution that is not necessarily integrable but does
satisfy the weaker condition that dη(X, X ′)= 0 for all X, X ′ ∈ 0(L).

The theory of Legendre foliations has been extensively studied in recent years
from various points of view. In particular, Pang [1990] classified Legendre folia-
tions using a bilinear symmetric form 5F on the tangent bundle of the foliation F,
defined by

5F(X, X ′)=−(LX LX ′η)(ξ)= 2dη([ξ, X ], X ′).

He called a Legendre foliation positive (negative) definite, nondegenerate, degen-
erate or flat, according to whether the bilinear form 5F is positive (negative)
definite, nondegenerate, degenerate or vanishes identically, respectively. Then for
a nondegenerate Legendre foliation F, Libermann [1991] defined a linear map
3F : T M→ T F, whose kernel is T F⊕Rξ , such that

(2-16) 5F(3F Z , X)= dη(Z , X)

for any Z ∈ 0(T M), X ∈ 0(T F). The operator 3F is surjective and satisfies
(3F)

2
= 0 and 3F[ξ, X ] = (1/2)X for all X ∈ 0(T F). Then one can extend 5F

to a symmetric bilinear form on T M by putting

5F(Z , Z ′) :=
{
5F(Z , Z ′) if Z , Z ′ ∈ 0(T F),

5F(3F Z ,3F Z ′) otherwise.

If (M, η) is endowed with two transversal Legendre distributions L1 and L2, we
say that (M, η, L1, L2) is an almost bi-Legendrian manifold. Thus, in particular,
the tangent bundle of M splits up as the direct sum T M = L1⊕ L2⊕Rξ . When
both L1 and L2 are integrable we refer to a bi-Legendrian manifold. An (almost)
bi-Legendrian manifold is said to be flat, degenerate or nondegenerate if and only if
both the Legendre distributions are flat, degenerate or nondegenerate, respectively.
Any contact manifold (M, η) endowed with a Legendre distribution L admits a
canonical almost bi-Legendrian structure. Indeed let (ϕ, ξ, η, g) be a compatible
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contact metric structure. Then the relation dη(ϕX, ϕY )= dη(X, Y ) easily implies
that Q := ϕL is a Legendre distribution on M that is g-orthogonal to L . Q is
usually referred as the conjugate Legendre distribution of L and in general is not
involutive, even if L is.

The next theorem shows the existence of a canonical connection on an almost
bi-Legendrian manifold.

Theorem 2.5 [Cappelletti Montano 2005]. Let (M, η, L1, L2) be an almost bi-
Legendrian manifold. There exists a unique linear connection ∇bl , called bi-
Legendrian connection, satisfying

(i) ∇bl L1 ⊂ L1, ∇bl L2 ⊂ L2,

(ii) ∇blξ = 0, ∇bldη = 0,

(iii) T bl(X, Y )= 2dη(X, Y )ξ for all X ∈ 0(L1), Y ∈ 0(L2),
T bl(X, ξ)= [ξ, X L1]L2 + [ξ, X L2]L1 for all X ∈ 0(T M),

where T bl denotes the torsion tensor field of ∇bl , and X L1 and X L2 the projections
of X onto the subbundles L1 and L2 of T M, respectively.

The behavior of the bi-Legendrian connection in the case of conjugate Legendre
distributions was considered later:

Theorem 2.6 [Cappelletti Montano 2007]. Let (M, ϕ, ξ, η, g) be a contact metric
manifold endowed with a Legendre distribution L. Let Q := ϕL be the conjugate
Legendre distribution of L and ∇bl the bi-Legendrian connection associated with
(L , Q). Then the following statements are equivalent:

(i) ∇bl g = 0.

(ii) ∇blϕ = 0.

(iii) ∇bl
X X ′ = −(ϕ[X, ϕX ′])L for all X, X ′ ∈ 0(L) and ∇bl

Y Y ′ = −(ϕ[Y, ϕY ′])Q

for all Y, Y ′ ∈ 0(Q), and the tensor field h maps the subbundle L onto L and
the subbundle Q onto Q.

(iv) The metric g is bundlelike with respect both to the distribution L⊕Rξ and to
the distribution Q⊕Rξ .

Furthermore, assuming L and Q integrable, (i)–(iv) are equivalent to the total
geodesicity (with respect to the Levi-Civita connection of g) of the Legendre folia-
tions defined by L and Q.

3. The foliated structure of a contact metric (κ, µ)-space

Theorem 2.1 implies that any non-Sasakian contact metric (κ, µ)-manifold is en-
dowed with three mutually orthogonal involutive distributions D(λ), D(−λ) and
D(0)=Rξ , corresponding to the eigenspaces λ, −λ and 0 of the operator h, where
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λ =
√

1− κ . As we pointed out in [Cappelletti Montano and Di Terlizzi 2008],
(D(λ),D(−λ)) defines a bi-Legendrian structure on (M, η). We also started the
study of the bi-Legendrian structure of a contact metric (κ, µ)-manifold, expressing
the Pang invariant of each Legendre foliation D(λ) and D(−λ) as

(3-1)
5D(λ) = (2

√
1− κ −µ+ 2)g|D(λ)×D(λ),

5D(−λ) = (−2
√

1− κ −µ+ 2)g|D(−λ)×D(−λ);

see also [Cappelletti Montano 2009b]. It follows that only one among the following
five cases may occur:

(I) Both D(λ) and D(−λ) are positive definite.

(II) D(λ) is positive definite and D(−λ) is negative definite.

(III) Both D(λ) and D(−λ) are negative definite.

(IV) D(λ) is positive definite and D(−λ) is flat.

(V) D(λ) is flat and D(−λ) is negative definite.

Moreover, the bi-Legendrian structure (D(λ),D(−λ)) belongs to the class (I),
(II), (III), (IV), (V) if and only if IM > 1, −1 < IM < 1, IM < −1, IM = 1,
IM =−1, respectively.

Furthermore, the following characterization of contact metric (κ, µ)-manifolds
in terms of Legendre foliations holds.

Theorem 3.1 [Cappelletti Montano and Di Terlizzi 2008]. Let (M, ϕ, ξ, η, g) be
a non-Sasakian contact metric manifold. Then (M, ϕ, ξ, η, g) is a contact metric
(κ, µ)-manifold if and only if it admits two mutually orthogonal Legendre distribu-
tions L and Q and a unique linear connection ∇ satisfying

(i) ∇L ⊂ L , ∇Q ⊂ Q,

(ii) ∇η = 0, ∇dη = 0, ∇g = 0, ∇ϕ = 0, ∇h = 0,

(iii) T (X, Y )= 2dη(X, Y )ξ for all X, Y ∈ 0(D),
T (X, ξ)= [ξ, X L ]Q + [ξ, X Q]L for all X ∈ 0(T M),

where T denotes the torsion tensor field of ∇ and X L and X Q are, respectively,
the projections of X onto the subbundles L and Q of T M. Furthermore, L and
Q are integrable and coincide with the eigenspaces D(λ) and D(−λ) of the oper-
ator h, and ∇ coincides with the bi-Legendrian connection ∇bl associated to the
bi-Legendrian structure (L , Q).

In particular, from (3-1) it follows that ∇bl5D(λ)=∇
bl5D(−λ)= 0. Conversely:

Theorem 3.2 [Cappelletti Montano 2009b]. Suppose (M, η) is a contact manifold
endowed with a bi-Legendrian structure (F1,F2) such that ∇bl5F1 =∇

bl5F2 =0.
Assume that one of the following conditions holds:
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(I) F1 and F2 are positive definite and there exist two positive numbers a and b
such that 5F1 = ab5F2 on T F1 and 5F2 = ab5F1 on T F2.

(II) F1 is positive definite and F2 is negative definite and there exist a > 0 and
b < 0 such that 5F1 = ab5F2 on T F1 and 5F2 = ab5F1 on T F2.

(III) F1 and F2 are negative definite and there exist two negative numbers a and
b such that 5F1 = ab5F2 on T F1 and 5F2 = ab5F1 on T F2.

Then (M, η) admits a compatible contact metric structure (ϕ, ξ, η, g) such that

(i) if a = b, then (M, ϕ, ξ, η, g) is a Sasakian manifold;

(ii) if a 6= b, then (M, ϕ, ξ, η, g) is a contact metric (κ, µ)-manifold whose asso-
ciated bi-Legendrian structure is (F1,F2), where

(3-2) κ = 1− 1
16(a− b)2, µ= 2− 1

2(a+ b).

4. The canonical paracontact structure of a contact metric (κ, µ)-space

[Cappelletti Montano 2009a] studied the interplay between paracontact geome-
try and the theory of bi-Legendrian structures, and showed the existence of a
biunivocal correspondence 9 : AB → PM between the set AB of almost bi-
Legendrian structures and the set of paracontact metric structures PM on the same
contact manifold (M, η). This bijection maps bi-Legendrian structures onto inte-
grable paracontact structures, maps flat almost bi-Legendrian structures onto K -
paracontact structures, and maps flat bi-Legendrian structures onto para-Sasakian
structures. For the convenience of the reader we recall the definition of the biuni-
vocal correspondence above. If (L1, L2) is an almost bi-Legendrian structure on
(M, η), the corresponding paracontact metric structure (ϕ̃, ξ, η, g̃)=9(L1, L2) is
given by

(4-1) ϕ̃|L1 = I, ϕ̃|L2 =−I, ϕ̃ξ = 0, g̃ := dη( · , ϕ̃ · )+ η⊗ η.

Also studied was the relationship between the bi-Legendrian and the canonical
paracontact connections; in the integrable case they coincide:

Theorem 4.1 [Cappelletti Montano 2009a]. Let (M, η, L1, L2) be an almost bi-
Legendrian manifold, and (ϕ̃, ξ, η, g̃) = 9(L1, L2) be the paracontact metric
structure induced on M by (4-1). Let ∇bl and ∇̃ pc be the corresponding bi-
Legendrian and canonical paracontact connections. Then

(a) ∇bl ϕ̃ = 0 and ∇bl g̃ = 0,

(b) the bi-Legendrian and the canonical paracontact connections coincide if and
only if the induced paracontact metric structure is integrable.
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As we stressed in Section 3, any (non-Sasakian) contact metric (κ, µ)-manifold
(M, ϕ, ξ, η, g) carries a canonical bi-Legendrian structure (D(λ),D(−λ)), which
in some sense completely characterizes the contact metric (κ, µ)-structure itself.

Definition 4.2. The paracontact metric structure (ϕ̃, ξ, η, g̃) :=9(D(λ),D(−λ)) is
said to be the canonical paracontact metric structure of the (non-Sasakian) contact
metric (κ, µ)-space (M, ϕ, ξ, η, g).

In this section we deal with the study of the canonical paracontact metric struc-
ture of a contact metric (κ, µ)-space. The first remark is that, since D(λ) and
D(−λ) are involutive, (ϕ̃, ξ, η, g̃) is integrable so that, by Theorem 4.1, the connec-
tion stated in Theorem 3.1 and the canonical paracontact connection of (ϕ̃, ξ, η, g̃)
coincide.

Now we show a more explicit expression for the canonical paracontact metric
structure that will be useful in the sequel.

Theorem 4.3. Let (M, ϕ, ξ, η, g) be a non-Sasakian contact metric (κ, µ)-space.
Then the canonical paracontact metric structure (ϕ̃, ξ, η, g̃) of M is given by

(4-2) ϕ̃ :=
1

√
1−κ

h, g̃ := 1
√

1−κ
dη( · , h· )+ η⊗ η.

Proof. It is well known that in any contact metric (κ, µ)-manifold one has h2
=

(κ − 1)ϕ2 [Blair et al. 1995]. From this relation it follows that the tensor field
ϕ̃ := (1/

√
1− κ)h satisfies ϕ̃2

= (1/(1− κ))h2
= −ϕ2

= I − η⊗ ξ . Moreover,
ϕ̃ induces an almost paracomplex structure on the subbundle D, given by the n-
dimensional distributions D(λ) and D(−λ). Thus ϕ̃ defines an almost paracontact
structure on M . Next, we define a compatible metric g̃ by setting

(4-3) g̃(X, Y ) := dη(X, ϕ̃Y )+ η(X)η(Y )

for all X, Y ∈ 0(T M). In fact, by using (2-2), we have, for any X, Y ∈ 0(T M),

g̃(Y, X)= 1
√

1−κ
dη(Y, h X)+ η(Y )η(X)= 1

√
1−κ

g(Y, ϕh X)+ η(Y )η(X)

=
1

√
1−κ

g(X, ϕhY )+ η(X)η(Y )= dη(X, ϕ̃Y )+ η(X)η(Y )= g̃(X, Y );

thus g̃ defines a semi-Riemannian metric. Moreover, for all X, Y ∈ 0(T M), we
have

g(ϕ̃X, ϕ̃Y )= dη(ϕ̃X, Y − η(Y )ξ)+ η(ϕ̃X)η(ϕ̃Y )= dη(ϕ̃X, Y )

=−g̃(X, Y )+ η(X)η(Y ),

g(X, ϕ̃Y )= dη(X, ϕ̃2Y )+ η(X)η(ϕ̃Y )= dη(X, Y − η(Y )ξ)= dη(X, Y ).
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So (ϕ̃, ξ, η, g̃) is a paracontact metric structure. Finally, the paracontact metric
structure defined by (4-2) coincides with the canonical paracontact metric structure
of the contact metric (κ, µ)-space (M, ϕ, ξ, η, g) as (4-1) shows. �

The next result relates the Levi-Civita connections of (M, g) and (M, g̃).

Proposition 4.4. With the hypotheses and notation of Theorem 4.3, the Levi-Civita
connections ∇ and ∇̃ of g and g̃ are related as

∇̃X Y =∇X Y + 1
2µ
(
η(X)ϕY + η(Y )ϕX

)
−

1
√

1−κ

(
η(X)hY + η(Y )h X

)
+

1
2

( 2−µ
√

1−κ
g(h X, Y )− 2

√
1− κg(ϕ2 X, Y )

− 2g(X, ϕY )+ 2X (η(Y ))− η(∇X Y )
)
ξ.

Proof. By using Theorem 4.3 we get for each X, Y, Z ∈ 0(T M),

2g̃(∇̃X Y, Z)= X (g̃(Y, Z))+ Y (g̃(X, Z))− Z(g̃(X, Y ))

+ g̃([X, Y ], Z)+ g̃([Z , X ], Y )− g̃([Y, Z ], X)

=
1

√
1−κ

(
X (g(Y, ϕh Z))+ Y (g(X, ϕh Z))− Z(g(X, ϕhY ))

+g([X, Y ], ϕh Z)+ g([Z , X ], ϕhY ))− g([Y, Z ], ϕh X))
)

+X (η(Y )η(Z))+ Y (η(X)η(Z))− Z(η(X)η(Y ))

+η([X, Y ])η(Z)+ η([Z , X ])η(Y )− η([Y, Z ])η(X).

Hence if we apply the symmetry of ϕ◦h and the parallelism of g with respect to ∇,
we obtain

2g̃(∇̃X Y, Z)

=
1

√
1−κ

(
2g(ϕh∇X Y, Z)+g(Y, (∇Xϕh)Z)+g(X, (∇Yϕh)Z)−g(X, (∇Zϕh)Y )

)
+ 2

(
dη(X, Z)η(Y )+ dη(Y, Z)η(X)− dη(X, Y )η(Z)+ X (η(Y ))η(Z)

)
,

so that by using (2-10), after a long but straightforward calculation

2g̃(∇̃X Y, Z)

= g
(

1
√

1−κ

(
2ϕh(∇X Y )+µ

(
η(X)hY+η(Y )h X

))
−2
(
η(X)ϕY+η(Y )ϕX

)
, Z
)

+ 2g
(( 2−µ

2
√

1−κ
g(h X, Y )−

√
1− κg(ϕ2 X, Y )− g(X, ϕY )+ X (η(Y ))

)
ξ, Z

)
.
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It is easy to see that g̃(∇̃X Y, ξ) = η(∇̃X Y ) and then by the previous identity and
Theorem 4.3 we get
(4-4)
ϕh∇̃X Y = ϕh∇X Y + 1

2µ(η(X)hY + η(Y )h X)−
√

1− κ(η(X)ϕY + η(Y )ϕX).

We finally apply ϕh to both the sides of (4-4), use hϕ =−ϕh, h2
= (κ−1)ϕ2 and

straightforwardly get the claimed relation. �

We now prove that the canonical paracontact metric structure (ϕ̃, ξ, η, g̃) satis-
fies a suitable nullity condition.

Lemma 4.5. For the canonical paracontact metric structure (ϕ̃, ξ, η, g̃) from
Theorem 4.3, we have

(4-5) h̃ = 1
2
√

1−k
((2−µ)ϕ ◦ h+ 2(1− κ)ϕ), h̃2

= (1− κ − (1− 1
2µ)

2)ϕ2.

Proof. Using the identities ∇ξ =−ϕ−ϕh, ∇ξϕ = 0 and ϕ2h =−h, we get

2h̃ = (Lξ (Lξϕ))X

= [ξ, (Lξϕ)X ] − (Lξϕ)[ξ, X ]

= [ξ, [ξ, ϕX ] − 2[ξ, ϕ[ξ, X ]] +ϕ[ξ, [ξ, X ]]

= ∇ξ [ξ, ϕX ] +ϕ[ξ, ϕX ] +ϕh[ξ, ϕX ] − 2∇ξϕ[ξ, X ]

−2(ϕ2
[ξ, X ] +ϕhϕ[ξ, X ])+ϕ∇ξ [ξ, X ] −ϕ(−ϕ[ξ, X ] −ϕh[ξ, X ])

=∇ξ∇ξϕX −∇ξ (−ϕ2 X −ϕhϕX)+ϕ∇ξϕX −ϕ(−ϕ2 X −ϕhϕX)+ϕh∇ξϕX

−ϕh(−ϕ2 X −ϕhϕX)− 2∇ξϕ∇ξ X + 2∇ξϕ(−ϕX −ϕh X)− 2ϕ2
∇ξ X

+2ϕ2(−ϕX −ϕh X)+ 2ϕ2h∇ξ X − 2ϕ2h(−ϕX −ϕh X)+ϕ∇ξ∇ξ X

−ϕ∇ξ (−ϕX −ϕh X)+ϕ2
∇ξ X −ϕ2(−ϕX −ϕh X)+ϕ2h∇ξ X

−ϕ2h(−ϕX −ϕh X)

=∇ξϕ
2 X +∇ξh X +∇ξϕ2 X −ϕX − hϕX + h∇ξ X −ϕh X + h2ϕX −2∇ξϕ2 X

−2∇ξϕ2h X − 2ϕ2
∇ξ X + 2ϕX + 2ϕh X − 2h∇ξ X − 2hϕX + 2h2ϕX +ϕ2

∇ξ X

+ϕ2
∇ξh X +ϕ2

∇ξ X −ϕX −ϕh X − h∇ξ X − hϕX + h2ϕX

= 2(∇ξh)X + 4h2ϕX − 4hϕX.

Now since h2
= (κ − 1)ϕ2 and ∇ξh = µhϕ [Blair et al. 1995], we obtain the first

identity in (4-5), while the second is a straightforward consequence. �

Lemma 4.6. Let (M, ϕ, ξ, η, g) be a contact metric (κ, µ)-manifold and suppose
(ϕ̃, ξ, η, g̃) is the canonical paracontact metric structure induced on M , according
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to Theorem 4.3. Then the Levi-Civita connection ∇̃ of (M, g̃) satisfies

(4-6)
(∇̃X ϕ̃)Y =−g̃(X − h̃ X, Y )ξ + η(Y )(X − h̃ X),

(∇̃X h̃)Y =−η(Y )(ϕ̃h̃ X − ϕ̃h̃2 X)− 2η(X)ϕ̃h̃Y − g̃(X, ϕ̃h̃Y + ϕ̃h̃2Y )ξ,

for all X, Y ∈ 0(T M).

Proof. The first identity easily follows from the integrability of (ϕ̃, ξ, η, g̃), taking
Theorem 2.4 into account. To prove the second, let ∇bl be the bi-Legendrian con-
nection associated to the bi-Legendrian structure (D(λ),D(−λ)). Note that ∇bl

coincides with the canonical paracontact connection ∇̃ pc, so that, by using the first
formula in (4-5) and since, by Theorem 3.1, ∇blh =∇blϕ = 0, we have

(4-7)

(∇̃
pc
X h̃)Y = (∇bl

X h̃)Y

=
1

2
√

1−k
((2−µ)(∇bl

X ϕh)Y + 2(1− k)(∇bl
X ϕ)Y )

=
2−µ

2
√

1−k
((∇bl

X ϕ)hY +ϕ(∇bl
X h)Y )+ 1−k

√
1−k

(∇bl
X ϕ)Y = 0.

Now, by (2-14), (4-7) and the properties of the operator h̃,

(∇̃X h̃)Y = ∇̃X h̃Y−h̃∇̃X Y

= (∇̃
pc
X h̃)Y−η(X)ϕ̃h̃Y−η(h̃Y )(ϕ̃X−ϕ̃h̃ X)−g̃(X, ϕ̃h̃Y )ξ+g̃(h̃ X, ϕ̃h̃Y )ξ

+η(X)h̃ϕ̃Y+η(Y )(h̃ϕ̃X−h̃ϕ̃h̃ X)+g̃(X, ϕ̃Y )h̃ξ−g̃(h̃ X, ϕ̃Y )h̃ξ

=−η(Y )(ϕ̃h̃ X−ϕ̃h̃2 X)−2η(X)ϕ̃h̃Y−g̃(X, ϕ̃h̃Y+ϕ̃h̃2Y )ξ,

as claimed. �

Theorem 4.7. Let (M, ϕ, ξ, η, g) be a contact metric (κ, µ)-manifold and suppose
(ϕ̃, ξ, η, g̃) is the canonical paracontact metric structure induced on M. Then the
curvature tensor field of the Levi-Civita connection of (M, g̃) satisfies

R̃XY ξ = κ̃(η(Y )X − η(X)Y )+ µ̃(η(Y )h̃ X − η(X)h̃Y )

for all X, Y ∈ 0(T M), where

(4-8) κ̃ = κ − 2+ (1−µ/2)2 and µ̃= 2.

Proof. First we prove the preliminary formula

(4-9) R̃XY ξ =−(∇̃X ϕ̃)Y + (∇̃Y ϕ̃)X + (∇̃X ϕ̃)h̃Y

+ ϕ̃((∇̃X h̃)Y )− (∇̃Y ϕ̃)h̃ X − ϕ̃((∇̃Y h̃)X).
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Indeed for all X, Y ∈ 0(T M), using the identity ∇̃ξ =−ϕ̃+ ϕ̃h̃, we get

R̃XY ξ = ∇̃X ∇̃Y ξ −∇̃Y ∇̃Xξ −∇̃[X,Y ]ξ

=−∇̃X ϕ̃Y +∇̃X ϕ̃h̃Y +∇̃Y ϕ̃X −∇̃Y ϕ̃h̃ X + ϕ̃[X, Y ] − ϕ̃h̃[X, Y ]

= −∇̃X ϕ̃Y +∇̃X ϕ̃h̃Y +∇̃Y ϕ̃X −∇̃Y ϕ̃h̃ X + ϕ̃∇̃X Y

− ϕ̃∇̃Y X − ϕ̃h̃∇̃X Y + ϕ̃h̃∇̃Y X

=−(∇̃X ϕ̃)Y +(∇̃Y ϕ̃)X+∇̃X ϕ̃h̃Y − ϕ̃∇̃X h̃Y + ϕ̃∇̃X h̃Y −∇̃Y ϕ̃h̃ X+ ϕ̃∇̃Y h̃ X

− ϕ̃∇̃Y h̃ X − ϕ̃h̃∇̃X Y + ϕ̃h̃∇̃Y X

=−(∇̃X ϕ̃)Y+(∇̃Y ϕ̃)X+(∇̃X ϕ̃)h̃Y+ϕ̃((∇̃X h̃)Y )−(∇̃Y ϕ̃)h̃ X−ϕ̃((∇̃Y h̃)X).

Therefore, replacing (4-6) in (4-9) and using the second formula in (4-5), we obtain

R̃XY ξ = g̃(X − h̃ X, Y )ξ − η(Y )(X − h̃ X)− g̃(Y − h̃Y, X)ξ + η(X)(Y − h̃Y )

−g̃(X − h̃ X, h̃Y )ξ + η(h̃Y )(X − h̃ X)− η(Y )(ϕ̃2h̃ X − ϕ̃2h̃2 X)

−2η(X)ϕ̃2h̃Y + g̃(Y − h̃Y, h̃ X)ξ − η(h̃ X)(Y − h̃Y )

+η(X)(ϕ̃2h̃Y − ϕ̃2h̃2Y )+ 2η(Y )ϕ̃2h̃ X

= g̃(X, Y )ξ − g̃(h̃ X, Y )ξ − η(Y )X + η(Y )h̃ X − g̃(Y, X)ξ + g̃(h̃Y, X)ξ

+η(X)Y − η(X)h̃Y − g̃(X, h̃Y )ξ + g̃(h̃ X, h̃Y )ξ − η(Y )ϕ̃2h̃ X

+η(Y )ϕ̃2h̃2 X − 2η(X)ϕ̃2h̃Y + g̃(Y, h̃ X)ξ − g̃(h̃Y, h̃ X)ξ

+η(X)ϕ̃2h̃Y − η(X)ϕ̃2h̃2Y + 2η(Y )ϕ̃2h̃ X

=−η(Y )X+η(Y )h̃ X+η(X)Y−η(X)h̃Y−2η(X)h̃Y−η(Y )h̃ X+η(Y )h̃2 X

+2η(Y )h̃ X + η(X)h̃Y − η(X)h̃2Y

=−η(Y )X + η(X)Y +
(
1− κ − (1−µ/2)2

)
η(Y )ϕ2 X

−
(
1− κ − (1−µ/2)2

)
η(X)ϕ2Y − 2η(X)h̃Y + 2η(Y )h̃ X

=
(
κ − 2+ (1−µ/2)2

)(
η(Y )X − η(X)Y

)
+ 2

(
η(Y )h̃ X − η(X)h̃Y

)
. �

Theorem 4.7 justifies the following definition. A paracontact metric manifold
(M, ϕ̃, ξ, η, g̃) is said to be a paracontact metric (κ̃, µ̃)-manifold if the curvature
tensor field of the Levi-Civita connection satisfies

(4-10) R̃XY ξ = κ̃(η(Y )X − η(X)Y )+ µ̃(η(Y )h̃ X − η(X)h̃Y ),

where κ̃ , µ̃ are real constants. Using (4-10) and the formula (see [Zamkovoy 2009])

(4-11) R̃ξ Xξ + ϕ̃ R̃ξ ϕ̃Xξ = 2(ϕ̃2 X − h̃2 X),

one can easily prove that

(4-12) h̃2
= (1+ κ̃)ϕ̃2.
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For κ̃ = −1, we get h̃2
= 0 and now the analogy with contact metric (κ, µ)-

manifolds breaks down because, since the metric g̃ is not positive definite, we
cannot conclude that h̃ = 0 and the manifold is para-Sasakian. Natural questions
are whether there exist examples of paracontact metric manifolds such that h̃2

= 0
but h̃ 6= 0 and whether the (κ̃, µ̃)-nullity condition (4-10) could force the operator
h̃ to vanish identically even if the metric g̃ is not positive definite. Also, though
paracontact metric manifolds with h̃2

= 0 have made their appearance in several
contexts (see for instance [Zamkovoy 2009, Theorem 3.12]), to the knowledge of
the authors not even one explicit example has been given. We now provide one.

Example 4.8. Let g be the 5-dimensional Lie algebra with basis X1, X2, Y1, Y2, ξ

and nonvanishing Lie brackets defined by

[X1, X2] = 2X2, [X1, Y1] = 2ξ, [X2, Y1] = −2Y2,

[X2, Y2] = 2(Y1+ ξ), [ξ, X1] = −2Y1, [ξ, X2] = −2Y2.

Let G be a Lie group whose Lie algebra is g. On G we define a left-invariant
paracontact metric structure (ϕ̃, ξ, η, g̃) by setting

ϕ̃ξ = 0, ϕ̃X i = X i , ϕ̃Yi =−Yi , η(X i )= η(Yi )= 0, η(ξ)= 1,

and

g̃(X i , X j )= g̃(Yi , Y j )= 0, g̃(X i , Yi )= 1, g̃(X1, Y2)= g̃(X2, Y1)= 0

for all i, j ∈ {1, 2}. Then a direct computation shows that h̃2 vanishes identically,
but h̃ 6= 0 since, for example, h̃ X1 =−Y1. Also, one can see that (G, ϕ̃, ξ, η, g̃) is
a paracontact metric (κ̃, µ̃)-manifold, with κ̃ =−1 and µ̃= 2.

5. The canonical sequence of contact and paracontact metric structures
associated with a contact metric (κ, µ)-space

In this section we will show that the procedure Theorem 4.3 used for defining
the canonical paracontact metric structure (ϕ̃, ξ, η, g̃) via the Lie derivative of ϕ
can be iterated. Indeed, Lemma 4.5 suggests that the Lie derivative of ϕ̃ in the
direction ξ could define a compatible almost contact or paracontact structure on
(M, η) provided that the coefficient 1− κ − (1−µ/2)2, which directly brings up
the invariant IM , is positive or negative, respectively. Furthermore, we show that
this algorithm can also be applied to the new contact and paracontact structures, so
that one can attach to M a canonical sequence of contact and paracontact metric
structures; this sequence strictly depends on the invariant IM and hence on the class
of M according to the classification recalled in Section 3. We start by proving the
following fundamental result.
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Theorem 5.1. Let (M, ϕ, ξ, η, g) be a contact metric (κ, µ)-manifold and suppose
(ϕ̃, ξ, η, g̃) is the canonical paracontact metric structure of M. Then

(i) if |IM | < 1, the paracontact metric structure (ϕ̃, ξ, η, g̃) induces on (M, η) a
canonical compatible contact metric (κ1, µ1)-structure (ϕ1, ξ, η, g1), where

(5-1) κ1 = κ + (1− 1
2µ)

2, µ1 = 2;

(ii) if |IM | > 1, the paracontact metric structure (ϕ̃, ξ, η, g̃) induces on (M, η)
a canonical compatible paracontact metric (κ̃1, µ̃1)-structure (ϕ̃1, ξ, η, g̃1),
where

(5-2) κ̃1 = κ − 2+ (1− 1
2µ)

2, µ̃1 = 2.

Proof. (i) Assume that |IM | < 1. By Lemma 4.5, h̃2 is proportional to ϕ2 and the
constant of proportionality −(2−µ)2+4(1−κ) is positive since we are assuming
that |IM |< 1. Then we set

(5-3)

ϕ1 : =
1√

1−κ−(1−µ/2)2
h̃

=
1

2
√
(1−κ)(1−κ−(1−µ/2)2)

((2−µ)ϕ ◦ h+ 2(1− κ)ϕ).

Due to (4-5) we have ϕ2
1 = ϕ

2
=−I +η⊗ ξ ; hence (ϕ1, ξ, η) is an almost contact

structure on M . We now look for a compatible Riemannian metric g1 such that
dη = g1( · , ϕ1· ). Thus we set

(5-4) g1(X, Y ) := −dη(X, ϕ1Y )+ η(X)η(Y ).

We first need to prove that g1 is a Riemannian metric. For any X, Y ∈ 0(T M),
using the symmetry of the operator h̃ with respect to g̃, we have

g1(Y, X)=− 1√
1−κ−(1−µ/2)2

dη(Y, h̃ X)+ η(Y )η(X)

=−
1√

1−κ−(1−µ/2)2
g̃(Y, ϕ̃h̃ X)+ η(Y )η(X)

=−
1√

1−κ−(1−µ/2)2
g̃(X, ϕ̃h̃Y )+ η(X)η(Y )

=−dη(X, ϕ1Y )+ η(X)η(Y )

= g1(X, Y ),

so that g1 is a symmetric tensor. Furthermore, directly by (5-4),

dη(X, Y )= g1(X, ϕ1Y ) and g1(ϕ1 X, ϕ1Y )= g1(X, Y )− η(X)η(Y )
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for all X, Y ∈ 0(T M). Now we look for conditions ensuring the positive definite-
ness of g1. Let X be a nonzero vector field on M and put

α :=
1

2
√
(1−κ)(1−κ−(1−µ/2)2)

.

Since g(ξ, ξ) = η(ξ)η(ξ) = 1 > 0 we can assume that X ∈ 0(D). Then by (5-3)
and (5-4),

(5-5) g1(X, X)=−α(2−µ)dη(X, ϕh X)− 2α(1− κ)dη(X, ϕX)

= α(2−µ)g(X, h X)+ 2α(1− κ)g(X, X)

= α(2−µ)g(Xλ+ X−λ, h(Xλ+ X−λ))

+2α(1− κ)g(Xλ+ X−λ, Xλ+ X−λ)

= α(2−µ)g(Xλ+ X−λ, λXλ− λX−λ)

+2α(1− κ)g(Xλ+ X−λ, Xλ+ X−λ)

= αλ(2λ−µ+ 2)g(Xλ, Xλ)+αλ(2λ+µ− 2)g(X−λ, X−λ),

where we have decomposed the vector field X ∈ 0(D) into its components along
D(λ) and D(−λ), and λ =

√
1− κ . Thus g1 is a Riemannian metric provided

that 2λ − µ + 2 > 0 and 2λ + µ − 2 > 0. In view of (3-1), the conditions
above are just equivalent to the positive definiteness of the Legendre foliation
D(λ) and to the negative definiteness of D(−λ), and hence to the requirement
that |IM | < 1. Thus, as we are assuming that |IM | < 1, we conclude that g1 is a
Riemannian metric. We now prove that (ϕ1, ξ, η, g1) is a contact metric (κ1, µ1)-
structure, for some constants κ1 and µ1 to be found. For this purpose we first find
a more explicit expression of the tensor field h1 := (1/2)Lξϕ1. As before, set
α := 1/(2

√
(1− κ)(1− κ − (1−µ/2)2) ). Then by (4-2) and (4-5), we have

h1 =
1
2α((2−µ)((Lξϕ) ◦ h+ϕ ◦ (Lξh))+ 2(1− κ)Lξϕ)

=
1
2α((2−µ)(2h2

+ (2−µ)ϕ2
◦ h+ 2(1− κ)ϕ2)+ 4(1− κ)h)

=
1
2α(−(2−µ)

2
+ 4(1− κ))h

= h
√

1− IM
2.

Thus h1 is proportional to h and hence has the eigenvalues λ1 and −λ1, where
λ1 :=

√
(1− κ)(1− IM

2)= 1− κ − (1−µ/2)2, and the corresponding eigendistri-
butions coincide with the those of the operator h. Then the bi-Legendrian connec-
tion associated with (D(−λ1),D(λ1)) coincides with the bi-Legendrian connection
∇

bl associated with the bi-Legendrian structure (D(−λ),D(λ)) induced by h. We
prove that ∇bl preserves the tensor fields ϕ1. Indeed for all X, Y ∈ 0(T M)

(∇bl
X ϕ1)Y = α(2−µ)((∇bl

X ϕ)hY +ϕ(∇bl
X h)Y )+ 2α(1− κ)(∇bl

X ϕ)Y = 0
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since ∇blϕ = 0 and ∇blh = 0. Moreover, as ∇blϕ1 = 0 and ∇bldη = 0, also
∇

bl g1 = 0. Therefore, since obviously also ∇blh1 = 0, ∇bl satisfies all the con-
ditions of Theorem 3.1 and we can conclude that (ϕ1, ξ, η, g1) is a contact metric
(κ1, µ1)-structure. In order to find the expression of κ1 and µ1, we observe that
immediately κ1 = 1− λ2

1 = κ + (1− κ)IM
2
= κ + (1−µ/2)2. Then applying the

first of (3-1) and 5D(λ) =5D(λ1), we have, for any nonzero X ∈ 0(D(λ)),

(2
√

1− κ −µ+ 2)g(X, X)= (2
√

1− κ1−µ1+ 2)g1(X, X).

Using (5-5) we get 2
√

1− κ1−µ1+ 2=
√
−(2−µ)2+ 4(1− κ), so that

µ1 = 2
√

1− κ − (1−µ/2)2+ 2−
√
−(2−µ)2+ 4(1− κ)= 2.

(ii) Assume that |IM |> 1. Then we define

ϕ̃1 : =
1√

(1−µ/2)2−(1−κ)
h̃(5-6)

=
1

2
√
(1−κ)((1−µ/2)2−(1−κ))

((2−µ)ϕ ◦ h+ 2(1− κ)ϕ).

Using (4-5) and the assumption |IM | > 1, one easily proves that ϕ̃2
1 = I − η⊗ ξ ,

so that to conclude that (ϕ̃1, ξ, η) defines an almost paracontact structure we need
only to prove that the eigendistributions corresponding to the eigenvalues 1 and−1
of ϕ̃1|D have equal dimension n. Though h̃ is a symmetric operator (with respect
to g̃) it could be not necessarily diagonalizable, since g̃ is not positive definite.
Nevertheless we now show that this is the case. Let {X1, . . . , Xn, Y1, . . . , Yn, ξ}

be a local orthonormal ϕ-basis of eigenvectors of h, that is, for i ∈ {1, . . . , n},

X i =−ϕYi , Yi = ϕX i , h X i= λX i , hYi=−λYi .

Then, by (4-5), for each i ∈ {1, . . . , n},

h̃ X i =
1

2
√

1−κ
((2−µ)ϕh X i + 2(1− κ)ϕX i )

=
1

2
√

1−κ
((2−µ)λYi + 2(1− κ)Yi )

=
(
1− 1

2µ+
√

1− κ
)
Yi

and, analogously, one finds h̃Yi = (1−µ/2−
√

1− κ)X i . Hence h̃ is represented
with respect to the basis {X1, . . . , Xn, Y1, . . . , Yn, ξ} by the matrix 0n (1−µ/2−

√
1− κ)In 0n1

(1−µ/2+
√

1− κ)In 0n 0n1

01n 01n 0

 ,
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where 0n , 0n1 and 01n denote, respectively, the n×n, n×1 and 1×n matrices whose
entries are all 0, and In the identity matrix of order n. Therefore the characteristic
polynomial is given by

p =−λ
(
λ2
− (1− 1

2µ+
√

1− κ)(1− 1
2µ−

√
1− κ)

)n

=−λ
(
λ2
− ((1− 1

2µ)
2
− (1− κ))

)n
.

Because of the assumption |IM |> 1, the number (1−µ/2)2−(1−κ) is positive, so
that the operator h̃ admits, apart from the eigenvalue 0 corresponding to the eigen-
vector ξ , also the eigenvalues λ̃ and −λ̃, where λ̃ :=

√
(1−µ/2)2− (1− κ). An

easy computation shows that the corresponding eigendistributions are, respectively,

(5-7)

D(λ̃)= span

{√
IM − 1
IM + 1

X1+ Y1, . . . ,

√
IM − 1
IM + 1

Xn + Yn

}
,

D(−λ̃)= span

{
−

√
IM − 1
IM + 1

X1+ Y1, . . . ,−

√
IM − 1
IM + 1

Xn + Yn

}
.

Therefore each eigendistribution D(λ̃) and D(−λ̃) has dimension n, and finally
this implies that the eigendistributions of the operator ϕ̃1 restricted to D are n-
dimensional. Thus (ϕ̃1, ξ, η) is an almost paracontact structure. Next we define a
compatible semi-Riemannian metric by putting, for any X, Y ∈ 0(T M),

(5-8) g̃1(X, Y ) := dη(X, ϕ̃1Y )+ η(X)η(Y ).

That g̃1 is symmetric can be easily proved. Moreover, directly from (5-8) one can
show that g̃1(ϕ̃1 X, ϕ̃1Y ) = −g̃1(X, Y )+ η(X)η(Y ) and dη(X, Y ) = g̃1(X, ϕ̃1Y )
for all X, Y ∈ 0(T M). Therefore (ϕ̃1, ξ, η, g̃1) is a paracontact metric structure
on M . Also, arguing as in the previous case, one can find that

h̃1 =
1

4
√
(1−κ)((1−µ/2)2−4(1−κ))

((2−µ)Lξ (ϕ ◦ h)+ 2(1− κ)Lξϕ)

= (−
√

IM
2
− 1 )h.

It remains to show that (M, ϕ̃1, ξ, η, g̃1) satisfies a (κ̃1, µ̃1)-nullity condition for
some constants κ̃1 and µ̃1. For this purpose we find the relationship between the
Levi-Civita connections ∇̃ and ∇̃1 of g̃ and g̃1, respectively. Notice that, by (5-8),

(5-9)
g̃1(X, Y )= 1√

(1−µ/2)2−(1−κ)
dη(X, h̃Y )+ η(X)η(Y )

= β g̃(X, ϕ̃h̃Y )+ η(X)η(Y ),



278 BENIAMINO CAPPELLETTI MONTANO AND LUIGIA DI TERLIZZI

where we put β := 1/
√
(1−µ/2)2− (1− κ). Then, arguing as in Proposition 4.4,

we have, for all X, Y, Z ∈ 0(T M),

2g̃1(∇̃
1
X Y, Z)

= β
(
2g̃(ϕ̃h̃∇̃X Y, Z)+ g̃(Y, (∇̃X ϕ̃h̃)Z)+ g̃(X, (∇̃Y ϕ̃h̃)Z)− g̃(X, (∇̃Z ϕ̃h̃)Y )

)
+2(dη(X, Z)η(Y )+ dη(Y, Z)η(X)− dη(X, Y )η(Z)+ X (η(Y ))η(Z)).

Using (4-6) and the identity (∇̃X ϕ̃h̃)Y = (∇̃X ϕ̃)h̃Y + ϕ̃((∇̃X h̃)Y ), the previous
relation becomes

(5-10) 2g̃1(∇̃
1
X Y, Z)

= β
(
2g̃(ϕ̃h̃∇̃X Y, Z)− η(Y )g̃(X, h̃ Z)+ η(Y )g̃(h̃ X, h̃ Z)

− 2η(X)g̃(Y, ϕ̃2h̃ Z)− η(Z)g̃(Y, ϕ̃2h̃ X)+ η(Z)g̃(Y, ϕ̃2h̃2 X)

− η(X)g̃(Y, h̃ Z)+ η(X)g̃(h̃Y, h̃ Z)− 2η(Y )g̃(X, ϕ̃2h̃ Z)

− η(Z)g̃(X, ϕ̃2h̃Y )+ η(Z)g̃(X, ϕ̃2h̃2Y )+ η(X)g̃(Z , h̃Y )

− η(X)g̃(h̃ Z , h̃Y )+ 2η(Z)g̃(X, ϕ̃2h̃Y )

+ η(Y )g̃(X, ϕ̃2h̃ Z)− η(Y )g̃(X, ϕ̃2h̃2 Z)
)

+ 2(dη(X, Z)η(Y )+ dη(Y, Z)η(X)− dη(X, Y )η(Z)+ X (η(Y ))η(Z)).

Notice that, by (4-8) and (4-12), h̃2
=(1+κ̃)ϕ̃2

=(κ−1+(1−µ/2)2)ϕ̃2
=(1/β2)ϕ̃2.

Substituting this relation in (5-10) and taking the symmetry of the operator h̃ with
respect to the semi-Riemannian metric g̃ into account, we get

2g̃1(∇̃
1
X Y, Z)= β

(
2g̃(ϕ̃h̃∇̃X Y, Z)− 2η(X)g̃(h̃Y, Z)

+
2
β2 g̃(X, Y )η(Z)− 2

β2η(X)η(Y )η(Z)− 2η(Y )g̃(h̃ X, Z)
)

+ 2
(
dη(X, Z)η(Y )+ dη(Y, Z)η(X)− dη(X, Y )η(Z)+ X (η(Y ))η(Z)

)
,

that is, by definition of g̃1,

(5-11) 2(cβ g̃(∇̃1
X Y, ϕ̃h̃ Z)+ η(∇̃1

X Y )g̃(ξ, Z))

= β
(

2g̃(ϕ̃h̃∇̃X Y, Z)− 2η(X)g̃(h̃Y, Z)

+
2
β2 g̃(X, Y )g̃(ξ, Z)− 2

β2η(X)η(Y )g̃(ξ, Z)− 2η(Y )g̃(h̃ X, Z)
)

+ 2
(
−η(Y )g̃(ϕ̃X, Z)− η(X)g̃(ϕ̃Y, Z)− g̃(X, ϕ̃Y )g̃(ξ, Z)+ X (η(Y ))g̃(ξ, Z)

)
.

Therefore, since Z was chosen arbitrarily, we get

(5-12) βϕ̃h̃∇̃1
X Y + η(∇̃1

X Y )ξ = βϕ̃h̃∇̃X Y −βη(X)h̃Y

+β−1g̃(X, Y )ξ −β−1η(X)η(Y )ξ −βη(Y )h̃ X

− η(Y )ϕ̃X − η(X)ϕ̃Y − g̃(X, ϕ̃Y )ξ + X (η(Y ))ξ.
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Note that, since ϕ̃1 = β h̃, h̃1 =−β
−1ϕ̃ and h̃2

= β−2ϕ̃2,

(5-13)

η(∇̃1
X Y )= g̃1(∇̃

1
X Y, ξ)

= X (g̃1(Y, ξ))− g̃1(Y, ∇̃1
Xξ)

= X (η(Y ))− g̃1(Y,−ϕ̃1 X + ϕ̃1h̃1 X)

= X (η(Y ))+ dη(Y, X)− g̃1(Y, ϕ̃h̃ X)

= X (η(Y ))− g̃(X, ϕ̃Y )−β g̃(Y, ϕ̃h̃ϕ̃h̃ X)

= X (η(Y ))− g̃(X, ϕ̃Y )+β−1g̃(X, Y )−β−1η(X)η(Y ).

Consequently, (5-12) becomes

h̃∇̃1
X Y = h̃∇̃X Y − η(X)ϕ̃h̃Y − η(Y )ϕ̃h̃ X −β−1η(Y )ϕ̃2 X −β−1η(X)ϕ̃2Y.

Applying h̃ we obtain

(5-14) ∇̃1
X Y − η(∇̃1

X Y )ξ

= ∇̃X Y − η(∇̃X Y )ξ + η(X)ϕ̃Y + η(Y )ϕ̃X −βη(Y )h̃ X −βη(X)h̃Y.

Now, a straightforward computation as in (5-13) shows that

(5-15) η(∇̃X Y )= X (η(Y ))− g̃(X, ϕ̃Y )− g̃(X, ϕ̃h̃Y ).

Therefore, by replacing (5-13) and (5-15) in (5-14) and recalling that we have set
β = 1/

√
(1−µ/2)2− (1− κ), we finally find

(5-16) ∇̃1
X Y = ∇̃X Y + η(X)

(
ϕ̃Y − h̃Y√

(1−µ/2)2−(1−κ)

)
+ η(Y )

(
ϕ̃X − h̃ X√

(1−µ/2)2−(1−κ)

)
+
(√
(1−µ/2)2− (1− κ)

(
g̃(X, Y )− η(X)η(Y )

)
+ g̃(X, ϕ̃h̃Y )

)
ξ.

The explicit expression (5-16) of the Levi-Civita connection of g̃1 in terms that of g̃
allows us to prove that (M, ϕ̃1, ξ, η, g̃1) is a paracontact metric (κ̃1, µ̃1)-manifold
for some κ̃1, µ̃1 ∈ R. Indeed, from (5-16), after some long but straightforward
computations, we obtain

(5-17) (∇̃1
X ϕ̃1)Y

=

(
−

1√
(1−µ/2)2− (1− κ)

g̃(X, ϕ̃h̃Y )− η(X)η(Y )+ g̃(X, h̃Y )
)
ξ

+ η(Y )
(
X +

√
(1−µ/2)2− (1− κ)ϕ̃X

)
=−g̃1(X − h̃1 X, Y )ξ + η(Y )(X − h̃1 X),
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and

(5-18) (∇̃1
X h̃1)Y

=
√
(1−µ/2)2− (1− κ)η(Y )h̃ X − 2η(X)ϕ̃h̃Y − η(Y )ϕ̃h̃ X

+
√
(1−µ/2)2− (1− κ)

(
g̃(X, Y )− η(X)η(Y )

−
√
(1−µ/2)2− (1− κ)g̃(X, ϕ̃Y )

)
ξ

=−η(Y )(ϕ̃1h̃1 X − ϕ̃1h̃2
1 X)−2η(X)ϕ̃1h̃1Y − g̃1(X, ϕ̃1h̃1Y + ϕ̃1h̃2

1Y )ξ.

Then by (4-9), (5-17), (5-18) and h̃2
1 = ((1−µ/2)

2
− (1− κ))ϕ̃2, we get

R̃1
XY ξ =−(∇̃

1
X ϕ̃1)Y + (∇̃1

Y ϕ̃1)X + (∇̃1
X ϕ̃1)h̃Y

+ ϕ̃1((∇̃
1
X h̃)Y )− (∇̃1

Y ϕ̃1)h̃1 X − ϕ̃1((∇̃
1
Y h̃1)X)

=−η(Y )X + η(X)Y + η(Y )h̃2
1 X − η(X)h̃2

1Y − 2η(X)h̃1Y + 2η(Y )h̃1 X

=−η(Y )X + η(X)Y +
(
(1− 1

2µ)
2
− (1− κ)

)(
η(Y )ϕ̃2 X − η(X)ϕ̃2Y

)
− 2η(X)h̃1Y + 2η(Y )h̃1 X

=
(
κ − 2+ (1− 1

2µ)
2)(η(Y )X − η(X)Y )+ 2

(
η(Y )h̃1 X − η(X)h̃1Y

)
.

Thus (ϕ̃1, ξ, η, g̃1) is paracontact metric (κ̃1, µ̃1)-structure with

κ̃1 = κ − 2+ (1− 1
2µ)

2 and µ̃1 = 2. �

A Tanaka–Webster parallel space, introduced by Boeckx and Cho [2008], is a
contact metric manifold whose generalized Tanaka–Webster torsion T̂ and curva-
ture R̂ satisfy ∇̂ T̂ = 0 and ∇̂ R̂ = 0, that is, ∇̂ is invariant by parallelism (in the
sense of [Kobayashi and Nomizu 1963]). Boeckx and Cho [2008, Theorem 12]
proved that a contact metric manifold M is a Tanaka–Webster parallel space if
and only if M is a Sasakian locally ϕ-symmetric space or a non-Sasakian (κ, 2)-
space. Thus, we deduce that the contact metric (κ1, µ1)-structure (ϕ1, ξ, η, g1) in
Theorem 5.1(i) is in fact a Tanaka–Webster parallel structure.

Corollary 5.2. Every non-Sasakian contact metric (κ, µ)-manifold (M, ϕ, ξ, η, g)
such that |IM |< 1 admits a compatible Tanaka–Webster parallel structure.

Remark 5.3. In proving Theorem 5.1 we have proved that, even if the metric g̃
is not positive definite, in the case |IM | > 1, the operator h̃ is diagonalizable
and has an eigenvalue 0 of multiplicity 1 and eigenvalues λ̃ and −λ̃, where λ̃ =√
(1−µ/2)2− (1− κ), both of multiplicity n. The eigendistributions D(λ̃) and

D(−λ̃) are expressed in terms of a local ϕ-basis of eigenvectors of h by the relations
(5-7). We now show that D(λ̃) and D(−λ̃) are in fact Legendre foliations. Indeed,
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for any X, X ′ ∈ 0(D(λ̃)) we have

g̃(X, ϕ̃X ′)= 1
λ̃

g̃(X, ϕ̃h̃ X ′)=−1
λ̃

g̃(X, h̃ϕ̃X ′)=−1
λ̃

g̃(h̃ X, ϕ̃X ′)=−g̃(X, ϕ̃X ′),

so that g̃(X, ϕ̃X ′)=0 and consequently dη(X, X ′)=0. Analogously, dη(Y, Y ′)=0
for any Y, Y ′ ∈ 0(D(−λ̃)). This proves that D(λ̃) and D(−λ̃) are Legendre dis-
tributions. Now, observe that the almost bi-Legendrian structure given by D(λ̃)

and D(−λ̃), by definition of ϕ̃1, coincides with the almost bi-Legendrian structure
induced by the paracontact metric structure (ϕ̃1, ξ, η, g̃1) in Theorem 5.1, which is
integrable because of (5-17) and Theorem 2.4. Thus

[X, X ′] ∈ 0(D(λ̃)⊕Rξ) for all X, X ′ ∈ 0(D(λ̃)),

[Y, Y ′] ∈ 0(D(−λ̃)⊕Rξ) for all Y, Y ′ ∈ 0(D(−λ̃)).

On the other hand, since D(λ̃) and D(−λ̃) are Legendre distributions, we have that
η([X, X ′])= X (η(X ′))− X ′(η(X))− 2dη(X, X ′)= 0 and η([Y, Y ′])= 0, so that
[X, X ′] ∈0(D) and [Y, Y ′] ∈0(D) for all X, X ′ ∈0(D(λ̃)) and Y, Y ′ ∈0(D(−λ̃)).
Hence D(λ̃) and D(−λ̃) are involutive.

Thus any contact metric (κ, µ)-manifold (M, ϕ, ξ, η, g) with |IM | > 1 admits
a supplementary bi-Legendrian structure given by the eigendistributions of the
operator h̃ of the canonical paracontact metric structure (ϕ̃, ξ, η, g̃) induced by
(ϕ, ξ, η, g). The surprising fact is that such a structure (D(λ̃),D(−λ̃)) comes from
a (new) contact metric (κ ′, µ′)-structure:

Theorem 5.4. Let (M, ϕ, ξ, η, g) be a contact metric (κ, µ)-manifold such that
|IM |>1, and let (ϕ̃, ξ, η, g̃) be the canonical paracontact metric structure induced
on M. Then the operator h̃ := (1/2)Lξ ϕ̃ is diagonalizable and has eigenvalues 0
of multiplicity 1 and ±λ̃ of multiplicity n, where λ̃ :=

√
(1−µ/2)2− (1− κ).

Furthermore, denoting by D(λ̃) and D(−λ̃) the eigendistributions correspond-
ing to λ̃ and −λ̃, respectively, there exists a family of compatible contact metric
(κ ′a,b, µ

′

a,b)-structures (ϕ′a,b, ξ, η, g′a,b) whose associated bi-Legendrian structure
coincides with (D(λ̃),D(−λ̃)), where

(5-19) κ ′a,b = 1− 1
16(a− b)2, µ′a,b = 2− 1

2(a+ b),

and a and b are any two positive real numbers such that

(5-20) ab = 1
4((1−

1
2µ)

2
− (1− κ)).

Moreover, the Boeckx invariant of (M, ϕ′a,b, ξ, η, g′a,b) has absolute value strictly
greater than 1, so that (ϕ′a,b, ξ, η, g′a,b) belongs to the same class as (ϕ, ξ, η, g),
according to the classification in Section 3.
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Proof. The first part of the theorem has been already proven in Theorem 5.1 and
Remark 5.3. The remaining part of the proof consists in showing that the bi-
Legendrian structure (D(−λ̃),D(λ̃)) satisfies the hypotheses of Theorem 3.2. First
we find the expression of the invariants5D(λ̃) and5D(−λ̃). For any X, X ′∈0(D(λ̃))
we have

5D(λ̃)(X, X ′)= 2dη([ξ, X ], X ′)= 2g̃1([ξ, X ], ϕ̃1 X ′)

= 2g̃1([ξ, X ], X ′)= 2g̃1(h̃1 X, X ′),

and, analogously, for any Y, Y ′ ∈ 0(D(−λ̃)),

5D(−λ̃)(Y, Y ′)= 2dη([ξ, Y ], Y ′)= 2g̃1([ξ, Y ], ϕ̃1Y ′)

=−2g̃1([ξ, Y ], Y ′)= 2g̃1(h̃1Y, Y ′),

where we used the easy relations h̃1 X = [ξ, X ]D(−λ̃) and h̃1Y = −[ξ, Y ]D(λ̃) for
any X ∈ 0(D(λ̃)) and Y ∈ 0(D(−λ̃)). We prove that ∇ ′bl5D(λ̃) =∇

′bl5D(−λ̃) = 0,
where ∇ ′bl denotes the bi-Legendrian connection associated to the bi-Legendrian
structure (D(−λ̃),D(λ̃)). Indeed, notice that, by Theorem 4.1 and the integrability
of (ϕ̃1, ξ, η, g̃1), ∇ ′bl coincides with the canonical paracontact connection ∇̃1pc

of (M, ϕ̃1, ξ, η, g̃1). In particular, by (2-14) and (5-18), for any X, Y ∈ 0(T M),

(∇ ′bl
X h̃1)Y = (∇̃

1pc
X h̃1)Y

= (∇̃1
X h̃1)Y + η(X)ϕ̃1h̃1Y + g̃1(X − h̃1 X, ϕ̃1h̃1Y )ξ − η(Y )h̃1ϕ̃1Y

+ η(Y )(ϕ̃1h̃1 X − ϕ̃1h̃2
1 X)

= 0,

where ∇̃1 denotes the Levi-Civita connection of (M, g̃1). Consequently, for any
X, X ′ ∈ 0(D(λ̃)) and Z ∈ 0(T M),

(∇ ′bl
Z 5D(λ̃))(X, X ′)= 2Z(g̃1(h̃1 X, X ′))− 2g̃1(h̃1∇

′bl
Z X, X ′)− 2g̃1(h̃1 X,∇ ′bl

Z X ′)

= 2
(
Z(g̃1(h̃1 X, X ′))− g̃1(∇

′bl
Z h̃1 X, X ′)− g̃1(h̃1 X,∇ ′bl

Z X ′)
)

= 2(∇ ′bl
Z g̃1)(h̃1 X, X ′)

= 2(∇̃1pc
Z g̃1)(h̃1 X, X ′)= 0.

In a similar way one can prove that ∇ ′bl5D(−λ̃)= 0. Next, we check whether D(λ̃)

and D(−λ̃) are positive definite or negative definite Legendre foliations, according
to the assumptions of Theorem 3.2. We consider the local g-orthonormal bases for
D(λ̃) and D(−λ̃) in (5-7). As in the proof of Theorem 5.1, to simplify the notation
we put β := 1/

√
(1−µ/2)− (1− κ). Notice that, for any i, j ∈ {1, . . . , n}, by
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(5-9), (4-5) and (4-3),

g̃1(X i , X j )= β g̃(X i , ϕ̃h̃ X j )

=−β g̃(X i , h̃ X j )

=−
β

2
√

1−κ
((2−µ)g̃(X i , ϕh X j )+ 2(1− κ)g̃(X i , ϕX j ))

=−
β

2(1−κ)
(λ(2−µ)+ 2(1− κ))g(X i , ϕhY j )

= β(IM + 1)λg(X i , ϕY j )=−β(IM + 1)λδi j .

Similar computations yield g̃1(X i , Y j )= 0 and g̃1(Yi , Y j )= β(IM−1)λδi j . Hence

5D(λ̃)

(√
IM − 1
IM + 1

X i + Yi ,

√
IM − 1
IM + 1

X j + Y j

)
= 2

IM − 1
IM + 1

g̃1(h̃1 X i , X j )

+ 2

√
IM − 1
IM + 1

(
g̃1(h̃1 X i , Y j )+ g̃1(h̃1Yi , X j )

)
+ 2g̃1(h̃1Yi , Y j )

=−
2(IM − 1)
β(IM + 1)

g̃1(ϕ̃X i , X j )

−
2
β

√
IM − 1
IM + 1

(
g̃1(ϕ̃X i , Y j )+ g̃1(ϕ̃Yi , X j )

)
−

2
β

g̃1(ϕ̃Yi , Y j )

=−
2(IM − 1)
β(IM + 1)

g̃1(X i , X j )−
2
β

√
IM − 1
IM + 1

(
g̃1(X i , Y j )−g̃1(Yi , X j )

)
+

2
β

g̃1(Yi , Y j )

= 4λ(IM − 1)δi j .

Arguing in the same way for D(−λ̃) one can prove that

5D(−λ̃)

(
−

√
IM − 1
IM + 1

X i + Yi ,−

√
IM − 1
IM + 1

X j + Y j

)
= 4λ(IM − 1)δi j .

Thus, because of the assumption |IM |>1, we conclude that both5D(λ̃) and5D(−λ̃)

are positive definite. Finally, in order to check the last hypothesis of Theorem 3.2,
we find the explicit expression of the Libermann operators 3D(λ̃) : T M → D(λ̃)

and 3D(−λ̃) : T M→ D(−λ̃). Let us consider X ∈ 0(D(λ̃)) and Y ∈ 0(D(−λ̃)).
Then, by applying (2-16),

2g̃1(h̃13D(λ̃)Y, X)=5D(λ̃)(3D(λ̃)Y, X)= dη(Y, X)= g̃1(Y, ϕ̃1 X)= g̃1(Y, X),
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from which it follows that 2h̃13D(λ̃)Y = Y . Applying h̃1 and since h̃1=−(1/β)ϕ̃,
we get 3D(λ̃)Y = (1/2)β2h̃1Y . Thus

(5-21) 3D(λ̃) =

0 on D(λ̃)⊕Rξ ,
1

2
√
(1−µ/2)2−(1−κ)

h̃1 on D(−λ̃).

In the same way one can prove that

(5-22) 3D(−λ̃) =

−
1

2
√
(1−µ/2)2− (1− κ)

h̃1 on D(λ̃),

0 on D(−λ̃)⊕Rξ .

Hence, for any Y, Y ′ ∈ 0(D(−λ̃)),

5D(λ̃)(Y, Y ′)=5D(λ̃)

(
3D(λ̃)Y,3D(λ̃)Y ′

)
=

1
4β

45D(λ̃)(h̃1Y, h̃1Y ′)= 1
2β

2g̃1(Y, h̃1Y ′)

and for any X, X ′ ∈ 0(D(λ̃))

5D(−λ̃)(X, X ′)=5D(−λ̃)

(
3D(−λ̃)X,3D(−λ̃)X ′

)
=

1
4β

45D(−λ̃)(h̃1 X, h̃1 X ′)= 1
2β

2g̃1(X, h̃1 X ′).

In contrast, 5D(−λ̃)(Y, Y ′) = 2g̃1(h̃1Y, Y ′) and 5D(λ̃)(X, X ′) = 2g̃1(h̃1 X, X ′), so
that 5D(λ̃) = (4/β2)5D(−λ̃) on D(λ̃) and 5D(−λ̃) = (4/β2)5D(λ̃) on D(−λ̃). Since
the constant 4/β2 is positive, the bi-Legendrian structure (D(λ̃),D(−λ̃)) satisfies
all the assumptions of Theorem 3.2 and so, for any two positive constants a and b
such that ab=4/β2, there is a contact metric (κ ′a,b, µ

′

a,b)-structure (ϕ′a,b, ξ, η, g′a,b)
whose associated bi-Legendrian structure coincides with (D(λ̃),D(−λ̃)), where
κ ′a,b and µ′a,b are given by (5-19). Finally, the Boeckx invariant of the new contact
metric (κ ′a,b, µ

′

a,b)-structure (ϕ′a,b, ξ, η, g′a,b) is given by

(1−µ′a,b/2)/
√

1− κ ′a,b = (a+ b)/|a− b|.

Hence, as a> 0 and b> 0, we have |I ′M |> 1 and we conclude that (ϕ′a,b, ξ, η, g′a,b)
is in the same class as (ϕ, ξ, η, g). �

Remark 5.5. As expected, all the various contact metric (κ ′a,b, µ
′

a,b)-structures in
the Theorem 5.4 induce, by Theorem 4.3, the same paracontact metric (κ̃1, µ̃1)-
structure (ϕ̃1, ξ, η, g̃1). In other words, κ̃1 and µ̃1 do not depend on the arbitrarily
chosen constants a and b satisfying (5-20). Indeed, by applying Theorem 4.7, we
get

κ̃1 = κ
′

a,b− 2+ (1− 1
2µ
′

a,b)
2
=−1+ 1

4(
1
4(a+ b)2− 1

4(a− b)2)

=−1+ 1
4ab = κ − 2+ (1− 1

2µ)
2

and µ̃1 = 2.
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Now we are able to iterate the procedure of Theorem 4.3 and Theorem 5.1 and
hence to define on a contact metric (κ, µ)-manifold M a canonical sequence of
contact/paracontact metric structures as stated in the following theorem.

Theorem 5.6. Let (M, ϕ, ξ, η, g) be a contact metric (κ, µ)-manifold.

(i) If |IM |< 1, then M admits a sequence (ϕn)n∈N of tensor fields and a sequence
(Gn)n∈N of (0, 2)-tensors defined by

ϕ0 = ϕ, ϕ1 =
1

2
√

1−κ
Lξϕ0,(5-23)

ϕ2n =
1

2
√

1−κ−(1−µ/2)2
Lξϕ2n−1,

ϕ2n+1 =
1

2
√

1−κ−(1−µ/2)2
Lξϕ2n,

(5-24)

G2n =−dη( · , ϕ2n)+ η⊗ η, G2n+1 = dη( · , ϕ2n+1)+ η⊗ η,(5-25)

such that, for each n ∈ N, (ϕ2n, ξ, η,G2n) is a contact metric (κ2n, µ2n)-
structure and (ϕ2n+1, ξ, η,G2n+1) is a paracontact metric (κ2n+1, µ2n+1)-
structure, where

κ0 = κ, κ2n = κ + (1−µ/2)2, µ2n = 2,(5-26)

κ2n+1 = κ − 2+ (1−µ/2)2, µ2n+1 = 2.(5-27)

Moreover, for each n ∈ N, (ϕ2n, ξ, η,G2n) is a Tanaka–Webster parallel
structure on M , and (ϕ2n+1, ξ, η,G2n+1) is the canonical paracontact metric
structure induced by (ϕ2n, ξ, η,G2n) according to Theorem 4.3.

(ii) If |IM |> 1, then M admits a sequence (ϕn, ξ, η,Gn)n≥1 of paracontact metric
structures defined by

ϕ1 =
1

2
√

1−κ
Lξϕ, ϕn =

1
2
√
(1−µ/2)2−(1−κ)

Lξϕn−1,

Gn = dη( · , ϕn)+ η⊗ η,

such that, for each n ≥ 1, (ϕn, ξ, η,Gn) is a paracontact metric (κn, µn)-
structure with

κn = κ − 2+ (1−µ/2)2, µn = 2.

Moreover, (ϕ1, ξ, η,G1) is the canonical paracontact structure induced by
(ϕ, ξ, η, g) and, for each n ≥ 2, (ϕn, ξ, η,Gn) is the canonical paracontact
structure induced by a contact metric (κ ′n, µ

′
n)-structure (ϕ′n, ξ, η, g′n) on M

with

(5-28) κ ′n = 1− 1
16(an − bn)

2, µ′n = 2− 1
2(an + bn),
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and an and bn being two constants such that

(5-29) anbn =
1
4((1−

1
2µ)

2
− (1− κ)).

Proof. We argue by induction on n.

(i) We distinguish the even and the odd case. The result is trivially true for n = 0
since (M, ϕ, ξ, η, g) is supposed to be a contact metric (κ, µ)-manifold and for
n=1 because of Theorem 4.7. Suppose that the assertion holds for (ϕ2n, ξ, η,G2n)

with n ≥ 2. We have to prove that the structure (ϕ2n+1, ξ, η,G2n+1) defined by
(5-24) is a paracontact metric (κ2n+1, µ2n+1)-structure, where κ2n+1 and µ2n+1 are
given by (5-27). Notice that

ϕ2n+1 =
1

2
√

1−κ−(1−µ/2)2
Lξϕ2n =

1
2
√

1−κ2n
Lξϕ2n,

so that, according to Theorem 4.3, (ϕ2n+1, ξ, η,G2n+1) coincides with the canon-
ical paracontact metric structure induced on M by the contact metric (κ2n, µ2n)-
structure (ϕ2n, ξ, η,G2n). Then, by Theorem 4.7, (ϕ2n+1, ξ, η,G2n+1) is a para-
contact metric (κ̃, µ̃)-structure, where

κ̃ = κ2n − 2+ (1− 1
2µ2n)

2
= κ + (1− 1

2µ)
2
− 2+ (1− 2

2)
2

= κ − 2+ (1− 1
2µ)

2
= κ2n+1

and µ̃= 2= µ2n+1. Now we study the odd case. Assume that the assertion holds
for (ϕ2n+1, ξ, η,G2n+1). We have to prove that (ϕ2n+2, ξ, η,G2n+2) is a contact
metric (κ2n+2, µ2n+2)-structure, where κ2n+2 and µ2n+2 are given by (5-26). By
the induction hypothesis, (ϕ2n+1, ξ, η,G2n+1) is the canonical paracontact metric
structure induced by the contact metric (κ2n, µ2n)-structure (ϕ2n, ξ, η,G2n). Since
the Boeckx invariant of (M, ϕ2n, ξ, η,G2n) is 0, we can apply Theorem 5.1 to
the contact metric (κ2n, µ2n)-manifold (M, ϕ2n, ξ, η,G2n) and conclude that the
paracontact metric structure (ϕ2n+1, ξ, η,G2n+1) induces on M a contact metric
structure (ϕ1, ξ, η, g1) given by (5-3) and (5-4). Notice that

ϕ1 =
1/2√

1−κ2n−(1− 1
2µ2n)2

Lξϕ2n+1 =
1/2√

1−κ−(1− 1
2µ)

2−(1− 2
2)

2
Lξϕ2n+1

=
1/2√

1−κ−(1−µ/2)2
Lξϕ2n+1 = ϕ2n+2.

Therefore (ϕ2n+2, ξ, η,G2n+2) is a contact metric (κ1, µ1)-structure, where, by
Theorem 5.1,

κ1 = κ2n + (1−µ2n/2)2 = κ2n = κ + (1−µ/2)2 = κ2n+2
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andµ1=2=µ2n+2. Finally, sinceµ2n=2 for each n∈N, we conclude by applying
[Boeckx and Cho 2008, Theorem 12] that (M, ϕ2n, ξ, η,G2n) is a Tanaka–Webster
parallel space.

(ii) The result is true for n = 1 due to Theorem 4.7 and for n = 2 due to Theorem
5.1 and Theorem 5.4. Now assuming that the assertion holds for (ϕn, ξ, η,Gn)

with n ≥ 3, we prove that it holds also for (ϕn+1, ξ, η,Gn+1). By the induction
hypothesis, (ϕn, ξ, η,Gn) is the canonical paracontact metric structure induced
by a contact metric (κ ′n, µ

′
n)-manifold, κ ′n and µ′n being given by (5-28), whose

Boeckx invariant, given by (a + b)/|a − b|, has absolute value strictly greater
than 1. Hence we can apply Theorem 5.1 and conclude that (ϕn, ξ, η,Gn) induces
on M a paracontact metric (κ̃ ′1, µ̃

′

1)-structure (ϕ̃′1, ξ, η, g̃′1), where ϕ̃′1, g̃′1 are given
by (5-6) and (5-8) and κ̃ ′1, µ̃′1 are given by (5-2). Note that

ϕ̃′1 =
1

2
√
(1−µ′n/2)2−(1−κ ′n)

Lξϕn

=
1√

(an+bn)2/4−(an−bn)2/4
Lξϕn =

1
√

anbn
Lξϕn

=
1

2
√
(1−µ/2)2−(1−κ)

Lξϕn = ϕn+1.

Finally, in view of Remark 5.5, we get κ̃1 = κ − 2 + (1 − µ/2)2 = κn+1 and
µ̃1 = 2= µn+1. �

6. Canonical Sasakian structures on contact metric (κ, µ)-spaces

As pointed out in Remark 5.3, in proving Theorem 5.1 we have proven that any
(non-Sasakian) contact metric (κ, µ)-space such that |IM |> 1 admits a supplemen-
tary bi-Legendrian structure (D(λ̃),D(−λ̃)) given by the eigendistributions of the
operator h̃ := (1/(4

√
1− κ))LξLξϕ corresponding to the eigenvalues ±λ̃, where

λ̃ :=
√
(1−µ/2)2− (1− κ). We now prove that in fact any three of the distri-

butions D(λ), D(−λ), D(λ̃), D(−λ̃) define a 3-web on the contact distribution of
(M, η). Recall that a triple of distributions (D1,D2,D3) on a smooth manifold M
is called an almost 3-web structure if T M = Di ⊕ D j is satisfied for any two
different i, j ∈ {1, 2, 3}. If D1, D2, D3 are involutive, then (D1,D2,D3) is said to
be simply a 3-web [Nagy 1988]. Now, obviously one has that D=D(λ)⊕D(−λ)

and D = D(λ̃)⊕ D(−λ̃), so that it suffices to prove that D = D(±λ)⊕ D(±λ̃)

for all choices of ±. Let {X1, . . . , Xn, Y1 := ϕX1, . . . , Yn := ϕXn, ξ} be a (local)
orthonormal ϕ-basis of eigenvectors of h. Then

D(λ)= span{X1, . . . , Xn} and D(−λ)= span{Y1, . . . , Yn}
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and D(λ̃) and D(−λ̃) are given by (5-7). Using these local expressions, if follows
from some elementary linear algebra that, putting γ :=

√
(IM − 1)/(IM + 1),

{X1, . . . , Xn, γ X1+ Y1, . . . , γ Xn + Yn},

{X1, . . . , Xn,−γ X1+ Y1, . . . ,−γ Xn + Yn},

{Y1, . . . , Yn, γ X1+ Y1, . . . , γ Xn + Yn},

{Y1, . . . , Yn,−γ X1+ Y1, . . . ,−γ Xn + Yn},

are all local bases of the contact distribution D. The assertion follows.
As shown in [Marchiafava and Nagy 2003], one can associate to any almost 3-

web a canonical almost antihypercomplex structure, that is, a triple (I1, I2, I3) con-
sisting of an almost complex structure I1 and two anticommuting almost product
structures I2 and I3 satisfying I2 I3= I1 (hence I2 I1=−I1 I2= I3, I1 I3=−I3 I1=

I2). Conversely, any almost antihypercomplex structure determines four almost 3-
webs given by the eigendistributions of I2 and I3 corresponding to the eigenvalues
±1. Consequently, any contact metric (κ, µ)-manifold such that |IM | > 1 admits
a canonical antihypercomplex structure on the contact distribution via the 3-webs
above. Such antihypercomplex structure is in fact given by (ϕ−|D, ϕ̃|D, ϕ̃1|D) in
the case IM < −1 and by (ϕ+|D, ϕ̃1|D, ϕ̃|D) in the case IM > 1, where ϕ̃, ϕ̃1 are
given, respectively, by (4-2), (5-6), and

ϕ± := ±
1√

(1− 1
2µ)

2−(1−κ)
((1− 1

2µ)ϕ+ϕh).

Indeed using (4-2), (5-6) and the relations h2
= (κ−1)ϕ2, ϕh=−hϕ, one can easily

check by a straightforward computation that ϕ̃ and ϕ̃1 induce two anticommuting
almost product structures on D and that ϕ̃ϕ̃1 = ϕ− and ϕ̃1ϕ̃ = ϕ+. We prove that
ϕ− and ϕ+ are almost contact structures compatible with η. Indeed

ϕ−
2
=

1
(1− 1

2µ)
2−(1−κ)

((1− 1
2µ)

2ϕ2
+ϕhϕh+ (1− 1

2µ)ϕ
2h+ (1− 1

2µ)ϕhϕ)

=
1

(1− 1
2µ)

2−(1−κ)
((1− 1

2µ)
2ϕ2
−ϕ2h2)

=
1

(1− 1
2µ)

2−(1−κ)
((1− 1

2µ)
2ϕ2
− (1− κ)ϕ2)

= ϕ2
=−I + η⊗ ξ.

Analogously one can prove that ϕ+2
= −I + η ⊗ ξ . Moreover, for each almost

contact structure (ϕ±, ξ, η) one can define an associated metric g± by

(6-1) g±(X, Y )=−dη(X, ϕ±Y )+ η(X)η(Y ).
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We prove that g± is a Riemannian metric compatible with the almost contact struc-
ture (ϕ±, ξ, η) (respecting the choice of ±). By (6-1) it straightforwardly follows
that g− is nondegenerate, symmetric and satisfies

g−(ϕ−X, ϕ−Y )= g−(X, Y )− η(X)η(Y ).

We prove that it positive definite. By (6-1) we have that g−(ξ, ξ) = 1, so that
it suffices to prove that g−(X, X) > 0 for any X ∈ 0(D) with X 6= 0. We
decompose X into its components Xλ and X−λ according to the decomposition
D = D(λ) ⊕ D(−λ). To simplify the notation, as in Section 5, we put β :=
1/
√
(1−µ/2)2− (1− κ). Then we have

g−(X, X)= β((1− 1
2µ)dη(X, ϕX)+dη(X, ϕh X))

=−β((1− 1
2µ)g(X, X)+g(X, h X))

=−β((1− 1
2µ)(g(Xλ, Xλ)+g(X−λ, X−λ))

+λg(Xλ, Xλ)−λg(X−λ, X−λ))

=−β((1− 1
2µ+
√

1−κ)g(Xλ, Xλ)+(1− 1
2µ−
√

1−κ)g(X−λ, X−λ)).

Since we are assuming IM <−1, we have

1−µ/2+
√

1− κ < 0 and 1−µ/2−
√

1− κ < 0,

so that g−(X, X) > 0. Analogous arguments work for g+, using the assumption
IM > 1. Finally, directly from (6-1) it follows that dη( · , · )= g±( · , ϕ±), and we
conclude that (ϕ−, ξ, η, g−) and (ϕ+, ξ, η, g+) are contact metric structures. We
prove that they are in fact Sasakian structures. We argue on (ϕ−, ξ, η, g−), since
the same arguments work also for (ϕ+, ξ, η, g+). We first prove that the contact
metric structure is K -contact, that is, the tensor field h− := (1/2)Lξϕ− vanishes
identically. Indeed, by using (4-5), we have

2h− =−β((1− 1
2µ)Lξϕ+Lξ (ϕh))

=−β((1− 1
2µ)Lξϕ+ (Lξϕ) ◦ h+ϕ ◦ (Lξh))

=−β((2−µ)h+ 2h2
+ (2−µ)ϕ2h+ 2(1− κ)ϕ2)= 0.

Now we observe that ϕ−D(λ)=D(−λ) and ϕ−D(−λ)=D(λ). Thus the Legendre
foliations D(λ) and D(−λ) are conjugate with respect to ϕ−, and thus they are
mutually orthogonal with respect to g−. Then we can apply Theorem 2.6. Note
that ∇blϕ−=−β

(
(1−µ/2)∇blϕ+∇bl(ϕh)

)
= 0, since ∇blϕ=∇blh= 0. Hence,

by Theorem 2.6, we have ∇bl
X X ′ = −(ϕ−[X, ϕ−X ′])D(λ) for all X, X ′ ∈ 0(D(λ)).
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Hence

(Nϕ−(X, X ′))D(λ) =−[X, X ′] − (ϕ−[ϕ−X, X ′])D(λ)− (ϕ−[X, ϕ−X ′])D(λ)

=−[X, X ′] −∇bl
X ′X +∇

bl
X X ′

= T bl(X, X ′)

= 2dη(X, X ′)ξ = 0.

Analogously, (Nϕ−(Y, Y ′))D(−λ) = 0 for all Y, Y ′ ∈ 0(D(−λ)). For all X, X ′ ∈
0(D(λ)), we also have

Nϕ−(ϕ−X, ϕ−X ′)=−[ϕ−X, ϕ−X ′] + [ϕ−2 X, ϕ−2 X ′]
−ϕ−[ϕ−

2 X, ϕ−X ′] −ϕ−[ϕ−X, ϕ−2 X ′]
= −[ϕ−X, ϕ−X ′] + [X, X ′] +ϕ−[X, ϕ−X ′] +ϕ−[ϕ−X, X ′]
= −Nϕ−(X, X ′);

hence (Nϕ−(X, X ′))D(−λ) = −(Nϕ−(ϕ−X, ϕ−X ′))D(−λ) = 0. Next, Nϕ−(X, X ′)
has zero component also in the direction of ξ by (2-5), so Nϕ−(X, X ′)= 0. In the
same way one can show that Nϕ−(Y, Y ′)= 0 for all Y, Y ′ ∈ 0(D(−λ)). Moreover,
(2-4) implies that Nϕ−(X, Y )= 0 for all X ∈0(D(λ)) and Y ∈0(D(−λ)). Finally,
directly by (2-3) we have η(Nϕ−(Z , ξ)) = 0 for all Z ∈ 0(D), and from (2-4)
it follows that ϕ−(Nϕ−(Z , ξ)) = 0. Hence Nϕ−(Z , ξ) ∈ ker(η) ∩ ker(ϕ−) = {0}.
Thus the tensor field Nϕ− vanishes identically and so (ϕ−, ξ, η, g−) is a Sasakian
structure.

Theorem 6.1. Let (M, ϕ, ξ, η, g) be a non-Sasakian contact metric (κ, µ)-space
with |IM |> 1. Then (M, η) admits a compatible Sasakian structure (ϕ−, ξ, η, g−)
or (ϕ+, ξ, η, g+), depending on whether IM <−1 or IM > 1, where

ϕ± := ±
1√

(1−µ/2)2−(1−κ)
((1− 1

2µ)ϕ+ϕh), g± := −dη( · , ϕ±· )+ η⊗ η.

Furthermore, the triple (ϕ−, ϕ̃, ϕ̃1) in the case IM <−1 or (ϕ+, ϕ̃1, ϕ̃) in the case
IM > 1 induces an almost antihypercomplex structure on the contact distribution
of (M, η), where ϕ̃ and ϕ̃1 are given, respectively, by (4-2) and (5-6).

Remark 6.2. Theorem 6.1 should be compared with [Cappelletti Montano 2009b,
Corollary 3.7], where a similar result was found by completely different methods.
There, however, the explicit expression of the Sasakian structure was not given.

Remark 6.3. In view of Corollary 5.2 and Theorem 6.1, it appears that a possible
geometric interpretation of the Boeckx invariant IM is related to the existence on the
manifold of compatible Tanaka–Webster parallel structures or Sasakian structures,
depending on whether |IM | < 1 or |IM | > 1, respectively. In contrast, there is not
much one can say about those contact metric (κ, µ)-spaces such that IM = ±1,
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which seem to have a completely different geometric behavior and so deserve to
be studied in a subsequent paper.
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