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MULTILINEAR SINGULAR OPERATORS
WITH FRACTIONAL RANK

CIPRIAN DEMETER, MALABIKA PRAMANIK AND CHRISTOPH THIELE

We prove bounds for multilinear operators on Rd given by multipliers which
are singular along a k-dimensional subspace. The new case of interest is
when the rank k/d is not an integer. We also investigate connections with
the concept of true complexity from additive combinatorics.

1. Introduction

Let n ≥ 3 and d ≥ 1. Consider a multiplier M(Eξ (1), . . . , Eξ (n)) on the vector space

0 :=
{
Eξ := (Eξ (1), . . . , Eξ (n)) ∈ (Rd)n :

∑n
i=1
Eξ (i ) = E0

}
.

This gives rise to the multilinear operator

T (F1, . . . , Fn−1)ˆ(−Eξ
(n))

=

∫
δ(Eξ (1)+ · · ·+ Eξ (n))M(Eξ)F̂1(Eξ

(1)) · · · F̂n−1(Eξ
(n−1)) dEξ (1) · · · dEξ (n−1).

on n− 1 functions on Rd .

Theorem 1.1. Let 0′ be a generic linear subspace of 0 of dimension k ≥ 0, and
assume that 0≤ k/d < n/2. Assume the multiplier M : 0→ R satisfies

|∂αM(Eξ)|. dist(Eξ, 0′)−|α|,

for all partial derivatives up to some finite order. Then

T : L p1 × · · · L pn−1 → L p′n ,

whenever 2< pi ≤∞ for each 1≤ i ≤ n and

(1) 1/p1+ · · ·+ 1/pn = 1,

where p′n is the conjugate exponent to pn .
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The generic character of 0′ in Theorem 1.1 is understood with respect to the
Lebesgue measure (for example). In fact, we will need 0′ to satisfy some precise
nondegeneracy conditions, and they are generically satisfied. To give the reader a
grasp on what these conditions amount to, we will describe them now in the case
d = 2. The case d > 3 involves very similar considerations and will be described
in Section 4C.

There will be two sets of nondegeneracy requirements. The first one is that 0′

can be parametrized by any k of the canonical variables. We will work a lot with
the following parametrization. For 1 ≤ i ≤ n, let Gi : Rk

→ Rd be the linear
functions such that

G1(ξ1, . . . , ξk)= (ξ1, . . . , ξd),

G2(ξ1, . . . , ξk)= (ξd+1, . . . , ξ2d),

...

G[k/d]+1(ξ1, . . . , ξk)= (ξd[k/d]+1, . . . , ξk, . . .),

where the last entries of G[k/d]+1 (the ones after the ξk entry) and the entries of the
remaining Gi for [k/d] + 1 ≤ i ≤ n are uniquely determined by the requirement
that the function G1× · · ·×Gn maps into 0′.

Let m be the smallest integer that is greater than or equal to k/d , that is, [k/d].
We will use the notation Eξ (i ) := (ξ (i )1 , . . . , ξ

(i )
k ) ∈ Rk . Let i1, . . . , ik ∈ {1, . . . , n} be

pairwise distinct indices. Consider the following system of (k vector, or equiva-
lently 2k scalar) linear equations in 2k variables ξ (1)1 , . . . , ξ

(2)
k ∈R, and coefficients

v j ∈ R2:

(2)



Gi1(Eξ
(1))−Gi1(Eξ

(2))= v1,

Gi2(Eξ
(1))= v2,

...

Gim (Eξ
(1))= vm,

Gim+1(Eξ
(2))= vm+1,

...

Gik (Eξ
(2))= vk .

When d = 2, Theorem 1.1 has the following precise formulation.

Theorem 1.2. Let d = 2 and let 0′ be a linear subspace of 0 of dimension k ≥ 0.
Assume 0′ is the graph over every k of the canonical variables. Moreover, assume
that the system (2) has a unique solution (for each choice of vi ) for each pairwise
distinct i1, . . . , ik ∈ {1, . . . , n}. If the remaining hypotheses from Theorem 1.1 are
satisfied, then its conclusion will hold.
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It is not hard to see that the requirements in Theorem 1.2 are satisfied for a
generic 0′. The assumption on the compatibility of the system (2) is one of many
(similar in style) that work for our approach, and are guaranteed to hold generically.
Various other possible alternative assumptions will become apparent from our later
analysis. The minimal nondegeneracy conditions that are needed for Theorem 1.1
(or even for our approach) are probably very hard to find, and beyond the goal of
this paper. We point out however that if 0′ is degenerate in the sense that it fails to
be the graph over some particular choice of k canonical variables, then the analysis
of the operator T complicates to a significant extent. This has been observed and
investigated in [Demeter and Thiele 2010] in the case d = 2.

Theorem 1.1 was proved in [Muscalu et al. 2002] in the case d = 1, so our
theorem is only new in the case d ≥ 2. There, the theorem is proved under just the
first nondegeneracy assumption, that 0′ is the graph over any k of the canonical
variables, and the result there is proved for a larger class of indices pi . To simplify
our exposition, we choose to prove our theorem in the locally L2 case pi > 2.

A key parameter for our analysis is m, introduced earlier. We will refer to k/d
as the rank of the operator. When this rank is an integer (and thus equal to m), or
more generally, when m<n/2, Theorem 1.1 will follow by a fairly straightforward
adaptation of the argument in [Muscalu et al. 2002] to the d-dimensional setting.
The novelty here is that k/d can be fractional and sufficiently close to n/2 to allow
for the “bad” case m ≥ n/2. A first new case of interest where our theorem is
applicable is when d = 2, k = 3 and n = 4.

A simplified version of our approach also gives an alternative proof to the result
in [Muscalu et al. 2002] (the d=1 case), at least in the case pi >2 (see Section 4D).
Our proof and theirs share much of the analytic part of the argument. Theirs how-
ever is structured around an induction on k that is not available in the fractional
rank case. We eliminate the induction from the argument, and treat all k in a similar
fashion. This new type of approach will involve rather delicate combinatorics.

Theorem 1.1 also has a kernel formulation:

Theorem 1.3. Let K : Rd(n−1)−k
→ R be a Calderón–Zygmund kernel, and let

li : R
d(n−1)−k

→ Rd be n − 1 generic linear forms. Let pi be as in Theorem 1.1,
and assume 0 ≤ k/d < n/2. For Schwartz functions F1, . . . , Fn : R

d
→ R define

the multilinear operator

T (F1, . . . , Fn−1)(Ex) :=
∫

Rd(n−1)−k

n−1∏
i=1

Fi (Ex + li (Et))K (Et) dEt for Ex ∈ Rd .

Then T extends to a bounded operator

T : L p1 × · · · L pn−1 → L p′n .
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In the case k > 0, the operators we investigate will typically have some modu-
lation invariance. As a consequence, proving their boundedness will involve time-
frequency analysis similar to that of the proof of the bilinear Hilbert transform
[Lacey and Thiele 1997; 1999].

The assumption k/d < n/2 is crucial to our analysis. It can be shown in par-
ticular to guarantee that T has no symmetries of higher order (that is, quadratic
symmetries). On the other hand, even in the one-dimensional case, the quadratic
symmetries may be1 present when k ≥ n/2. Perhaps the most famous example
with k/d = n/2 is the trilinear Hilbert transform (n = 4, k = 2 and d = 1)

(3) T (F1, F2, F3)(x)=
∫

R

F1(x + t)F2(x − t)F3(x + 2t) dt
t
.

Another important example with k/d = n/2 is the degenerate two-dimensional
bilinear Hilbert transform (n = 3, k = 3 and d = 2)

(4) T (F1, F2)(x, y)=
∫

R

F1(x + t, y)F2(x, y+ t) dt
t
,

where the quadratic symmetries are not singled out, but rather part of an infinite
group of symmetries generated by degeneracies. See [Demeter and Thiele 2010]
for details. The current techniques seem not enough to address the case k/d = n/2,
where it is likely that some form of “quadratic Fourier analysis” will play a role.
A quick single scale heuristics is provided in Section 4A. However, Theorem 1.1
shows that they can address the case of a rank k/d arbitrarily close to (and smaller
than) n/2. This paper grew partly as an attempt to get more light on these issues.

A second motivation comes from connections with additive combinatorics, in
particular with the issue of true complexity of a system of linear equations. Our
analysis makes the point that nondegenerate systems characterized by k/d < n/2
have true complexity 1, in the language from [Gowers and Wolf 2010]. These
things are described in Section 4A. The single scale heuristics provided there sheds
a lot of light on the difficulties we encounter in the multiscale context, and we
encourage the reader to go over that section first.

To investigate the boundedness properties of the operator in Theorem 1.1, it will
be convenient to work with the dualized form defined by

3(F1, . . . , Fn) :=

∫
Rd

T (F1, . . . , Fn−1)(Ex)Fn(Ex) d Ex

=

∫
δ(Eξ (1)+ · · ·+ Eξ (n))M(Eξ)F̂1(Eξ

(1)) · · · F̂n(Eξ
(n)) dEξ .

1These symmetries are however not guaranteed to exist. In [Gowers and Wolf 2010] there are
examples in the case d = 1 and k = n/2 that do not have any quadratic or higher order symmetries.
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We will show that

|3(F1, . . . , Fn)|.
n∏

i=1

‖Fi‖pi .

In the next section we will discretize the form and convert the problem to the bound-
edness of a model sum operator. We will use wave packets and multidimensional
boxes (called tiles) to serve as their Heisenberg boxes. The tiles are then organized
into trees, and eventually into certain products of trees, called vector trees. Most of
the argument is then devoted to estimating the counting function associated with
these vector trees. This is the main new contribution of our paper, and makes the
object of Section 4.

We will assume m ≥ 2. The case m = 0 (that is, k = 0) is entirely classical
and goes back to the work of Coifman and Meyer. No modulation symmetries
are present in this case. The case m = 1 can be addressed by the argument in
[Muscalu et al. 2002], by crudely majorizing the rank k/d by m. Indeed, since
1=m<3/2≤n/2, we could treat the operator as if it had rank m∈Z. Alternatively,
one can apply the argument from Section 4D here.

2. Discretization

From now on, the notation |·|will refer to the cardinality of a finite set, the length of
an interval or the volume of a multidimensional interval, depending on the context.
The side length of a cube R will be denoted with l(R). The discretization procedure
in this section is very similar to the one from [Muscalu et al. 2002]. We omit most
of the details.

We will work with the constants

1� C0� C1� C2� C3� C4,

whose values will not be specified explicitly, but will rather be clear from the
context. The constant C0 will be chosen first. It will be large enough depending
on 0′, n and d . Then C1 will be chosen large enough, depending on 0′ but also on
the choice of C0. Then C2, C3 and C4 are chosen in this order, sufficiently large
compared to their predecessor in the sequence. C4 will be an integral power of 2.
No upper bounds will be forced upon Ci in terms of Ci−1, so when some Ci is
selected, it can be chosen as large as desired. The fact that these constants will
depend on 0′ will be reflected in the fact that the bounds in Theorem 2.1 below
also depend on 0′. This dependence will be ignored.

Let O be a finite set of nd-dimensional cubes ω = ω1 × · · · × ωn , where each
ωi is a d-dimensional cube. These cubes are a sparse enough subset of a Whitney
decomposing the frequency space Rnd

\ 0′. They will serve to localize various
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pieces of the multiplier M . For each 1≤ i ≤ n define the projections

Oi := {ωi : ω ∈O}.

These sets will satisfy the following properties:

(i) Separation in scale: For each ω1× · · ·×ωn ∈O, there is a l ∈ Z such that

|ω1| = · · · = |ωn| = (C4)
l .

(ii) Separation in distance: If ωi 6= ωi ′ ∈Oi and |ωi | = |ωi ′ |, then

dist(ωi , ωi ′)≥ C4|ωi |.

(iii) Whitney property: For each ω ∈O, we have

10−1C0diam(ω)≤ dist(ω, 0′)≤ 10C0diam(ω).

(iv) Rank m: Any m of the n components of some ω ∈O determine uniquely the
remaining n−m components.

Let D be the set of all dyadic cubes in Rd . Let φ be a smooth function whose
Fourier transform is adapted2 to the cube [−1/2, 1/2]d . For each R ∈ D with
center (c1(R), . . . , cd(R)) and each ωi ∈ Oi such that |R||ωi | = 1, we define the
L2 normalized wave-packet

φR×ωi (x1, . . . , xd)=
1
|R|1/2

φ

( x1−c1(R)
l(R)

, . . . ,
xd−cd(R)

l(R)

)
ei(c1(ωi )x1+···+cd (ωi )xd ).

By using a standard discretization procedure like in [Muscalu et al. 2002], involving
a decomposition for the multiplier M adapted to the set O, and then a Gabor basis
decomposition for each Fi , Theorem 1.1 will follow from the discretized version
below:

Theorem 2.1. Let Fi ∈ L pi (Rd) with 2< pi ≤∞ as in (1). Let O be any finite set
satisfying (i)–(iv). Then for generic 0′,∑

R∈D, ω∈O
|R||ω1|=1

|R|1−n/2
n∏

i=1

|〈Fi , φR×ωi 〉|.
n∏

i=1

‖Fi‖pi .

Moreover, the implicit constant in the above inequality is independent of Fi and of
the set O.

We will fix O for the remaining part of the paper. The following rank properties
will be consequences of (i)–(iv) above (see [Muscalu et al. 2002, Section 6] for
details) and of the requirement that 0′ is the graph over any k of the canonical
variables:

2That means supported in [−1/2, 1/2]d and with the first few derivatives bounded by one.
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(v) Overlapping: If for some ω,ω′ ∈ O and for some A ⊂ {1, 2, . . . , n} with
|A|=m we have ωi ⊂ 3ωi

′ for each i ∈ A, then ω j ⊂C1ω j
′ for each 1≤ j ≤ n.

(vi) Two lacunary indices: If for some ω,ω′ ∈O with the additional property that
diam(ω) < diam(ω′) and for some A ⊂ {1, 2, . . . , n} with |A| = m, we have
ωi ⊆ 3ωi

′ for each i ∈ A, then there exist 1≤ i1 6= i2 ≤ n such that ω j * 3ω j
′

for each j ∈ {i1, i2}.

Definition 2.2 [Grafakos and Li 2004]. A set G of intervals in Rd is called a central
grid if

(G1) R, R′ ∈ G and R ∩ R′ 6=∅ implies R ⊆ R′ or R′ ⊆ R,

(G2) R, R′ ∈ G and R ⊆ R′ implies C2 R ⊆ R′,

(G3) R, R′ ∈ G and 2|R|< |R′| implies C2|R|< |R′|,

(G4) R, R′ ∈ G and |R|< |R′| ≤ 2|R| implies dist(R, R′)≥ C2|R′|.

It turns out that each sufficiently sparse set of cubes can be turned into a central
grid. See the considerations following [Grafakos and Li 2004, Definition 1] for
details.

Lemma 2.3 (centralization). Let G0 be a set of d-dimensional cubes such that

(1) R, R′ ∈ G0 and |R|< |R′| implies |R|< C3|R′|, and

(2) R, R′ ∈ G0 and |R| = |R′| implies dist(R, R′)≥ C3|R|.

Then for each R ∈ G0, there is a d-dimensional interval R (not necessarily a cube)
such that R ⊂ R ⊂ 2R and such that the set G := {R : R ∈ G0} is a central grid.

Note that both the set Oi and the set 2C1Oi := {2C1ωi : ωi ∈ Oi } satisfy
the requirements in Lemma 2.3 (if for example C3 � C4 − 2C1). By applying
Lemma 2.3 to each set, we associate to each ωi ∈Oi two intervals ωi and ω̃i such
that ωi ⊆ ωi ⊆ 2ωi , 2C1ωi ⊆ ω̃i ⊆ 4C1ωi , and such that the set

Oi := {ωi : ωi ∈Oi }

is a grid, while the set
Õi := {ω̃i : ωi ∈Oi }

is a central grid. Note that we will need a stronger assumption on the second
set. For each ω = ω1 × · · · × ωn , we will use the notation ω = ω1 × · · · × ωn

and ω̃ = ω̃1 × · · · × ω̃n , and these two new intervals will form the sets O and Õ,
respectively.

We hereafter abandon the set O and only refer to the sets O and Õ.
Note that the side lengths of each interval ω ∈ O are within a factor of two

from each other. Denote by R(ωi ) the set of all dyadic cubes R in Rd such that
|R||ωi | = 1. Since ω is a cube, the sets R(ωi ) are all the same for 1 ≤ i ≤ n. For
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each 1≤ i ≤ n, let Si denote the set of all si := Rsi ×ωsi , with ωi ranging through
Oi and Rsi ranging through R(ωi ). The set S will consist of all s = Rs ×ωs , with
ωs :=ωs1×· · ·ωsn ranging through O and Rs ranging through (any of the) R(ωsi ).

An element s = Rs ×ωs1 × · · ·ωsn ∈ S will be referred to as a multitile, while
its components si := Rs×ωsi ∈ Si will be referred to as tiles. The intervals Rs and
ωs will be referred to as the spatial and frequency components of s.

We introduce some relations of order, which are very similar to the ones in
[Muscalu et al. 2002, Definition 6.1].

Definition 2.4. Let si , s ′i ∈ Si be two tiles. We write

• si ≤ s ′i if Rsi ⊆ Rs′i and ωs′i ⊆ ωsi ,

• si . s ′i if Rsi ⊆ Rs′i and ω̃s′i ⊆ ω̃si ,

• si .′ s ′i if si . s ′i but si � s ′i .

From the rank properties (iv)–(vi) and the grid structure of O and Õ we get:

(r1) Rank m: Any m of the n frequency components of some s ∈ S determine
uniquely the remaining n−m components.

(r2) Overlapping: If for some s, s ′∈S and for some A⊂{1, 2, . . . , n}with |A|=m
we have si ≤ s ′i for each i ∈ A, then s j . s ′j for each 1≤ j ≤ n.

(r3) Two lacunary indices: If for some s, s ′ ∈ S with |Is′ | < |Is | and for some
A ⊂ {1, 2, . . . , n} with |A| = m we have si ≤ s ′i for each i ∈ A, then there
exist 1≤ i1 6= i2 ≤ n such that s j .′ s ′j for each j ∈ {i1, i2}.

Properties (r2) and (r3) are all about the frequency components of multitiles,
the spatial components do not play any role.

We also record for future reference the grid properties satisfied by the multitiles:

(r4) The set {ωsi : si ∈ Si } is a grid.3

(r5) The set {ω̃si : si ∈ Si } is a central grid.

It is also clear (due to (iii)) that if C0 is sufficiently large, then

(r6) for each s ∈ S, we have C2
0ωs ∩0

′
6=∅.

For each tile si = Rsi×ωsi , we will have a wave packet associated with it, namely

φsi := φRsi×ωsi
,

where ωsi is the cube in Oi that generates ωsi via the procedure described earlier.
Note that the Fourier transform of φsi is supported in ωsi , while spatially, φsi is a
bump function quasilocalized near the cube Rsi .

With this notation, Theorem 2.1 can be rephrased as follows:

3While we can arrange that this set is a central grid, too, we will not need this strong assumption.
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Theorem 2.5. Let Fi ∈ L pi (Rd) with 2 < pi ≤ ∞ as in (1). Let S be a set of
multitiles satisfying (r1)–(r6). Then for generic 0′∑

s∈S

|Rs |
1−n/2

n∏
i=1

|〈Fi , φsi 〉|.
n∏

i=1

‖Fi‖pi .

The implicit constant in this inequality is independent of Fi and of the set S.

The genericity of 0′ will imply an additional rank property (r7), which we
choose not to state explicitly at this point, but which will become clear later (for
example, see Section 4B).

3. Trees

To prove Theorem 2.5 we will organize each set Si into smaller structures, called
trees.

Definition 3.1. Let RT be a dyadic cube in Rd and let ξT ∈Rd . A set of tiles T⊂Si

is called an i -tree (also sometimes referred to as tree, when the index i is either
not important or when it is clear from the context) with top (RT, ξT) if Rsi ⊆ RT
and ξT ∈ ω̃si for each si ∈ T.

In case ξT∈ωsi for each si ∈T, the tree T is called i -overlapping. If ξT∈ ω̃si \ωsi

for each si ∈ T, the tree will be called i -lacunary.

A tree consisting of a single tile is both lacunary and overlapping (these are
actually the only examples of such trees). In general, a tree must not necessarily
be overlapping or lacunary. However, each tree can be split as the disjoint union
of an overlapping tree and a lacunary tree.

Trees will be used to construct similar structures consisting of multitiles, called
vector trees.

Definition 3.2. Let RET be a dyadic cube in Rd and let ξET= (ξET,1, . . . , ξET,n)∈Rdn .
A set of multitiles ET ⊂ S is called a vector tree with top (RET, ξET) if for each
1≤ i ≤ n, the projection Ti := {si : s ∈ ET} is an i-tree with top (RET, ξET,i ).

The vector tree ET is called i-overlapping if its projection Ti is an i-overlapping
tree. If this is the case, we call the index i overlapping. Similarly, the vector tree
ET is called i-lacunary, if Ti is an i-lacunary tree. If this is the case, we call the
index i lacunary.

Remark 3.3. The rank property (r3) implies that each vector tree has at least two
lacunary indices.

Definition 3.4. Let P⊆ Si be a set of tiles. Its i -size is defined as

sizei (P) := sup
T⊆P

(
1
|RT|

∑
si∈T

|〈Fi , φsi 〉|
2
)1/2

,
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where the supremum is taken over all lacunary i-trees T⊆ P with tops (RT, ξT).

The definition of the size of a set P depends on the choice of the function Fi .
We choose not to index the size by Fi , since Fi will later be fixed.

The next lemma shows that the size is dominated by the Hardy–Littlewood max-
imal function (see again [Muscalu et al. 2002] for details)

M2 F(Ex) := sup
Ex∈R

R cube in Rd

(
1
|R|

∫
R
|F |2(Ey) d Ey

)1/2
.

Lemma 3.5. Let T be a lacunary i-tree with top (RT, ξT). Then(
1
|RT|

∑
si∈T

|〈Fi , φsi 〉|
2
)1/2
. inf
Ex∈RT

M2 Fi (Ex).

As a consequence, sizei (P). supsi∈P infEx∈Rsi
M2 Fi (Ex).

We will use the following estimate for vector trees:

Lemma 3.6. Let ET be a vector tree with top (RT, ξT). Then∑
s∈T

|Rs |
1−n/2

n∏
i=1

|〈Fi , φsi 〉| ≤ |RT|

n∏
i=1

sizei (Ti ).

Proof. Use Hölder’s inequality with an l2 estimate for two lacunary indices and
with an l∞ estimate for the remaining n− 2 indices. �

For a set F of trees or vector trees, we will use the notation

NF(Ex) :=
∑
T∈F

1RT(Ex).

Also, we will denote by ‖NF‖BMO the dyadic BMO norm of NF.
We next show how to split a set P of tiles into sets of trees with controlled size.

First, we show how to cut the size in half.

Lemma 3.7. Let P ⊆ Si be a set of tiles. There is a set F of disjoint (as sets of
tiles) i -trees in P such that

RT ⊂ {Ex : inf
Ex∈RT

M2 Fi (Ex)& sizei (P)} for T ∈ F,(5) ∑
T∈F

|RT|. (sizei (P))−2
‖Fi‖

2
2,(6)

‖NF‖BMO . (sizei (P))−2
(

sup
T∈F

inf
Ex∈RT

M2 Fi (Ex)
)2
,(7)

‖NF‖q . (sizei (P))−2
(

sup
T∈F

inf
Ex∈RT

M2 Fi (Ex)
)2
(sizei (P)pi‖Fi‖

pi
pi
)1/q ,(8)
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where
1≤ q <∞ and sizei

(
P \

⋃
T∈F T

)
< 1

2 sizei (P).

Proof. The proof is very standard, so we only say a few words about it; see for
example [Muscalu et al. 2002, Lemma 7.7] or [Muscalu et al. 2004, Lemma 6.6].
The trees in F are selected in 2d stages. We need first a definition. Let 1 ≤ l ≤ d.
A lacunary i-tree with top (RT, ξT) is said to be a (+, l) tree if

(9) (ξT)l > cl(ωsi ) for each si ∈ T,

where cl(ω) denotes the l-th component of the center c(ω) of ω. Similarly, the tree
is said to be a (−, l) tree if the inequality is reversed in (9). It is easy to see that
each lacunary tree T is the disjoint union of at most 2d lacunary subtrees having
the same top as T, each of which is either a (+, l) tree or a (−, l) tree for some
1 ≤ l ≤ d . By pigeonholing, it follows that if we eliminate from P all such trees
having sizei at least (1/(2×2d/2))sizei (P), the remaining set of tiles will have size
less than (1/2)sizei (P).

In a typical stage of the selection4 one selects lacunary trees T with tops (RT, ξT)

that are (say) (+, l) trees for a fixed l, and that satisfy

(10) 1
|RT|

∑
si∈T

|〈Fi , φsi 〉|
2
≥

1
4×2d (sizei (P))2.

One always aims for the tree that has the minimal value for (ξT)l among all the
trees that qualify to be selected at that moment. After such a tree is selected, this
tree is added to the set F1(+, l) and its tiles are eliminated from P. The remaining
tiles that satisfy ξT ∈ ω̃si and Rsi ⊆ RT will form a tree Tsat, having the same top
as T. Add Tsat to the set F2(+, l) and eliminate its tiles from P. Then the cycle
repeats, that is, one starts searching again for a (+, l) tree satisfying (10). When
no such tree is available, the (+, l) stage of the selection process ends. One adds
all the trees from F1(+, l) and from F2(+, l) to the set F. At this point one goes
to the next stage of the selection process.

The key observation is that in each stage, the trees from the set F1(+, l) have
the following property:5 If T,T′ ∈ F1(+, l), si ∈ T, s ′i ∈ T′ and ωsi ( ωs′i , then
Rs′i ∩ RT =∅.

Let us briefly see why this property holds. The fact that ωsi (ωs′i , the separation
in scales, (r4), and the definition of (+, l) lacunary trees implies that (ξT′)l >(ξT)l .
This in turn implies that the tree T was selected earlier than T′. The separation in
scales and the fact that C1�C2 easily imply that ξT∈ ω̃s′i . If Rs′i and RT intersected
(and this can only mean that Rs′i ⊆ RT), this together with ξT ∈ ω̃s′i would imply

4The order of the stages does not really matter.
5In the literature, this property is referred to as “strong disjointness”.
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that right after T was selected, s ′i would have qualified to be part of the tree Tsat,
and thus it would have been eliminated from P before the selection of T′ began.
The contradiction is immediate; thus we conclude that Rs′i ∩ RT =∅.

What the property we just proved means is that any two trees from F1(+, l)
interact very weakly, in that tiles from different trees either have disjoint frequency
components or strongly separated spatial components (so that the associated wave
packets have little interaction). Using standard arguments, one could argue that
this together with (10) implies the Bessel-type inequality∑

T∈F1(+,l)

|RT|. (sizei (P))−2
‖Fi‖

2
2.

We can clearly replace F1(+, l) by F2(+, l) in this inequality.
By combining the contribution from all 2d stages, we get (6). Also, (7) will

follow similarly, by a standard localization argument. (8) follows from (5) and (7),
via an application of the John–Nirenberg inequality (since pi > 2). Finally, (5) is
a consequence of Lemma 3.5. �

By iterating Lemma 3.7 we get this:

Proposition 3.8. Let Pi ⊆ Si be a set of tiles. Then one has the decomposition

Pi :=
⋃

2−k≤sizei (Pi )

P(k)i , where sizei (P(k)i )≤ 2−k+1

and each P(k)i is the (disjoint) union of a family F(k)
i of trees such that

‖N
F(k)

i
‖q . 22k

(
sup

T∈F(k)
i

inf
Ex∈RT

M2 Fi (Ex)
)2(

2ki pi‖Fi‖
pi
pi

)1/q for 1≤ q <∞.

This proposition gives us good control over the number of trees corresponding
to each component i ∈ {1, . . . , n}. In the next section we will combine trees from
each component to create vector trees and will relate their counting function to the
ones of the individual trees.

4. Counting trees

Recall that m is the smallest integer greater than or equal to k/d, and that we have
assumed that m ≥ 2.

Throughout this section we will assume that we have a set of multitiles P ⊂ S.
We also assume that each projection Pi consists of a family Fi of disjoint i-trees

Pi =
⋃

T∈Fi

T.
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Our goal is to split the set P into a family F of vector trees with good pointwise
control over the counting function NF(Ex) of their tops in terms of the individual
counting functions NFi (Ex) (see (20) and (29) below). To provide a better under-
standing of what we have to prove, we first give a single scale heuristics.

4A. Single scale heuristics. Assume we are in the particular case where each T
in each family Fi consists of just one tile, of the form [0, 1]d × ω. Thus, the set
Fi will consist of a family of pairwise disjoint tiles of scale 1. Assume that for
each i we know the cardinality |Fi |. The question in this case is, subject to axioms
(r1)–(r6) and the genericity of 0′, to estimate the cardinality |F|, where F consists
of all the multitiles s having the property that si ∈Fi for each i . Note first that (r1)
immediately implies that

(11) |F| ≤

m∏
i=1

|Fi |,

with the same being true for each choice of m indices. This leads to

|F| ≤

n∏
i=1

|Fi |
m/n.

This estimate is only satisfactory when m< n/2, for reasons that will become clear
in the proof of Proposition 4.1; however, it will be of no use when m ≥ n/2. The
good news is that (11) is only sharp when k/d = m, in which case we also know
that m < n/2. If k/d < m, the inequality can be improved, and one has to use the
additional rank property (r7) guaranteed by the genericity of 0′.

For simplicity, let us see this in the case n = 4, d = 2 and k = 3. Then the
property (r7) will state that for each pairwise distinct i1, i2, i3 ∈ {1, 2, 3, 4}, and
for every two multitiles s, s ′ with s1= s ′1, knowledge of both s2 and s ′3 will uniquely
determine both s and s ′. See Section 4B. Using this and applying Lemma 4.2 as
in the next section, we get the improved inequality

|F| ≤

3∏
i=1

|Fi |
1/2,

and thus, after permuting indices, we get

|F| ≤

4∏
i=1

|Fi |
3/8.

In general, one gets

(12) |F|.
n∏

i=1

|Fi |
(k/d)/n,
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which is the optimal inequality. The important fact is that all exponents on the
right hand side are less than 1/2.

We have this consequence of (12):

Proposition 4.1. Assume as before that k/d < n/2. Then, for generic linear forms
li : R

d(n−1)−k
→ Rd with 1≤ i ≤ n− 1, we have∣∣∣∣∫

Ex∈[0,1]d

∫
Et∈[0,1]d(n−1)−k

n−1∏
i=1

Fi (Ex ⊕ li (Et))Fn(Ex) dEt d Ex
∣∣∣∣. n∏

i=1

‖F̂i‖
1−(2k/d)/n
∞

whenever ‖Fi‖∞ = O(1).

Here ⊕ denotes addition modulo 1. This shows that the single scale operator
relevant to our problem is controlled by the Fourier transform, and thus it provides
a heuristics for the fact that Fourier analysis will be able to address the multiscale
version of the problem (that is, Theorem 2.5). In contrast to this, we mention that
neither the operator in (3) nor that in (4) satisfy any similar bounds.

In the language of Gowers and Wolf [2010], Proposition 4.1 is saying that the
system of equations associated with the linear forms li has true complexity 1.

It will become clear from the argument presented in the following sections that
the precise conditions on 0′ needed in Proposition 4.1 (needed to guarantee (12))
amount to the following two requirements. To formulate them, we use the same
notation that we have used so far. More exactly, 0′ is the linear subspace of (Rd)n

defined by{
(Eη(1), . . . , Eη(n)) :

n−1∑
i=1

Eη
(i )
·
(
Ex + li (Et)

)
+ η(n) · Ex = 0 ∈ R[Ex, Et]

}
.

We ask 0′ to be k-dimensional and parametrizable over every k canonical coordi-
nates. We also ask that the following system of k Rd -valued equations in d un-
knowns Eξ (i ) ∈ Rk is compatible for each distinct i1, . . . , im ∈ {1, . . . , n}:

Gi1(Eξ
( j))−Gi1(Eξ

( j+1))= v j for 1≤ j ≤ d − 1,

Gil (Eξ
( j))= v j,il for 1≤ j ≤ d, 2≤ l ≤ m− 1,

Gim (Eξ
( j))= v j,m for 1≤ j ≤ k+ 1− d(m− 1).

Proof of Proposition 4.1. By discretizing as in the previous sections (and keeping
the notation from there), we are reduced to proving that

∑
s∈S

n∏
i=1

|〈Fi , φsi 〉|.
n∏

i=1

‖F̂i‖
1−(2k/d)/n
∞

,
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where S consists of multitiles of scale 1. Note that |〈Fi , φsi 〉| is roughly a Fourier
coefficient of Fi . For each 2−ni . ‖F̂i‖∞ let Fi,ni be the set of all tiles si with

|〈Fi , φsi 〉| ∼ 2−ni .

Note that since ‖Fi‖2 = O(1), we have |Fi,ni | . 22ni (Bessel’s inequality). If we
use (12), it follows that the cardinality of the set F(En) consisting of all multitiles
s ∈ S such that si ∈ Fi,ni for each i will be O(

∏n
i=1 2(2kni/d)/n).

The sum above is then bounded by∑
En:2−ni .‖F̂i‖∞

2−
∑

i ni

n∏
i=1

2(2kni/d)/n .
n∏

i=1

‖F̂i‖
1−(2k/d)/n
∞

. �

We make two remarks about Proposition 4.1, and in general about the appli-
cability of our Fourier analytic techniques. The first remark shows that some
nondegeneracy is in general needed. Take for example∫
(t,s)∈T2

∫
(x,y)∈T2

F1(x + t, y)F2(x, y+ s)F3(x, y)dt ds dx dy

=

∫
(x,y)∈T2

Fx(F1)(0, y)Fy(F2)(x, 0)F3(x, y)dx dy.

One can check that here k = d = 2, and thus k/d < n/2. However, it can be
easily seen that this form cannot be bounded by a power of (and in general, by no
reasonable function of) ‖F̂i‖∞. The explanation is that 0′ is degenerate.

The second remark will show that with the current techniques, the requirement
k/d < n/2 cannot be relaxed. We illustrate this in the case d = 1 with the single
scale version of (3):∫

x∈[0,1]

∫
t∈[0,1]

F1(x ⊕ t)F2(x 	 t)F3(x ⊕ 2t)F4(x)dx dt.

Application of the Fourier inversion formula for each function shows that this form
is essentially (up to some constants)

∑
(n1,n2,n3,n4)

n1−n2+2n3=0
n1+n2+n3+n4=0

4∏
i=1

F̂i (ni ).

Our approach relies on using the triangle inequality to bound this sum by

(13)
∑

(n1,n2,n3,n4)
n1−n2+2n3=0

n1+n2+n3+n4=0

4∏
i=1

|F̂i (ni )|.
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Choose F1(x)= F2(x)= F3(x)= e2π i N x2
and F4(x)= e−2π i N x2

for large N . One
can check that when i ∈{1, 2, 3}, we have |F̂i (n)|∼ N−1/2 for N/100≤n≤ N , and
that |F̂4(n)| ∼ N−1/2 for −N ≤ n ≤−N/100. It is easy to see that the term in (13)
is & 1. Since one can check that also ‖F̂i‖∞ . N−1/2 for each i , the expression in
(13) is not O(‖F̂i‖∞). Let Fi refer to the set of n with |F̂i (n)| ∼ N−1/2, and let
F be the set of quadruples (n1, n2, n3, n4) as in (13), such that ni ∈ Fi for each i .
We get

|F| ∼

4∏
i=1

|Fi |
1/2,

and this sharp inequality becomes inefficient for any application since the exponent
is 1/2.

A moment’s reflection shows we can get the same outcome whenever k = n/2.
Of course, our approach fails to address the case k/d = n/2, because of the use
of the triangle inequality in (13). It is likely that the correct approach in this case
(and in general, whenever k/d ≥ n/2) is to analyze appropriate quadratic Fourier
coefficients.

To address the multiscale case, we will have to count vector trees, rather than
just multitiles. To make the exposition more transparent, we will exemplify our
approach in the case d = 2. The general case d > 2 will follow via a similar
argument and is briefly sketched afterward.

4B. The case d = 2. We start this section by proving that, under the particular
assumptions on 0′ from Theorem 1.2, the multitiles in S satisfy the following
additional rank property:

(r7) For all distinct indices i1, . . . , ik ⊂ {1, 2, . . . , n} and for all (not necessarily
pairwise distinct) multitiles s, s ′, p, p′ ∈ S, we have

dist(ωs, ωp), dist(ωs′, ωp′)≤ C5
0 Dmax,

where

Dmax := max{dist(ωsi1
, ωs′i1

), dist(ωpi1
, ωp′i1

)}

+max{dist(ωsil
, ωpil

), 2≤ l ≤ m}+max{dist(ωs′il
, ωp′il

),m+ 1≤ l ≤ k}

+max{diam(ωs), diam(ωs′), diam(ωp), diam(ωp′)}.(14)

It will be important that we can control both dist(ωs, ωp) and dist(ωs′, ωp′) by
a value at most C5

0 times larger than Dmax. Property (r7) will be used twice in the
future, in conjunction with a choice of constants such that C0� C1� C2.

To see why (r7) holds, let

γs ∈ C2
0ωs ∩0

′, γs′ ∈ C2
0ωs′ ∩0

′, γp ∈ C2
0ωp ∩0

′ and γp′ ∈ C2
0ωp′ ∩0

′
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(by (r6)). To simplify notation, assume il = l. Note that

(15) dist((γs)1, (γs′)1), dist((γp)1, (γp′)1), dist((γs)l, (γp)l), dist((γs′)l, (γp′)l)

≤ C3
0 Dmax.

We will use the notation Eξ (i ) := (ξ (i )1 , . . . , ξ
(i )
k ) ∈ Rk . Recall the functions Gi from

the introduction. Consider the following system of (k vector, or equivalently 2k
scalar) linear equations in 2k variables ξ (1)1 , . . . , ξ

(2)
k ∈R, and coefficients v j ∈ R2:

G1(Eξ
(1))−G1(Eξ

(2))= v1,

G2(Eξ
(1))= v2,

...

Gm(Eξ
(1))= vm,

Gm+1(Eξ
(2))= vm+1,

...

Gk(Eξ
(2))= vk

By hypothesis, the system has a unique solution for each vi . Let now Eξ (1), Eξ (2) ∈Rk

consist of the first k entries of γs −γp and γs′ −γp′ , respectively, and let v j be the
values corresponding to this choice in the system above. Note that

|v j | ≤ 2C3
0 Dmax for each j ∈ {1, . . . , k}

by (15). It will follow that the solution (Eξ (1), Eξ (2)) will be bounded in norm by
the norm of (v1, . . . , vk) times a constant that only depends on the coefficients
of the linear forms G1, . . . ,Gk . Thus, if C0 is chosen large enough compared to
these coefficients, we get that dist(γs, γp), dist(γs′, γp′) ≤ C4

0 Dmax. Now (r7) is
immediate.

There will be two stages, each of which will generate some vector trees. In each
stage, before we construct the vector trees we will have to carefully reshuffle the
sets Pi .

Let us describe the first stage of the construction. We will first aim at separating
the trees in each family Fi , and to achieve this we will employ a trick first used by
Fefferman [1973]. Fix 1≤ i ≤ n. For each l ≥ 0, let

Pi (l) := {si ∈ Pi : 2l
≤ |{T ∈ Fi : ξT ∈ ω̃si , Rsi ⊆ RT}|< 2l+1

}.

Note that (Pi (l))l≥0 forms a partition of Pi . Next, we organize each Pi (l) into
i-trees with top tiles. More precisely, consider the set of all tiles P∗i (l)⊆ Pi (l) that
are maximal with respect to the order relation ..
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We observe a few things. First, the tiles in P∗i (l) are pairwise not comparable
under .. Second, for each tile si ∈ Pi (l) there is a unique tile s∗i ∈ P∗i (l) such that
si . s∗i . To see the uniqueness part, assume by contradiction that si . s∗i and si . s∗∗i
for some s∗i 6= s∗∗i ∈ P∗i (l). Then Rs∗i ∩ Rs∗∗i

6=∅, which forces ω̃s∗i ∩ ω̃s∗∗i
=∅. This

together with the fact that s∗i , s∗∗i ∈ Pi (l) will imply that∣∣{T ∈ Fi : ξT ∈ ω̃si , Rsi ⊆ RT}
∣∣≥ 2× 2l,

which forces the contradiction si ∈
⋃

l ′≥l+1 Pi (l ′).
Now, for each s∗i ∈ P∗i (l) we form the i-tree with top (Rs∗i , c(ωs∗i )) consisting of

all tiles in Pi (l) which are . s∗i . We have just seen that these trees partition Pi (l)
and that tiles in distinct trees are not comparable under .. Call the set of these
trees Fi (l). It is easy to see that

(16) NFi (l)(Ex)≤ NFi (Ex) for Ex ∈ R2.

We now use these trees to build our first generation of vector trees. For a moment
we will abuse notation and for two s, s ′ ∈ P we will write s . s ′ if si . s ′i for each
1 ≤ i ≤ n. Note that the extension of . from tiles to the multitiles in P remains a
relation of order.

For each El := (l1, . . . , ln) with l1, . . . , ln ≥ 0 denote

P(El) := {s ∈ P : si ∈ Pi (li ) for each 1≤ i ≤ n}.

The selection process goes as follows. Fix El. Find a maximal (with respect to .)
s ∈ P(El); then construct the vector tree ET(s) with top (Rs, c(ωs)) consisting of all
s ′∈P(El) such that s ′. s. Then eliminate all multitiles in ET(s) from P(El), and restart
the selection, with this new value for P(El). When no such vector tree remains to
be selected, the value of P(El) will be ∅. Denote by F(El) the family of the vector
trees selected at this stage, and by F∗∗(El)⊂ F(El) those vector trees that consist of
at least two multitiles (that is, in addition to their top, they also contain a multitile
with a scale distinct from the scale of the top). The vector trees in F(El) \F∗∗(El)
will be reshuffled later, so we will ignore them for the moment.

We will first show how to control the counting function NF∗∗(El) in terms of each
NFi (li ). For each ET ∈F(El) we denote by Ti the projection of ET onto Si (and this is
an i-tree). For each Ex ∈Rd , denote by F∗∗(El, Ex) the set of all vector trees ET∈F∗∗(El)
such that Ex ∈ RET. A similar definition holds for Fi (li , Ex).

Let us first make two easy observations. On the one hand, note that for each
ET ∈ F(El), all the tiles of Ti are contained in a unique tree from the family Fi (li )

(this follows from an earlier observation, and from the fact that the tiles in Ti

are pairwise comparable under .). We will refer to this tree as the i-th standard
projection of ET. On the other hand, for a fixed Ex and some ET∈F∗∗(El, Ex), if for each
1 ≤ i ≤ n we know the i-th standard projection of ET, we will also automatically
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know ET (this follows from the maximality involved in the selection of ET). We will
see in Proposition 4.4 that more is true, namely that knowledge of just m of the
standard projections suffices to determine ET.

Lemma 4.2 [Katz and Tao 1999]. Let X and A be finite sets and let g : X→ A be
a function. Then ∣∣{(x1, x2) ∈ X2

: g(x1)= g(x2)}
∣∣≥ |X |2/|A|.

We will apply this lemma with X =F∗∗(El, Ex), A=F1(l1, Ex) and g(ET) := f1(ET)
the first standard projection of ET (for later use, we extend this definition to all fi ,
1≤ i ≤ n). We get that

(17)
∣∣{( ET1, ET2) ∈ X2

: f1(ET1)= f1(ET2)}
∣∣≥ (NF∗∗(El)(Ex))2/NF1(l1)(Ex).

Next, we will estimate from above the size of the set

H := {( ET1, ET2) ∈ X2
: f1(ET1)= f1(ET2)}.

In particular, we will show that the function

H :H→
k∏

j=2

F j (l j , Ex),

( ET1, ET2) 7→ ( f2(ET1), . . . , fm(ET1), fm+1(ET2), . . . , fk(ET2))

is injective (recall that k/d < n/2, thus k < n, and the functions fi will make sense
for each 1≤ i ≤ k). This fact combined with (17) will lead to the desired estimate

(18) NF∗∗(El)(Ex)≤
( k∏

j=1

NF j (l j )(Ex)
)1/2

.

Note that the sum of the exponents on the right hand side equals the rank k/2 (and
this is the best one can do). It will be crucial that this number is less than n/2.
Similarly, in the case of general d, one can arrange things such that the sum of the
exponents will be6 less than n/2. This is explained in the next section.

By using this, (16) and the fact that for each Ex ∈ R2,

(19) NFi (li )(Ex)= 0 if 2li > NFi (Ex),

6It seems likely that one can achieve an inequality where the sum of the exponents is k/d . How-
ever, we will content ourselves with a sum barely smaller than n/2.
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we find that7 for each ε > 0

NF∗∗(Ex).ε

( k∏
j=1

NF j (Ex)
)1/2+ε

.

Here and in the following F∗∗ :=
⋃
El F∗∗(El). Also, because there was nothing

special about working with indices 1, . . . , k, we can permute them and get similar
inequalities. Combining this with the fact that k < n, we get

(20) NF∗∗(Ex).
( n∏

j=1

NF j (Ex)
)δ
,

for some δ < 1/2, depending only on k and n. The precise value of δ will not be
important, what matters for later applications is that it is strictly smaller than 1/2.

Proposition 4.3. The function H is injective.

Proof. Assume that (ET1, ET2), (EU1, EU2) ∈H have the same value under H . We will
prove that (ET1, ET2) = ( EU1, EU2). Let s, s ′, p, p′ be the top multitiles of the vector
trees ET1, ET2, EU1, EU2 and let Dmax be as in (14). Our hypothesis will easily imply
that

(21) Dmax ≤ C0 max{diam(ω̃s), diam(ω̃s′), diam(ω̃p), diam(ω̃p′)},

and by (r7) we get

(22) dist(ωs, ωp), dist(ωs′, ωp′)

≤ C6
0 max{diam(ω̃s), diam(ω̃s′), diam(ω̃p), diam(ω̃p′)}.

We choose one of the four vector trees for which its top multitile has the largest
scale of the frequency component. To fix notation, we can assume without any loss
of generality that this vector tree is ET1. Since ET1 has at least two multitiles with
distinct scales, we can find t ∈ ET1 such that diam(ω̃t)>diam(ω̃s). This observation
combined with (22), (r5), and the fact that C0,C1�C2 implies that ω̃p⊂ ω̃t . Since
Rt ⊂ Rs and since Rs ⊂ Rp (this being a consequence of the facts that Ex ∈ Rs ∩ Rp

and that the scale of Rp is larger than the scale of Rs), it follows that t . p. But we
also know that t . s, and thus ET1 and EU1 will share all standard projections. This
forces ET1 = EU1. This will in turn imply that ET2 and EU2 share at least m standard
projections (corresponding to the indices j ∈ {1,m + 1,m + 2, . . . , k}; recall that
2m − 1 ≤ k). The fact that ET2 = EU2 will follow from the following proposition,
which is somewhat reminiscent of the rank property (iv). �

Proposition 4.4. Let ET ∈ F∗∗(El, Ex). If we know the value of fi (ET) for m of the n
values of i , then we know ET.

7The extra ε exponent hides a logarithmic gain.
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Proof. Let ET, EU∈F∗∗(El, Ex) such that fi ( ET )= fi ( EU) for each i ∈{1, . . . ,m}. Follow
exactly the same approach as in the proof of Proposition 4.3, this time applied to
the pairs (ET, ET) and (ET, EU). �

The proof of (18) is now complete, and the first stage of our construction ends.
In the second stage, we will have to deal with the sets of vector trees F∗(El) :=

F(El) \F∗∗(El) each of which consists of just one multitile. We will denote by P(El)
the set of all these multitiles. The additional key property that these multitiles will
obey is

(23) s 6= s ′ ∈ P(El) implies s, s ′ are not comparable under . .

This is a consequence of the maximality involved in the selection of the vector
trees from the previous stage, and will turn out to be crucial in proving the analog
of Proposition 4.4; see Proposition 4.5 below.

The plan is to reshuffle P(El) into convenient vector trees. To achieve this, we
will first split each Pi (El) into overlapping trees (interestingly, from now on, the
lacunary trees will not play any role). For each r ∈ Z with 2−r

≤ sizei (Pi (El)), let

(24) P(r)i (El) := {si ∈ Pi (El) : 2−r
≤ |Rsi |

−1/2
|〈Fi , φsi 〉|< 2−r+1

}.

Note that
Pi (El)=

⋃
2−r≤sizei (Pi (El))

P(r)i (El).

We next use a greedy selection algorithm as before to split each P(r)i (El) into a set
Fi (r, El) of disjoint i-overlapping trees with top tiles pairwise not comparable with
respect to ≤. This implies via a classical T T ∗ argument (see [Muscalu et al. 2002,
Corollary 7.6] for example) that

(25) ‖NFi (r,El)(x)‖BMO . 22r
(

sup
si∈P(r)i (El)

inf
Ex∈Rsi

M2 Fi (Ex)
)2

.

Also, (24) will imply that NFi (r,El) is supported in the set {Ex : M2 Fi (Ex) & 2−r
}.

Combining this with (25) and the John–Nirenberg inequality we get

(26) ‖NFi (r,El)(x)‖t .22r
(

sup
si∈P(r)i (El)

inf
Ex∈Rsi

M2 Fi (Ex)
)2(

2pi r‖Fi‖
pi
pi

)1/t for 1≤ t<∞.

We then apply Fefferman’s trick again, as in the first stage of our construction, this
time however with respect to Fi (r, El) and ≤ (rather than .).

For each q ≥ 0, let

P(r)i (El, q) :=
{
si ∈ P(r)i (El) : 2q

≤ |{T ∈ Fi (r, El) : ξT ∈ ωsi , Rsi ⊆ RT}|< 2q+1}.
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Note that (P(r)i (El, q))q≥0 forms a partition of P(r)i (El). Next, we organize each
P(r)i (El, q) into i-overlapping trees with top tiles. More precisely, consider the set
P(r,∗)i (El, q)⊂ P(r)i (El, q) of all tiles maximal with respect to the order relation ≤.

It follows as before that the tiles in P(r,∗)i (El, q) are pairwise not comparable under
≤ and that for each tile si ∈ P(r)i (El, q) there is a unique tile s∗i ∈ P(r,∗)i (El, q) such
that si ≤ s∗i .

For each s∗i ∈ P(r,∗)i (El, q) we form the i-overlapping tree with top (Rs∗i , c(ωs∗i ))

consisting of all tiles in P(r)i (El, q) that are ≤ s∗i . As before, these trees partition
P(r)i (El, q) and tiles in distinct trees are not comparable under ≤. Call the set of
these trees Fi (r, El, q), and note that

(27) NFi (r,El,q)(Ex)≤ NFi (r,El)(Ex) for Ex ∈ R2.

For all vectors Eq and Er , let F(Er , El, Eq) consist of all the multitiles s such that
si ∈ P(ri )

i (El, qi ) for each i . This consideration is motivated by (23), which implies
that each vector tree in P(El) can have only one multitile. We will prove that

(28) NF(Er ,El,Eq)(Ex)≤
( k∏

i=1

NFi (ri ,El,qi )
(Ex)
)1/2

for Ex ∈ R2.

Using this, (27), and that NFi (ri ,El,qi )
(Ex) = 0 for each Ex ∈ R2 if 2qi > NFi (ri ,El)(Ex),

we find that for each ε > 0,

NF(Er ,El)(Ex).ε

( k∏
j=1

NFi (ri ,El)(Ex)
)1/2+ε

for Ex ∈ R2.

Here and in the following, F(Er , El) :=
⋃
Eq F(Er , El, Eq). Again, by permuting indices

and since k < n, we get

(29) NF(Er ,El)(Ex).
( n∏

i=1

NFi (ri ,El)(Ex)
)δ

for Ex ∈ R2 and some δ < 1/2.

We mention that (29) will later be used in conjunction with (26) and with the upper
bound (19) on the li .

We next prove (28). The argument follows exactly the same scheme as in the
previous stage of the decomposition: We denote by X := F(Er , El, Eq, Ex) the set of
all vector trees ET ∈F(Er , El, Eq) with Ex ∈ RET. For a vector tree ET we will now denote
by fi (ET) the tree from the set F(ri , El, qi , Ex) that contains the tiles si , for s ∈ ET. It
will follow as in the previous stage that these projections are well defined. Define
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H and H as before; more precisely,

H :H→
k∏

j=2

F j (r j , El, q j , Ex).

Proposition 4.5. The function H is injective.

Proof. The proof of the injectivity of H follows the same lines as the one of
Proposition 4.3, with only one key difference. Assume that

(ET1 := {s}, ET2 := {s ′}), (EU1 := {p}, EU2 := {p′}) ∈H

have the same value under H . We will prove that (s, s ′)= (p, p′). Let Dmax be as
in (14). Our hypothesis will easily imply that

Dmax ≤ C0 max{diam(ωs), diam(ωs′), diam(ωp), diam(ωp′)}.

This estimate is stronger than the one in (21), in that on the right hand side here
we have the diameters of the cubes ω, rather than those of the cubes ω̃. This is due
to the fact that the standard projections now reflect positioning with respect to ≤,
rather than .. By (r7) we get

(30) dist(ωs, ωp), dist(ωs′, ωp′)

≤ C6
0 max{diam(ωs), diam(ωs′), diam(ωp), diam(ωp′)}.

We choose one of the four vector trees whose frequency component has the largest
scale. To fix notation, we can assume without any loss of generality that this vector
tree is s. Observe that (30) shows that ω̃s and ω̃p must intersect if C0� C1. But
then (r5) implies that ω̃p ⊆ ω̃s . This combined with the fact that Ex ∈ Rs ∩ Rp 6=∅
implies that s . p. From (23) we immediately get that s = p. This in turn implies
that s ′ and p′ share at least m standard projections. This is equivalent to saying
that s ′i ≤ p′i (or vice versa), for at least m values of i . From (r2) we get that s ′. p′

(or vice versa). A final invocation of (23) concludes that s ′ = p′. �

4C. The case d >2. The case of arbitrary d follows by considerations very similar
to the ones involved in the case d = 2. The rank properties (very much in the spirit
of (r7)) that will be needed throughout the proof will not be stated explicitly this
time, but will rather become clear from the nondegeneracy assumptions on 0′ that
will be stated in each case. We briefly sketch the details.

Recall we are under the assumption m ≥ 2. We can in addition assume that
m ≥ n/2 (and thus k/d < m). This is because if m < n/2, then, as explained
earlier, one can crudely treat the operator as having integral rank m, and apply the
methods from [Muscalu et al. 2002] (or alternatively, the approach described in
Section 4D).

We will need the general case of this combinatorial lemma:
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Lemma 4.6 [Katz and Tao 1999]. Let X and A1, . . . , Ad−1 be finite sets and for
each 1≤ i ≤ d − 1, let gi : X→ Ai be a function. Then∣∣{(x1, . . . , xd) ∈ Xd

: gi (xi )= gi (xi+1) for all 1≤ i ≤ d − 1
}∣∣≥ |X |d∏d−1

i=1 |Ai |
.

The two stages of the construction are the same as in the case d = 2, but the
choice of the function H involves some modifications. As in the case d=2, H will
have the same formula in both stages of the reshuffling process, and proving its
injectivity will involve very similar ideas. Thus, to fix notation, we only sketch
the argument corresponding to the first stage. Take X = F∗∗(El, Ex). Note that
m ≤ n+ 1 (since m ≤ (n+ 1)/2 and n ≥ 3), so the sets F j (l j , Ex) are defined for
each 1 ≤ j ≤ m+ 1. We distinguish three separate cases and will address each of
them below.

Case 1: n is even. It follows that m ≤ n/2. Without loss of generality we can
assume that

(31) max{|F j (l j , Ex)| :1≤ j ≤m}= |F1(l1, Ex)|≤min{|F j (l j , Ex)| :m+1≤ j ≤n}.

Apply Lemma 4.6 with A j = F1(l1, Ex) and g j = f1. Also, define

H := {( ET1, . . . , ETd) ∈ Xd
: g j (ET j )= g j (ET j+1), 1≤ j ≤ d − 1},

H :H→
∏

j B j ,

(ET1, . . . , ETd) 7→ ( f2(ET1), f3(ET1), . . . , fm(ET1), f2(ET2), f3(ET2), . . . , fm(ET2), . . . ,

f2(ETd), f3(ETd), . . . , fm(ETd)).

where each B j equals one of the sets Fi (li , Ex). We briefly comment on this con-
struction. It is one of many one can do, and while the nondegeneracy requirements
to make a particular choice of H injective will depend on H , they are achieved for
generic 0′. For example, we chose to assign entries of the form f2, . . . , fm to each
of the trees ET j , but we could also have chosen to alternate between these entries
and the entries fm+1, . . . , f2m−1, as we did in the case d = 2. The only restrictions
are that the entries corresponding to each tree ET j are pairwise distinct (otherwise
redundancy occurs), and that the entries for ET j are also distinct from f1(ET j ).

Assume for the moment that H is injective. Combining this with Lemma 4.6
we get that

|F∗∗(El, Ex)| ≤
(
|F1(l1, Ex)|d−1

m∏
j=2

|F j (l j , Ex)|
)1/d

.
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Due to our assumption (31), one can easily check that this implies

(32) |F∗∗(El, Ex)| ≤
( n∏

j=1

|F j (l j , Ex)|
)δ

for some δ < 1/2,

which as explained earlier, is the desired inequality.
Let us now see why H is injective. Assume that (ET1, . . . , ETd), (EU1, . . . , EUd)∈H

have the same value under H . The nondegeneracy condition that we need is that
the system 

G1(Eξ
(1))−G1(Eξ

(2))= v1,

G1(Eξ
(2))−G1(Eξ

(3))= v2,

...

G1(Eξ
(d−1))−G1(Eξ

(d))= vd−1,

G2(Eξ
(1))= v1,2,

...

Gm(Eξ
(d))= vd,m

has at most one solution for each choice of targets v1, . . . , vd−1 and vi, j with 1 ≤
i ≤ d and 2 ≤ j ≤ m. Note that there are dm − 1 Rd -valued equations in d
unknowns Eξ ( j)

∈ Rk , and that we have (dm− 1)d ≥ dk, since m > k/d . Thus this
system is always overdetermined, and we require that the matrix associated with
it has maximum rank dk. It is not too hard to check that this is achieved for a
generic choice of 0′. Actually, our choice of H is in such a way that the system
consisting of the first k vector-valued equations above will generically give rise to
a compatible system.

The injectivity of H now follows as in the case d = 2. First, there must be
some i0 such that either ETi0 or EUi0 contains a multitile with the frequency scale
larger than or equal to the scales of all the multitiles from the trees ETi , EUi . As
before, we get that ETi0 =

EUi0 . The equality ETi = EUi for the remaining indices i will
follow from a “domino effect”. It first follows for the neighboring indices i = i0−1
and/or i = i0+ 1, using the fact that

f1(ETi )= f1(ETi0)= f1( EUi0)= f1( EUi ) and f j (ETi )= f j ( EUi )

(for j ∈ {2, 3, . . . ,m}), and using Proposition 4.4. The domino effect continues
until all indices are covered.

Case 2: n is odd. Since we have assumed that m ≥ n/2, we have m = (n+ 1)/2.
In particular, whenever i1 /∈ {i2, . . . , i2m−1} with {i2, . . . , im} pairwise distinct and
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{im+1, . . . , i2m−1} pairwise distinct, the system

(33)



Gi1(Eξ
(1))−Gi1(Eξ

(2))= v1,

Gi2(Eξ
(1))= v1,2,

...

Gim (Eξ
(1))= v1,m,

Gim+1(Eξ
(2))= v2,m+1,

...

Gi2m−1(Eξ
(2))= v2,2m−1

of n= 2m−1 Rd -valued equations in 2 unknowns Eξ (1), Eξ (2) ∈Rk will have at most
one solution for a generic 0′. This is one of the two nondegeneracy conditions that
will be needed in both of the following two subcases. We will refer to the above
system as a two-scheme.

Case 2a: n is odd and d is odd. Without loss of generality we can assume that

(34)
max{|F j (l j , Ex)| : 1≤ j ≤ m+ 1} = |F2(l2, Ex)|

≤min{|F j (l j , Ex)| : m+ 2≤ j ≤ n}.

Apply Lemma 4.6 with A j =F1(l1, Ex) and g j = f1 if j is odd, A j =F2(l2, Ex) and
g j = f2 if j is even. Also, define

H := {( ET1, . . . , ETd) ∈ Xd
: g j (ET j )= g j (ET j+1), 1≤ j ≤ d − 1},

H :H→
∏

j B j ,

(ET1, . . . , ETd) 7→:= ( f3(ET1), f4(ET1), . . . , fm(ET1), f3(ET2), f4(ET2), . . . , fm(ET2),

. . . , f3(ETd), f4(ETd), . . . , fm(ETd),

fm+1(ET1), fm+1(ET3), . . . , fm+1(ETd)),

where each B j equals one of the sets Fi (li , Ex). Note that H has (m−2)d+(d+1)/2
entries. If m = 2, then the first (m − 2)d entries are not present. Note also that
the last line above contains (d+1)/2 entries of the form fm+1(ETi ), for all possible
odd indices i . Here is why we cannot use more than (d+1)/2 such entries. While
more entries would certainly reinforce the injectivity of H , the application of the
injectivity (combined with Lemma 4.6) would be inefficient, in that it would not
lead to (32). On the other hand, our choice for H combined with the assumption
(34) is easily seen to guarantee (32).

We chose to assign entries fm+1(ETi ) to the odd indices i (as opposed to, say,
the first (d + 1)/2 indices) to allow for the domino effect, as explained below.
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Note also that in the definition of g j , we chose to alternate between f1 and f2, to
prevent certain redundancies from occurring. This will become clear in a moment.

In addition to the requirement that the two-scheme (33) has at most one solution,
we will also require that the system

(35)



G1(Eξ
(1))−G1(Eξ

(2))= v1,

G2(Eξ
(2))−G2(Eξ

(3))= v2,

...

G2(Eξ
(d−1))−G2(Eξ

(d))= vd−1,

Gl(Eξ
( j))= v j,l for 3≤ l ≤ m, 1≤ j ≤ d,

Gm+1(Eξ
(1))= v1,m+1,

Gm+1(Eξ
(3))= v3,m+1,

...

Gm+1(Eξ
(d))= vd,m+1

has at most one solution. There are d(m − 1/2)− 1/2 Rd -valued equations and
d unknowns in Rk . Our assumption that k/d < m will imply that the system is
overdetermined, so our requirement is equivalent with saying that its matrix has
maximum rank dk. As in the previous case, a generic choice of 0′ will guarantee
that the first k equations will give rise to a compatible system.

Let us now see why the function H is injective. Assume that (ET1, . . . , ETd) ∈H

and ( EU1, . . . , EUd) ∈ H have the same value under H . Again, by using the system
(35), we first obtain that ETi0 =

EUi0 for some i0. There are two type of scenarios
that will sustain the domino effect.

If i0 happens to be even, its neighbor(s) i will be odd, and thus we are guaranteed
that f j (ETi )= f j ( EUi ) for each j ∈ {3, . . . ,m+ 1}. However, since i is a neighbor
of i0, it will also follow that f j0(ETi ) = f j0(ETi0) = f j0( EUi0) = f j0( EUi ), where j0
is either 1 or 2, depending on whether i = i0 − 1 or i = i0 + 1. In any case,
ETi and EUi will share m standard projections, and thus will have to coincide, by
Proposition 4.4.

The second scenario is when i0 is odd. In this case we can not prove by following
the same procedure that ETi = EUi for a neighboring i . What we do instead is
consider the two-scheme(s), one associated with indices i0 + 1, i0 + 2, the other
one associated with indices i0− 1 and i0− 2. Each of these two-schemes is of the
form (33). Indeed, 2m − 2 of the equations are going to come from (35), while
the additional equation will be of the form G1(Eξ

(i0+1))= wi0+1,1 for the first two-
scheme and G2(Eξ

(i0−1))=wi0−1,2 for the second. In other words, in the case of the
first scheme (with a similar situation for the second scheme), we know that ETi0+1
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and EUi0+1 share m−1 standard projections, ETi0+2 and EUi0+2 share m−1 standard
projections, and also, recall that f2(ETi0+1)= f2(ETi0+2) and f2( EUi0+1)= f2( EUi0+2).
The analysis of this two-scheme (essentially, a repeat of the argument from the case
that d = 2) will imply that ETi = EUi for i ∈ {i0+ 1, i0+ 2}.

If we allow combinations of these scenarios, it is easy to see that the domino
effect will eventually prove that ETi = EUi for all i .

Case 2b: n is odd and d is even. This is the most delicate case. We will use the
same construction as in the previous subcase, but with d + 1 vector trees rather
than d. More precisely, without loss of generality we can assume that

max{|F j (l j , Ex)| : 1≤ j ≤m+1} = |F2(l2, Ex)| ≤min{|F j (l j , Ex)| :m+2≤ j ≤ n}.

Apply Lemma 4.6 (this time for d + 1 sets) with A j = F1(l1, Ex) and g j = f1 if j
is odd, A j = F2(l2, Ex) and g j = f2 if j is even. Here j ∈ {1, . . . , d + 1}. Also,
define

H := {( ET1, . . . , ETd+1) ∈ Xd+1
: g j (ET j )= g j (ET j+1), 1≤ j ≤ d},

H :H→
∏

j B j ,

(ET1, . . . , ETd+1) 7→ ( f3(ET1), f4(ET1), . . . , fm(ET1), f3(ET2), f4(ET2), . . . , fm(ET2),

. . . , f3(ETd+1), f4(ETd+1), . . . , fm(ETd+1),

fm+1(ET1), fm+1(ET3), . . . , fm+1(ETd+1)),

where each B j equals one of the sets Fi (li , Ex). In addition to requiring that the
two-schemes (33) have at most one solution, we will also need that the system (a
copy of (35) with d 7→ d + 1)

G1(Eξ
(1))−G1(Eξ

(2))= v1,

G2(Eξ
(2))−G2(Eξ

(3))= v2,

...

G2(Eξ
(d−1))−G2(Eξ

(d))= vd−1,

Gl(Eξ
( j))= v1,3 for 3≤ l ≤ m, 1≤ j ≤ d + 1,

Gm+1(Eξ
(1))= v1,m+1,

Gm+1(Eξ
(3))= v3,m+1,

...

Gm+1(Eξ
(d+1))= vd+1,m+1
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has at most one solution. There are (d + 1)(m− 1/2)− 1/2 Rd -valued equations
in d + 1 variables from Rk . The fact that the system is overdetermined, since(

(d + 1)(m− 1
2)−

1
2

)
d ≥ (d + 1)k,

is a consequence of the fact that k/d < m− 1/2.
The argument will then run as in the previous subcase. We leave details to the

interested reader.

4D. The case d = 1. As advertised earlier, a simplified version of the combinato-
rial argument in the case d = 2 can also handle the case d = 1, and more generally,
the case of arbitrary d and m < n/2. We present the argument in this generality,
and thus assume m < n/2, rather than d = 2. We note again that the argument here
reproves the main theorem in [Muscalu et al. 2002], in the locally L2 case, without
any appeal to induction.

We perform the same two stage decomposition, exactly as in the case d = 2.
This time however the function H will have a simpler form. More precisely, in the
first stage one considers functions of the form

H : F∗∗(El, Ex)→
m∏

j=1

F j (l j , Ex), (ET) 7→ ( f1(ET), . . . , fm(ET)),

with an identical construction (up to notation) for the second stage. The injectivity
of H will follow from Proposition 4.4 in the first stage, and from (r2) in the second
stage.

The injectivity of H will in turn imply the desired estimates (20) and (29), since
m < n/2.

Lemma 4.2 and Proposition 4.3 are no longer needed. Thus we need no further
nondegeneracy conditions on 0′, other than the one from [Muscalu et al. 2002]
that 0′ is parametrizable over any k canonical variables.

5. Proof of Theorem 2.5

Assume d=2. The argument for d>2 would follow with no essential modification.
For each P⊂ S we will use the notation

3P(Ex)(F1, . . . , Fn) :=
∑
s∈P

|Rs |
−n/2

n∏
i=1

|〈Fi , φsi 〉|1Rs (Ex).

By invoking interpolation and the dilation invariance of our operator, it suffices to
prove that for each 2< pi ≤∞ with 1/p1+· · ·+1/pn = 1/p and each ‖Fi‖pi = 1,

(36)
∣∣{Ex :3S(F1, . . . , Fn)(Ex)& 1}

∣∣. 1.
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For the remaining part of the argument, the functions Fi will be fixed as above,
and all sizes will be computed with respect to them.

Consider the exceptional set E =
⋃n

i=1{Ex :M2 Fi (Ex)≥ 1}, and note that |E |. 1.
It now suffices to restrict attention in (36) to the set (which for simplicity will

also be denoted with S) of multitiles s that have the property that Rs ∩ Ec
6= ∅.

Lemma 3.5 will now imply that sizei (Si ). 1.
Apply now Proposition 3.8 to the sets Si . We get that

(37) Si :=
⋃

2−k.1

S(k)i , where sizei (S(k)i )≤ 2−k+1

and each S(k)i is the (disjoint) union of a family F(k)
i of trees such that

(38) ‖N
F(k)

i
‖q . 22k2kpi/q for 1≤ q <∞.

An immediate consequence of (38) (choose q large enough) is that∣∣{Ex : N
F(k)

i
(Ex) > 24k

}
∣∣. 2−10k .

By eliminating another exceptional set of measure O(1), it thus suffices to further
restrict attention in (36) to those Ex that satisfy

(39) N
F(k)

i
(Ex)≤ 24k for each i and each 2−k . 1.

We fix some ki for each i , and denote by S(Ek) the set of all multitiles s with
si ∈ S(ki )

i for each i . We follow the procedure described in the case d = 2, applied
to P := S(Ek) and Fi := F(ki )

i . The set S(Ek) will be the union of three families of
vector trees: F∗∗

Ek
from the first stage of the construction and

(40)

F∗
Ek
:=

⋃
El:1≤2li≤24ki

⋃
Er :2−ri≤2−ki+1

FEk(Er , El),

FEk :=
⋃

El:2li>24ki

⋃
Er :2−ri≤2−ki+1

FEk(Er , El)

from the second stage of the construction. Due (19) and (39), the family FEk can
be ignored, since it will not contribute to 3S(Ek).

Let t be a sufficiently large number. To evaluate ‖NF∗∗
Ek
‖t , we will invoke (20),

(38) and Hölder’s inequality, that

‖NF∗∗
Ek
‖t .

n∏
i=1

2ki (2δ+pi/(nt)).
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Combining this with Lemma 3.6 and the estimate sizei (S(k)i ) ≤ 2−k+1 in (37) for
the size, we get

‖3F∗∗
Ek
‖t .

n∏
i=1

2ki (2δ+pi/(nt)−1).

Since δ < 1/2, it follows that∣∣{Ex :3⋃
Ek:2−ki .1

F∗∗
Ek
(F1, . . . , Fn)(Ex)& 1}

∣∣. 1.

It now remains to evaluate the contribution coming from the vector trees in (40).
Fix Er and El. As before, by using (26), (29) and Hölder’s inequality, we get

‖NFEk(Er ,El)
‖t .

n∏
i=1

2ri (2δ+pi/(nt)).

Combining this with Lemma 3.6 and estimate (24) for the size, we get

‖3FEk(Er ,El)
‖t .

n∏
i=1

2ri (2δ+pi/(nt)−1).

Summing this first over 2−ri ≤ 2−ki+1, then over 0 ≤ li ≤ 4ki and finally over
2−ki . 1, we get ∣∣{Ex :3⋃

Ek F∗
Ek
(F1, . . . , Fn)(Ex)& 1

}∣∣. 1.

This finishes the argument.
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