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We offer a new proof to the classical topological disk theorem of Reifenberg.
The novelty of our method is that we construct the approximating surfaces
globally, which makes our proof rather simple and direct.

1. Introduction

Definition 1.1 (Reifenberg flat set). We say that a compact set K ⊆ Bn
1 ⊆ Rn is

an m-dimensional (δ, R)-Reifenberg flat set if for every a ∈ K and r ∈ (0, R] with
|a| + r ≤ 1, there exists an m-plane Ta,r ∈ GL(m, n) such that

HD(K ∩ Bn
r (a), Ta,r ∩ Bn

r (a))≤ δr,

where HD(A, B) = max(sup{dist(a, B) : a ∈ A}, sup{dist(b, A) : b ∈ B}) is the
Hausdorff distance.

The definition is only meaningful for small δ > 0.

Theorem 1.2 (Reifenberg’s topological disk theorem). For K as above, if δ is
sufficiently small, then K ∩ Bn

1/2 is a Cα-topological m-dimensional disk.

This theorem is adopted from the book [Lin and Yang 2002, Chapter 2, page 58].
The original and its proof is due to Reifenberg [1960, Chapter 4]. In that paper,
Reifenberg investigated the higher-dimensional Plateau problem. He started with
this kind of very weak “surfaces”; the Cα topological disk property was used in a
fundamental way. Both his original proof and our new one are based on a sequence
of approximating surfaces converging to K . The first such surface is just a standard
m-dimensional disk, and there exist uniform bi-Lipschitz maps between any two
adjacent surfaces. The composition of these bi-Lipschitz maps gives a bi-Hölder
map from Bm

1 to K . What is crucial is the actual construction of these surfaces.
Reifenberg did the work locally, using several averaging processes and compli-
cated estimates, which made his proof horribly difficult and messy. Recently, the
authors had the idea of constructing these surfaces globally by mollifying the dis-
tance function to K , which made it possible to write down a much simpler proof
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of this beautiful theorem. In fact, we define the bi-Lipschitz maps between two
adjacent level sets of the mollified distance functions to be the gradient vector of
the mollified distance functions. These level sets will converge to K , but they are
codimension 1 surfaces. It is easy to extract an m-dimensional surface from the
first of these level sets, and we track its images under these bi-Lipschitz maps step
by step. Then we obtain a sequence of m-dimensional surfaces converging to K .
It is crucial in this process to show that at every scale and every neighborhood the
corresponding surface is almost parallel to K . The uniform bound C(m, n)δ for the
error angles guarantees the uniform bi-Lipschitz property of the restricted maps.

In [Hong and Wang 2007], we could only treat the codimension 1 case, when
we took the level sets at 1/2 of the mollified characteristic functions of � (here
∂� is the Reifenberg flat set) as the approximating surfaces. The method of this
paper works for any codimension.

2. Proof of Theorem 1.2

We will use standard notations. Let e1, . . . , en be the standard basis in Rn . Let O
be the origin of Rn . We use the same notation in another coordinate system if no
confusion arises. For simplicity, we assume TO,1 = span{e1, . . . , em}. For fixed
m< n, we write x = (x ′, x ′′)∈Rn with x ′= (x1, . . . , xm) and x ′′= (xm+1, . . . , xn),
or x = (x ′, x ′′′, xn) with x ′′′ = (xm+1, . . . , xn−1). Then TO,1 = {x ∈ Rn

: |x ′′| = 0}.
We denote the distance function from K by d and the distance functions from Ta,10r

by da,r ; then dO,0.1(x)= |x ′′|.

2.1. Derivative estimates on the mollified distance functions. Our mollifier η is
defined so that η(x) = C1 exp(−1/(1 − |x |2)) for x ∈ B1 and η(x) = 0 for x
outside of B1, where C1 is chosen so that

∫
η = 1. Through the paper, C (with

any subscript) denotes a constant only depending on dimensions m and n. Define
ηε(x) := ε−nη(ε−1x). Then dε := d ∗ ηε are the mollified distance functions.

We define ha,r := d − da,r ; then HD(K ∩ B10r (a), Ta,10r ∩ B10r (a)) ≤ 10δr
implies |ha,r | ≤ 10δr in B9.9r (a). Thus dε = da,r ∗ ηε + ha,r ∗ ηε ; in particular

d0.01r = da,r ∗ η0.01r + ha,r ∗ η0.01r := d̃a,r + h̃a,r .

The following two lemmas give derivative estimates on d̃a,r and h̃a,r near point a.

Lemma 2.1. For any unit vector ν perpendicular to Ta,10r , any b ∈ Ta,10r and t
satisfying 0.4r < t , we have ∇d̃a,r (b+ tν) = τν with 0.95 < τ < 1.05; moreover,
if we chose a coordinate system such that b = O , Ta,10r = span{e1, . . . , em} and
ν = en , then

|∂i∂ j d̃a,r (b+ tν)|< 3/r if m < i, j ≤ n,

|∂i∂ j d̃a,r (b+ tν)| = 0 if min(i, j)≤ m.
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Proof. In the coordinate system above, da,r (x)= |x ′′|. Then for x /∈ Ta,r , we have
∇da,r (x)= (0, x ′′)/|x ′′| and ∂i∂ j da,r (x)=δi j/|x ′′|−xi x j/|x ′′|3 when min(i, j)>m
and ∂i∂ j da,r (x)= 0 when min(i, j)≤ m. Therefore,

∇d̃a,r (tν)=
∫

B0.01r

(0, (ten − y)′′)
|(ten − y)′′|

· η0.01r (y)dy

=

∫
B1

(0, (ten − 0.01r y)′′)
|(ten − 0.01r y)′′|

· η(y)dy

=

∫
B1

(0, (en − 0.01(r/t)y)′′)
|(en − 0.01(r/t)y)′′|

· η(y)dy.

Now ∂i d̃a,r (tν)= 0 for 1≤ i ≤ m, whereas

∂i d̃a,r (tν)=
∫

B1

−0.01(r/t)yi

|(en − 0.01(r/t)y)′′|
· η(y)dy = 0 for m+ 1≤ i ≤ n− 1

by symmetry properties of the functions about the hyperplane {xi = 0}; finally

∂n d̃a,r (tν)=
∫

B1

(1− 0.01(r/t)yn)

|(en − 0.01(r/t)y)′′|
· η(y)dy.

Both 1− 0.01(r/t)yn and |(en − 0.01(r/t)y)′′| are between 0.975 and 1.025 for
y ∈ B1, which implies the first part of the conclusion. The estimates of the second
order derivatives can be proved by the same way. �

Lemma 2.2. In B9.8r (a), we have

|h̃a,r | ≤ 10δr, |∇h̃a,r | ≤ C2δ, |∇
2h̃a,r | ≤ C2δ/r.

Proof. Put the derivatives onto η0.01r and use |ha,r | ≤ 10δr in B9.9r (a). �

2.2. Construction of approximating surfaces. We let rk := 0.01×2−k and define
Lk := {x ∈ B1 | drk/100= rk} for k= 1, 2, . . . . The gradient estimation of drk/100 and
the implicit function theorem tell us that every Lk is a smooth hypersurface. Let
L̄k := {x ∈ B1 | d = rk}. Then |d−drk/100|< rk/100 implies HD(Lk, L̄k) < rk/90,
and then (1−1/80)rk <HD(Lk, K ) < (1+1/80)rk , where we used that δ is small
enough.

We define πk : Lk → Lk+1 by πk(P) = P − σ(k, P)∇drk/100(P) with a real
number σ(k, P) chosen so that πk(P) ∈ Lk+1. It is easy to show that if δ is small
enough, 0.9rk+1 < σ(k, P) < 1.1rk+1. We define

K0 := {x ∈ Rn
: |x ′|< 0.8, |x ′′| = 0}

to be a standard m-disk, and let

K1 := L1 ∩ {x ∈ Rn
: |x ′|< 0.8, |x ′′′| = 0 and xn > 0}.
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Then K1 can be written as K1= {x+h(x)en : x ∈ K0} with 0.98r1< h(x) < 1.02r1

and |∇h(x)|< 0.1 by the implicit function theorem. Hence g0(x) := x+h(x)en is
a bi-Lipschitz map from K0 to K1.

Then we define Kk+1 := πk(Kk).

2.3. Uniform bound on the non-tangential angles. We need some notation for
angles. If T is an m-plane, T̃ is the m-plane parallel to T and containing the origin,
and P is a vector in Rn , then we define 6 (P, T ) := 6 (P, T̃ ) := 6 (P, P̂), where P̂ is
the projection of P onto T̃ . If T1 is another m-plane, then 6 (T1, T ) := 6 (T̃1, T̃ ) :=
sup{6 (P, T̃ ) : P ∈ T̃1}. Now we are ready to prove the key lemma.

Lemma 2.3. If δ is small enough, there exists a constant C3 with C3δ < 10−4 such
that for any k and P, Q ∈ Lk ∩ B0.9 with |P − Q|< 6rk , the inequality

6 (Q− P, span{Ta,10rk , P}) < C3δ

implies
0.9< |πk(P)−πk(Q)|/|P − Q|< 1.1,

6 (πk(Q)−πk(P), span{Tã,10rk+1, πk(P)}) < C3δ.

Here a is any of the points in K nearest to P , and ã is one of the points in K
nearest to πk(P).

Proof. Choose a coordinate system such that Ta,10rk = {x ∈ Rn
: |x ′′| = 0} and

P = |P|en . Then span{Ta, 10rk, P} = {x ∈ Rn
: |x ′′′| = 0}. Throughout this proof,

we restrict our analysis to the inside of the box

U := {x ∈ Rn
: |(x − P)′|< 8rk, |(x − P)′′′|< 8C3δrk, 0.8rk+1 < xn < 1.2rk}.

Then Lk and Lk+1 can be represented as the graphs of (n−1)-variable functions
φ and ψ , respectively; for example, Lk ∩U = {x ∈ U : xn = φ(x ′, x ′′′)}. By the
implicit function theorem, the previous two lemmas tell us information about the
derivatives of φ and ψ :

|φi | =

∣∣∣∣−∂i drk/100

∂ndrk/100

∣∣∣∣< 1.1C2δ, |ψi |< 1.1C2δ for 1≤ i ≤ m,

|φi |< 9C3δ+ 1.1C2δ, |ψi |< 18C3δ+ 1.1C2δ for m+ 1≤ i ≤ n− 1.

Then |Qn−|P||< C4δ(|Q′|+ |Q′′′|) by the differential mean value theorem. Our
angle assumption reads

arctan
|Q′′′|√

|Q′|2+ (Qn − |P|)2
< C3δ,

which implies that |Q′′′| < 1.1C3δ|Q′| if δ is small enough. And |P − Q| =
(|Q′|2 + |Q′′′|2 + (Qn − |P|)2)1/2, so |Q′| ≤ |P − Q| < 1.01|Q′| if δ is small
enough.
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We rewrite πk(Q)= Q− σ(k, Q)∇drk/100(Q) as

πk(Q)= P − σ(k, P)∇drk/100(P)

+ (Q′, 0, 0)+ (0, Q′′′, Qn − |P|)

+ σ(k, Q)(∇drk/100(P)−∇drk/100(Q))

+ (σ (k, P)− σ(k, Q))∇drk/100(P).

Because of the estimates of the second order derivatives of drk/100, the norm of the
third row won’t exceed C5δ|Q′|. In fact, along the Q′ direction, the second order
derivative is as small as C2δ/rk and the step length is |Q′|; along the (Q − P)′′

direction, the second order derivative is bounded by 4/rk but the step length is as
small as (1.1C3 + 2C4)δ|Q′|. The first row is nothing but πk(P). We denote the
first three rows by I1. We know drk+1/100(πk(P))= rk+1, hence

|drk+1/100(I1)− rk+1|< C2δ|Q′| + 1.1× (1.1C3+ 2C4)δ|Q′| + 1.1×C5δ|Q′|

= C6δ|Q′|.

Here we use |∂i drk+1/100|= |∂i h̃a,rk |<C2δ for 1≤ i ≤m and |∇drk+1/100|< 1.1. But
drk+1/100(πk(Q))= rk+1, and ∂ζdrk+1/100 > 0.8 near πk(Q) with ζ := ∇drk/100(P).
Therefore, we have |σ(k, P)− σ(k, Q)|< 1.25C6δ|Q′|.

Now we consider E := P−σ(k, P)∇d̃a,rk (P), which equals |P|en−σ(k, P)τ1en

for 0.95 < τ1 < 1.05 by Lemma 2.1, so E := τ2rken with 0.4 < τ2 < 0.6 if one
notes that |P| and σ(k, P) are approximately rk and rk/2 respectively. Now

F := Q− σ(k, Q)∇d̃a,rk (Q)

= (Q′, 0)+ (0, Q′′)− σ(k, Q)∇d̃a,rk ((Q
′, 0)+ (0, Q′′)).

Since 1.05rk > |Q′′|> 0.95rk , by Lemma 2.1 we have

d̃a,rk ((Q
′, 0)+ (0, Q′′))= τ3(0, Q′′)/|Q′′| for 0.95< τ3 < 1.05.

So F = (Q′, 0)+ τ4(0, Q′′) with 0.4< τ4 < 0.6. Therefore

tan 6 (F−E, span{Ta,10rk , P})=
|(F − E)′′′|√

|(F − E)′|2+ (F − E)2n
=

|τ4 Q′′′|√
|Q′|2+ (F − E)2n

.

But

(F−E)n= (Qn−|P|)+(σ (k, P)−σ(k, Q))τ1+σ(k, Q)(∂n d̃a,rk (P)−∂n d̃a,rk (Q)),

so |(F − E)n|< (2C4+ 2C6+C5)δ|Q′|. Then if δ is small enough, we have

tan 6 (F − E, span{Ta,10rk , P}) < 0.61|Q′′′|/|Q′|< 0.7C3δ,

and |Q′| ≤ |F − E |< 1.01|Q′|.
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We know

πk(P)= E − σ(k, P)∇h̃a,rk (P) and πk(Q)= F − σ(k, Q)∇ h̃a,rk (Q).

So we define

G := F − σ(k, P)∇h̃a,rk (P) and H := G+ (σ (k, P)− σ(k, Q))∇h̃a,rk (P).

Then

πk(Q)= H + σ(k, Q)(∇h̃a,rk (P)−∇h̃a,rk (Q)) and G−πk(P)= F − E .

However, |H −G|< 1.25C2C6δ
2
|Q′|< C2δ|Q′| (if C6δ < 0.8) implies

6 (H −πk(P),G−πk(P)) < 2C2δ,

and 0.99|Q′|< |H −πk(P)|< 1.01|Q′| (if C2δ < 10−3). Moreover

|πk(Q)− H |< 0.55rk ·C2δ/rk · 1.01|Q′|< C2δ|Q′|

implies
6 (πk(Q)−πk(P), H −πk(P)) < 2C2δ,

and 0.97|Q′|< |πk(Q)−πk(P)|< 1.03|Q′|, which means

0.9<
|πk(P)−πk(Q)|
|P − Q|

< 1.1.

The three angle inequalities above give

6 (πk(Q)−πk(P), span{Ta,10rk , P}) < (0.7C3+ 4C2)δ.

On the other hand,

|(πk(P))′′′|< |σ(k, P)∇h̃a,rk (P)|< C2δrk and (πk(P))n > 0.4rk

show that 6 (span{Ta,10rk , πk(P)}, span{Ta,10rk , P}) < 3C2δ. We also know that
6 (Tã,10rk+1, Ta,10rk ) < 4δ, because K is close to either of these two m-planes. So
finally, we can conclude

6 (πk(Q)−πk(P), span{Tã,10rk+1, πk(P)}) < (0.7C3+ 7C2+ 4)δ < C3δ

if we let 0.3C3 > 7C2+ 4. �

K1 satisfies the angle condition in the lemma above if C3 > 21, so all the of Kk

satisfy the angle condition and all of the πk |Kk are bi-Lipschitz by induction.



A NEW PROOF OF REIFENBERG’S TOPOLOGICAL DISC THEOREM 331

2.4. Bi-Hölder parametrization. Define gk : K1→ Kk+1, x 7→= πk ◦ · · · ◦π1(x)
and f : K1 → K , x 7→ limk→∞ gk(x). We are ready to prove f is bi-Hölder
continuous. Given x and y ∈ K1, we write ` := | f (x)− f (y)|. First notice that
|x − y|> 0 implies ` > 0 since

0.9k
|x − y| ≤ |gk(x)− gk(y)| ≤ 3rk + ` for all k.

Now we choose k with rk+1<0.01`≤rk , which implies− log2 `−1<k≤− log2 `.
The triangle inequality gives

0.9` < |gk(x)− gk(y)|< 1.1`.

However 0.9k
|x − y| ≤ |gk(x)− gk(y)| ≤ 1.1k

|x − y|, so we obtain

0.5|x − y|β < ` < 2|x − y|α with α = 1
1+log2 1.1

and β = 1
1+log2 0.9

.

2.5. Completeness of the approximating surfaces. To show f (K1) ⊃ K ∩ Bn
1/2,

we have to show Kk is complete enough so that any point of K ∩ Bn
1/2 is close to

it. A short topological argument suffices.

Lemma 2.4. For any k and a given point P ∈ Kk , there exists an m-plane T̃P

going through P with 6 (T̃P , Ta,10rk ) < 20δ, where a is the point in K nearest
to P , such that Kk ∩ Bn

5.1rk
(P) contains the set {x + ξ(x) : x ∈ T̃P ∩ Bn

5rk
(P)},

where ξ(x) is a vector-valued function defined on T̃P ∩ Bn
5rk
(P)} with ξ(x)⊥T̃P

and |ξ(x)|< 5(C3+ 1.1C2)δrk .

Proof. We prove the lemma by induction. We know it is true for K1, and assume
it is for Kk . Given Q ∈ Kk+1, define T̃Q := Tã,10rk+1 + (Q − ã) with ã being the
point in K nearest to Q. For any point y ∈ T̃Q ∩ Bn

5rk+1
(Q), we want to show that

the (n−m)-plane Ny := {x ∈Rn
: x− y⊥T̃Q} must contain a point of Kk+1. Define

P := (πk)
−1(Q) ∈ Kk . Then we have 6 (T̃Q, T̃P) < 23δ. Let ỹ be the point in T̃P

nearest to y, and define Sỹ := {x ∈ T̃P : |x− ỹ| = rk} and Sy := Sỹ+ (y− ỹ). From
Lemma 2.3, we know, for all x ∈ Sỹ , that

dist(πk(x + ξ(x)), Sy)≤ |πk(x + ξ(x))− (x + y− ỹ)|

< |ξ(x)| + |σ(k, x + ξ(x))∇drk/100(x + ξ(x))− (y− ỹ)|

< 0.3rk .

The (m−1)-sphere Sy cannot contract to a point without passing through Ny , and
neither can the topological (m−1)-sphere {πk(x+ξ(x)) : x ∈ Sỹ}. So if Ny∩Kk+1=

∅, then {πk(x + ξ(x)) : x ∈ Sỹ} cannot contract to a point within Kk+1, which
contradicts that Kk+1 is a topological m-disk. Once we have a point z ∈ Ny∩Kk+1,
it is easy to see z is unique and |z− y|< 5(C3+1.1C2)δrk+1 from Lemma 2.3. �

Lemma 2.5. For any point b ∈ K ∩ Bn
1/2, we have dist(b, Kk) < 1.1rk for all k.
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Proof. We prove the lemma by induction. It is true for K1, and assume it is
for Kk . Then we have P ∈ Kk with |b − P| < 1.1rk . Let a be the point in K
nearest to P . Choose a local coordinate system such that a = O and such that
Ta,10rk ={x ∈Rn

: |x ′′|=0}. Then |b′|< rk and |b′′|<10δrk . Write Q :=πk(P) and
E := (b′, Q′′), and let F be the point in T̃Q nearest to E . Then |Q′′|< 1.02rk+1 and
|Q′|< rk+1. So E−Q ∈ Ta,10rk and 6 (T̃Q, Ta,10rk ) < 23δ implies |E−F |< 30δrk .
Therefore,

dist(b, Kk+1)≤ |b− (F + ξ(F))|

≤ |b− E | + |E − F | + |ξ(F)|

≤ |b′′| + |Q′′| + 30δrk + 5(C3+ 1.1C2)δrk+1 < 1.1rk+1. �

Corollary 2.6. K ∩ Bn
1/2 ⊂ f (K1).

Proof. Given b ∈ K ∩ Bn
1/2, for every k we have

dist(b, Kk) < 1.1rk and HD(Kk, f (K1)) < 1.1rk .

Then dist(b, f (K1)) < 2.2rk . But rk→ 0 and f (K1)∩ Bn
1/2 is closed. �
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