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FAGUI LIU AND YUANZHANG ZHANG

We consider the Cauchy problem for hyperbolic geometric flow equations
introduced recently by Kong and Liu motivated by the Einstein equation
and Hamilton Ricci flow, and obtain a necessary and sufficient condition
for the global existence of classical solutions to this kind of flow on Riemann
surfaces. The results show that the scalar curvature of the solution metric
gi j converges to one of flat curvature, and the hyperbolic geometric flow
has the advantage that the surgery technique may be replaced by choosing
a suitable initial velocity tensor.

1. Introduction

Let M be an n-dimensional complete Riemann manifold with Riemann metric gi j .
The general evolution equation

∂2gi j

∂t2 + 2Ri j +F
(

g,
∂g
∂t

)
= 0

for the metric gi j has been recently introduced by Kong and Liu [2007] and called
the generalized hyperbolic geometric flow (denoted by HGF). Here F are some
given smooth functions of the Riemann metric g and its first derivative with respect
to t , and Ri j are the components of the Ricci curvature tensor. In this paper, we
may the HGF the Kong–Liu hyperbolic geometric flow. The local existence and
nonlinear stability have been proved by Dai, Kong and Liu [≥ 2010; 2008]. See
the celebrated survey paper [Kong 2008] for progress on this new topic.

In this paper, we study the evolution of a Riemann metric gi j on a Riemann
surface M by its Ricci curvature tensor Ri j under the HGF equation

∂2gi j

∂t2 =−2Ri j .
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Here, we are interested in the initial metric

(1) ds2
= u0(x)(dx2

+ dy2) at t = 0

on a surface of topological type R2, where u0(x) is a C2 function with bounded
C2 norm and satisfies

(2) 0< k ≤ u0(x)≤ M <∞,

where k and M are positive constants.
On this surface, the HGF equation simplifies because all of the information about

curvature is contained in the scalar curvature function R. In our notation, R= 2K ,
where K is the Gauss curvature. The Ricci curvature is given by Ri j =

1
2 Rgi j , so

the HGF equation simplifies to

(3)
∂2gi j

∂t2 =−Rgi j .

The metric for a surface can always be written (at least locally) as gi j=u(t, x, y)δi j ,
where u(t, x, y) > 0, and δi j is Kronecker’s symbol. Therefore, we have

(4) R =−1 ln u
u

.

Thus, Equation (3) reduces to ut t −1 ln u = 0.
The initial data u0(x) depends only on x and not y; therefore, we may consider

the Cauchy problem

(5)


ut t − (ln u)xx = 0,
u = u0(x) at t = 0,

ut = u1(x) at t = 0,

where u1(x) ∈ C1 with bounded C1 norm.
By using the transformation

(6) φ = ln u,

Kong and Liu have proved the following theorem.

Theorem 1.1 [Kong et al. 2009]. Suppose that u1(x) ≥ |u′0(x)|/
√

u0(x) for all
x ∈R. Then, the Cauchy problem (5) admits a unique global solution for all t ∈R.

Moreover, if u1(x) ≡ u′0(x)/
√

u0(x), and there exists a point x0 ∈ R such that
u′0(x0) < 0, then the Cauchy problem (5) admits a unique classical solution only in
[0, T )×R, where

T =− 2
infx{u′0(x)u

−3/2
0 (x)}

.

In this paper, we will prove the following theorems without using (6).
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Theorem 1.2. Suppose that

u1(x)+
u′0(x)
√

u0(x)
≥ 0 for all x ∈ R,(7)

u1(x)−
u′0(x)
√

u0(x)
≥ 0 for all x ∈ R.(8)

Then (5) admits a unique global solution for all t ∈ R.

Theorem 1.3. If there exists a point x0 ∈ R, such that

(9) u1(x0)+
u′0(x0)
√

u0(x0)
< 0,

or there exists a point x0 ∈ R such that

(10) u1(x0)−
u′0(x0)
√

u0(x0)
< 0,

then (5) admits a unique classical solution only in [0, T )×R.

Remark 1.4. Following Theorem 1.2, it is easy to see that Cauchy problem

(11)


∂2gi j

∂t2 =−2Ri j for i, j = 1, 2,

gi j = u0(x)δi j for t = 0,
∂gi j

∂t
= u1(x)δi j for t = 0 and i, j = 1, 2

has a unique smooth solution for all time t ∈R, and the solution metric gi j assumes
the form

(12) gi j = u(x, t)δi j for i, j = 1, 2.

Theorems 1.2 and 1.3 will be proved in Sections 3 and 4. Using Theorem 1.2,
we can further prove this:

Theorem 1.5. Suppose that

(13) inf
x

{
u1(x)+

u′0(x)
√

u0(x)

}
> 0 and inf

x

{
u1(x)−

u′0(x)
√

u0(x)

}
> 0.

Then (11) has a unique classical solution of the form (12) for all time. Moreover
the scalar curvature R(x, t) corresponding to the solution metric gi j satisfies

R(x, t)→ 0 as t→+∞,

and there exists positive constant k1 > 0 independent of t and x such that

R(x, t)≤ k1 for all (t, x) ∈ R+×R.
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Theorem 1.5 shows that any metric on a simply connected noncompact surface
converges to one of flat curvature by choosing a suitable initial velocity tensor
∂gi j (x, 0)/∂t , but the general case of a metric in R2 is still open. Theorem 1.3
shows that if we do not choose suitable a initial velocity tensor ∂gi j (x, 0)/∂t , the
solution to Cauchy problem will blow up in finite time.

2. Preliminaries

We need only discuss the classical solution on t ≥ 0. The result for t ≤ 0 can be
obtained by changing t to −t .

Let

(14) ut = v and ux = w.

Then, it follows from the first equation in (5) and (14) that

(15) ut = v, wt − vx = 0, vt − (1/u)wx =−w
2/u2.

It is easy to see that the eigenvalues of equations (15) are

λ1 =−λ, λ2 = 0, λ3 = λ, λ= 1/
√

u,

and the matrix L(U ) (where U = (u, w, v)T ) of left eigenvectors and the matrix
R(U ) of right eigenvectors are respectively

L(U )=

 l1(U )
l2(U )
l3(U )

=
 0 λ 1

1 0 0
0 −λ 1

 ,
R(U )= (r1(U ), r2(U ), r3(U ))=

 0 1 0
λ 0 −λ
1 0 1

 .
Since ∇λi (U )ri (U )≡ 0 for i = 1, 2, 3, (15) is a linear degenerate strict hyperbolic
system.

Set

(16) p = v+ λw and q = v− λw.

Lemma 2.1. p and q satisfy

pt − λpx =
1
4λ

2 p(q − p),(17a)

ut =
1
2(p+ q),(17b)

qt + λqx =
1
4λ

2q(p− q).(17c)
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Proof. Noting that λt =−
1
2λ

3v and λx =−
1
2λ

3w, we calculate

pt − λpx = (v+ λw)t − λ(v+ λw)x

= vt − λvx + λ(wt − λwx)+w(λt − λλx)

=−
1
2λ

3w(v+ λw)= 1
4λ

2(q − p)p.

In a similar way, we can prove (17c), and (17b) is obvious. �

Let
r = px +

1
8λpq and s = qx −

1
8λpq.

Lemma 2.2. r and s satisfy

rt − λrx =
1
4λ

2(2q − 3p)r + 1
32λ

3 p2(4p− 5q),(18)

st + λsx =
1
4λ

2(2p− 3q)s+ 1
32λ

3q2(5p− 4q).(19)

Proof. Let

L1 =
∂
∂t
− λ

∂
∂x

and L2 =
∂
∂t
+ λ

∂
∂x
.

Then,
L1 px =

1
4λ

2((2q − 3p)px + pqx)+
1
8λ

3 p(p− q)2,

L2qx =
1
4λ

2((2p− 3q)qx + qpx)−
1
8λ

3q(p− q)2.

Noting that

L1(λp)=− 1
4λ

3 p(q + p), L2(λq)=− 1
4λ

3q(p+ q),

L1q =− 1
16λ

3 pq2
−

1
8 L1(λpq), L2 p = 1

16λ
3qp2
+

1
8 L2(λpq),

by a direct calculation, we easily prove (18) and (19). �

Noting that (5), (14) and (16), we write at t = 0

(20)
p = p0(x)≡ u1(x)+ λ0(x)u′0(x), u = u0(x),

q = q0(x)= u1(x)− λ0(x)u′0(x),

where λ0(x)= 1/
√

u0(x).

Theorem 2.3 (the existence domain D(T ) of the classical solution to (5)). If there
exists a positive constant M1 such that

(21) 0≤ p(x, t)≤ M1 and 0≤ q(x, t)≤ M1,

then on D(T ),

|u(x, t)| ≤ M(T ), |ux(x, t)| ≤ M(T ), |ut(x, t)| ≤ M(T ),

|r(x, t)| ≤ M(T ), |s(x, t)| ≤ M(T ),
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where M(T ) is a positive constant, and

D(T )= {(x, t) | x ∈ R, 0≤ t ≤ T, T > 0}.

Then, by the local existence theorem of the classical solution to quasilinear hyper-
bolic systems, (5) admits a unique global classical solution on t ≥ 0.

Remark 2.4. Theorem 2.3 shows that if a singularity occurs in a C1 solution to
Cauchy problem (17) and (20) in finite time, then the solution itself should go to
infinity at the starting point of the singularity [Li and Liu 2003].

Proof of Theorem 2.3. Through any point (t, x), let

x = x1(t, β1), x = x2(t, β2), x = x3(t, β3)

be the λ1, λ2 and λ3 characteristics, respectively, that satisfy

dx1

dt
= λ1 =−λ,

dx2

dt
= λ2 = 0,

dx3

dt
= λ3 = λ,

x1(0, β1)= β1, x2(0, β2)= β2, x3(0, β3)= β3.

Along the λ2 characteristics, integrating (17b) yields

(22) u(x, t)= u0(β2)+
1
2

∫ t

0
(p+ q)(x2(τ, β2), τ )dτ.

Then, it follows from (17b), (21) and (22) that

|ut | ≤ M1(T ) and 0< infx u0(x)≤ u(x, t)≤ M2(T );

hereafter the Mi (T ) for i = 1, 2, . . . denote positive constants.
Along the λ1 characteristics x= x1(t, β1), we have by integrating (18) and noting

(21) that

|r(x, t)| ≤ M2(T )+M3(T )
∫ t

0
R(τ )dτ, where R(t)= supx |r(x, t)|,

Thus, by the Bellman lemma, we get |r(x, t)| ≤ M4(T ). Similarly, we can prove
|s(x, t)| ≤ M5(T ). Noting that (ux)t =

1
2(r + s), it is easy to see that

|ux(x, t)| ≤ M6(T ). �

3. Global classical solution: Proof of Theorem 1.2

According to the local existence and uniqueness theorems of the classical solutions
to the quasilinear hyperbolic systems [Li and Yu 1985], to prove Theorem 1.2 it
suffices to establish uniform a priori estimates of the C1 norms of p, q and u.
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Lemma 3.1 [Hong 1995; Kong 1998]. Consider

ut + λ1(x, t)ux = A(x, t)(u− v),

vt + λ2(x, t)vx = B(x, t)(v− u),

where λ1, λ2, A and B are continuous functions, and λ1 ≤ λ2. If A and B are both
nonpositive, then

min(u0(x), v0(x))≤ u(x, t), v(x, t)≤max(u0(x), v0(x)).

Lemma 3.2. On the existence domain of the classical solution to the Cauchy
problem (17) and (20), if (7) and (8) hold, then

0≤ p(x, t)≤ supx∈R p0(x),(23)

0≤ q(x, t)≤ supx∈R q0(x),(24)

0< infx∈R u0(x)≤ u(x, t)≤ supx u0(x)+Ct,(25)

where C > 0 is a constant.

Proof. Along the λ1 characteristics, we have

p(x, t)= p0(β1) exp
(∫ t

0

1
4λ

2(q − p)(x1(τ, β1), τ )dτ
)
.

By (7) and (20), we have p0(x)≥ 0 for all x ∈ R. Thus, we obtain p(x, t)≥ 0.
Similarly, we can prove q(x, t)≥ 0. By these two inequalities, we have

1
4λ

2 p ≥ 0 and 1
4λ

2q ≥ 0.

Thus, following Lemma 3.1, it is easy to see that

p(x, t)≤ supx p0(x) and q(x, t)≤ supx q0(x).

Integrating (17b), we get

u(x, t)= u0(β2)+
1
2

∫ t

0
(p+ q)(x2(τ, β2), τ )dτ.

Thus, because p(x, t)≥ 0 and q(x, t)≥ 0, we obtain (25). �

Proof of Theorem 1.2. It follows easily now from Lemma 3.2 and Theorem 2.3. �

Remark 3.3. By (4) and (25), and under the assumptions of Theorem 1.2, we have

|R(x, t)| ≤ M7(T ).
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4. Blow-up of classical solutions: Proof of Theorem 1.3

We now investigate the blow-up phenomena of the hyperbolic geometric flow.
Let

(26) m =
√
λp and n =

√
λq.

Noting that

1
4λ

2q = 1
4((ln u)t − λ(ln u)x) and 1

4λ
2 p = 1

4((ln u)t + λ(ln u)x),

then, following (14), (16), and (17), we can prove the following lemma.

Lemma 4.1. m and n satisfy

mt − λmx =−
1
4λ

3/2m2,(27)

nt + λnx =−
1
4λ

3/2n2.(28)

At t = 0, set

(29)
m = m0(x)=

1
4
√

u0(x)

(
u1(x)+

u′0(x)
√

u0(x)

)
,

n = n0(x)=
1

4
√

u0(x)

(
u1(x)−

u′0(x)
√

u0(x)

)
.

Proof of Theorem 1.3. Without loss of generality, we suppose that (9) holds; if (10)
holds, we proceed similarly.

It follows from (27) and (28) that mt − λmx ≤ 0 and nt + λnx ≤ 0. Thus, it is
easy to see that

(30) m(x, t)+ n(x, t)≤ M0 and M0 ≡ sup m0(x)+ sup n0(x).

Noting that u0(x)≥ k > 0, it follows from (9) and (29) that m0(x0) < 0.
Integrating (27), along λ1 characteristics, we get

(31) m(x0, t)= m0(x0)/F(t, x0),

where

(32) F(t, x0)= 1+m0(x0)/4
∫ t

0
λ3/2(x1(x0, τ ), τ )dτ and λ3/2

= u−3/4.

By (17b) and (26), it is easy to see that (u3/4)t =
3
8(m+n). Therefore, we have

(33) u3/4(x, t)= u3/4
0 (x0)+

3
8

∫ t

0
(m+ n)(x2(x0, τ ), τ )dτ.

By (2), (30) and (33), we have

(34) u3/4(x, 0)≥ k3/4 and u3/4(x, t)≤ M3/4
+

3
8 M0t.
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Case (i). If M0 < 0, then there exists τ0 = 8M3/4/(3(−M0)) > 0, such that

u(x, t)≤ 0 and t ≥ τ0.

This implies the system in (5) is meaningless for t ≥ τ0, that is, it admits a unique
local classical solution.

Case (ii). If M0 = 0, then, by (32) and (34), it is easy to find that

F(x0, t)≤ 1+ 1
4 m0(x0)M−3/4t.

Since F(x0, 0) = 1 > 0 and m0(x0) < 0, there exists t0 = 4M3/4/(−m0(x0)) > 0,
such that

(35) F(x0, t)→ 0+ as t→ t−0 .

So that there exists finite time T = T (x0) > 0, such that

(36) m(x0, t)→−∞ as t→ T−.

Case (iii). If M0 > 0, then, it follows from (32) and (34) that

F(x0, t)≤ 1+
2m0(x0)

3M0
ln
(

1+
3M0

8M3/4 t
)
.

Thus, noting that F(x0, 0) = 1 > 0 and m0(x0) < 0, there exists t∗ > 0 such that
F(x0, t)→ 0+ as t→ t−

∗
, and then (36) follows. �

5. Asymptotic behavior: Proof of Theorem 1.5

We next will give the asymptotic behavior of the scalar curvature R(x, t).

Proof of Theorem 1.5. If (13) holds, then, by Lemmas 3.1 and 3.2, we have

C1 ≤ p(x, t)≤ C2 and C1 ≤ q(x, t)≤ C2,

where here and below Ci for i = 1, 2, . . . denote positive constants independent
of t and x . Thus, by (2) and (22), one can get

(37) C3(1+ t)≤ u(x, t)≤ C4(1+ t),

and then

C3/4
3 (1+ t)3/4 ≤ u3/4(x, t)≤ C3/4

4 (1+ t)3/4 ≤ C3/4
4 (1+ t).

It follows from (32) and (37) that

C5(1+ ln(1+ t))≤ F(x, t)≤ C6(1+ (1+ t)1/4).
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Therefore, by (13) and (31), we obtain

(38) 0≤
C7

1+ (1+ t)1/4
≤ m(x, t)≤

C8

1+ ln(1+ t)
.

Similarly, we have

(39) 0≤
C7

1+ (1+ t)1/4
≤ n(x, t)≤

C8

1+ ln(1+ t)
.

Thus, m(x, t)→ 0 and n(x, t)→ 0 as t→+∞.
Noting (37), (38) and (39), we have

p = 1
√
λ

m = u1/4m, q = 1
√
λ

n = u1/4n, ux =
p− q

2λ
=

1
2 u3/4(m− n),

and

(40) −
C8

1+ ln(1+ t)
≤ m(x, t)− n(x, t)≤

C8

1+ ln(1+ t)
.

Thus, it is easy to see that

(41) |ux | ≤ C9
(1+ t)3/4

1+ ln(1+ t)
.

It is easy to derive that

(42) uxx =
px − qx

2λ
+

1
2λ

2u2
x =

1
2 u1/2(px − qx)+

1
2u

u2
x .

Let p̄ = p/u and q̄ = q/u.Then, following [Kong et al. 2009], we have

L1 p̄x =−A1 p̄x − B1q̄x ,(43)

L2q̄x =−A2 p̄x − B2q̄x ,(44)

where

A1 =
1
4(2q̄ + 3q̄), B1 =

3
4 p̄, A2 =

3
4 q̄, B2 =

1
4(2 p̄+ 3q̄).

Thus, by [Kong et al. 2009], one can get

(45) | p̄x(x, t)|, |q̄x(x, t)| ≤ C10.

Noting that px − qx = ux(p− q)/u + u( p̄x − q̄x), and using (4) and (42), we
have

(46) R = 1
u3 (u

2
x − uuxx)=

u2
x

2u3 −
px − qx

2u3/2 =
u2

x

2u3 −
p̄x − q̄x

2u1/2 −
ux(m− n)

2u3 .

Therefore, it follows from (34), (40), (41), (45) and (46) that

|R(x, t)| ≤
C11

(1+ ln(1+ t))2(1+ t)3/2
+

C12

(1+ t)1/2
+

C13(1+ t)3/4

(1+ t)3(1+ ln(1+ t))2
.
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Therefore, R(x, t)→ 0 as t→+∞. �
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