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Using the theory of elliptic theta functions, we establish a theta function
identity that may be regarded as an extension of the quintuple identity,
with many other results, both classical and new, included as special cases.
It allows us to give a new derivation of the Ramanujan–Watson modular
equation of the seventh order. We give new proofs of some Eisenstein series
identities of Ramanujan related to modular equations of degree 7.

1. Introduction

Throughout we put q = e2π iτ , where Im τ > 0.

Definition 1.1. The Jacobi theta functions θk for k = 1, 2, 3, 4 are defined as

θ1(z | τ)= 2
∞∑

n=0

(−1)nq(2n+1)2/8 sin(2n+ 1)z,

θ2(z | τ)= 2
∞∑

n=0

q(2n+1)2/8 cos(2n+ 1)z,

θ3(z | τ)= 1+ 2
∞∑

n=1

qn2/2e2niz,

θ4(z | τ)= 1+ 2
∞∑

n=1

(−1)nqn2/2e2niz.

These series converge for all complex z whenever Im τ > 0, and they converge
absolutely and uniformly on compact subsets and so are entire functions of z.
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The well-known Jacobi triple product identity [Andrews et al. 1999, page 497;
Berndt 2006, page 10] says

∞∏
n=1

(1− qn)(1− zqn−1)(1− qn/z)=
∞∑

n=−∞

(−1)nqn(n−1)/2zn,

and implies this:

Proposition 1.2. The infinite product expressions for θ1, θ2, θ3, and θ4 are

θ1(z | τ)= 2q1/8 sin z
∞∏

n=1

(1− qn)(1− qne2i z)(1− qne−2i z),

θ2(z | τ)= 2q1/8 cos z
∞∏

n=1

(1− qn)(1+ qne2i z)(1+ qne−2i z),

θ3(z | τ)=
∞∏

n=1

(1− qn)(1+ q(n−1/2)e2i z)(1+ q(n−1/2)e−2i z),

θ4(z | τ)=
∞∏

n=1

(1− qn)(1− q(n−1/2)e2i z)(1− q(n−1/2)e−2i z).

Let prime denote partial differentiation with respect to z. Then it is obvious from
the infinite product representation of θ1 that

(1-1) θ ′1(0 | τ)= 2q1/8
∞∏

n=1

(1− qn)3 = 2η3(τ ),

where η(τ) is the well-known Dedekind η-function defined as

(1-2) η(τ)= q1/24
∞∏

n=1

(1− qn).

In this paper we also need modular functions λ, µ, and ν, which are given by

(1-3) λ(τ)=
η(τ)

η7(τ )
, µ(τ)=

η4(τ )

η4(7τ)
, and ν(τ)=

η(τ/7)
η(τ )

.

Ramanujan’s theta functions φ(q) and ψ(q) are defined as

(1-4) φ(q)=
∞∑

n=−∞

qn2
and ψ(q)=

∞∑
n=0

qn(n+1)/2.

It is obvious that φ(q)= θ3(0 | 2τ) and 2ψ(q)= q−1/8θ2(0 | τ). Using the infinite
product representations of θ2 and θ3, we can easily deduce the Gauss identities for
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φ(−q) and ψ(q):

(1-5) φ(−q)=
∞∏

n=1

(1− qn)

(1+ qn)
and ψ(q)=

∞∏
n=1

(1− q2n)

(1− q2n−1)
.

In this paper we prove the following new theta function identity using the theory
of elliptic theta functions, and discuss many important applications of this identity.

Theorem 1.3. Let f (z) be an entire function satisfying the functional equations

(1-6) f (z)= f (z+π)= q2e8i z f (z+πτ).

Then for any two complex numbers x and y, we have the identity

f (−x − y)θ1(x | τ)θ1(y | τ)θ1(x − y | τ)

= f (x)θ1(y | τ)θ1(x + 2y | τ)θ1(x + y | τ)

− f (y)θ1(x | τ)θ1(2x + y | τ)θ1(x + y | τ)

+ f (0)θ1(x − y | τ)θ1(2x + y | τ)θ1(x + 2y | τ).

If h(z) is an entire function that satisfies the functional equations

(1-7) h(z)=−h(z+π)=−q3/2e6i zh(z+πτ),

then it is easy to see that h(z)θ1(z | τ) satisfies the functional equations (1-6).
Thus we can choose f (z)= h(z)θ1(z | τ) in Theorem 1.3. Using the obvious fact
θ1(0 | τ)= 0 and simplifying, we deduce the following corollary.

Corollary 1.4. Let h(z) be an entire function satisfying the functional equations
(1-7). Then

h(x)θ1(x + 2y | τ)− h(y)θ1(2x + y | τ)+ h(−x − y)θ1(x − y | τ)= 0.

Taking y = 0 in this equation and then replacing x by z, we immediately find a
general quintuple product identity [Liu 2005]:

Corollary 1.5. Let h(z) be an entire function satisfying the functional equations
(1-7). Then

h(z)+ h(−z)= h(0)
θ1(2z | τ)
θ1(z | τ)

.

Differentiate the identity in Theorem 1.3 with respect to x , set x = 0, and then
write y as z to obtain the following amusing identity, which is equivalent to the
main result of [Liu 2005, Theorem 1] and has many applications.

Corollary 1.6. Let f (z) be an entire function satisfying the functional equations
in Theorem 1.3. Then

f (z)− f (−z)=
f ′(0)

θ ′1(0 | τ)
θ1(2z | τ).
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The rest of this paper is organized as follows. In Section 2 we prove Theorem 1.3
with the theory of the elliptic theta functions. In Section 3, we use this theorem
to give a new derivation of the following Eisenstein series identity of Ramanujan
[Berndt 1991, (5.15)].

Lemma 1.7. Let φ(q) and ψ(q) be the Ramanujan theta functions as in (1-4), and
let
(n

7

)
be the Legendre symbol. Then

1+ 2
∞∑

n=1

(n
7

) qn

1− qn = 4q2ψ(q)ψ(q14)+φ(q)φ(q7).

In Section 4, we use Theorem 1.3 to prove the following result of Ramanujan;
see [Berndt 1991, first identity in entry 5(i) of Chapter 21].

Lemma 1.8 [Berndt 1991, page 467]. Let
(n

7

)
be the Legendre symbol. Then(

1+ 2
∞∑

n=1

(n
7

) qn

1− qn

)2

= 1+ 4
∞∑

n=1

nqn

1− qn − 28
∞∑

n=1

nq7n

1− q7n .

Following Ramanujan and [Berndt 1991], we define modular functions α, β and t ,
and x1 and x2 as

(1-8)
α = θ4

2 (0 | τ)/θ
4
3 (0 | τ), β = θ4

2 (0 | 7τ)/θ
4
3 (0 | 7τ), t8

= αβ,

x1 = (α(1−α)/t (1− t))1/3, x2 = (β(1−β)/t (1− t))1/3.

In Section 5, we provide a simple proof of the following lemma, which gives us
a quadratic equation whose solutions are modular functions.

Lemma 1.9. Let t , x1 and x2 be defined as in (1-10). Then x1 and x2 are the roots
of the quadratic equation

(1-9) x2
− (2− 7t + 11t2

− 8t3
+ 4t4)x + t2(1− t)2 = 0,

and we have

2x1 = 2− 7t + 11t2
− 8t3

+ 4t4
+ (1− 2t)R,(1-10)

2x2 = 2− 7t + 11t2
− 8t3

+ 4t4
− (1− 2t)R,(1-11)

where

(1-12) R =
√
(2− 3t + 2t2)(2− t + t2)(1− t + 2t2).

In Section 6, we apply Lemmas 1.7, 1.8, and 1.9 and the Jacobi four-square
formula to provide a new proof of the following identity.
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Lemma 1.10. Suppose m = θ2
3 (0 | τ)/θ

2
3 (0 | 7τ), and let t be defined as in (1-8).

Then

(1-13) m− 7/m =−6+ 16t − 12t2
+ 8t3.

Let R be defined as in (1-12). We further have

m =−3+ 8t − 6t2
+ 4t3

+ 2R,(1-14)

−7/m =−3+ 8t − 6t2
= 4t3

− 2R.(1-15)

In Section 7, we use Lemmas 1.7, 1.8, 1.9, and 1.10 to prove the following
remarkable identity of Ramanujan, which expresses an Eisenstein series in terms
of the η-function.

Theorem 1.11. Let λ and µ be defined as in (1-3). Then(
1+ 2

∞∑
n=1

(n
7

) qn

1− qn

)3

= λ−1(µ2
+ 13µ+ 49).

In Section 8, we use Theorems 1.3 and 1.11 and the theory of elliptic functions
to give a new proof of the following Ramanujan–Watson modular equation of the
seventh order, which plays a pivotal role in the study of the theory of modular
equations of degree 7. For other proofs, see [Berndt 1991, pages 306–311; Fine
1956; Lachaud 2005; Watson 1938].

Theorem 1.12 (Ramanujan and Watson). With µ and ν defined as in (1-3), we
have

2µ= 7(ν3
+ 5ν2

+ 7ν)+ (ν2
+ 7ν+ 7)

√
4ν3+ 21ν2+ 28ν.

In Sections 9 and 10 we derive some theta function identities related to modular
equations of degree 7 and some curious finite trigonometric sums. For example,(sin(2π/7)

sin(π/7)

)14
+

(sin(3π/7)
sin(2π/7)

)14
+

( sin(π/7)
sin(3π/7)

)14
= 3827.

Definition 1.13. The Bernoulli numbers Bk are defined as the coefficients in the
power series

z
ez − 1

=

∞∑
k=0

Bk
zk

k!
for |z|< 2π.

It is easy to show that B2k+1 = 0 for k ≥ 1, and that the first few nonzero values of
Bk are

B0 = 1, B1 =−
1
2
, B2 =

1
6
, B4 =−

1
30
,

B6 =
1
42
, B8 =−

1
30
, B10 =

5
66
, B12 =−

691
2730

.
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Definition 1.14. The normalized Eisenstein series E2k is defined as

E2k(τ )= 1−
4k
B2k

∞∑
n=1

n2k−1qn

1− qn .

It is easily seen that the first three Eisenstein series are given by

E2(τ )= 1− 24
∞∑

n=1

nqn

1− qn , E4(τ )= 1+ 240
∞∑

n=1

n3qn

1− qn ,

E6(τ )= 1− 504
∞∑

n=1

n3qn

1− qn .

In this paper we use Jk(z | τ) to denote the logarithmic derivative of θk with
respect to the variable z for k = 1, 2, 3, 4.

In Section 11, we use the general quintuple identity in Corollary 1.5 to derive
the following two new and nontrivial elliptic theta function identities with the help
of logarithmic differentiation.

Theorem 1.15. If J1 denotes the logarithmic derivative of θ1 with respect to z, then

2
(
J1(x | τ)+ J1(y | τ)− J1(x + y | τ)

)4

− 4
(
J1(x | τ)+ J1(y | τ)− J1(x + y | τ)

)
×
(
J ′′1 (x | τ)+ J ′′1 (y | τ)− J ′′1 (x + y | τ)

)
= 2E4(τ )+ J ′′′1 (x | τ)+ J ′′′1 (y | τ)+ J ′′′1 (x + y | τ).

Theorem 1.16. If J1 denotes the logarithmic derivative of θ1 with respect to z, then

40
(
J1(x | τ)+ J1(y | τ)− J1(x + y | τ)

)3
×
(
J ′′1 (x | τ)+ J ′′1 (y | τ)− J ′′1 (x + y | τ)

)
−6
(
J1(x |τ)+ J1(y |τ)− J1(x+ y |τ)

)
×
(
J (4)1 (x |τ)+ J (4)1 (y |τ)− J (4)1 (x+ y |τ)

)
−10

(
J ′′1 (x |τ)+ J ′′1 (y |τ)− J ′′1 (x+ y |τ)

)2
−16

(
J1(x |τ)+ J1(y |τ)− J1(x+ y |τ)

)6

= 16E6(τ )+ J (5)1 (x | τ)+ J (5)1 (y | τ)+ J (5)1 (x + y | τ).

In Section 12, Theorems 1.15 and 1.16 will be used to derive the following two
Eisenstein series identities of Ramanujan related to modular equations of degree 7
[Ramanujan 1988, page 53]; different proofs of these two identities can be found
in [Berndt et al. 2000; Liu 2003; Raghavan and Rangachari 1989].

Theorem 1.17. Let µ, ν be defined as in (1-3). Then we have

E4(τ )= λ
−4/3(µ2

+ 5× 72µ+ 74)(µ2
+ 13µ+ 49)1/3,

E4(7τ)= λ−4/3(µ2
+ 5µ+ 1)(µ2

+ 13µ+ 49)1/3,

E6(τ )= λ
−2(µ4

− 10× 72µ3
− 9×µ2

− 2× 76µ− 77),

E6(7τ)= λ−2(µ4
+ 14µ3

+ 63µ2
+ 70µ− 7).
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As shown by Raghavan and Rangachari [1989], these identities are equivalent
to Klein’s formulas [1999], which express the modular j-invariant in terms of µ.

In Section 13, Theorems 1.15 and 1.16 are used to derive the following two
remarkable Lambert series identities.

Theorem 1.18.(
cot z− 4

∞∑
n=1

qn

1+ qn sin 2nz
)4

= 4
(

cot z− 4
∞∑

n=1

qn

1+ qn sin 2nz
)(

cot z+ cot2 z+ 8
∞∑

n=1

n2qn

1+ qn sin 2nz
)

− cot2 z(4+ 3 cot2 z)− 16
∞∑

n=1

n3qn

1− qn cos 2nz+ 16
∞∑

n=1

(−1)n
n3qn

1− qn .

Theorem 1.19.(
csc z+ 4

∞∑
n=0

q2n+1

1− q2n+1 sin(2n+ 1)z
)4

= 2
(

csc z+ 4
∞∑

n=0

q2n+1

1− q2n+1 sin(2n+ 1)z
)

×

(
2 csc3 z− csc z− 4

∞∑
n=0

(2n+ 1)2q2n+1

1− q2n+1 sin(2n+ 1)z
)

+ 2 csc2 z− 3 csc4 z− 16
∞∑

n=1

n3q2n

1− q2n cos 2nz+ 16
∞∑

n=1

n3qn

1− q2n .

Finally, in Section 14 we establish the following identity.

Theorem 1.20. Let µ, ν be defined as in (1-3). Then we have

θ3
2 (0 | τ)
θ2(0 | 7τ)

−
θ3

3 (0 | τ)
θ3(0 | 7τ)

+
θ3

4 (0 | τ)
θ4(0 | 7τ)

= 4µ1/2λ−1/3(µ2
+ 13µ+ 49)1/3.

2. The proof of Theorem 1.3

We prove Theorem 1.3 with the complex theory of elliptic theta functions.

Proof. It is easy to show directly that θ1 satisfies the functional equations

(2-1) θ1(z | τ)=−θ1(z+π | τ)=−q1/2e2i zθ1(z+πτ | τ).
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Suppose that f (z) satisfies the functional equations in Theorem 1.3. Now we
consider the function g(z) given by

g(z)=
f (z)

θ1(z | τ)θ1(z− x | τ)θ1(z− y | τ)θ1(z+ x + y | τ)
,

where we temporarily assume that 0< x, y, x + y < π . Using (2-1) we can verify
that g(z)= g(z+π)= g(z+πτ). Hence g(z) is an elliptic function with periods
π and πτ . It is obvious that 0, x, y and π − x − y are the only poles of g(z) and
that all poles are simple. We will use res(g; x) to denote the residue of g at α. It
is well known that the sum of all residues of an elliptic function at the poles inside
any cell is zero (see, for example [Apostol 1990, page 6]). So we have

(2-2) res(g; 0)+ res(g; x)+ res(g; y)+ res(g;π − x − y)= 0.

By direct and elementary computations, we have

res(g; 0)=
f (0)

θ ′1(0 | τ)θ1(x | τ)θ1(y | τ)θ1(x + y | τ)
,

res(g; x)=
f (x)

θ ′1(0 | τ)θ1(x | τ)θ1(x − y | τ)θ1(2x + y | τ)
,

res(g; y)=−
f (y)

θ ′1(0 | τ)θ1(y | τ)θ1(x − y | τ)θ1(x + 2y | τ)
,

res(g;π − x − y)=−
f (−x − y)

θ ′1(0 | τ)θ1(x + y | τ)θ1(2x + y | τ)θ1(x + 2y | τ)
.

Substituting the equations above into (2-2) and simplifying, we arrive at the identity
in Theorem 1.3. By analytic continuation we know the identity in Theorem 1.3
holds for any x and y, and this completes the proof. �

The four Jacobi theta functions are mutually related, and starting from one of
them we may obtain the other three by simple calculations. For example, we have
the following propositions.

Proposition 2.1. The Jacobi theta functions θ1, θ2, θ3, and θ4 satisfy the relations

θ1(z+π/2 | τ)= θ2(z | τ),

θ1(z+ (πτ)/2 | τ)= iq−1/8e−i zθ4(z | τ),

θ1(z+ (π +πτ)/2 | τ)= q−1/8e−i zθ3(z | τ).

Corollary 2.2. Let f (z) be an entire function satisfying the functional equations
in Theorem 1.3. Then

f (1
2π)+ q1/2 f ( 1

2πτ)= f (0)+ q1/2 f (1
2(π +πτ)).
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Proof. We take x = π/2 and y = (πτ)/2 in Theorem 1.3 and then use (2-1) and
Proposition 2.1 to simplify the resulting equation. �

It is easy to check that θ4
1 (z | τ) is an entire function of z and satisfies the func-

tional equations in Theorem 1.3. So we can take f (z)= θ4
1 (z | τ) in Corollary 2.2

and immediately deduce the Jacobi quartic identity

(2-3) θ4
2 (0 | τ)+ θ

4
4 (0 | τ)= θ

4
3 (0 | τ).

It is easy to verify that the product

f (z)= θ1(z | τ)θ1(z+ x | τ)θ1(z+ y | τ)θ1(z− x − y | τ).

of theta functions satisfies the conditions of Corollary 2.2. Thus we can substitute
this function into Corollary 2.2 and find that

θ3(0 | τ)θ3(x | τ)θ3(y | τ)θ3(x + y | τ)

− θ2(0 | τ)θ2(x | τ)θ2(y | τ)θ2(x + y | τ)

− θ4(0 | τ)θ4(x | τ)θ4(y | τ)θ4(x + y | τ)= 0

Corollary 2.3 [Berndt 1991, entry 19(i); Guetzlaff 1834].√
θ2(0 | τ)θ2(0 | 7τ)+

√
θ4(0 | τ)θ4(0 | 7τ)=

√
θ3(0 | τ)θ3(0 | 7τ).

Proof. Replace τ with 7τ and then take x = πτ and y = 2πτ in the resulting
equation to deduce that

(2-4)

θ3(0 | 7τ)θ3(πτ | 7τ)θ3(2πτ | 7τ)θ3(3πτ | 7τ)

− θ2(0 | 7τ)θ2(πτ | 7τ)θ2(2πτ | 7τ)θ2(3πτ | 7τ)

− θ4(0 | 7τ)θ4(πτ | 7τ)θ4(2πτ | 7τ)θ4(3πτ | 7τ)= 0

Employing the infinite product representations of theta functions, we may find for
k ∈ {2, 3, 4} that

θk(πτ | 7τ)θk(2πτ | 7τ)θk(3πτ | 7τ)=

√√√√ ∞∏
n=1

(1− q7n)7

(1− qn)

θk(0 | τ)
θk(0 | 7τ)

.

Substituting the above into (2-4) and simplifying, we immediately arrive at the
Guetzlaff identity. �

Next we give more applications of Corollary 2.2. Taking

f (z)= θ1(z+ u | τ)θ1(z+ v | τ)θ1(z+w | τ)θ1(z− u− v−w | τ),
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we deduce the identity [Liu 2001]

θ1(u | τ)θ1(v | τ)θ1(w | τ)θ1(u+ v+w | τ)

+ θ2(u | τ)θ2(v | τ)θ2(w | τ)θ2(u+ v+w | τ)

+ θ4(u | τ)θ4(v | τ)θ4(w | τ)θ4(u+ v+w | τ)

− θ3(u | τ)θ3(v | τ)θ3(w | τ)θ3(u+ v+w | τ)= 0

Letting f (z)= θ1(z | τ)θ1(3z | 3τ), we conclude that [Berndt 1991, entry 5(ii)]

θ2(0 | τ)θ2(0 | 3τ)+ θ4(0 | τ)θ4(0 | 3τ)= θ3(0 | τ)θ3(0 | 3τ).

Taking f (z) = θ1(z | τ)θ3
1 (z + π/3 | τ) in Corollary 2.2 and simplifying, we find

that √
θ3

2 (0 | 3τ)
θ2(0 | τ)

=

√
θ3

4 (0 | 3τ)
θ4(0 | τ)

−

√
θ3

3 (0 | 3τ)
θ3(0 | τ)

.

3. The proof of Lemma 1.7

In this section we use Corollary 1.5 to prove Lemma 1.7.

Proof. Replacing z with z+π/2 in Corollary 1.5 and simplifying, we find that

h(π/2+ z)+ h(−π/2− z)=−h(0)
θ1(2z | τ)
θ2(z | τ)

.

If we differentiate this equation with respect to z and let z→ 0, we deduce that

(3-1) h′(π/2)− h′(−π/2)=−2h(0)
θ ′1(0 | τ)
θ2(0 | τ)

.

We choose h(z)= θ1(z+ x | τ)θ1(z+ y | τ)θ1(z− x − y | τ) and observe that

θ1(z+π/2 | τ)= θ2(z | τ).

Then (3-1) becomes

(3-2) J2(x |τ)+ J2(y |τ)− J2(x+ y |τ)=
θ ′1(0 | τ)θ1(x | τ)θ1(y | τ)θ1(x + y | τ)
θ2(0 | τ)θ2(x | τ)θ2(y | τ)θ2(x + y | τ)

.

The trigonometric series expansion for J2(z | τ) (see for example [Whittaker and
Watson 1996, page 489]) is

(3-3) J2(z | τ)=− tan z+ 4
∞∑

n=1

(−q)n

1− qn sin 2nz.
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Substituting this into (3-2), we find an identity involving trigonometric series and
theta functions:

(3-4) − tan x−tan y+tan(x+y)+4
∞∑

n=1

(−q)n

1− qn (sin 2nx+sin 2ny−sin 2n(x+y))

=
θ ′1(0 | τ)θ1(x | τ)θ1(y | τ)θ1(x + y | τ)
θ2(0 | τ)θ2(x | τ)θ2(y | τ)θ2(x + y | τ)

.

Take x = π/7 and y = 2π/7 in this equation to deduce that

(3-5) C + 4
∞∑

n=1

(−q)n

1− qn T (n)=
θ ′1(0 | τ)θ1(π/7 | τ)θ1(2π/7 | τ)θ1(3π/7 | τ)
θ2(0 | τ)θ2(π/7 | τ)θ2(2π/7 | τ)θ2(3π/7 | τ)

,

where

C =− tan π
7
− tan 2π

7
+ tan 3π

7
and T (n)= sin 2nπ

7
+ sin 4nπ

7
− sin 6nπ

7
.

Using the infinite product expansions for θ1 and θ2, we can readily find that

θ1

(
π
7

∣∣∣τ)θ1

(2π
7

∣∣∣τ)θ1

(3π
7

∣∣∣τ)=√7q3/8
∞∏

n=1

(1− qn)2(1− q7n),

θ2

(
π
7

∣∣∣τ)θ2

(2π
7

∣∣∣τ)θ2

(3π
7

∣∣∣τ)= q3/8
∞∏

n=1

(1+ q7n)
(1− qn)3

(1+ qn)
.

Substituting these two identities into (3-5) and then using the Gauss identity for
φ(−q) in (1-5) gives

(3-6) C + 4
∞∑

n=1

(−q)n

1− qn T (n)=
√

7φ(−q)φ(−q7).

To simplify the left side of this equation, we should compute C and T (n). Fortu-
nately, we don’t need to find these values from other sources, as we can determine
them from (3-6). By equating the constant term, we obtain C=

√
7, and by equating

the coefficients of q and then using the properties of the sine function we readily
find that

(3-7) T (n)= sin 2nπ
7
+ sin 4nπ

7
− sin 6nπ

7
=

√
7

2

(n
7

)
.

Thus we conclude that

1+ 2
∞∑

n=1

(n
7

) (−q)n

1− qn = φ(−q)φ(−q7).
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Replacing q by−q in this equation will yield [Berndt 1991, page 302, entry 17(ii)]

(3-8) 1+ 2
∞∑

n=1

(n
7

) qn

1− (−q)n
= φ(q)φ(q7).

Replace z with z+πτ/2 in Corollary 1.5 and simplify to deduce that

h( 1
2πτ + z)+ h(− 1

2πτ − z)= iq−3/8h(0)e−3i z θ1(2z | τ)
θ4(z | τ)

.

If we differentiate this equation with respect to z and let z→ 0, we find that

h′( 1
2πτ)− h′(− 1

2πτ)= 2iq−3/8h(0)
θ ′1(0 | τ)
θ4(0 | τ)

.

Letting h(z)= θ1(z+ x | τ)θ1(z+ y | τ)θ1(z− x − y | τ) in the above, we find that
[Whittaker and Watson 1996, page 490]

(3-9) J4(x |τ)+ J4(y |τ)− J4(x+ y |τ)=
θ ′1(0 | τ)θ1(x | τ)θ1(y | τ)θ1(x + y | τ)
θ4(0 | τ)θ4(x | τ)θ4(y | τ)θ4(x + y | τ)

.

The trigonometric series expansion for J4(z | τ) (see for example [Whittaker and
Watson 1996, page 489]) states that

(3-10) J4(z | τ)= 4
∞∑

n=1

qn/2

1− qn sin 2nz.

Substituting the equation above into (3-9), we immediately find that

(3-11) 4
∞∑

n=1

qn/2

1− qn (sin 2nx + sin 2ny− sin 2n(x + y))

=
θ ′1(0 | τ)θ1(x | τ)θ1(y | τ)θ1(x + y | τ)
θ4(0 | τ)θ4(x | τ)θ4(y | τ)θ4(x + y | τ)

.

Replacing q by q2 in the equation above, then taking x = π/7 and y = 2π/7 in the
resulting equation, and employing the same type of argument as that of deriving
(3-8) from (3-5), we find that [Berndt 1991, entry 17(i)]

(3-12)
∞∑

n=1

(n
7

) qn

1− q2n = qψ(q)ψ(q7).

Now we will begin to prove (1-8) from (3-8) and (3-12). It is obvious that

2q2n

1− q4n =
q2n

1− q2n +
q2n

1+ q2n .
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Replacing q by q2 in (3-12) and then substituting the above into the resulting
equation, we can find that

4q2ψ(q2)ψ(q14)= 2
∞∑

n=1

(n
7

) q2n

1− q2n + 2
∞∑

n=1

(n
7

) q2n

1+ q2n .

Using the elementary identity (1−(−q)n)(1+(−q)n)= 1−q2n in (3-8), we obtain

φ(q)φ(q7)= 1+ 2
∞∑

n=1

(n
7

)qn(1+ (−q)n)
1− q2n .

Adding the last two equations together, we immediately find that

φ(q)φ(q7)+ 4q2ψ(q2)ψ(q14)

= 1+ 2
∞∑

n=1

(n
7

) qn

1− q2n +

∞∑
n=1

(n
7

) q2n

1+ q2n + 2
∞∑

n=1

(n
7

)(1+ (−1)n)q2n

1− q2n .

Making use of the property
(2n

7

)
=
(n

7

)
of the Legendre symbol, we find that

∞∑
n=1

(n
7

)(1+ (−1)n)q2n

1− q2n = 2
∞∑

n=1

(2n
7

) q4n

1− q4n = 2
∞∑

n=1

(n
7

) q4n

1− q4n .

Combining these equations, we find that

φ(q)φ(q7)+ 4q2ψ(q2)ψ(q14)

= 1+ 2
∞∑

n=1

(n
7

) qn

1− q2n + 2
∞∑

n=1

(n
7

)( q2n

1+ q2n +
2q4n

1− q4n

)

= 1+ 2
∞∑

n=1

(n
7

) qn

1− q2n + 2
∞∑

n=1

(n
7

) q2n

1− q2n

= 1+ 2
∞∑

n=1

(n
7

) qn

1− qn ,

which is Lemma 1.7. �

Remark 3.1. Dividing both sides of (3-4) by y and then letting y→ 0, we deduce
that

(3-13) tan2 x + 8
∞∑

n=1

n(−q)n

1− qn (1− cos 2nx)=
∞∏

n=1

(
1− qn

1+ qn

)4 θ2
1 (x | τ)

θ2
2 (x | τ)

.
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We take x = π/4 in this equation and use θ1(π/4 | τ)= θ2(π/4 | τ) in the result.
Then we immediately have

φ4(−q)=
∞∏

n=1

(
1− qn

1+ qn

)4

= 1+ 8
∞∑

n=1

n(−q)n

1− qn − 16
∞∑

n=1

(−1)n
nq2n

1− q2n .

Replacing q by−q and after simple reduction, we get the well-known Jacobi four-
squares formula [Andrews et al. 1999, (10.6.7); Andrews et al. 2001; Berndt 2006,
(3.3.6); Hardy and Wright 1979, Theorem 385; Hirschhorn 1987; Milne 2002].

(3-14) φ4(q)= 1+ 8
∞∑

n=1

nqn

1− qn − 32
∞∑

n=1

nq4n

1− q4n .

Divide (3-11) by x2, let x → 0 and replace q with −q . We find the Jacobi eight-
squares formula (see for example [Berndt 2006, page 70])

(3-15) φ8(q)= 1+ 16
∞∑

n=1

n3qn

1− (−q)n
.

4. The proof of Lemma 1.8

Putting h(z) = e2i zθ1(3z + πτ | 3τ) in Corollary 1.5 and simplifying, we can get
the quintuple product identity [Liu 2005]

(4-1)
∞∑

n=−∞

(−1)nqn(3n+1)/2 cos(2n+ 1)z = (q; q)∞
θ1(2z | τ)
θ1(z | τ)

.

This is an important identity with a very rich history, and there are many different
proofs of it in the literature. One may consult [Berndt 1991, page 83] and the
survey paper [Cooper 2006] for the various proofs of this identity.

Substituting (4-1) into the right side of the identity in Corollary 1.5, we conclude:

Theorem 4.1. Let h(z) be an entire function that satisfies the functional equations

h(z)=−h(z+π)=−q3/2e6i zh(z+πτ).

Then we have the general quintuple product identity

(4-2) (h(z)+ h(−z))
∞∏

n=1

(1− qn)= 2h(0)
∞∑

n=−∞

(−1)nq(3n2
+n)/2 cos(6n+ 1)z.

It is easily seen that (4-2) reduces to (4-1) when h(z) = θ1(2z | τ)/θ1(z | τ). Thus
(4-2) is really an extension of the quintuple product identity.

Now we will begin to prove Lemma 1.8 using Theorem 4.1.
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Proof. Differentiating this equation twice with respect to z and then setting z = 0,
we have

h′′(0)
∞∏

n=1

(1− qn)=−h(0)
∞∑

n=−∞

(−1)n(6n+ 1)2q(3n2
+n)/2.

We recall the Ramanujan identity (from [Ramanujan 1988, page 188] or see also
[Berndt and Yee 2003; Liu 2005])

∞∑
n=−∞

(−1)n(6n+ 1)2q(3n2
+n)/2

= E2(τ )

∞∏
n=1

(1− qn).

It follows from these two equations that

(4-3) h′′(0)=−h(0)E2(τ ).

Denote the logarithmic derivative of h(z) by L(z). Then it is easy to show that

h′′(z)= h(z)(L2(z)+ L ′(z)).

Substitute this identity into (4-3) and cancel out the factor h(0) to obtain the inter-
esting identity

(4-4) L2(0)=−E2(τ )− L ′(0).

Let h(z) = θ1(z + x | τ)θ1(z + y | τ)θ1(z − x − y | τ). Then we find by direct
computation that

L(z)= J1(z+ x | τ)+ J1(z+ y | τ)+ J1(z− x − y | τ),

where J1 is the logarithmic derivative of θ1 with respect to z. It follows that

L(0)= J1(x | τ)+ J1(y | τ)− J1(x + y | τ),

L ′(0)= J ′1(x | τ)+ J ′1(y | τ)+ J ′1(x + y | τ).

Substituting these two equations into (4-4), we immediately have

(4-5) (J1(x | τ)+ J1(y | τ)− J1(x + y | τ))2

=−E2(τ )− J ′1(x | τ)− J ′1(y | τ)− J ′1(x + y | τ).

Setting x = π/7 and y = 2π/7 in this equation, we deduce that

(4-6)
(

J1

(
π
7

∣∣∣τ)+ J1

(2π
7

∣∣∣τ)− J1

(3π
7

∣∣∣τ))2

= E2(τ )− J ′1
(
π
7

∣∣∣τ)− J ′1
(2π

7

∣∣∣τ)− J ′1
(3π

7

∣∣∣τ).
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To simplify this equation, we need some elementary trigonometric sums. With
ω = exp(2π i/7), it is well known that for x 6= 1,

(4-7)
3∏

k=1

(
1− 2x cos 2kπ

7
+ x2

)
=

1−x7

1−x
.

Applying the method of partial fraction decomposition, we find that

(4-8)
3∑

k=1

2− 2x cos(2kπ/7)
1− 2x cos(2kπ/7)+ x2 =

7
1−x7 −

1
1−x

.

Taking the logarithmic derivative of (4-7) and then multiplying the result by x , we
deduce that

(4-9)
3∑

k=1

2x2
− 2x cos(2kπ/7)

1− 2x cos(2kπ/7)+ x2 =−
7x7

1−x7 +
x

1−x
.

If we subtract (4-9) from (4-8) and then divide the result by 2(1− x2), we find

(4-10)
3∑

k=1

1
1−2x cos(2kπ/7)+x2 =

7(1+ x7)

2(1− x7)(1− x2)
−

1
2(1−x)2

.

Then letting x→ 1 and performing some computations, we find that

(4-11) csc2 π
7
+ csc2 2π

7
+ csc2 3π

7
= 8.

Equating coefficients of x on both sides of (4-7), we find that

(4-12) cos 2π
7
+ cos 4π

7
+ cos 6π

7
=−

1
2
.

With this value and using the properties of the cosine function, we can easily deduce
that

(4-13) cos 2nπ
7
+ cos 4nπ

7
+ cos 6nπ

7
=

{
3 if n ≡ 0 (mod 7),
−

1
2 if n 6≡ 0 (mod 7).

The trigonometric series expansion for the logarithmic derivative of θ1 states
[Whittaker and Watson 1996, page 489]

(4-14) J1(z | τ)= cot z+ 4
∞∑

n=1

qn

1− qn sin 2nz.

Differentiating this equation with respect to z, we conclude that

(4-15) J ′1(z | τ)=− csc2 z+ 8
∞∑

n=1

nqn

1− qn cos 2nz.
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With the help of (4-11), (4-13), and (4-15), we deduce that

(4-16) J ′1
(
π
7

∣∣∣τ)+ J ′1
(2π

7

∣∣∣τ)+ J ′1
(3π

7

∣∣∣τ)
=−8− 4

∞∑
n=1

nqn

1− qn + 196
∞∑

n=1

nq7n

1− q7n ,

and using (3-7) and (4-14), we find that

(4-17) J1

(
π
7

∣∣∣τ)+ J1

(2π
7

∣∣∣τ)+ J1

(3π
7

∣∣∣τ)
= cot π

7
+ cot 2π

7
− cot 3π

7
+ 2
√

7
∞∑

n=1

(n
7

) qn

1− qn .

Substituting these two equations into (4-6), we immediately find that

(4-18)
(

cot π
7
+ cot 2π

7
− cot 3π

7
+ 2
√

7
∞∑

n=1

(n
7

) qn

1− qn

)2

= 7+ 28
∞∑

n=1

nqn

1− qn − 196
∞∑

n=1

nq7n

1− q7n .

Putting q = 0 in this equation, we immediately deduce that

(4-19) cot π
7
+ cot 2π

7
− cot 3π

7
=
√

7.

Substituting this value into (4-18) and canceling out the factor 7 in the resulting
equation, we complete the proof of Lemma 1.8. �

If (4-19) is substituted into (4-17), we are led to the identity

(4-20) J1

(
π
7

∣∣∣τ)+ J1

(2π
7

∣∣∣τ)+ J1

(3π
7

∣∣∣τ)=√7
(

1+
∞∑

n=1

(n
7

) qn

1− qn

)
.

5. The proof of Lemma 1.9

Proof. We start by recalling the Guetzlaff identity in Corollary 2.3:√
θ2(0 | τ)θ2(0 | 7τ)+

√
θ4(0 | τ)θ4(0 | 7τ)=

√
θ3(0 | τ)θ3(0 | 7τ).

Divide this equation by
√
θ3(0 | τ)θ3(0 | 7τ) and use the well-known Jacobi quartic

identity, θ4
2 + θ

4
4 = θ

4
3 , to obtain [Berndt 1991, entry 19(i)]

(5-1) (αβ)1/8+ ((1−α)(1−β))1/8 = 1.

Combining this identity with the identity αβ = t8 in (1-8), we find that

(5-2) (1−α)(1−β)= (1− t)8.
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Recall from (1-8) that

(5-3) x1 =

(
α(1−α)
t (1− t)

)1/3
and x2 =

(
β(1−β)
t (1− t)

)1/3
.

We temporarily define t = t (1− t) and multiply x1 and x2 directly to obtain

(5-4) x1x2 = t2.

Using αβ = t8 and (5-2), we find by a direct and elementary calculation that

(5-5) x3
1 + x3

2 = (2− 7t + 4t2)3− 3t2(2− 7t + 4t2).

On the other hand, we substitute (5-5) in the elementary identity

(x1+ x2)
3
= x3

1 + x3
2 + 3x1x2(x1+ x2)

to obtain

(5-6) x3
1 + x3

2 = (x1+ x2)
3
− 3t2(x1+ x2).

It follows from these two equations that

(5-7) (x1+ x2)
3
− 3t2(x1+ x2)= (2− 7t + 4t2)3− 3t2(2− 7t + 4t2).

Define δ(t)= 2− 7t + 4t2 and then find from the equation above that

(5-8)
(
x1+ x2− δ(t)

)(
(x1+ x2)

2
+ δ(t)(x1+ x2)+ δ(t)2− 3t2)

= 0.

Next we will prove

(5-9) (x1+ x2)
2
+ δ(t)(x1+ x2)+ δ(t)2− 3t2

6= 0.

To this end, we will for the moment assume that 0< q < 1. Then from the Jacobi
quartic identity (2-3) we find that 0 < α, β < 1, and thus we have 0 < t < 1/4. It
is easy to see that the discriminant of the quadratic form of x1+ x2 in (5-9) is

1=−3δ2(t)+ 12t2
=−3((2t − 5/4)2+ 7/16)(4t − 1)(t − 2) < 0.

Hence (5-9) holds, and thus from (5-8) we find that

(5-10) x1+ x2 = 2− 7t + 4t2
= 2− 7t + 11t2

− 8t3
+ 4t4.

Combining (5-4) and (5-10), we conclude that x1 and x2 are the roots of (1-9).
Now we will try to express x1 and x2 in terms of the parameter t . Using the

infinite product representations of θ2 and θ3 in Proposition 1.2, we have

θ2(0 | τ)=
∞∏

n=1

(1− qn)(1+ qn)2,
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θ3(0 | τ)=
∞∏

n=1

(1− qn)(1+ q(n−1/2))2,

θ4(0 | τ)=
∞∏

n=1

(1− qn)(1− q(n−1/2))2.

It follows that
α =

θ4
2 (0 | τ)
θ4

3 (0 | τ)
= 16q1/2

∞∏
n=1

(1+ qn)8

(1+ qn−1/2)8
.

Logarithmically differentiating the above with respect to q , with the help of the
Jacobi four-squares formula in (3-15), we have

(5-11) 2q dα
dq
= α

(
1+ 8

∞∑
n=1

2nqn

1+ qn − 8
∞∑

n=1

(2n− 1)qn−1/2

1+ qn−1/2

)
= αθ4

4 (0 | τ).

So we have q(dα/dq) > 0 for 0 < q < 1, which shows that α is an increasing
function of q . It is obvious that 0 < q7 < q when 0 < q < 1, and hence we
have β < α. Since α→ 0 as q→ 0, we conclude, for very small positive q , that
α < 1/2. It is easy to see that α(1−α) is increasing when α < 1/2, and so we have
α(1−α) > β(1−β). It follows that x1 > x2 for very small positive q. Solving the
quadratic equation (1-9), we arrive at (1-10) and (1-11), proving Lemma 1.9. �

Equation (1-9) is the same as [Berndt 1991, Equation 19.6], but our proof is
slightly different.

6. Jacobi’s four-squares and the proof of Lemma 1.10

Proof. From Jacobi’s four-squares formula (3-15) it is easy to see that

(6-1) 7φ4(q7)−φ4(q)=−2
(

1+ 4
∞∑

n=1

nqn

1− qn − 28
∞∑

n=1

nq7n

1− q7n

)

+ 8
(

1+ 4
∞∑

n=1

nq4n

1− q4n − 28
∞∑

n=1

nq28n

1− q28n

)
.

Using Lemmas 1.7 and 1.8 we immediately have

(6-2) 1+ 4
∞∑

n=1

nqn

1− qn − 28
∞∑

n=1

nq7n

1− q7n =
(
4q2ψ(q2)ψ(q14)+φ(q)φ(q7)

)2
.

Combining (6-1) and (6-2), we find that

(6-3) 7φ4(q7)−φ4(q)=−2
(
4q2ψ(q2)ψ(q14)+φ(q)φ(q7)

)2

+ 8
(
4q8ψ(q8)ψ(q56)+φ(q4)φ(q28)

)2
.
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Replacing q by q1/2 in this identity and then using the relations φ(q1/2)= θ3(0 |τ)
and θ2(0 | τ)= 2q1/8ψ(q), we have

(6-4) 7θ4
3 (0 | 7τ)− θ

4
3 (0 | τ)=−2

(
θ2(0 | τ)θ2(0 | 7τ)+ θ3(0 | τ)θ3(0 | 7τ)

)2

+ 8
(
θ2(0 | 4τ)θ2(0 | 28τ)+ θ3(0 | 4τ)θ3(0 | 28τ)

)2
.

From the definition of theta functions and by direct computations, we find that

2θ3(0 | 4τ)= θ3(0 | τ)+ θ4(0 | τ) and 2θ2(0 | 4τ)= θ3(0 | τ)− θ4(0 | τ).

Using this we find

(6-5)

4
(
θ2(0 | 4τ)θ2(0 | 28τ)+ θ3(0 | 4τ)θ3(0 | 28τ)

)
=
(
θ3(0 | τ)− θ4(0 | τ)

)(
θ3(0 | 7τ)− θ4(0 | 7τ)

)
+
(
θ3(0 | τ)+ θ4(0 | τ)

)(
θ3(0 | 7τ)+ θ4(0 | 7τ)

)
= 2θ3(0 | τ)θ3(0 | 7τ)+ 2θ4(0 | τ)θ4(0 | 7τ).

If (6-5) is substituted into (6-4), we get

(6-6) 7θ4
3 (0 | 7τ)− θ

4
3 (0 | τ)=−2

(
θ2(0 | τ)θ2(0 | 7τ)+ θ3(0 | τ)θ3(0 | 7τ)

)2

+ 2
(
θ3(0 | τ)θ3(0 | 7τ)+ θ4(0 | τ)θ4(0 | 7τ)

)2
.

Dividing this equation by θ2
3 (0 | τ)θ

2
3 (0 | 7τ), we deduce that

(6-7) m− 7/m =−2
(
1+ (1−α)1/4(1−β)1/4

)2
+ 2(1+α1/4β1/4)2.

Substituting αβ = t8 and (1−α)(1−β)= (1− t)8 and simplifying gives

m− 7/m =−6+ 16t − 12t2
+ 8t3,

which is (1-13). Solving this equation, we arrive at (1-14) and (1-15). �

7. The proof of Theorem 1.11

We begin this section by proving two theta function identities.

Proposition 7.1.

2θ2(x + y | 2τ)θ2(x − y | 2τ)= θ3(x | τ)θ3(y | τ)− θ4(x | τ)θ4(y | τ),

2θ3(x + y | 2τ)θ3(x − y | 2τ)= θ3(x | τ)θ3(y | τ)+ θ4(x | τ)θ4(y | τ).

Proof. In [Liu 2007] we proved the general theta function identity

(7-1)
(
h1(x | τ)− h1(−x | τ))(h2(y | τ)− h2(−y | τ)

)
−
(
h2(x | τ)− h2(−x | τ))(h1(y | τ)− h1(−y | τ)

)
= Cθ1(x | τ)θ1(y | τ)θ1(x + y | τ)θ1(x − y | τ),
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where C is independent of x and y, and h1 and h2 are two entire functions of z
satisfying the functional equations

hk(z | τ)=−hk(z+π | τ)=−q3/2e6i zhk(z+πτ | τ) for k = 1, 2.

Take 2h1(z) = θ1(z | τ)θ4(z | τ/2) and 2h2(z) = θ1(z | τ)θ3(z | τ/2). Then (7-1)
gives

(7-2) θ3(y |τ/2)θ4(x |τ/2)−θ3(x |τ/2)θ4(y |τ/2)=Cθ1(x+ y |τ)θ1(x− y |τ).

If we set y = πτ/4 and x = 0, then the second term of the left side vanishes. Thus
we have

q−1/(16)θ2 (0 | τ/2) θ4(0 | τ/2)=−Cθ2
1 (πτ/4 | τ).

With the infinite product representations of theta functions in Proposition 1.2, we
find that

2θ2
1 (πτ/4 | τ)=−q−1/(16)θ2 (0 | τ/2) θ4 (0 | τ/2)=−2(q; q)2

∞
(q1/4
; q1/2)2.

Thus we have C = 2. Substituting this value in (7-2), we find that [Liu 2009]

θ3 (y | τ/2) θ4 (x | τ/2)− θ3 (x | τ/2) θ4 (y | τ/2)= 2θ1(x + y | τ)θ1(x − y | τ).

If we replace τ by 2τ and replace x by x + π/2 and x + (π + 2πτ)/2, then the
resulting equations are just the two identities in Proposition 7.1, respectively. �

Proof of Theorem 1.11. We will start with the identity in Lemma 1.7, which can
be written as

(7-3) 1+ 2
∞∑

n=1

(n
7

) qn

1− qn = θ3(0 | 2τ)θ3(0 | 14τ)+ θ2(0 | 2τ)θ2(0 | 14τ).

Putting x = y = 0 in Proposition 7.1, we immediately deduce that

2θ2
3 (0 | 2τ)= θ

2
3 (0 | τ)+ θ

2
4 (0 | τ) and 2θ2

2 (0 | 2τ)= θ
2
3 (0 | τ)− θ

2
4 (0 | τ).

Using these two equations and the definition of α in (1-8), we have

(7-4)
θ3(0 | 2τ)= θ3(0 | τ)

√
1+
√

1−α
2

,

θ2(0 | 2τ)= θ3(0 | τ)

√
1−
√

1−α
2

.
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Replacing τ by 7τ in these two formulas and using the definition of β in (1-8), we
find that

(7-5)
θ3(0 | 14τ)= θ3(0 | 7τ)

√
1+
√

1−β
2

,

θ2(0 | 14τ)= θ3(0 | 7τ)

√
1−
√

1−β
2

.

Substituting (7-4) and (7-5) into the right side of (7-3), we find that

(7-6) 1
2θ3(0 | τ)θ3(0 | 7τ)(A+ B),

where

A :=
√
(1+
√

1−α)(1+
√

1−β) and B :=
√
(1−
√

1−α)(1−
√

1−β).

By direct computations, we find that

AB =
√
αβ = t4 and A2

+ B2
= 2+ 2

√
(1−α)(1−β)= 2+ 2(1− t)4.

It follows that A+ B = 2(1− t + t2). Substituting this into (7-6), we deduce the
identity [Berndt 1991, entry 5(ii)]

(7-7) 1+ 2
∞∑

n=1

(n
7

) qn

1− qn = θ3(0 | τ)θ3(0 | 7τ)(1− t + t2).

Comparing (1-10) with (1-15), and (1-11) with (1-14), we find that

(7-8) m =
1− 4x2

1− 2t
and 7

m
=−

1− 4x1

1− 2t
.

We add these two identities together and immediately have

m+ 7
m
=

4(x1− x2)

1− 2t
.

Multiplying the first identity in (7-8) by 4x1 and the second by 4x2 and then adding
the two resulting identities together gives

4mx1+
28x2

m
=

4(x1− x2)

1− 2t
.

Comparing last two equations, we find that m+7/m= 4mx1+28x2/m.We square
both sides of this and then subtract 16x1x2 from the result to find

(7-9) 16m2x2
+ 208x1x2+ 784

x2
2

m2 = (m− 7/m)2− 16x1x2+ 28.
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Substituting

m− 7/m =−6+ 16t − 12t2
+ 8t3 and x1x2 = t2(1− t2)

into the right side of (7-9) and simplifying gives the value 64(1− t + t2)3. Thus

(7-10) 1
4(m

2x2
1 + 13x1x2+ 49x2

2/m
2)= (1− t + t2)3.

We multiply this through by θ3
3 (0 | τ)θ

3
3 (0 | 7τ) and then combine the result with

(7-7) to obtain

(7-11)
(

1+2
∞∑

n=1

(n
7

) qn

1− qn

)3

=
1
4θ

3
3 (0 |τ)θ

3
3 (0 |7τ)

(
m2x2

1+13x1x2+49
x2

2

m2

)
.

Using the definitions of x1, x2, t , and m, and the infinite product representations
of θ2, θ3, and θ4, we find that

(7-12)

θ3
3 (0 | τ)θ

3
3 (0 | 7τ)m

2x2
1 =

θ7
3 (0 | τ)
θ3(0 | 7τ)

(
α7(1−α)7

β(1−β)

)1/12

=

(
θ28

2 (0 | τ)θ
28
3 (0 | τ)θ

28
4 (0 | τ)

θ4
2 (0 | 7τ)θ

4
3 (0 | 7τ)θ

4
4 (0 | 7τ)

)1/12

= 4
∞∏

n=1

(1− q)7

(1− q7n)
= 4

η7(τ )

η(7τ)
.

In the same way we can find that

(7-13)
θ3

3 (0 | τ)θ
3
3 (0 | 7τ)x1x2 = 4η3(τ )η3(7τ),

θ3
3 (0 | τ)θ

3
3 (0 | 7τ)x

2
2/m

2
= 4η7(7τ)/η(τ).

Substituting (7-12) and (7-13) into (7-11) completes the proof of Theorem 1.11. �

8. The Ramanujan–Watson modular equation

In this section we prove the Ramanujan–Watson modular equation in Theorem 1.12
using Corollary 1.4 and Theorem 1.11.

Proof. For brevity we will define u, v, and w as

(8-1)

u := u(τ )= θ1

(
π
7

∣∣∣τ),
v := v(τ)= θ1

(2π
7

∣∣∣τ),
w := w(τ)= θ1

(3π
7

∣∣∣τ).
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Choosing h(z) = θ3
1 (z | τ) in Corollary 1.4, setting x = π/7 and y = 2π/7, and

simplifying, we immediately have

(8-2) u3v− v3w+w3u = 0,

which gives a parametrization of the Klein quartic curve X3Y +Y 3 Z + Z3 X = 0;
see for example [Elkies 1999; Lachaud 2005]. It is easy to show, using the infinite
product representation of θ1 in Proposition 1.2, that

uvw =
√

7η2(τ )η(7τ).

We further set

(8-3) a := a(τ )= v/u, b := b(τ )=−w/v, c := c(τ )= u/w.

If we multiply directly these formulas together, we immediately deduce that

(8-4) abc =−1.

With the help of (8-3), it is easily seen that (8-2) can be rewritten as

(8-5) ab2
− a2
+ c = 0.

Multiplying this by a−1 and then using (8-4) in the resulting equation, we find that

(8-6) bc2
− b2
+ a = 0.

In the same way we multiply (8-5) by c and use (8-4) to obtain

(8-7) ca2
− c2
+ b = 0.

Using the quintuple product identity (4-1), we can easily show that [Liu 2003]

(8-8) a+ b+ c = 1+ ρ,

where ρ is defined as

(8-9) ρ(τ)= 7η(49τ)/η(τ).

We multiply (8-5) by a, (8-6) by b, and (8-7) by c, and add the resulting equa-
tions together to obtain

(8-10) (a2b2
+ b2c2

+ c2a2)− (a3
+ b3
+ c3)+ ab+ bc+ ca = 0.

Define

(8-11) P := a+ b+ c = 1+ ρ, Q := ab+ bc+ ca, R := abc =−1.
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Using the theory of elementary symmetric polynomials and using (8-4)–(8-8), we
find that

a2b2
+ b2c2

+ c2a2
= Q2

+ 2(1+ ρ),

a3
+ b3
+ c3
= (1+ ρ)3− 3Q(1+ ρ)− 3.

If these are combined with (8-10), we conclude that

Q2
+ (3ρ+ 4)Q− (ρ3

+ 3ρ2
+ ρ− 4)= 0.

We solve this equation for Q, and, with some analysis, find this:

Proposition 8.1. Q =− 1
2(3ρ+ 4)− 1

2

√
4ρ3+ 21ρ+ 28ρ.

Set

(8-12) y1 := y1(τ )= a3b, y2 := y2(τ )= b3c, y3 := y3(τ )= c3a.

Using (8-4)–(8-7) and some straightforward evaluations,we deduce that

(8-13) y1 y2 =−y1− 1, y2 y3 =−y2− 1, y3 y1 =−y3− 1, y1 y2 y3 = 1.

It is easily shown by direct computation that for any complex numbers X , Y , and Z ,

(8-14) (X + Y + Z)3

= X3
+Y 3
+Z3
+6XY Z+3X2Y+3X2 Z+3Y 2 X+3Y 2 Z+3Z2 X+3Z2Y.

Choosing X = 3
√

y2
1 y2, Y = 3

√

y2
2 y3, and Z = 3

√

y2
3 y1, and simplifying with the help

of (8-15), we find that

(8-15)
(

3
√

y2
1 y2+

3
√

y2
2 y3+

3
√

y2
3 y1

)3
=−(y1+ y2+ y3)

2
− 3(y1+ y2+ y3)− 9.

Employing the definitions of u, v, w, a, b, and c, by direct computations, we have

3
√

y2
1 y2 =−71/6η2/3(τ )η1/3(7τ) w

u2 ,

3
√

y2
2 y3 = 71/6η2/3(τ )η1/3(7τ) u

v2 ,

3
√

y2
3 y1 =−71/6η2/3(τ )η1/3(7τ) v

w2 .

If these three formulas are substituted into (8-15), we find that

(8-16) (y1+ y2+ y3)
2
+3(y1+ y2+ y3)+9=

√
7η2(τ )η(7τ)

(
w
u2 −

u
v2 +

v
w2

)3
.

We recall the following theta function identity, which can be easily derived from
Corollary 1.6; see [Liu 2005; McCullough and Shen 1994].
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Proposition 8.2.

J1(x | τ)+ J1(y | τ)+ J1(z | τ)− J1(x + y+ z | τ)

=
θ ′1(0 | τ)θ1(x + y | τ)θ1(x + z | τ)θ1(y+ z | τ)
θ1(x | τ)θ1(y | τ)θ1(z | τ)θ1(x + y+ z | τ)

.

We set (x, y, z) equal to

(π/7,−3π/7,−3π/7), (π/7,−2π/7,−2π/7), (π/7, π/7,−2π/7),

in the above equation, and then adding the resulting equations together, we find

(8-17) 2J1

(
π
7

∣∣∣τ)+ 2J1

(2π
7

∣∣∣τ)− 2J1

(3π
7

∣∣∣τ)= θ ′1(0 | τ)(wu2 −
u
v2 +

v
w2

)
.

Combining this with (4-20), we find that

(8-18) 1+ 2
∞∑

n=1

(n
7

) qn

1− qn =
η3(τ )
√

7

(
w
u2 −

u
v2 +

v
w2

)
.

If this is combined with Theorem 1.11, we find the following identity, which is the
same as [Liu 2003, (1.27)]:

(8-19)
(
w
u2 −

u
v2 +

v
w2

)3
= 7
√

7η−9(τ )λ−1(µ2
+ 13µ+ 49).

Combining this with (8-16), we conclude that

(y1+ y2+ y3)
2
+ 3(y1+ y2+ y3)+ 9= 49(1+ 13µ−1

+ 49µ−2).

Solving this equation, we deduce the next proposition [Liu 2003, (5.14)].

Proposition 8.3. y1+ y2+ y3 =−8− 49µ−1.

Now we are ready to derive the Ramanujan–Watson modular equation.
Adding (8-5), (8-6), and (8-7) together, and using (8-11), we find that

(8-20) ab2
+ bc2

+ ca2
= P2

− 2Q− P.

We multiply P = a + b+ c and Q = ab+ bc+ ca directly and, with the help of
abc =−1, we obtain

PQ= ac2
+ ca2

+ ba2
+ ab2

+ bc2
+ ca2

− 3.

Substituting (8-20) into this, we find that

(8-21) ac2
+ ca2

+ ba2
=−P2

+PQ+ P + Q+ 3.

Multiplying (8-5) by b, (8-6) by c, and (8-7) by a, and adding the three resulting
identities, we obtain

ab3
+ bc3

+ ca3
= ac2

+ cb2
+ ba2

− ab− bc− ca.
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Substituting (8-21) and ab+ bc+ ca = Q into the above, we conclude that

(8-22) ab3
+ bc3

+ ca3
=−P2

+PQ+ P + Q+ 3.

With the help of abc =−1, by a direct computation, we find that

a3b+ b3c+ c3a = (a+ b+ c)(ab+ bc+ ca)− ab3
− bc3

− ca3
+ a+ b+ c.

Substituting P = a+ b+ c, Q = ab+ bc+ ca, and (8-22) into the above, we find
that

a3b+ b3c+ c3a = P2 Q+ P2
− 2Q2

−PQ− Q− 3.

Using y1 = a3b, y2 = b3c, and y3 = c3a in the equation above, we conclude that

y1+ y2+ y3 = P2 Q+ P2
− 2Q2

−PQ− Q− 3.

Combining this with Proposition 8.3, we have

(8-23) P2 Q+ P2
− 2Q2

−PQ− Q− 3=−8− 49µ−1.

Substituting P = 1+ρ and the value of Q in Proposition 8.1 in the right hand side
of the equation above, we have

−
1
2(ρ

2
+ 7ρ+ 7)

√
4ρ2+ 21ρ+ 28ρ− 1

2(7ρ
3
+ 35ρ2

+ 49ρ)− 8.

We obtain, from these two equations, the following result.

Proposition 8.4. (ρ2
+7ρ+7)

√
4ρ2+ 21ρ+ 28ρ+

(
7ρ3
+ 35ρ2

+ 49ρ
)
=98µ−1.

The well-known modular transformation for the Dedekind η-function is given by

η
(
−

1
τ

)
=
√
−iτη(τ).

It follows that

ρ
(
−

1
7τ

)
= ν(τ) and µ

(
−

1
7τ

)
= 49µ−1(τ ).

Replacing τ by −1/7τ in Proposition 8.4 and then applying the above transfor-
mation formulas, we complete the proof of Theorem 1.12. �

9. Theta function identities related to modular equations of degree 7

Let a, b, and c be defined as in (8-3) and let F(a, b, c) be a symmetric function in
the variables a, b, and c. Then from (8-4), (8-8), and Proposition 8.1, we know that
F(a, b, c) can be expressed in terms of ρ. In particular, Kn := Kn(τ )=an

+bn
+cn

can be written in terms of ρ.
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Theorem 9.1. Let a, b, c be defined as in (8-3). Then we have the recurrence
relation

(9-1) Kn+3 = (1+ ρ)Kn+2+
1
2(3ρ+ 4+

√
4ρ3+ 21ρ+ 28ρ)Kn+1− Kn,

with the boundary conditions

K−1 =
1
2(3ρ+ 4)+ 1

2

√
4ρ3+ 21ρ+ 28ρ, K0 = 3, K1 = 1+ ρ.

Proof. From (8-4), (8-8), and Proposition 8.1, we find that a, b, and c are the three
roots of the cubic equation

x3
− (1+ ρ)x2

−
1
2

(
3ρ+ 4+

√
4ρ3+ 21ρ+ 28ρ

)
x + 1= 0.

Multiplying both sides of the equation above by xn gives

x3+n
− (1+ ρ)x2+n

−
1
2

(
3ρ+ 4+

√
4ρ3+ 21ρ+ 28ρ

)
xn+1
+ xn
= 0.

Replacing x by each of a, b, c in the equation above and then adding the three
resulting equations, we obtain (9-1), completing the proof of Theorem 9.1. �

Theorem 9.1 allows us to derive many theta function identities. In particular,

K2 = ρ
2
+ 5ρ+ 5+

√
4ρ3+ 21ρ+ 28ρ,

K3 = ρ
3
+

15
2 ρ

2
+

27
2 ρ+ 4+ 3

2(1+ ρ)
√

4ρ3+ 21ρ+ 28ρ.

From the definitions of a, b, and c in (8-3), it is easily seen that

(9-2) Kn(i∞)=
(sin 2π/7

sinπ/7

)n
+ (−1)n

(sin 3π/7
sin 2π/7

)n
+

( sinπ/7
sin 3π/7

)n
.

When q = 0, (9-1) will reduce to the following recurrence relation.

Corollary 9.2. With Kn(i∞) defined as in (9-2), we have

(9-3) Kn+3(i∞)= Kn+2(i∞)+ 2Kn+1(i∞)− Kn(i∞),

with the initial values K−1(i∞)= 2, K0(i∞)= 3, K1(i∞)= 1.

From this recurrence we can readily find the following finite trigonometric sums:

K2(i∞)=
(sin 2π/7

sinπ/7

)2

+

(sin 3π/7
sin 2π/7

)2

+

( sinπ/7
sin 3π/7

)2

= 5,

K3(i∞)=
(sin 2π/7

sinπ/7

)3

−

(sin 3π/7
sin 2π/7

)3

+

( sinπ/7
sin 3π/7

)3

= 4,

K4(i∞)=
(sin 2π/7

sinπ/7

)4

+

(sin 3π/7
sin 2π/7

)4

+

( sinπ/7
sin 3π/7

)4

= 13,
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K5(i∞)=
(sin 2π/7

sinπ/7

)5

−

(sin 3π/7
sin 2π/7

)5

+

( sinπ/7
sin 3π/7

)5

= 16,

K6(i∞)=
(sin 2π/7

sinπ/7

)6

+

(sin 3π/7
sin 2π/7

)6

+

( sinπ/7
sin 3π/7

)6

= 38,

K7(i∞)=
(sin 2π/7

sinπ/7

)7

−

(sin 3π/7
sin 2π/7

)7

+

( sinπ/7
sin 3π/7

)7

= 57.

We add the first three formulas in (8-13) together and then use Proposition 8.3
to find that

(9-4) y1 y2+ y2 y3+ y3 y1 =−(y1+ y2+ y3)− 3= 5+ 49µ−1.

If F(y1, y2, y3) is a symmetric function of y1, y2, and y3, then from the theory of
symmetric functions and (9-4), and y1 y2 y3= 1, we know that F(y1, y2, y3) can be
written in terms of µ−1. So we can find infinitely many theta function identities
involving y1, y2, and y3. Define Sn as

(9-5) Sn := Sn(τ )= yn
1 + yn

2 + yn
3 .

Theorem 9.3. Let y1, y2, and y3 be defined as in (8-12), and let Sn be as in (9-5).
Then we have

(9-6) Sn+3 =−(8+ 49µ−1)Sn+2− (5+ 49µ−1)Sn+1+ Sn,

with the initial values,

S0 = 3, S1 =−8− 49µ−1, S2 = 54+ 2× 73µ−1
+ 74µ−2.

Proof. Using (9-4) and y1 y2 y3 = 1, we know that y1, y2, and y3 are the roots of
the cubic equation

x3
+ (8+ 49µ−1)x2

+ (5+ 49µ−1)x − 1= 0,

which gives xn+3
+ (8+ 49µ−1)xn+2

+ (5+ 49µ−1)xn+1
− xn

= 0. Replacing x
with y1, y2, and then y3, and adding the resulting equations, we arrive at (9-6).
This completes the proof of Theorem 9.3. �

It is easy to see from the definition of y1, y2, and y3 in (8-12) that

(9-7)

y1 =−
√

7η2(τ )η(7τ)
θ1(2π/7 | τ)
θ4

1 (π/7 | τ)
,

y2 =−
√

7η2(τ )η(7τ)
θ1(3π/7 | τ)
θ4

1 (2π/7 | τ)
,

y3 =
√

7η2(τ )η(7τ)
θ1(π/7 | τ)
θ4

1 (3π/7 | τ)
.
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Letting q = 0 and with the help of the infinite product representation of θ1, we
immediately have

y1(i∞)=−

√
7

8
sin(2π/7)

sin4(π/7)
,

y2(i∞)=−

√
7

8
sin(3π/7)

sin4(2π/7)
,

y3(i∞)=

√
7

8
sin(π/7)

sin4(3π/7)
.

It follows that Sn(i∞)= (−
√

7/8)nTn , where

(9-8) Tn =
sinn(2π/7)

sin4n(π/7)
+ (−1)n

sinn(π/7)

sin4n(3π/7)
+

sinn(3π/7)

sin4n(2π/7)
.

Thus putting q = 0 in (9-6) and simplifying, we get the recurrence relation for Tn .

Corollary 9.4. Let Tn be defined as in (9-8). Then we have

(9-9) Tn+3 =
64
√

7
Tn+2−

320
7 Tn+1−

512
7
√

7
Tn,

with the initial values T−1 =−
5
8

√
7, T0 = 3 and T1 =

64
√

7
.

We may use this recurrence relation to compute infinitely many trigonometric
sums. For example, we have

T2 =
sin2(2π/7)

sin8(π/7)
+

sin2(π/7)

sin8(3π/7)
+

sin2(3π/7)

sin8(2π/7)
=

3456
7
,

T3 =
sin3(2π/7)

sin12(π/7)
−

sin3(π/7)

sin12(3π/7)
+

sin3(3π/7)

sin12(2π/7)
=

199168
7
√

7
.

For a systematic study of this type of trigonometric sums, see [Beck et al. 2005;
Berndt and Zaharescu 2004; Chan 2007].

Now we will begin proving the following identity of Ramanujan [1988, page 53];
see also [Raghavan 1986; Liu 2003].

Proposition 9.5. 8− 7
∞∑

n=1

(n
7

) n2qn

1− qn = λ
−1(8µ2

+ 49µ).

Proof. The addition formula for the Weierstrass σ -function can be written in terms
of θ1 as (see for example [Liu 2005, (4.10)])

(9-10) J ′1(x | τ)− J ′1(y | τ)= 4η6(τ )
θ1(x + y | τ)θ1(x − y | τ)

θ2
1 (x | τ)θ

2
1 (y | τ)

.
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Dividing both sides by x − y and then letting y→ x yields

(9-11) J ′′1 (x | τ)= 8η9(τ )
θ1(2x | τ)
θ4

1 (x | τ)
.

Taking x = π/7, 2π/7, and then −3π/7, in this equation and adding the three
resulting equations, we have

8− 7
∞∑

n=1

(n
7

) n2qn

1− qn =
√

7η9(τ )

(
θ1(2π/7 | τ)
θ4

1 (π/7 | τ)
−
θ1(π/7 | τ)
θ4

1 (3π/7 | τ)
+
θ1(3π/7 | τ)
θ4

1 (2π/7 | τ)

)
Substituting (9-7) into the right side, we find that

8− 7
∞∑

n=1

(n
7

) n2qn

1− qn =−
η7(τ )

η(7τ)
(y1+ y2+ y3) .

Combining this with Proposition 8.3, we arrive at the identity of Ramanujan. �

Theorem 9.6. Let Cn = K7n = a7n
+ b7n

+ c7n . Then we have

(9-12) Cn+3 = C1Cn+2+C−1Cn+1−Cn,

with the initial value C0 = 3, and C1 and C−1 being given by

C1 = 57+ 2× 73µ−1
+ 74µ−2,

C−1 = 289+ 18× 73µ−1
+ 19× 74µ−2

+ 76µ−3.

Proof. Multiplying (8-5) with ab, (8-6) with bc, and (8-7) with ac, and using the
definitions of y1, y2, y3 in (8-12), we find that

a2b3
= y1+ 1, b2c3

= y2+ 1, c2a3
= y3+ 1.

In the same way, we multiply (8-5) with b3, (8-6) with c3, and (8-7) with a3, to
obtain

ab5
= a2b3

− y2, bc5
= b2c3

− y3, ca5
= c2a3

− y1.

Combining these two sets of equations, we deduce that

ab5
= y1− y2+ 1, bc5

= y2− y3+ 1, ca5
= y3− y1+ 1.

Multiplying (8-5) by a5, (8-6) by b3, and (8-7) by c3, and using the definitions of
y1, y2, y3, we obtain

a7
= a5c+ y2

1 , b7
= b5a+ y2

2 , c7
= c5b = y2

3 .

Combining the two sets of equations above, we find that (see also [Liu 2003])

(9-13) a7
= y2

1 − y1+ y3+ 1, b7
= y2

2 − y2+ y1+ 1, c7
= y2

3 − y3+ y2+ 1.
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Add these three equations above together and use (9-4) to obtain

(9-14) C1 = a7
+ b7
+ c7
= y2

1 + y2
2 + y2

3 + 3= 57+ 2× 73µ−1
+ 74µ−2.

Using (8-13) and (9-13), by direct computations we find that

a7b7
= y1(y1+ 1)2, b7c7

= y2(y2+ 1)2, c7a7
= y3(y3+ 1)2.

Adding these three equations together and using (9-4), we find that

(9-15) (ab)7+ (bc)7+ (ca)7 =−289− 18× 73µ−1
− 19× 74µ−2

− 76µ−3.

Combining (abc)7 =−1 with the equation above, we find that

(9-16) C−1 = 289+ 18× 73µ−1
+ 19× 74µ−2

+ 76µ−3.

Then using (9-14), (9-15), and (abc)7 = −1, we find that a7, b7, and c7 are the
three roots of the cubic equation

(9-17) X3
−C1 X2

−C−1 X + 1= 0.

Using the same argument that we used to prove Theorems 9.1 and 9.3, we can
complete the proof of Theorem 9.6. �

This recurrence relation will enable us to derive infinitely many theta function
identities. For example, we have

C3 = 234609+ 24306× 73µ−1
+ 52671× 74µ−2

+ 8879× 76µ−3
+ 858× 78µ−4

+ 45× 710µ−5
+ 712µ−6.

Putting q = 0, we immediately have

(9-18) Cn(i∞)=
(

sin 2π/7
sinπ/7

)7n

+ (−1)n
(

sin 3π/7
sin 2π/7

)7n

+

(
sinπ/7

sin 3π/7

)7n

.

Letting q = 0 in (9-12), we immediately deduce the next corollary.

Corollary 9.7. Let Cn(i∞) be defined as in (9-18). Then we have

(9-19) Cn+3(i∞)= 57Cn+2(i∞)+ 289Cn+1(i∞)−Cn(i∞),

with the initial values C−1(i∞)= 289, C0(i∞)= 3 and C1(i∞)= 57.

This can be used to derive infinitely many finite trigonometric sum formulas. For
example,

C2(i∞)=
(

sin 2π/7
sinπ/7

)14

+

(
sin 3π/7
sin 2π/7

)14

+

(
sinπ/7
sin 3π/7

)14

= 3827,

C3(i∞)=
(

sin 2π/7
sinπ/7

)21

−

(
sin 3π/7
sin 2π/7

)21

+

(
sinπ/7
sin 3π/7

)21

= 234609.
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10. Ramanujan’s identities related to modular equations of degree 7

In this section, we explore how our theta function identities behave when acted on
by imaginary transformations. We need the well-known imaginary transformation
formula for the Jacobi theta function θ1 [Whittaker and Watson 1996, page 475]:

(10-1) θ1

( z
τ

∣∣∣ − 1
τ

)
=−i
√
−iτ exp

( i z2

πτ

)
θ1(z | τ).

Replacing τ with 7τ in the above equation and then taking z= rπτ in the resulting
equation, we find that

(10-2) θ1

(rπ
7

∣∣∣ − 1
7τ

)
=−i
√
−7iτq(r

2/14)θ1(rπτ | 7τ).

In contrast to a, b, and c defined in (8-3), we now introduce a,b, and c defined
by

(10-3) a= q
3

14
θ1(2πτ | 7τ)
θ1(πτ | 7τ)

, b=−q
5

14
θ1(3πτ | 7τ)
θ1(2πτ | 7τ)

, c= q−
8

14
θ1(πτ | 7τ)
θ1(3πτ | 7τ)

.

For convenience, in what follows we will sometimes adopt the compact notation
[z; q]∞ defined as

[z; q]∞ =
∞∏

n=0

(1− zqn)(1− qn/z) for z 6= 0.

Using the infinite product representation for θ1 in Proposition 1.2, we can find
the infinite product representations for a, b, and c:

(10-4) a= q−2/7 [q
2
; q7
]∞

[q; q7]∞
, b=−q−1/7 [q

3
; q7
]∞

[q2; q7]∞
, c= q3/7 [q; q

7
]∞

[q3; q7]∞
.

With the help of (10-2), it is easy to establish the next proposition.

Proposition 10.1. With a, b, and c defined as in (8-3) and a, b, and c as in (10-3),
we have

a(−1/7τ)= a, b(−1/7τ)= b, c(−1/7τ)= c.

Theorem 10.2. Let a, b, and c be defined as in (10-3). Then we have Ramanujan’s
identity [Berndt 1991, (18.1)]

a+b+ c= 1+ ν.

Proof. Replacing τ by −1/(7τ) in (8-8) and then using the modular transforma-
tion for the η-function and the modular transformations in Proposition 10.1, we
immediately obtain Theorem 10.2. �
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Theorem 10.3. Let a, b, and c be defined as in (10-3). Then we have Ramanujan’s
identities [Berndt 1991, (18. 2) and (18.3)]

a7
+b7
+ c7
= 57+ 14µ+µ2,

a7b7
+b7c7

+ c7a7
=−289− 126µ− 19µ2

−µ3.

Proof. Using the modular transformation for the η-function, we easily find that

(10-5) µ
(
−

1
7τ

)
= 49µ−1(τ ).

Replacing τ by −1/(7τ) in (9-14) and (9-15), using the modular transformation
for the η-function, and the modular transformations in Proposition 10.1 and (10-5),
we complete the proof of Theorem 10.3. �

Multiplying the three identities in (10-4) together, we easily find that

(10-6) abc=−1.

Set

(10-7) Cn =Cn(τ )= a
7n
+b7n

+ c7n.

Then from Theorem 10.3 and (10-6), we find that the values of C−1 and C1 are

(10-8)
C−1 = 289+ 126µ+ 19µ2

+µ3,

C1 = 57+ 14µ+µ2.

Theorem 10.4. Let Cn be defined as in (10-7). Then we have the recurrence rela-
tion

Cn+3 =C1Cn+2+C−1Cn+1−Cn,

with the initial value C0 = 3, and C−1 and C1 being given in (10-8).

Proof. From Theorem 10.3 and (10-6), we find that a7, b7, and c7 are the three
roots of the cubic equation

X3
−C1 X2

−C−1 X + 1= 0.

From this equation we can easily find the recurrence relation in Theorem 10.4. �

Theorem 10.4 allows us to derive infinitely many theta function identities. For
example, we have

(10-9) C3 := 234609+ 170142µ+ 52671µ2
+ 8879µ3

+ 858µ4
+ 45µ5

+µ6.

Proposition 10.5. Let y1, y2, and y3 be defined as in (8-12), and let y1, y2, and
y3 be defined as

(10-10) y1 = a
3b, y2 = b

3c, y3 = c
3a.
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Then we have the modular transformation formulas

y1 = y1(−1/7τ), y2 = y2(−1/7τ), y3 = y3(−1/7τ).

With their help, we can find the infinite product representations for y1,y2,y3:

(10-11)

y1 =−q−3/4 η(τ)

η(7τ)
[q2
; q7
]∞

[q; q7]4
∞

,

y2 =−q1/4 η(τ)

η(7τ)
[q3
; q7
]∞

[q2; q7]4
∞

,

y3 = q5/4 η(τ)

η(7τ)
[q; q7

]∞

[q3; q7]4
∞

.

Theorem 10.6. Let y1, y2, and y3 be defined as in (10-10). Then we have the
identities [Berndt and Zhang 1994, (4.22) and (4.23); Garvan 1984, page 323]

y1+y2+y3 =−µ− 8,

y1y2+y2y3+y3y1 = µ+ 5.

Proof. Replacing τ by −1/(7τ) in Proposition 8.3 and then using the transforma-
tions in Proposition 10.5 and (10-5), we immediately obtain the first identity. In the
same way, by replacing τ by −1/(7τ) in (9-4), we obtain the second identity. �

Set Sn := Sn(τ ) = y
n
1 +y

n
2 +y

n
3 . Then using Theorem 10.6 and y1y2y3 = 1,

we can establish the next theorem.

Theorem 10.7. We have the recurrence relation

Sn+3 =−(µ+ 8)Sn+2− (µ+ 5)Sn+1+Sn,

with the initial values S0 = 3, S1 =−µ− 8, S2 = µ
2
+ 14µ+ 54.

From this recurrence relation we can derive infinitely many theta function iden-
tities. For example,

(10-12)

S3 =−µ
3
− 21µ2

− 153µ− 389,

S4 = µ
4
+ 28µ3

+ 302µ2
+ 1488µ+ 2834,

S5 =−µ
5
− 35µ4

− 500µ3
− 3645µ2

− 13570µ− 20673.

Theorem 10.8. Let λ and µ be defined as in (1-3). Then we have

q−13/4
[q; q7

]
−7
∞
− q11/4

[q2
; q7
]
−7
∞
− q11/2

[q3
; q7
]
−7
∞

= µ−7/12(µ2
+ 13µ+ 49)1/3 (µ+ 7) .
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Proof. Choosing X = 3
√

y5
1y2, Y = 3

√

y5
2y3, and Z = 3

√

y5
3y1 in (8-13), and making

use of y1y2 =−y1−1, y2y3 =−y2−1, y3y1 =−y3−1, and y1y2y3 = 1, we
deduce that( 3

√
y5

1y2+
3
√
y5

2y3+
3
√
y5

3y1
)3
=−S5−S4+ 3S3+ 3S2+ 3S1− 3.

Substituting the values of Sr for r = 1, 2, 3, 4, 5 in Theorem 10.7, and (10-12) into
the equation above, we find that

(10-13)
( 3
√
y5

1y2+
3
√
y5

2y3+
3
√
y5

3y1
)3
= (µ2

+ 13µ+ 49)(µ+ 7)3.

Substituting (10-11) into the left hand side of the equation above and simplifying,
we complete the proof of Theorem 10.8. �

11. Logarithmic differentiation and two elliptic theta function identities

We will begin this section by proving Theorem 1.15 with the help of the general
quintuple product identity and the method of logarithmic differentiation.

Proof. We recall the general quintuple product identity given in Theorem 4.1:

(11-1) (h(z)+ h(−z))
∞∏

n=1

(1− qn)= 2h(0)
∞∑

n=−∞

(−1)nq(3n2
+n)/2 cos(6n+ 1)z.

Differentiating this equation four times with respect to z and then setting z= 0, we
find that

(11-2) h(4)(0)= h(0)
∞∏

n=1

(1− qn)−1
∞∑

n=−∞

(−1)n(6n+ 1)4q(3n2
+n)/2.

Let E2k be the normalized Eisenstein series defined in Definition 1.14. Then we
have Ramanujan’s identity (see for example, [Berndt and Yee 2003; Liu 2005])

∞∏
n=1

(1− qn)−1
∞∑

n=−∞

(−1)n(6n+ 1)4q(3n2
+n)/2

= 3E2
2(τ )− 2E4(τ ).

If this is substituted into (11-2), we deduce that

(11-3) h(4)(0)= h(0)(3E2
2(τ )− 2E4(τ )).

Let L(z) be the logarithmic derivative of h(z). Then by a direct calculation, we
find that

(11-4) h(4)(z)= h(z)× (L4(z)+6L2(z)L ′(z)+4L(z)L ′′(z)+3L ′(z)2+ L ′′′(z)).

Choosing h(z)= θ1(z+ x | τ)θ1(z+ y | τ)θ1(z− x − y | τ), we find that

L(z)= J1(z+ x | τ)+ J1(z+ y | τ)+ J1(z− x − y | τ).
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It follows that

L(0)= J1(x | τ)+ J1(y | τ)− J1(x + y | τ),

L ′(0)= J ′1(x | τ)+ J ′1(y | τ)+ J ′1(x + y | τ),

L ′′(0)= J ′′1 (x | τ)+ J ′′1 (y | τ)− J ′1(x + y | τ),

L ′′′(0)= J ′′′1 (x | τ)+ J ′′′1 (y | τ)+ J ′′′1 (x + y | τ).

Putting z = 0 in (11-4), substituting the equations above in the resulting equation,
and finally comparing with (11-3), we find that

3E2
2(τ )− 2E4(τ )= (J1(x | τ)+ J1(y | τ)− J1(x + y | τ))4

+ 3(J ′1(x | τ)+ J ′1(y | τ)+ J ′1(x + y | τ))2

+ J ′′′1 (x | τ)+ J ′′′1 (y | τ)+ J ′′′1 (x + y | τ)

+ 6(J1(x | τ)+ J1(y | τ)− J1(x + y | τ))2

× (J ′1(x | τ)+ J ′1(y | τ)+ J ′1(x + y | τ))

+ 4(J1(x | τ)+ J1(y | τ)− J1(x + y | τ))

× (J ′′1 (x | τ)+ J ′′1 (y | τ)− J ′′1 (x + y | τ)).

To derive Theorem 1.15 we also need the identity in (4-5), which states

(J1(x |τ)+ J1(y |τ)− J1(x+ y |τ))2=−E2(τ )− J ′1(x |τ)− J ′1(y |τ)− J ′1(x+ y |τ).

Eliminating J ′1(x | τ)+ J ′1(y | τ)+ J ′1(x + y | τ) from the last two equations, we
immediately arrive at Theorem 1.15. �

The proof of Theorem 1.16 is similar to the proof of Theorem 1.15 and so we
only sketch it.

Proof. Differentiating both sides of (11-1) six times with respect to z and then
setting z = 0, we find that

(11-5) h(6)(0)=−h(0)
∞∏

n=1

(1− qn)−1
∞∑

n=−∞

(−1)n(6n+ 1)6q(3n2
+n)/2.

The substitution of Ramanujan’s identity (see for example [Berndt and Yee 2003;
Liu 2005])
∞∏

n=1

(1− qn)−1
∞∑

n=−∞

(−1)n(6n+ 1)6q(3n2
+n)/2

= 15E3
2(τ )− 30E2(τ )E4(τ )+ 16E6(τ )

into (11-5) gives

(11-6) h(6)(0)=−h(0)(15E3
2(τ )− 30E2(τ )E4(τ )+ 16E6(τ )).
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Choosing h(z)= θ1(z+ x |τ)θ1(z+ y |τ)θ1(z− x− y |τ) and then using the same
argument that we used to derive Theorem 1.15, we can derive Theorem 1.16. Thus
we complete the proof of Theorem 1.16. �

12. Eisenstein series identities related to the modular equation of degree 7

We begin with the Laurent expansion of the logarithmic derivative of θ1 [Liu 2005,
page 8; Liu 2007, page 400].

Proposition 12.1. Let Bk be the Bernoulli numbers defined as in Definition 1.13,
and let E2k be the Eisenstein series defined as in Definition 1.14. Then we have

J1(z | τ)=
1
z
−

1
3

E2(τ )z−
1

45
E4(τ )z3

−
2

945
E6(τ )z5

+ · · ·

=
1
z
+

∞∑
k=1

(−1)k
22k B2k

(2k)!
E2k(τ )z2k−1.

Using the infinite product representations of theta functions, we deduce the next
proposition.

Proposition 12.2 [Enneper 1890, pages 246–250].

3∏
r=1

θ1

(
z+

rπ
7

∣∣∣τ)θ1

(
z−

rπ
7

∣∣∣τ)=− ∞∏
n=1

(1− qn)7

(1− q7n)

θ1(7z | 7τ)
θ1(z | τ)

,

3∏
r=1

θ1 (z− rπτ | 7τ) θ1(z+ rπτ | 7τ)=
∞∏

n=1

(1− q7n)7

(1− qn)

θ1(z | τ)
θ1(z | 7τ)

.

Logarithmically differentiating these equations with respect to z, we deduce the
next proposition.

Proposition 12.3.
3∑

r=1

(
Jr

(
z+ rπ

7

∣∣∣τ)+ Jr

(
z− rπ

7

∣∣∣τ))= 7J1(7z |τ)− J1(z |τ),

3∑
r=1

(Jr (z+rπτ |7τ)+ Jr (z−rπτ |7τ))= J1(z |τ)− J1(z |7τ).

Substituting the Laurent series in Proposition 12.1 into the right hand sides of
the two equations in Proposition 12.3 and equating like powers of z, we deduce
the next proposition.

Proposition 12.4.
3∑

r=1

J (2k−1)
r

(rπ
7

∣∣∣τ)= (−4)k−1

k
B2k(E2k(τ )− 72k E2k(7τ)),

3∑
r=1

J (2k−1)
r (rπτ | 7τ)=

(−4)k−1

k
B2k(E2k(7τ)− E2k(τ )).
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In particular,

(12-1)

3∑
r=1

J ′r
(rπ

7

∣∣∣τ)= 1
6(E2(τ )− 72 E2(7τ)),

3∑
r=1

J ′′′r

(rπ
7

∣∣∣τ)= 1
15(E4(τ )− 74 E4(7τ)),

3∑
r=1

J (5)r

(rπ
7

∣∣∣τ)= 8
63(E6(τ )− 76 E6(7τ)),

3∑
r=1

J ′r (rπτ | 7τ)=
1
6(E2(7τ)− E2(τ )),

3∑
r=1

J ′′′r (rπτ | 7τ)=
1

15(E4(7τ)− E4(τ )),

3∑
r=1

J (5)r (rπτ | 7τ)= 8
63(E6(7τ)− E6(τ )).

Using some trigonometric identities and some elementary and direct calculations,
we find that

(12-2)

3∑
r=1

(r
7

)
J1

(rπ
7

∣∣∣τ)=√7
(

1+ 2
∞∑

n=1

(n
7

) qn

1− qn

)
,

3∑
r=1

(r
7

)
J ′′1
(rπ

7

∣∣∣τ)= 8
√

7

(
8− 7

∞∑
n=1

(n
7

) n2qn

1− qn

)
,

3∑
r=1

(r
7

)
J (4)1

(rπ
7

∣∣∣τ)= 32
√

7
(

16+
∞∑

n=1

(n
7

) n4qn

1− qn

)
,

3∑
r=1

(r
7

)
J1(rπτ | 7τ)=−i

(
1+ 2

∞∑
n=1

(n
7

) qn

1− qn

)
,

3∑
r=1

(r
7

)
J ′′1 (rπτ | 7τ)= 8i

6∑
r=1

(r
7

) ∞∑
n=1

n2qrn

1− q7n ,

3∑
r=1

(r
7

)
J (4)1 (rπτ | 7τ)=−32i

6∑
r=1

(r
7

) ∞∑
n=1

n4qrn

1− q7n .

Motivated by Ramanujan’s work and [Liu 2003], Chan and Cooper [2008] gave
a systematic study of this type of series, and succeeded in expressing the series
584−

∑
∞

n=1
(n

7

)
n6qn/(1− qn) in terms of the Dedekind η-function.
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Now we will use Theorem 1.15 to prove the first two identities in Theorem 1.17.

Proof. Putting x = π/7, y = 2π/7 in Theorem 1.15, we immediately have

2E4(τ )+

3∑
r=1

J ′′′r

(rπ
7

∣∣∣τ)= 2
( 3∑

r=1

(r
7

)
J1

(rπ
7

∣∣∣τ))4

− 4
( 3∑

r=1

(r
7

)
J1

(rπ
7

∣∣∣τ))( 3∑
r=1

(r
7

)
J ′′1
(rπ

7

∣∣∣τ)).
Substituting the second identity in (12-1) and the first two identities in (12-2) into
this equation, we find that

1
15(31E4(τ )− 74 E4(7τ))= 98

(
1+ 2

∞∑
n=1

(n
7

) qn

1− qn

)4

− 32
(

1+ 2
∞∑

n=1

(n
7

) qn

1− qn

)(
8− 7

∞∑
n=1

(n
7

) n2qn

1− qn

)
.

Using Theorem 1.11 and Proposition 9.5 in the right side of this equation, we get

(12-3) 1
15(7

4 E4(7τ)− 31E4(τ ))

= 2λ−4/3(µ2
+ 13µ+ 49)1/3(79µ2

+ 147µ− 2401).

Replacing τ by −1/(7τ) in this equation and using the modular transformations

(12-4)
E4 (−1/τ)= τ 4 E4(τ ), E4 (−1/7τ)= 74τ 4 E4(τ ),

µ (−1/7τ)= 49µ−1(τ ), λ(−1/7τ)=−
√

7iτ−3η(7τ)/η7(τ ),

in the resulting equation, and simplifying, we deduce that

(12-5) 1
15 (E4(τ )− 31E4(7τ))= 2λ−4/3(µ2

+ 13µ+ 49)1/3(−µ2
+ 3µ+ 79).

Solving the linear system of equations (12-3) and (12-5) for E4(τ ) and E4(7τ) will
give the first two identities in Theorem 1.17. �

Proposition 12.5. Let
(r

7

)
be the Legendre symbol modulo 7. Then we have

3∑
r=1

(r
7

)
J (2k)

1

(rπ
7

∣∣∣ − 1
7τ

)
= (7τ)2k+1

3∑
r=1

(r
7

)
J (2k)

1 (rπτ | 7τ).

Proof. Logarithmically differentiating both sides of (10-1), we find that

J1

( z
τ

∣∣∣ − 1
τ

)
=

2i z
π
+ τ J1(z | τ).
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Differentiate this equation 2k(k ≥ 1) times with respect to z to deduce that

J (2k)
1

( z
τ

∣∣∣ − 1
τ

)
= τ 2k+1 J (2k)

1 (z | τ).

We replace τ by 7τ in the above and then set z = rπτ to conclude that

J (2k)
1

(rπ
7

∣∣∣ − 1
7τ

)
= (7τ)2k+1 J (2k)

1 (rπτ | 7τ).

Multiply this equation by the Legendre symbol
(r

7

)
and then sum the resulting

equation with respect to r over {1, 2, 3} to obtain the proposition. �

Now we will apply Proposition 12.5 to derive the following identity of Ramanujan
[Ramanujan 1988, page 145; Raghavan 1986].

Proposition 12.6. Let λ,µ be defined as in (1-3). Then we have
∞∑

n=1

(n
7

)qn(1+ qn)

(1− qn)3
= λ−1(µ+ 8).

Starting from this identity, Ramanujan [1988, page 145] derived the important
identity

∞∑
n=0

p(7n+ 5)qn
= 7

∞∏
n=1

(1− q7n)3

(1− qn)3
+ 49q

∞∏
n=1

(1− q7n)7

(1− qn)8
,

where p(n) denotes the number of unrestricted partitions of the positive integer n.
The identity above implies the Ramanujan congruence p(7n+ 5)≡ 0 (mod 7).

Proof. We compare Ramanujan’s identity in Proposition 9.5 with the second iden-
tity in (12-2) to find that

3∑
r=1

(r
7

)
J ′′1
(rπ

7

∣∣∣τ)= 8
√

7
λ−1(8µ2

+ 49µ).

Replacing τ by −1/(7τ) and then applying the modular transformation formulas
for λ and µ in (12-4), we deduce that

3∑
r=1

(r
7

)
J ′′1
(rπ

7

∣∣∣ − 1
7τ

)
= 2744iτ 3λ−1(µ+ 8).

Using the case k = 1 of Proposition 12.5 in the left hand side of this equation, we
find that

∑3
r=1
(r

7

)
J
′′

1 (rπτ |7τ)= 8iτ 3λ−1(µ+8). If we substitute the fifth identity
in (12-2) into this equation, we conclude that

(12-6)
6∑

r=1

(r
7

) ∞∑
n=1

n2qrn

1− q7n = λ
−1(µ+ 8),



386 ZHI-GUO LIU

which is equivalent to the Ramanujan identity in Proposition 12.6. �

In [Liu 2003, (1.18)], we established the identity

(12-7) 16+
∞∑

n=1

(n
7

) n4qn

1− qn = λ
−5/3(16µ2

+ 49µ)(µ2
+ 13µ+ 49)2/3.

Using the same argument used to get the Ramanujan identity in Proposition 12.6
from Proposition 9.5, we can deduce from (12-7) the following proposition.

Proposition 12.7.
6∑

r=1

(r
7

) ∞∑
n=1

n4qrn

1− q7n = λ
−5/3 (16+µ) (µ2

+ 13µ+ 49)2/3.

Now we are ready to prove the last two identities in Theorem 1.17 by employing
Theorem 1.16.

Proof. Setting x = π/7 and y = 2π/7 in Theorem 1.16, we immediately have

16E6(τ )+

3∑
r=1

J (5)r

(rπ
7

∣∣∣τ)= 40
( 3∑

r=1

(r
7

)
J1

(rπ
7

∣∣∣τ))3( 3∑
r=1

(r
7

)
J ′′1
(rπ

7

∣∣∣τ))

− 6
( 3∑

r=1

(r
7

)
J1

(rπ
7

∣∣∣τ))( 3∑
r=1

(r
7

)
J (4)1

(rπ
7

∣∣∣τ))

− 10
( 3∑

r=1

(r
7

)
J ′′1
(rπ

7

∣∣∣τ))2
− 16

( 3∑
r=1

(r
7

)
J1

(rπ
7

∣∣∣τ))6
.

Substituting the third identity in (12-1), and the first three identities in (12-2) into
this equation, and then dividing both sides by 8, we find that

1
63(127E6(τ )− 76 E6(7τ))= 280

(
1+ 2

∞∑
n=1

(n
7

) qn

1− qn

)3(
8− 7

∞∑
n=1

(n
7

) n2qn

1− qn

)

− 168
(

1+ 2
∞∑

n=1

(n
7

) qn

1− qn

)(
16+

∞∑
n=1

(n
7

) n4qn

1− qn

)

−
80
7

(
8− 7

∞∑
n=1

(n
7

) n2qn

1− qn

)2
− 686

(
1+ 2

∞∑
n=1

(n
7

) qn

1− qn

)6
.

Substituting the two identities in Theorem 1.11 and Proposition 9.5, (12-7) and the
identity in Proposition 12.7 into the right side of the equation above, and simpli-
fying, we conclude that

(12-8) 1
63(127E6(τ )− 76 E6(7τ))

=−λ−2( 13058
7 µ4

+ 27132µ3
+ 161210µ2

+ 605052µ+ 1647086
)
.
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The modular transformation formula for E6 [Apostol 1990, page 24] is

(12-9) E6(−1/τ)= τ 6 E6(τ ).

Replacing τ with −1/(7τ) in (12-8) and then using the modular transformation
formulas for E6, λ, and µ in (12-4) and (12-8), we deduce that

(12-10) 1
63(127E6(7τ)− E6(τ ))= λ

−2(2µ4
+36µ3

+470µ2
+3876µ+13058).

By solving the equations (12-8) and (12-10), we obtain the last two identities in
Theorem 1.17, completing the proof. �

13. Some trigonometric series identities

Proof of Theorems 1.18 and 1.19. We begin our proof by recalling the relation
θ1(z + πτ/2 | τ) = iq−1/8e−i zθ4(z | τ) satisfied by θ1 and θ4. Logarithmically
differentiating this identity, we are led to

J1(z+πτ/2 | τ)=−i + J4(z | τ), J (k)1 (z+πτ/2 | τ)= J (k)4 (z | τ) for k ≥ 1.

Taking y=πτ/2−x in Theorem 1.15, applying these two equations in the resulting
equation, and noting that J4(0 | τ)= J ′′4 (0 | τ)= 0, we find that

(13-1) 2E4(τ )+ J ′′′1 (x | τ)+ J ′′′4 (x | τ)+ J ′′′4 (0 | τ)

= 2(J1(x |τ)− J4(x |τ))4−4(J1(x |τ)− J4(x |τ))(J ′′1 (x |τ)− J ′′4 (x |τ)).

Appealing to the trigonometric series expansions of J1 and J4 in (3-10) and (4-14),
we find that

J1(x | τ)− J4(x | τ)= cot x − 4
∞∑

n=1

qn/2

1+ qn/2 sin 2nx,

J ′′1 (x | τ)− J ′′4 (x | τ)= 2 cot x + 2 cot3 x + 16
∞∑

n=1

n2qn/2

1+ qn/2 sin 2nx,

J ′′′1 (x | τ)+ J ′′′4 (x | τ)=−2− 8 cot2 x − 6 cot4 x − 32
∞∑

n=1

n3qn/2

1− qn/2 cos 2nx,

J ′′′4 (0 | τ)=−32
∞∑

n=1

n3qn/2

1− qn .

Substituting these four equations into (13-1) and replacing q by q2 and x by z, we
are led to Theorem 1.18.

Similarly, by taking y = π/2 − x in Theorem 1.15 and proceeding through
the same steps as in deducing Theorem 1.18 from Theorem 1.15, we can obtain
Theorem 1.19. �
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14. A theta function identity involving theta functions and the η-function

Proof of Theorem 1.20. To prove Theorem 1.20 we construct the function

F(z)=
θ1(3z | τ)θ2

1 (z | τ)
θ1(2z | τ)θ1(7z | 7τ)

.

It is easy to verify that F(z) is an elliptic function with periods π and πτ . It is
easily seen that

z1 =
π
2
, z2 =

π+πτ
2

, z3 =
πτ
2
, z4 =

π
7
, z5 =

2π
7
, . . . , z9 =

6π
7

are the only poles of F(z) and that all these poles are simple. By direct and ele-
mentary calculations, we find that

res(F; z1)= lim
z→π/2

(z−π/2)×
θ1(3z | τ)θ2

1 (z | τ)
θ1(2z | τ)θ1(7z | 7τ)

=−
θ3

2 (0 | τ)
4η3(τ )θ2(0 | 7τ)

.

In the same way, we have

res(F; z2)=
θ3

3 (0 | τ)
4η3(τ )θ3(0 | 7τ)

,

res(F; z3)=−
θ3

4 (0 | τ)
4η3(τ )θ4(0 | 7τ)

,

res(F; z4)= res(F; z9)=−
η2(τ )

2
√

7η2(7τ))

θ1(π/7 | τ)
θ2

1 (2π/7 | τ)
,

res(F; z5)= res(F; z8)=
η2(τ )

2
√

7η2(7τ)

θ1(2π/7 | τ)
θ2

1 (3π/7 | τ)
,

res(F; z6)= res(F; z7)=
η2(τ )

2
√

7η2(7τ)

θ1(3π/7 | τ)
θ2

1 (π/7 | τ)
.

Substituting these equations into the identity
∑9

k=1 res(F; zk)= 0 and simplifying,
we conclude that

θ3
2 (0 | τ)
θ2(0|7τ)

−
θ3

3 (0 | τ)
θ3(0|7τ)

+
θ3

4 (0 | τ)
θ4(0|7τ)

=
4η5(τ )
√

7η2(7τ)

(
θ1(3π/7 | τ)
θ2

1 (π/7 | τ)
−
θ1(π/7 | τ)
θ2

1 (2π/7 | τ)
+
θ1(2π/7 | τ)
θ2

1 (3π/7 | τ)

)
.

In view the definitions of u, v, and w in (8-1), we find (8-19) can be rewritten as(
θ1(3π/7 | τ)
θ2

1 (π/7 | τ)
−
θ1(π/7 | τ)
θ2

1 (2π/7 | τ)
+
θ1(2π/7 | τ)
θ2

1 (3π/7 | τ)

)3

= 7
√

7η−9(τ )λ−1(µ2
+13µ+49).

Combining the above two equations, we complete the proof of Theorem 1.20. �
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