
Pacific
Journal of
Mathematics

A GENERALIZATION OF THE PONTRYAGIN–HILL
THEOREMS TO PROJECTIVE MODULES
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Volume 246 No. 2 June 2010



PACIFIC JOURNAL OF MATHEMATICS
Vol. 246, No. 2, 2010

A GENERALIZATION OF THE PONTRYAGIN–HILL
THEOREMS TO PROJECTIVE MODULES

OVER PRÜFER DOMAINS

JORGE MACÍAS-DÍAZ

To Professor Patricia Arias Muñoz
on the occasion of her 39th academic anniversary.

Motivated by the Pontryagin–Hill criteria of freeness for abelian groups, we
investigate conditions under which unions of ascending chains of projective
modules are again projective. We prove several extensions of these criteria
for modules over arbitrary rings and domains, including a genuine gener-
alization of Hill’s theorem for projective modules over Prüfer domains with
a countable number of maximal ideals. More precisely, we prove that, over
such domains, modules that are unions of countable ascending chains of
projective, pure submodules are likewise projective.

1. Introduction

In the last century, Lev Pontryagin and Paul Hill studied conditions under which
torsion-free abelian groups are free. A crucial concept was purity of subgroups: A
subgroup H of an abelian group G is pure if every equation of the form kx=a∈H ,
with k ∈ Z, is solvable in H whenever it is solvable in G. Equivalently, solvability
in G of each system of equations of the form

(1-1)
m∑

j=1

ki j x j = ai ∈ H for i = 1, . . . , n,

with every ki j ∈ Z, implies its solvability in H .
In [1934], Pontryagin proved that a countable, torsion-free abelian group is free

if and only if every finite rank, pure subgroup is free. Equivalently, every prop-
erly ascending chain of pure subgroups of finite rank is finite. From the proof of
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this result, it follows that a torsion-free abelian group G is free if there exists an
ascending chain

(1-2) 0= G0 ↪→ G1 ↪→ · · · ↪→ Gn ↪→ · · · , where n < ω,

consisting of pure subgroups of G whose union is equal to G, such that every Gn

is free and countable.
Later, in [1970], Hill established that, in order for an abelian group G to be free,

it is sufficient to prove that it is the union of a countable ascending chain (1-2) of
free, pure subgroups. In other words, Hill proved that the condition of countability
on the cardinality of the links Gn in Pontryagin’s theorem was superfluous. The
proof relies on some important facts about commutative groups, one of them being
that subgroups of torsion-free abelian groups can be embedded in pure subgroups
of the same rank. Applications of these criteria may be actually found in a variety
of algebraic results [Cornelius 1971; Eklof 1976; Eklof and Shelah 2001; Mekler
and Shelah 1993].

In view of the importance of the Pontryagin–Hill theorems in algebra, it is highly
desirable to generalize these criteria to the more general scenario of projective mod-
ules over suitable rings. With that purpose in mind, this paper establishes positive
answers in the search for extensions of these theorems. Section 2 states some
useful results concerning relative divisibility, purity, projectivity and localizations
of modules. In Section 3, we prove some propositions related to classes of families
of sets that are relevant to our investigation, while Section 4 presents the general-
izations of the Pontryagin–Hill criteria to projective modules over semihereditary
domains.

2. Preliminaries

By a ring we mean a ring with an identity element, and by an integral domain
or, simply, a domain, we understand a commutative ring without divisors of zero.
In this context, a Prüfer domain is a semihereditary domain, that is, a domain in
which finitely generated ideals are projective.

Over an integral domain, any two maximal independent subsets of a torsion-free
module have the same cardinality, the common cardinal number being called the
rank of the module. Clearly, if a torsion-free module over a domain has rank at
most κ , for some cardinal number κ , then every submodule also has rank at most κ .
Moreover, if a torsion-free module over an integral domain is at most κ-generated,
then it has rank less than or equal to κ .

2.1. Pure submodules. Let R be a ring. We say a submodule N of an R-module
M is relatively divisible if the inclusion N ∩ r M ↪→ r N holds for every r ∈ R.
Equivalently, solvability in M of equations of the form r x = a ∈ N , with r ∈ R,
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implies their solvability in N . We say that N is pure in M if every finite system

(2-1)
m∑

j=1

ri j x j = ai ∈ N for i = 1, . . . , n

of equations, with ri j ∈ R, is solvable in N whenever it is solvable in M . Under
these circumstances, a short-exact sequence 0→ N → M→ Q→ 0 is RD-exact
(respectively, pure-exact) if N is a relatively divisible (respectively, pure) submod-
ule of M . Evidently, purity implies relative divisibility, and they both coincide
for modules over Prüfer domains [Warfield 1969]. Moreover, Prüfer domains are
the only integral domains for which relative divisibility and purity are equivalent
[Cartan and Eilenberg 1999].

The conditions of relative divisibility and purity have many interesting proper-
ties. For instance, they are closed under unions of ascending chains of arbitrary
lengths. Also, the intersection of relatively divisible submodules of a torsion-free
module M is again relatively divisible. Thus, for every subset X of M , there exists
a smallest relatively divisible submodule of M containing X , called the relatively
divisible hull of X . For torsion-free modules over Prüfer domains, this submodule
of M is called the purification of X in M , in view that it coincides with the smallest
pure submodule 〈X〉∗ of M containing X . It is worth noticing that, over integral
domains, the relatively divisible hull of a submodule has the same rank as the
submodule itself. For proofs of these and more properties on relative divisibility
and purity of modules, refer to [Fuchs and Salce 2001, Sections I.7 and I.8].

2.2. Projective modules. Some elementary results on projective modules will be
needed in the present work. For simplicity, modules are defined over an integral
domain R unless stated otherwise.

The following result for modules over domains is of utmost importance. It was
generalized by Endo [1962] to more general settings. Indeed, a more general result
states that finitely presented, flat modules over arbitrary rings are projective.

Theorem 1 [Cartier 1958]. Finitely generated, flat modules over integral domains
are projective.

Let B be a flat module. Our next result uses the fact [Fuchs and Salce 2001,
Lemma VI.9.1] that an exact sequence 0→ A→ B→C→ 0 is pure-exact if and
only if C is flat.

Lemma 2. Every finite rank, pure submodule of a projective module over an inte-
gral domain is a finitely generated, projective module.

Proof. Let A be a finite rank, pure submodule of a projective module M . Without
loss of generality, we can assume that M is a free module and that it is of finite
rank. This means that M is finitely generated. Now, the purity of A implies that
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M/A is a finitely generated, flat module. By Theorem 1, A is a direct summand
of M and hence is a finitely generated, projective module. �

Lemma 3. Every countable rank, pure submodule of a projective module over an
integral domain is contained in a countably generated submodule.

Proof. Let A be a countable rank, pure submodule of the projective module M .
Then there exists a free module F which contains M as a direct summand. So
A is pure in F and is contained in a countably generated, free summand N of F .
Then, the image of N under the projection homomorphism of F onto M is again
countably generated and contains A. �

Corollary 4. Over integral domains, projective modules of countable rank are
countably generated.

Corollary 5. Every countably generated module of projective dimension at most 1
over an integral domain is countably presented.

2.3. Localizations. Throughout this section, R will represent an integral domain.
Here, we obey the tradition of representing the localization of a torsion-free module
M at a multiplicatively closed set S ⊆ R by MS , and the localization of M at the
complement of a prime ideal P of R by MP . We denote by D(M) the localization
of M with respect to R \ 0, and the set of maximal ideals of R by max R.

Lemma 6. Let R have countably many maximal ideals. A torsion-free R-module
M is countably generated if and only if the localization of M at every maximal
ideal P of R is a countably generated RP -module.

Proof. We only need to prove that the given condition is sufficient. For each
maximal ideal P of R, choose a countable generating set of the RP -module MP ,
consisting of elements of the form an

P/1, with an
P ∈ M , for every n < ω. Let M ′

be the R-submodule of D(M) generated by

(2-2) Y =
⋃

P∈max R

{an
P/1 : n < ω}.

Obviously, Y is contained in M , and therefore M ′ is contained in M as a sub-
module. Moreover, for every maximal ideal P of R, we have that MP = M ′P as
RP -modules; consequently, M = M ′. �

Proposition 7. Let R be any integral domain that is not a field, and let S be a
countably infinite, multiplicatively closed subset of R that does not contain any
unit of R. Then, there exists a countable ascending chain

(2-3) 0= M0 ↪→ M1 ↪→ · · · ↪→ Mn ↪→ · · · , where n < ω,

of submodules of the R-module J = RS , such that
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(i) every Mn is projective,

(ii) none of the Mn is pure in J , and

(iii) J =
⋃

n<ω Mn .

Proof. Let S = {sn : n ∈ Z+}. For every positive integer n, let Mn be the R-
submodule of J given by

(2-4) Mn =

〈 1
s1 · · · sn

〉
∼= R.

Obviously the sequence {Mn}n<ω forms an ascending chain (2-3) of R-modules
satisfying (i) and (iii). To establish (ii), it suffices to prove that every Mn is not
relatively divisible in M . Indeed, observe that the equation

(2-5) sn+1x = 1
s1 · · · sn

is solvable in the torsion-free R-module J , the only solution being

(2-6) x = 1
s1 · · · snsn+1

.

However, (2-5) is not solvable in Mn , so Mn is not pure in M . �

The existence of the set S in Proposition 7 is guaranteed for every integral
domain R that is not a field. For instance, S can be the set of all positive integer
powers of a nonzero, noninvertible element of R.

Proposition 8. Let R be an integral domain that is not a field, and let S be a
countably infinite, multiplicatively closed subset of R that does not contain any
unit of R. Then there exists a pure-exact sequence

(2-7) 0→ H → F→ J → 0,

with H and F free R-modules of countably infinite rank, and J = RS .

Proof. Proposition 7 guarantees the existence of a countable ascending chain (2-3)
of projective R-modules whose union equals J , and it follows by Auslander’s
lemma [1955] that pdR J ≤ 1. However, J is an infinitely generated localization
of R, so it cannot be projective. As a consequence, J is a flat module of projec-
tive dimension 1, and since it is countably generated, it is countably presented by
Corollary 5. Thus, there exists a pure-exact sequence

(2-8) 0→ P→ F→ J → 0

of R-modules, with P a countably generated, projective module, and F a free
module of countably infinite rank. By a well-known result of Eilenberg [Fuchs and
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Salce 2001, Exercise 1.1 in Chapter VI], there exists a free module H of countably
infinite rank such that P ⊕ H ∼= H . Therefore, the induced sequence

(2-9) 0→ P ⊕ H → F ⊕ H → J → 0

is pure-exact. The conclusion follows after noting F ⊕ H is isomorphic to F . �

It is important to keep in mind that the R-module J in Proposition 8 is not
projective. Also, it is useful to point out that localizations of Prüfer domains are
again Prüfer domains; particularly, localizations of Prüfer domains at prime ideals
are valuation domains [Fuchs and Salce 2001].

3. Families of modules

A G(ℵ0)-family of a module M over a ring R is a family B consisting of submod-
ules of M the properties that

(i) 0,M ∈B,

(ii) B is closed under unions of ascending chains of arbitrary lengths, and

(iii) for every A0∈B and every countable set H⊆M , there exists A∈B containing
A0 and H , such that A/A0 is countably generated.

Clearly, an intersection of a countable number of G(ℵ0)-families of submodules of
M is again a G(ℵ0)-family of submodules of M . Examples of G(ℵ0)-families are
axiom-3 families. By an axiom-3 family of M we mean a family B of submodules
of M satisfying (i) and (iii) above, plus the property that

(ii)′ B is closed under arbitrary sums.

A G(ℵ0)-family of submodules of M is a tight system if, in addition,

(iv) pdR A ≤ 1 and pdR(M/A)≤ 1 for every A ∈B.

It is worth mentioning that every module has a G(ℵ0)-family of submodules,
namely, the collection of all its submodules. However, the existence of a G(ℵ0)-
family of pure submodules is not guaranteed in general for every R-module, not
even when R is an integral domain. However, over a valuation domain, a torsion-
free module of projective dimension less than or equal to 1 has a tight system of
pure submodules [Bazzoni and Fuchs 1984]. In the proof of the following result, we
use ideas previously applied in the investigation of the freeness of abelian groups
[Hill 1973; 1974], and Butler groups of infinite rank [Bican and Rangaswamy
1998; Bican et al. 2000].

Theorem 9. Let R be a Prüfer domain with a countable number of maximal ideals.
Every torsion-free R-module of projective dimension at most equal to 1 has a
G(ℵ0)-family of pure submodules.
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Proof. Let {Pn}n∈Z+ be all the maximal ideals of R, and let M be a torsion-free
R-module of projective dimension at most equal to 1. For every positive integer n,
the module MPn is torsion-free of projective dimension at most equal to 1 over the
valuation domain RPn , and so it has a G(ℵ0)-family Bn consisting of pure RPn -
submodules. Clearly, every Bn is also a family of pure submodules of MPn when
considered as an R-module.

Let

(3-1) B′n =Bn ∩M = {A∩M : A ∈Bn} for n ∈ Z+.

Obviously, every B′n is a family of pure R-submodules of M that is closed under
unions of ascending chains, such that 0,M ∈ B′n . Therefore, the intersection B

of all families B′n is a family of pure R-submodules of M satisfying properties (i)
and (ii) of a G(ℵ0)-family, and we only need to prove (iii).

Let B0∈B, and let H0⊆M be a countable set. For every positive integer n, there
exists A0

n ∈Bn such that B0 = A0
n ∩M . Our argument hinges on the construction

of a countable ascending chain

(3-2) B0 ↪→ B1 ↪→ · · · ↪→ Bm ↪→ · · · , where m < ω,

of submodules of the R-module M , such that

(a) H0 is contained in B1, and

(b) Bm+1 has countable rank over Bm for every m < ω.

More precisely, for every m<ω, Bm+1 is the union of a countable ascending chain

(3-3) Bm = Bm+1
0 ↪→ Bm+1

1 ↪→ · · · ↪→ Bm+1
k ↪→ · · · , where k < ω,

of pure R-submodules of M , satisfying, for every k < ω,

(cm) Bm+1
k = Am+1

k ∩M with Am+1
k ∈Bk ,

(dm) Am+1
k is a countably generated RPk -module over A0

k , and

(em) Bm+1
k has countable rank over B0.

Assume that the links of the finite ascending chain

(3-4) B0 ↪→ B1 ↪→ · · · ↪→ Bm

have been constructed as desired, for some m < ω. Moreover, let n < ω and
assume that the links of countable ascending chain (3-3) have also been constructed
as required, for every k ≤ n. Choose a complete set of representatives Gm

n+1 of
a countable generating system of the RPn+1-module Am

n+1 modulo A0
n+1, and a

complete set of representatives H m+1
n of a maximal independent system of the R-

module Bm+1
n modulo B0. Then, there exists Am+1

n+1 ∈Bn+1 containing both A0
n+1

and Gm
n+1 ∪ H m+1

n ∪ H0, such that Am+1
n+1 is a countably generated RPn+1-module
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over A0
n+1. (This procedure ensures that B1

1 will be a module of countable rank
over B0, and that B1

1 contains H0.)
Let Bm+1

n+1 = Am+1
n+1 ∩M . Properties (cm) and (dm) are then satisfied for k= n+1.

Moreover, since the R-module Am+1
n+1 has countable rank over A0

n+1,

(3-5)
Bm+1

n+1

B0

∼=
A0

n+1+ (A
m+1
n+1 ∩M)

A0
n+1

↪→
Am+1

n+1

A0
n+1

is also a countable rank R-module, so property (em) is also satisfied for k = n+1.
By induction, we construct the countable ascending chain (3-3) with the desired
properties, and let Bm+1 be the union of the links of such chain.

Inductively, we construct a countable ascending chain (3-2) with the desired
properties. Then B =

⋃
m<ω Bm is an R-submodule of M that contains B0 and H0,

and

(3-6) B =
⋃

m<ω

⋃
k<ω

(Am
k ∩M)=

(⋃
m<ω

Am
n

)
∩M for n ∈ Z+.

The fact that
⋃

m<ω Am
n ∈Bn for every index n implies that B ∈B.

To prove that B/B0 is a countably generated R-module, observe that exactness
of the localization functors yields that

(3-7)
(

B
B0

)
Pn

=

( ⋃
m<ω

(Am
n ∩M)

)
Pn

(A0
n ∩M)Pn

=

⋃
m<ω

Am
n

A0
n

for n < ω

is a countably generated RPn -module. Lemma 6 implies now that B/B0 is count-
ably generated. �

For the rest of this section, we will assume that M is a torsion-free module
over a Prüfer domain, for which there exists a countable ascending chain (2-3) of
submodules, such that

(P1) every Mn is relatively divisible in M ,

(P2) every Mn has a G(ℵ0)-family Bn of relatively divisible submodules,

(P3) every factor module Mn+1/Mn has a G(ℵ0)-family Cn of relatively divisible
submodules, and

(P4) M =
⋃

n<ω Mn .

Lemma 10. For every n < ω, the collection

(3-8) B′n =

{
A ∈Bn :

(A+M j )∩M j+1

M j
∈ C j for every j < n

}
is a G(ℵ0)-family of relatively divisible submodules of Mn .
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Proof. The collection B′n clearly satisfies conditions (i) and (ii) of a G(ℵ0)-family
of submodules of Mn . So, let A0 ∈ B′n , and let H0 ⊆ Mn be a countable set. We
will construct an ascending chain

(3-9) A0 ↪→ A1 ↪→ · · · ↪→ Am ↪→ · · · , where m < ω,

of submodules of Mn , such that

(a) A1 contains H0,

(b) Ai ∈Bn for every i < ω,

(c) Ai+1/Ai is countably generated for every i < ω, and

(d) for every i < ω and j < n, there exists a module Ki, j/M j ∈ C j such that

(3-10)
(Ai +M j )∩M j+1

M j
↪→

Ki, j

M j
↪→

(Ai+1+M j )∩M j+1

M j
.

To start with, we let K0, j = (A0 + M j ) ∩ M j+1 for every j < n. In general,
suppose that, for some m < ω, the links of the finite chain

(3-11) A0 ↪→ A1 ↪→ · · · ↪→ Am

have been constructed as desired. Since Am/A0 is countably generated, we can
choose a countable set of representatives X j ⊆ M j+1 of a maximal independent
system of the purification of (Am + M j ) ∩ M j+1 modulo (A0 + M j ) ∩ M j+1 for
every j < n. For each such j , there exists Km, j/M j ∈ C j containing both the
module ((A0+M j )∩M j+1)/M j and the quotient set X j modulo M j , such that

(3-12)
Km, j/M j

((A0+M j )∩M j+1)/M j

∼=
Km, j

(A0+M j )∩M j+1

is countably generated. Thus, it is readily checked that the first inclusion of (3-10)
is satisfied for i = m.

For every j < n, let H m
j ⊆ Km, j be a complete set of representatives of a

countable generating system of Km, j modulo (A0 + M j ) ∩ M j+1. Then, there
exists Am+1 ∈Bn containing both Am and H0 ∪ (

⋃
j<n H m

j ), such that Am+1/Am

is countably generated. Our construction guarantees that

(3-13)
Km, j

(A0+M j )∩M j+1
↪→

(Am+1+M j )∩M j+1

(A0+M j )∩M j+1
for j < n,

so the second inclusion of (3-10) is satisfied also for i = m.
Inductively, we construct an ascending chain (3-9) of submodules of Mn , satis-

fying (a), (b), (c) and (d) above. Then, the module A =
⋃

m<ω Am is a member of
Bn that contains A0 and H0, and is countably generated over A0. Also note that
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property (d) implies that

(3-14)
(A+M j )∩M j+1

M j
=

⋃
i<ω

(Ai +M j )∩M j+1

M j
=

⋃
i<ω

Ki, j

M j
∈C j for j < n.

Consequently, A ∈B′n , as desired. �

Next, we construct a G(ℵ0)-family of relatively divisible submodules of M .

Lemma 11. The collection

(3-15) B= {A ↪→ M : A∩Mn ∈B′n for every n < ω}

is a G(ℵ0)-family of relatively divisible submodules of M.

Proof. Again, conditions (i) and (ii) in the definition of a G(ℵ0)-family are obvious.
So, let A0∈B, and let H0 be a countable subset of M . We will construct a countable
ascending chain

(3-16) A0 ↪→ A1 ↪→ · · · ↪→ An ↪→ · · · , where n < ω,

of submodules of M , such that

(a) A1 contains H0, and

(b) the factor module An/A0 is countably generated for every n < ω.

More precisely, for every n < ω, the module An is the union of a countable as-
cending chain

(3-17) 0= An
0 ↪→ An

1 ↪→ · · · ↪→ An
k ↪→ · · · , where k < ω,

of submodules of M , for which

(cn) An
k ∈B′k , for every k < ω,

(dn) An
k is countably generated over A0 ∩Mk , for every k < ω, and

(en) An
k ↪→ An ∩Mk ↪→ An+1

k , for every k < ω.

Let A0
k = A0 ∩Mk , for every k <ω. Obviously, A0 is the union of chain (3-17)

with n = 0, and properties (c0) and (d0) are satisfied, as well as the first inclusion
of (e0). So, let m be now any nonnegative integer, and suppose that the links of
chain (3-16) have been constructed as needed, for every n ≤ m. Condition (b)
implies that the module

(3-18)
Am ∩Mk

A0 ∩Mk

∼=
A0+ (Am ∩Mk)

A0
↪→

Am

A0
for k < ω

has countable rank. Choose then a countable set Y m
k ⊆ Mk of representatives of

a maximal independent system of the purification of (Am ∩ Mk)/(A0 ∩ Mk) in
M/(A0 ∩ Mk). Clearly, there exists Bm

k ∈ B′k containing both A0 ∩ Mk and Y m
k ,
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such that Bm
k is countably generated over A0 ∩Mk ; so, we may fix a complete set

of representatives H m
k ⊆ Bm

k of a countable generating set of Bm
k modulo A0∩Mk .

Moreover, since Bm
k is relatively divisible in M ,

(3-19)
〈

Am ∩Mk

A0 ∩Mk

〉
∗

↪→
Bm

k

A0 ∩Mk
↪→

Mk

A0 ∩Mk
for k < ω.

Let k be a nonnegative integer. Assume that the links of the finite chain

(3-20) 0= Am+1
0 ↪→ Am+1

1 ↪→ · · · ↪→ Am+1
k

have been constructed as required, and let Xk ⊆ Mk be a complete set of repre-
sentatives of a countable generating system of Am+1

k modulo A0∩Mk . Lemma 10
implies that there exists Am+1

k+1 ∈B′k+1 that contains A0∩Mk+1 and the countable set
Xk ∪H m

k+1∪ (H0∩Mk+1), such that Am+1
k+1 is countably generated over A0∩Mk+1.

Inductively, we can construct a countable ascending chain (3-17), with n=m+1,
and define the module Am+1 as the union of the links of (3-17) so that conditions
(cm+1), (dm+1) and (em+1) are satisfied. Moreover, our construction guarantees
that Am is contained in Am+1. Furthermore, the fact that Am+1/A0 is countably
generated follows from the isomorphism

(3-21)
Am+1

k

A0 ∩Mk

∼=
A0+ (Am+1

k ∩Mk)

A0
for k < ω.

Indeed, the left side of (3-21) is countably generated by properties (dm+1), so that
the union over all indexes k < ω of the modules in the right side is countably
generated too.

By induction, a countable ascending chain (3-16) satisfying properties (a) and (b)
is constructed. The module A =

⋃
n<ω An contains A0 and H0, and is countably

generated over A0. Moreover, properties (cn) and (en) yield that

(3-22) A∩Mk =
⋃
n<ω

(An ∩Mk)=
⋃
n<ω

An
k ∈B′k for k < ω.

Consequently, A ∈B. �

Lemma 12. A+Mn is relatively divisible in M for every A ∈B and n < ω.

Proof. It is enough to prove that (A+ Mn) ∩ Mk is relatively divisible in M for
every k > n. First of all, observe that A ∩ Mn+1 ∈ B′n+1, whence it follows that
(A+ Mn) ∩ Mn+1 is likewise relatively divisible in M for every n < ω. So, our
claim is true for k = n+ 1.

Assume now that (A+ Mn) ∩ Mk is relatively divisible in M for some k > n.
The modular law and the isomorphism theorem yield that

(3-23)
(A+Mk)∩Mk+1

(A+Mn)∩Mk+1

∼=
Mk

(A+Mn)∩Mk
.
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The last module in (3-23) is torsion-free, so that the first is also. This implies
that (A+ Mn) ∩ Mk+1 is relatively divisible in (A+ Mk) ∩ Mk+1. Finally, since
(A+Mk)∩Mk+1 is relatively divisible in M , we conclude that (A+Mn)∩Mk+1

is also relatively divisible in M . Our claim follows now by induction. �

4. A generalization of Hill’s theorem

We now use the generalization of Pontryagin’s criterion of freeness to projective
modules, presented as [Fuchs and Salce 2001, Theorem 1.3, Chapter XVI], in order
to provide a generalization of Hill’s criterion of freeness. Particularly, we use the
fact that a countable rank, torsion-free module over a Prüfer domain is projective
if and only if every finite rank, pure submodule is projective.

It is important to mention first that the problem of generalizing Hill’s criterion
was attacked previously in [Fuchs and Salce 2001, Theorem 1.4, Chapter XVI].
However, the proof of that version of Hill’s theorem for projective modules is
wrong, one serious problem being that it is not generally true that the modules
U1 ∩Mν in the proof of Lemma XVI.1.6 have rank less than or equal to κ .

Here is our generalization of Hill’s theorem to projectivity of modules over
Prüfer domains:

Theorem 13. A module M over a Prüfer domain is projective if there exists a
countable ascending chain

(4-1) 0= M0 ↪→ M1 ↪→ · · · ↪→ Mn ↪→ · · · , where n < ω,

of submodules of M , such that

(i) every Mn is projective,

(ii) every Mn is pure in M ,

(iii) every factor Mn+1/Mn admits a G(ℵ0)-family Cn of pure submodules, and

(iv) M =
⋃

n<ω Mn .

In this paragraph, assume the hypotheses of Theorem 13. By Kaplansly’s theorem
on decomposition of projective modules over Prüfer domains, every module Mn

can be written as the direct sum of finitely generated modules Mn
α , for α in a set

of indices �n . Clearly, the set

(4-2) Bn = {A ↪→ Mn : A =
⊕

α∈3 Mn
α for some 3⊆�}

is an axiom-3 family of direct summands of Mn for every n<ω. By Lemma 10, the
collection B′n given by (3-8) is a G(ℵ0)-family of relatively divisible submodules
of Mn . Moreover, Lemmas 11 and 12 state that the family B provided by (3-15)
is a G(ℵ0)-family of relatively divisible submodules of M , such that A + Mn is
relatively divisible in M for every A ∈B and every n < ω.
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Lemma 14. For every A ∈B, finite rank, pure submodules of M/A are projective.

Proof. Let D be a submodule of M containing A such that D/A is a finite rank, pure
submodule of M/A. Choose a maximal independent system {di+ A : i = 1, . . . , n}
of D/A, and let S = {d1, . . . , dn} ⊆ D. Let k ∈ Z+ be such that S ⊆ Mk . Since
A+Mk is pure, D ↪→ A+Mk . So, D/A ↪→ (A+Mk)/A∼= Mk/(A∩Mk), which
is projective. By Lemma 2, D/A is likewise projective. �

Proof of Theorem 13. Let α be any nonzero ordinal, and let

(4-3) 0= A0 ↪→ A1 ↪→ · · · ↪→ Aγ ↪→ Aγ+1 ↪→ · · · , where γ < α,

be an ascending chain of modules in B such that every factor module Aγ+1/Aγ is
projective. If α is a limit ordinal, we let Aα =

⋃
γ<α Aγ . Otherwise, if there exists

x ∈ M \ Aα−1, we can pick a module Aα ∈B that contains x and Aα−1, such that
Aα/Aα−1 has countable rank. By Lemma 14, finite rank, pure submodules of the
torsion-free module Aα/Aα−1 are projective, so that Aα/Aα−1 itself is projective.
So, transfinite induction provides a continuous, well-ordered, ascending chain

(4-4) 0= A0 ↪→ A1 ↪→ · · · ↪→ Aα ↪→ Aα+1 ↪→ · · · , where α < τ,

of submodules of M . This chain satisfies the hypotheses of [Fuchs and Salce 2001,
Lemma XVI.1.1]. Consequently, M is projective. �

Corollary 15. Let R be a Prüfer domain with a countable number of maximal
ideals. An R-module M is projective if there exists a countable ascending chain
(4-1) of projective, pure submodules of M such that M =

⋃
n<ω Mn .

Proof. For every n < ω, Mn+1 is torsion-free and contains Mn as a pure sub-
module, so Mn+1/Mn is a torsion-free module of projective dimension at most 1.
Then, every factor module of (4-1) admits a G(ℵ0)-family of pure submodules by
Theorem 9. By Theorem 13, M is projective. �

Because valuation domains have a unique maximal ideal, Corollary 15 can be
obviously improved:

Corollary 16. Let M be a module over a valuation domain. If there exists a count-
able ascending chain (4-1) of free, pure submodules of M whose union is equal
to M , then M itself is free.

Let λ be an infinite cardinal number. We say that a module is λ-free if each of
its submodules of rank less than λ can be embedded in a free, pure submodule.

Corollary 17. Let λ be an infinite cardinal with co-finality equal to ω. Every
torsion-free, λ-free module of rank λ over a valuation domain is free.
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Proof. Let M be a torsion-free, λ-free module over a valuation domain, and let
X = {aα ∈ M : α < λ} be a maximal independent set in M , and let

(4-5) λ0 < λ1 < · · ·< λn < · · · , where n < ω,

be a sequence of ordinals whose union is λ. For every n < ω, the purification in
M of the set {aα ∈ M : α < λn} has rank less than λ, and so it is contained in a
free, pure submodule Mn of M . Obviously, the modules {Mn}n<ω may be chosen
to form a countable ascending chain of submodules of M whose union contains X .
The conclusion of this result follows now from Corollary 16. �

We remark in closing that we still do not know whether it is possible to extend
Theorem 13 to projectivity of modules over integral domains in general.
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