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We study the solutions of equations of type f (D, «)u = v, where f(D, o)
is a p-adic pseudodifferential operator. If v is a Bruhat-Schwartz function,
there exists a distribution E,, a fundamental solution, such that u = E, % v is
a solution. However, it is unknown to which function space E, # v belongs.
We show that if f(D, ) is an elliptic operator, then u = E, % v belongs
to a certain Sobolev space, and we give conditions for the continuity and
uniqueness of . By modifying the Sobolev norm, we establish that f (D, &)
gives an isomorphism between certain Sobolev spaces.

1. Introduction

In recent years p-adic analysis has received much attention due to its applications in
mathematical physics; see [Albeverio and Karwowski 1994; Avetisov et al. 2002;
Avetisov et al. 2003; Khrennikov 1994; 1997; Kochubei 1993; Rammal et al. 1986;
Varadarajan 1997; Vladimirov et al. 1994] and references therein. Many new math-
ematical matters have emerged, among them, p-adic pseudodifferential equations
[Albeverio et al. 2006; Chuong and Co 2008; Khrennikov 1992; Kochubei 1991;
1993; 1998; 2001; 2008, Rodriguez-Vega and Zuiiga-Galindo 2008; Vladimirov
et al. 1994; Zuiiga-Galindo 2003; 2004; 2008]. Here we study the solutions of
p-adic elliptic pseudodifferential equations on Sobolev spaces.
A pseudodifferential operator f(D, f8) is an operator of the form

(f(D,0)p)(x) =F-L (| f (OIS Frmcp(x)) forges,

where & denotes the Fourier transform, o is a positive real number, S denotes the
C-vector space of Bruhat—Schwartz functions over @’;,, and (&) € Qpl&, ..., 4l
If f(¢) is a homogeneous polynomial of degree d satistying f(¢) = 0 if and only
if £ = 0, then the corresponding operator is called an elliptic pseudodifferential
operator. This operator is considered to be a p-adic analogue of a linear partial
elliptic differential operator with constant coefficients. A p-adic pseudodifferential
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equation is an equation of type f(D, a)u =v. If v € S, there is a distribution E,,
a fundamental solution, such that u = E, x v is a solution. Zufiga-Galindo [2003]
established the existence of a fundamental solution for general pseudodifferential
operators by adapting the proof given by Atiyah [1970] for the Archimedean case.
However, it is unknown to which function space E, * v belongs. Here, we show
that if f(D, a) is an elliptic operator, then u = E, *v belongs to a certain Sobolev
space (see Theorem 19), and we give conditions for the continuity and uniqueness
of u. By modifying the Sobolev norm, we can establish that f(D, a) gives an
isomorphism between certain Sobolev spaces; see Propositions 22 and 23 and
Theorem 24. Our approach is based on the explicit calculation of fundamental
solutions of pseudodifferential operators on certain function spaces and the fact
that elliptic pseudodifferential operators behave like the Taibleson operator when
acting on certain function spaces; see Theorems 13 and 14.

2. Preliminary results

We summarize some basic facts about p-adic analysis. For a complete exposition,
see [Taibleson 1975; Vladimirov et al. 1994].

Let Q, be the field of the p-adic numbers, and let Z, be the ring of p-adic
integers. For x € Q,, let v(x) € ZU {co} denote the valuation of x normalized
by the condition v(p) = 1. By definition v(x) = oo if and only if x = 0. Let
x|, = p‘“(x) be the normalized absolute value. Here, by definition |x|, =0 if and
only if x = 0. We extend the p-adic absolute value to Q, as follows:

XNl :=max{lxi|p, ..., [xnlp} forx=(x1,...,x,) € Q).
We define the exponent of local constancy of ¢(x) € S(Q') as the smallest
nonnegative integer [ with the property that, for any x € Q"

p(x+x)=p) if x|, <p.

For x and y in @, we put x - y := > _| x; y;.
Let ¥ denote an additive character of @, that is trivial on Z, but not on p~ 17 -
For ¢ € S(Q7), we define its Fourier transform as

Fo)6) = [ ¥ Opwds,

where dx denotes the Haar measure of @';) normalized so that ZZ has measure one.
We denote by y, for r € Z the characteristic function of the polydisc B, (0) :=

(p"Zp)". For any ¢ € S, we set r, :=min{r e N | ¢|p ) = ¢(0)}.

Definition 1. We set & :=£(Q}) = {p € S| [g, ¢ (x) dx =0}, and W := W (Q’})

to be the C-vector space generated by the functions xr forreZ.
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We note that any ¢ € S can be written uniquely as ¢¢ 4 @y, where

pw = p’”"(/ w(X)dX)xrq, €W and 9y=¢—gpwe.
Q,
However, S is not the direct sum of & and W. The space W was introduced in
[Zaniga-Galindo 2004], and {F(p) | ¢ € £} is a Lizorkin space of second class
[Albeverio et al. 2006].

2.1. Elliptic pseudodifferential operators. Let f(&) € Q,[&, ..., &, ] be a non-
constant polynomial. A pseudodifferential operator f (D, a) for a > 0 with symbol
| (€)% is an operator of the form (f (D, a)p) = %_1(|f|‘;97’g0) where ¢ € S.

Definition 2. Let () € Q,[&, .. ., &, ] be a nonconstant polynomial. We say that
f(&) is an elliptic polynomial of degree d if f(&) is a homogeneous polynomial
of degree d and if f(¢) =0 if and only if & = 0.

Lemma 3 [Zifiga-Galindo 2008, Lemma 1]. Let (&) € Q,[&, ..., & ] be an

elliptic polynomial of degree d. There exist positive constants Co(f) and Ci(f)
such that

Co(NNENS < 1f O < CLUNIEN  for every & € QY.

We note that if f({) is elliptic, then ¢f (<) is elliptic for any ¢ € Q. For this

reason, we will assume from now on that the elliptic polynomials have coefficients
inZz,.
Lemma 4 [Zifiga-Galindo 2008, Lemma 3]. Let (&) € Q,[&, ..., & ] be an
elliptic polynomial of degree d. Let A C Q, be a compact subset such that 0 ¢ A.
Then there exists a positive integer m = m(A, f) such that | f ()|, > p~™ for any
& € A. Also, for any covering of A of the form UiLlei with B; = z; + (p"'Z,)",
we have | f ()l p =1 f (i)l p for any { € B;.

Definition 5. Let (&) € Z,[<, .. ., &, be an elliptic polynomial of degree d. We
say that | f |'§ is an elliptic symbol, and that f (D, ) is an elliptic pseudodifferential
operator of order d.

2.2. Igusa’s local zeta functions. Let g(x) € Q,[x] for x = (x1,...,x,) be a
nonconstant polynomial. Igusa’s local zeta function associated to g(x) is the dis-
tribution

(gl 0) = / 200 () dx,
Q1\g=1(0)

for s € C with Re(s) > 0, where ¢ € S and dx denotes the normalized Haar measure
of 7. The local zeta functions were introduced by Weil, and their basic properties
for general g(x) were first studied by Igusa. A central result in the theory of local
zeta functions is that [g|}, admits a meromorphic continuation to the complex plane
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such that (|g|®, ¢) is rational function of p—* for each ¢ € S. Furthermore, there
exists a finite set |J g {(NE, ng)} of pairs of positive integers such that

[Ta—=p") g,

Eec¢

is a holomorphic distribution on S. In particular, the real parts of the poles of |g[},
are negative rational numbers [Igusa 2000, Chapter 8]. The existence of a mero-
morphic continuation for the distribution |g[}, implies that a fundamental solution
exists for the pseudodifferential operator with symbol |g|7, [Zufiiga-Galindo 2003].

For a fixed ¢ € S, we denote the integral (|g|},, ¢) by Z, (s, g). In particular,

Z(Sa g) = Z)(o(sa g)

Lemma 6. Let f(x) € Z,[x] for x = (x1,...,x,) be an elliptic polynomial of
degree d. Then

L(p™)
Z(s, )= T b
where L(p~°) is a polynomial in p~* with rational coefficients. Also, s = —n/d is
apole of Z(s, f).
Proof: Let A={x € Z}, | ord(x;) > d, i =1,...,n}, and let A’ be its complement

in ZZ, thatis, A’ = {x € Z’l’, | ord(x;) < d for some i}. Then

Z(s,f)=/Alf(x)|j,dx+/A/|f(x)I§7dx=p_ds_”Z(s, f)+/A,|f(x)|§7dx,

thatis, Z(s, f)=(1—p~ )1 fA,|f(x)|j, dx. Since A’ is compact, by applying
Lemma 4, we can find a covering of A’ by sets B; withi =1, ..., L, where | f],
is constant on each B;. Hence

L — L
i f @D
/A,If(X)Ifndx=p”’"§ Gl and Z(s.f)=" 1_Zpldsf(nZ)p- -
i=1

2.3. The Riesz kernel. We collect some well-known results about the Riesz kernel.
See [Taibleson 1975] or [Vladimirov et al. 1994] for further details.
The p-adic Gamma function F;,")(s) is defined by

1= ps—™n
Ff,")(s) —— P forseCands #0.

1—p—
The Gamma function is meromorphic with simple zeros at n + (2zi/In p)Z and a

unique simple pole at s = 0. In addition, it satisfies

r'WEr&m—s)=1 fors¢{0}U{n+ Qxi/Inp)z}.
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The Riesz kernel R; is the distribution determined by the function

X S—n
Ry(x) = H#) for Re(s) >0, s¢n+ (2zi/Inp)Z and x € @Z.
p (s

The Riesz kernel has, as a distribution, a meromorphic continuation to C given
by

I-p™ 1-r s
(R 00) = 120 @+ 12 [l o dx
l—p l—p Ixll,>1
1-p~ s—n
i Xl " (¢ (x) — 9(0)) dx,
-p lxll,=<1

with poles at n + (2zi/In p)Z. In particular, for Re(s) > 0,

—S

1_
(Ry(x), 9 () = - P

— ps—n

/(P(X)HXH;_"dX fors ¢ n+ 2ri/In p)Z,
@

1—ps
1) (R0 = =L [ 000 -0l "

In the case s = 0, by passing to the limit, we obtain
(Ro(x). () := im (R, (x), 9(x)) = 9 (0),
that is, Ro(x) = d(x), the Dirac delta function. Therefore, R; € S’ (@) for s €
C\{n+ 2zi/In p)Z}.

Remark 7. ForRe(s) > 0, the distribution ||x ||§7 admits the following meromorphic
continuation:

1—p ,
—L b0+ / 1150 (x) dx
- P llxll,>1

(xlly, p(x)) = 1

+ /” o)~y dx forpes.

In particular, all the poles of ||x||}, have real part equal to —n.

Lemma 8 [Taibleson 1975, Chapter III, Theorem 4.5]. As element of S'(Q}),
(FR;)(x) equals || x| ),* for s ¢ n+ 2xi/In p)Z.

Lemma 9. For x = (x1,...,x,), let f(x) € Q,[x] be an elliptic polynomial of
degree d. Then

I = (1—p™)L(p™)
P ==yt

Rysin forseC
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as distributions on W. Here L(p~*) is the numerator of Z(s, f), which is a poly-
nomial in p~° with rational coefficients.

Proof. Let ¢ € W, then ¢(x) = > ¢; xr, (x), where ¢; € C and r; € Z (recall that
F(xr) = p~" x-r). The action of | f]}, on F¢ can be explicitly described by

(L. Fo) = cill f 15 P xon).

1

However

f1 P gy = p A | f Q) x—r, () dx = pT P Z(s, f),
P

for Re(s) > 0, so (| f1},, Fo) = Z(s, f) > c; p?"is for Re(s) > 0.
On the other hand,

l_pds
<1—p‘”

dris

—nr: 1 - p—ds—n ds —nr;
Rds+n,p lX—ri = ——n”x”l’ » P 'X—r,' P

I—p
for every r; € Z and Re(s) > 0. Then we have

ds

1—p™

(IF1},, Fo) = Z(s, f)(Rds+4n, Fo) for Re(s) > 0.

Now Z(s, f) and R4s4, have a meromorphic continuation to the complex plane;
therefore this formula extends to C. Finally, since the Fourier transform establishes
a C-isomorphism on W, it is possible remove the Fourier transform symbol. [

2.4. The Taibleson operator.

Definition 10. The Taibleson pseudodifferential operator D7 for a > 0 is defined
as

(D) (x) = F;L, (I€NI%Fcmzp) forpesS.

As a consequence of the Lemma 8 and (1), one gets
a 1—p* —a—n
(DT9)(x) = (k—g x @) (x) = T pan Iy, (@ (x —y) —p(x)) dy.
_ o

The right side of this formula makes sense for a wider class of functions than
S(Q,), such as the class €, (Q') of locally constant functions ¢ (x) satisfying

/|| lIIJCII;"’_”Iqo(X)Idx < 0.
xllp=

Remark 11. As a consequence of the previous observations we may assume that
the constant functions are contained in the domain of D7, and that D¢ = 0, for
any constant function.
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3. Fundamental solutions for the Taibleson operator
We now consider the pseudodifferential equation
2) Dju=v witho € Sand a > 0.

We say that E, € S’ is a fundamental solution of (2) if E, v is a solution.
Lemma 12. If E, is a fundamental solution of (2), so is E, + c for ¢ a constant.

Proof. Let E, be a fundamental solution for (2). Then
4 ((Eq +0) ¥0) = D} ((Eq %) + (c ¥0)) = 0 + D (c ¥v) =0,
because u and the constant function ¢ *x v are in the domain of D%. |

Theorem 13. A fundamental solution of (2) is
1—p@

g ifa #n,

E.x)={t=7

iy M) ifa=n
Proof. The proof is based on the ideas introduced in [Ziiiga-Galindo 2003]. The

existence of a fundamental solution E, is equivalent to that of a distribution FE,
satisfying

3 lxll5FE, =1,

as distributions. Let ||x||, = >,,c7 cm(s + )™ be the Laurent expansion at —a
with ¢,, € §’ for all m. The existence of this expansion is a consequence of the
completeness of S’; see for example [Igusa 2000, pages 65-66]. Since the real parts
of the poles of the meromorphic continuation of |lx||, are negative rational num-
bers (see Remark 7), ||x||§7+“ = [lx[I%llx]I}, is holomorphic at s = —a. Therefore,
||x||Zcm =0 for all m <0 and

oo
15 = llacl%eo + D Il bem (s +a)™
m=1
By using the Lebesgue dominated convergence theorem, one verifies that

im ([l ] 9) =/ p(x)dx = (1, 9),

V4

and then we can take & E, = co. Furthermore, if —a is not a pole of ||x||%,
@) FE, = lim ||x||;,.
Ss—>—0

To calculate ¢y, consider the following two cases.
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Case a #n. We use (4) and Lemma 8, that is

S

Xl (Fo)x) = ——L—(lxll,* ", p(x)) fors #n+ 2xi/In p)Z.

1—
Since a # n we have by (4) and Remark 7

(Ear Fp) = lim (x]l,, (x)) = (Ixll,”, ¢ (x)),
that is, Eq = [lx[I5"/ Ty (a).
Case o = n. We compute the constant term, cy, in the expansion

(X115, Fp) = D (cms F(p)) (s +m)°.

meZ
Now
” ” s—n pv(x)(s-‘rn)
(Ixll%, (Fp)x)) =1 —p )<1— (X)>— (1-p )<—w,€0( )>
-p
where x = (x1,...,x,), v(x) :=minj<;j<,v(x;), and ||x|, = p‘”("). Therefore
by expanding
1—p° v(x)(s+n) 1—p"
( p)pii L
1—p—s Inp
(1—-p De4l1-p™hp
+ Z +0((s +n)),
In p
one gets
1— pn n
E 5 = 5 = 5
(En, ¢) = (co, p) <p”1n( ) In(||x ||p)+ sﬂ( )>
The claim follows from the fact that a fundamental solution is determined up to
the addition of a constant; see Lemma 12. O

Incase n =1, Theorem 13 is already known; see [Kochubei 2001, Theorem 2.1],
for example.

4. Fundamental solutions for elliptic operators

Theorem 14. Let (D, a) be an elliptic operator of order d. Then a fundamental
solution E, of f(D, a)u =v fora > 0 andv € W is given by

LD =p™ ) s
E, (x) = (1 - p_n)(l — pda—n)

L(p”/d)(] —p") o
(= p g "I e =n/d

fa#n/d,
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where the equality is as distributions on W and L(p~*) is the numerator of Z(s, f).

Proof. As mentioned previously, the existence of a fundamental solution E, is
equivalent to that of a distribution F E,, satisfying | f|5FE, =1 in S’. By Lemma 9,

(1= p*)L(p™)
(1f15, ) = <(1 Lty Rt

(o> forp € Wand s € C.

The result follows by reasoning as in the proof of Theorem 13, and by the fact that
the space W' is invariant under the Fourier transform. U

Corollary 15. With the hypotheses of the previous theorem, and assuming that
o #n/d, we have

|F(Eq % 9)(x)| < C(@)|x]|,**|F(p)(x)| forallx € Q" and g €W.

5. Solutions of elliptic pseudodifferential equations in Sobolev spaces

Given ¢ € S and [ a nonnegative number, we define
loli7: = / (max(1, I€]1,))*1F () (©)* dE.
Q@

The completion of S with respect to || - || ;¢ is the [-Sobolev space H' := H' (@’;).
We note that H! contains properly the space S of test functions. Indeed, consider

the function
0 if x|, <1,

Ixl,? it flx]l, > 1

o) = {

with f > n. A direct calculation shows that

A=p™) A= """ sl
||f||§,1=/m | b —p e
p=

dé.
a—ph :
Thus, || f ||§11 < 00, but f does not have compact support.

Lemma 16. If | > n/2, then there exists an embedding of H' into the space of
uniformly continuous functions.

Proof. Let ¢ € H'. Since the Fourier transform of a function in L! is uniformly
continuous, it is sufficient to show that F(¢) € L'. By using the Holder inequality
and the fact that

/ (max(1, ||f||p))_21 dé <+oo forl>n/2,

we have

(max(l I€1))!

max (1, ]| ))l""’W)(f)ldé‘sCII(DIIHz. 0
n )4

/ F ) ()] dE =
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Lemma 17. For any a > 0 and | > 0, the mapping (D, a) : HT%* — Hlisa
well-defined continuous mapping between Banach spaces.

Proof. Let ¢ € S. Since f(D, a) is an elliptic operator, by Lemma 3, we have
I/ (D, )7 = /@ (max(L, €11, [ £ E)P“1F (@) &)1 d&
p

< /@ (max(1, €1, 249 |F () (&) P dé = Cllplyesm. D

Ill;
The result follows from the fact that S is dense in H'T9%,

Remark 18. Let § be a positive real number, and let 7(f) := fllgup<l||8||gd8.
Then

—n

1—p
Indeed,
1= [ lelfds+ [ do= [ lelfder1-p
llell, <1 llell p=1 lellp<1
By making the change of variables ¢; = px; fori =1,...,n, we have

1B)=p" 1By +1-p".

Theorem 19. Let f(D,a) for 0 < a < n/2d be an elliptic pseudodifferential
operator of order d. Let | be a positive real number satisfying | > n/2. Then
f(D, a)u =v forv € S has a unique uniformly continuous solution u € H'*4%,

Proof. Letv € ¥. Then v = vy + vy, where vy € W and vy € £. Thus, to prove
the existence of a solution u, it is sufficient to show that the equations

) f (D, a)uw = o,
6) f(D, a)ug =vy.
have solutions.

We first consider (5). By Theorem 14, uy = E, * vy is a solution of (5), and
by Corollary 15, we have
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2 = / (max(1, €]1,)) 2O | (E, .0p) (&) dE
@
=C(a,d,n) [@ (max (1, I€] )2 NE N2 F o) () dé
P

_ —2da g 2
=Cadn(f KIEenOPE
2 a : 2d )
¥ /”5|p>1"5"P"’“(”°W)@' )

We now recall that vy (&) = p™ C y, (&), with r > 0. Then, F(vy)(E) =C y—, (&)
and

s yisse < Ca, d,my(C2p /

lell, 2 de + o 3
lell,<1

< C(a,d,n)(Ci(a,d,n) + [owll3,),

since —2da > —n; see Remark 18. Therefore uy € H' 4%,
We now consider Equation (6). Since F(ug) = F(vg)|f|,* and f is elliptic,

|F () ()] < CIENIF () (©)]  (see Lemma 3).

Then

sty = [ I TP+ [ 00 e
clip= P>

The second integral is bounded by ||Z)§g||3_l,. For the first integral, we observe
thatif 0 < o < n/2d, then

/ 1152 @) dé < Cllpll,: forany p € .
I<,=<1

Therefore,
2 2
luellgre < CIF@)IL2 + logl
In this way, we see there exists a u € H'*t9* that is uniformly continuous by

Lemma 16 and is such that f(D, a)u = v for any v € S. Finally, we show that u
is unique. Indeed, if f(D, a)u’ = v, then

f(D,0)(u—u)=0, thatis, [f|}F(@u—u")=0,

and thus F(u —u’) () =0if & #0, since f is elliptic. Then W (x-&)(u —u')(£) =0
almost everywhere, and a fortiori (u — u’)(&) = 0 almost everywhere, and by the
continuity of u —u’, we have u(¢) = u'(¢) for any ¢ € Q. O
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6. Solutions of elliptic pseudodifferential equations
in singular Sobolev spaces

In this section, we modify the Sobolev norm to obtain spaces of functions on which
f (D, a) gives a surjective mapping.

Definition 20. Given ¢ € S and / a nonnegative number, we set
oI5 = / €121 () ()1 dé.
Q@

We call the completion of S with respect to | - ||s¢ the [-singular Sobolev space
9! := %' (Q@%). Note that H' C %' for I > 0 since [|p|lse < ll@ |z

Lemma 21. For any a > 0 and | > 0, the mapping f(D,a) : #'74* — ¥ is a
well-defined continuous mapping between Banach spaces.

Proof. The proof is similar to that of Lemma 17. O

We denote by £! and W’ the respective completions of & and W with respect
to | - llse. We set %) := £ +W! C ¥

Proposition 22. Let f(D, a) for a > 0 be an elliptic pseudodifferential operator
of order d, and let | be a nonnegative real number. Then f(D, a) : %/ 74% — W is
a surjective mapping between Banach spaces.

Proof. By Lemma 21, the mapping is well defined. Let v € W', and let {v,,} be a
Cauchy sequence in W converging to v. By Theorem 14, there exists a sequence
{u,} in H*4* such that f(D, a)u, = v,. We see that {u,} is a Cauchy sequence
in 9¢/T9% because

ltn = tim |40 < C / NN, F (0n — 0m) ()] dE
(7 Q;

2
< Cllo, — Um”%/-

Thus, there exists u € #/*9* such that u, — u, and by the continuity of £ (D, ),
we have f(D, a)u =v. (|

Proposition 23. Let f(D, a) for a > 0 be an elliptic pseudodifferential operator
of order d, and let | be a nonnegative real number. Then f (D, a) : #1t4* — P! js
a surjective mapping between Banach spaces.

Proof. By Lemma 21, the mapping is well defined. Let v € ¥, and let {v,} be
a Cauchy sequence in & converging to v. By the same reasoning given in proof
Theorem 19 for establishing the existence of a solution to Equation (6), we obtain
a sequence {u,} in H'** such that £ (D, a)u, =v,. To show that {u,} is a Cauchy
sequence in #'T9% we use | F(u, ) (&) < C €]~ F (v,)(E)]. Then we recover (7),
and the proof finishes as before. (]
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From the previous two lemmas we obtain the following result.

Theorem 24. Let (D, a) be an elliptic pseudodifferential operator of order d.
Let | be a positive real number. Then the equation f(D, o)u =v forv € %6 has a
unique solution u € ¥+
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