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Let f be a holomorphic map of Cn tangent to the identity, with an absolutely
isolated singularity. We show that there exists a finite blow-up sequence
which reduces f to a map with only simple singularities.

1. Introduction

In discrete local holomorphic dynamics, an often-studied case is when a holo-
morphic map f of Cn is tangent to the identity at a fixed point p, that is, d f p = id.
When n = 1, there is the well-known Leau–Fatou flower theorem [Milnor 2006].
Abate [2001] generalized this theorem to dimension two when p is an isolated fixed
point of f . There are three main ingredients in his proof. The first is a positive
result on generic maps [Hakim 1998]. The second is a reduction theorem that
reduces the singularities of a map into simpler and irreducible ones. The third is
an index associated to a singularity of a map. The last two ingredients are inspired
by studies in continuous local holomorphic dynamics [Camacho and Sad 1982].

Here, we prove a similar reduction theorem for holomorphic maps in higher
dimensions having only absolutely isolated singularities (or AIS; see Section 2 for
the definition). More precisely, we have the following theorem (see Section 3 for
the definition of a simple singularity).

Theorem 1.1. Let f be a holomorphic map of Cn tangent to the identity at an
isolated fixed point p. Assume that p is an absolutely isolated singularity of f .
Then after finitely many blow-ups, we have a map with only finitely many simple
singularities.

Absolutely isolated singularities of holomorphic vector fields have been studied
by Camacho, Cano and Sad [1989] and Tome [1997].

In Section 2, we introduce basic concepts and definitions and finish with the first
stage of the reduction. In Section 3, we give the definition of a simple singularity
and finish with the second stage of the reduction, thus proving Theorem 1.1.
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2. Nonnilpotent reduction

Let M be an n-dimensional complex manifold, and let f be a holomorphic self-
map of M with p ∈ M as a fixed point. Assume that f is tangent to the identity
at p, that is d f p = id. In local coordinates centered at p, write f = ( f1, . . . , fn),
with f j (z)= z j+g j (z) for 1≤ j ≤ n. Let g j = P0, j+ P1, j+· · · , with deg Pi, j = i
or Pi, j ≡ 0, be the homogeneous expansion of g j for 1≤ j ≤ n. The order of f at p
is ν( f )=min{ν(g1), . . . , ν(gn)}, where ν(g j ) is the least i ≥ 0 such that Pi, j is not
identically zero. We always assume that ν( f ) <∞. Set l = gcd(g1, . . . , gn) and
g j = lgo

j , with both l and go
j defined up to units in OM,p. Let go

j = Po
0, j+ Po

1, j+· · ·

be the homogeneous expansion of go
j for 1 ≤ j ≤ n. The pure order of f at p is

νo( f )=min{ν(go
1), . . . , ν(g

o
n)}. We say that p is a singular point or a singularity

of f if νo( f )≥ 1.
Let P = (P1, . . . , Pn) be an n-tuple of homogeneous polynomials of degree ν

in Cn . A characteristic direction for P is a vector v ∈Pn−1 such that P(v)=λv for
some λ ∈ C. A characteristic direction for f at p is a characteristic direction for
Pν( f ) = (Pν( f ),1, . . . , Pν( f ),n). A singular direction for f at p is a characteristic
direction for Po

νo( f ) = (Po
νo( f ),1, . . . , Po

νo( f ),n). The set of singular directions is
clearly an algebraic subvariety of Pn−1. If the maximal dimension of the irreducible
components of this subvariety is k, we say that f is k-dicritical at p. If k = 0, we
say that f is nondicritical at p. If k = n− 1, we say that f is dicritical at p.

Let π : M̃→ M be the blow-up of M at p. Then there exists a unique map f̃ ,
the blow-up of f at p, such that π ◦ f̃ = f ◦π ; see [Abate 2000].

Definition 2.1. Let p ∈ M , and write p = p(0), M = M(0) and f = f (0). If, for
any sequence

M(0)
π(1)
←− M(1)←− · · ·

π(N )
←− M(N )

of blow-ups, where f (i) is the blow-up of f (i − 1) and the center of each π(i) is
a singularity p(i − 1) of f (i − 1), the last blow-up map f (N ) has finitely many
singularities, then we say p is an absolutely isolated singularity (or AIS) of f .

By [Abate and Tovena 2003, Lemma 2.2], if p is not dicritical then a direction
v ∈ Pn−1 is singular for f if and only if it is a singularity of f̃ . Therefore if
p = p(0) is an AIS, then each p(i) for i ≥ 0 is either nondicritical or dicritical.

Remark 2.2. It follows from the definition that if ν(go
j ) > νo( f ) for more than

one j at p, then p is not an absolutely isolated singularity.

We define pure intersection index of f at p by I ( f ; p) := I (go
1, . . . , go

n; p),
where I ( · , . . . , · ; p) denotes the intersection multiplicity for germs in OM,p; see
[Fulton 1998]. If f is the blow-up map at a nondicritical singularity, one can
choose local coordinates such that the exceptional divisor S is given by {z1 = 0}
and go

1(z) = z1h1(z). Then we define the adapted intersection index of f at p
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by I ( f, S; p) := I (h1, go
2, . . . , go

n; p) and the adapted multiplicity of f at p by
µ( f, S, p) := I (z1, go

2, . . . , go
n; p). As in [Abate 2001, Lemma 2.2], one readily

checks that the numerical invariants above are well defined.

Lemma 2.3 [Abate and Tovena 2003, Lemma 2.1]. Let M be an n-dimensional
complex manifold, and let f be a holomorphic self-map of M with p ∈ M as an
isolated singularity. If f is nondicritical at p, then

νn−1
+ νn−2

+ · · ·+ 1=
∑
q∈S

µ( f̃ , S; q),

where ν = νo( f ), f̃ is the blow-up map at p and S is the exceptional divisor.

The following proposition generalizes [Abate 2001, Lemma 2.3].

Proposition 2.4. With the same assumptions and notations as in Lemma 2.3,

I ( f ; p)= νn
− νn−1

− · · ·− 1+
∑
q∈S

I ( f̃ ; q).

Proof. Since p is nondicritical, we can assume, up to a linear change of coordinates,
that ν(go

1) = · · · = ν(g
o
n) = ν and all the singularities of f̃ are contained in the

chart w1 = z1 and w j = z j/z1 for 2 ≤ j ≤ n. Let π be the blow-up and write
ĝo

j = go
j ◦π/w

ν
1 for 1≤ j ≤ n. Then

g̃o
1 = w1ĝo

1 and g̃o
j = (ĝ

o
j −w j ĝo

1)/(1+w
ν−1
1 ĝo

1) for 2≤ j ≤ n.

By the basic properties of the intersection multiplicity,

(2-1)

I ( f̃ ; q)= I (g̃o
1, g̃o

2, . . . , g̃o
n; q)

= I (ĝo
1, g̃o

2, . . . , g̃o
n; q)+ I (w1, g̃o

2, . . . , g̃o
n; q)

= I ( f̃ , S; q)+µ( f̃ , S; q)

and

(2-2)

I ( f ; p)= I (go
1, go

2, . . . , go
n; p)

= νn
+
∑

q∈S I (ĝo
1, ĝo

2, . . . , ĝo
n; q)

= νn
+
∑

q∈S I (ĝo
1, ĝo

2 −w2ĝo
1, . . . , ĝo

n −wn ĝo
1; q)

= νn
+
∑

q∈S I ( f̃ , S; q).

The desired equality then follows from (2-1), (2-2) and Lemma 2.3. �

Lemma 2.5. Let p be a dicritical singularity of f , and let f̃ be the blow-up of f
at p. Let S be the exceptional divisor of the blow-up.

(a) Po
νo( f ), j = z j · R for 1 ≤ j ≤ n, where R is a homogeneous polynomial of

degree νo( f )− 1.
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(b) The singularities of f̃ in S ' Pn−1 are contained in the subset

{[w1 : · · · : wn] ∈ Pn−1
: R(w1, . . . , wn)= 0}.

(c) The singularities of f̃ in S are not dicritical.

(d) The pure order of f̃ at any of its singularities in S is less than or equal to
νo( f )− 1. In particular, if νo( f )= 1, then f̃ has no singularities in S.

Proof. Set ν = νo( f ). In the canonical coordinates [w1 : · · · : wn] centered at
[1 : 0 : · · · : 0], we have

f̃ j (w)=


w1+ l̃wν1

(
Po
ν,1(1, w2, . . . , wn)+O(w1)

)
if j = 1,

w j+ l̃wν−1
1 (Po

ν, j (1, w2, . . . , wn)−w j Po
ν,1(1, w2, . . . , wn)+O(w1)),

if j 6= 1.

By definition, p is a dicritical singularity of f if and only if

Po
ν, j (1, w2, . . . , wn)−w j Po

ν,1(1, w2, . . . , wn)≡ 0 for all 2≤ j ≤ n.

This proves (a).
We now have g̃o

1(w)= R(1, w2, . . . , wn)+O(w1). Then (b) and (d) are evident.
Since w1 - R(1, w2, . . . , wn), (c) follows from (a). �

Proposition 2.6. Let p be an absolutely isolated singularity of f . Then there exists
a finite sequence of blow-ups such that the final blow-up map only has isolated
singularities of pure order equal to one.

Proof. The pure order is strictly decreasing if p is nondicritical and νo( f ) > 1 by
Proposition 2.4, or if p is dicritical by Lemma 2.5(d). �

We can now focus our attention on singularities of pure order one. The eigen-
values of f at a singularity p are by definition the eigenvalues of the linear part
of go

= (go
1, . . . , go

n). It is easy to see that they are uniquely determined up to a
nonzero scalar multiple and are independent of the coordinates once l is chosen.
We say that p is a nonnilpotent singularity of f if f has at least one nonzero
eigenvalue at p. Otherwise, we say that p is nilpotent.

Proposition 2.7. Let p be an isolated singularity of f with pure order one. If p is
nilpotent, then p is not an absolutely isolated singularity.

Proof. Since p is not nonnilpotent, we can choose local coordinates (z1, . . . , zn)

such that the linear part Po
1 of go is in Jordan canonical form, that is,

Po
1, j = ε j z j+1 for 1≤ j < n and Po

1,n = 0,

where ε j ∈ {0, 1} for 1≤ j < n.
By Remark 2.2 we can assume that ε j = 1 for each j . In this case it is easy to

see that p̃=[1 : 0 : · · · : 0] ∈Pn−1 in the chart w1= z1 and w j = z j/z1 for 2≤ j ≤ n
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is the unique singularity of f̃ , the blow-up of f at p. It is also easy to see that the
linear part P̃o

1 of g̃o is of the form

P̃o
1,1 = 0, P̃o

1, j = α jw1+w j+1 for 2≤ j < n, P̃o
1,n = αnw1,

where α j = Po
2, j (1, 0, . . . , 0) for 2≤ j ≤ n. Note that w1 | g̃o

1 .
By Remark 2.2 we can assume that αn 6= 0. Consider the change of coordinates

ϕ : w1 = (1/αn)tn, w2 = t1, w j = t j−1− (α j−1/αn)tn for 3≤ j ≤ n,

and

ϕ−1
: t1 = w2, t j = α jw1+w j+1 for 2≤ j < n, tn = αnw1.

In the local coordinates (t1, . . . , tn), we have

Qo
1, j = t j+1 for 1≤ j < n, Qo

1,n = 0,

where
∑

k≥1 Qk, j for 1≤ j ≤ n is the homogeneous expansion of ϕ−1
◦ g̃o

j ◦ϕ.
As above, we see that ˜̃p=[1 :0 : · · · :0]∈Pn−1 in the chart u1= t1 and u j = t j/t1

for 2 ≤ j ≤ n is the unique singularity of ˜̃f , the blow-up of f̃ at p̃, and that the
linear part ˜̃Po

1 of ˜̃go is of the form

˜̃Po
1,1 = 0, ˜̃Po

1, j = β j u1+ u j+1 for 2≤ j < n, ˜̃Po
1,n = βnu1,

where β j = Qo
2, j (1, 0, . . . , 0), 2≤ j ≤ n. Since w1 | g̃o

1 , we have

βn = Qo
2,n(1, 0, . . . , 0)= αn g̃o

1(0, 1, 0, . . . , 0)= 0.

Therefore, ˜̃p is not an AIS by Remark 2.2; thus neither is p. �

Combining Propositions 2.6 and 2.7, we have the following reduction theorem.

Theorem 2.8. If p is an absolutely isolated singularity of f , then there exists a
finite sequence of blow-ups such that the final blow-up map only has nonnilpotent
singularities.

3. Simple reduction

In this section we study nonnilpotent singularities. By Lemma 2.5(d) we will focus
on nondicritical nonnilpotent singularities.

Let p be a nondicritical nonnilpotent singularity of f , the blow-up map after a
finite sequence of blow-ups. Let e= e(S, p) be the number of irreducible compo-
nents of S through p, where S is the exceptional divisor. Let {Si }

e
i=1 be the set of

the irreducible components. We say that f is nondicritical (respectively dicritical)
along Si if Si is created by blowing up at a nondicritical (respectively dicritical)
singularity. If we choose local coordinates such that Si is given by zi = 0, then
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f is nondicritical (respectively dicritical) along Si if and only if go
i (z) = zi hi (z)

(respectively zi - go
i (z)).

Remark 3.1. We always have 1 ≤ e ≤ n. By Lemma 2.5(c), f is dicritical along
at most one Si . If e = 1 and f is dicritical along S1, then at any singularity q
of f̃ , the blow-up of f at p, we have either e( f̃ , q) = 2 or e( f̃ , q) = 1, and f̃ is
nondicritical along the new S1.

Remark 3.2. Our notion f being nondicritical (respectively dicritical) along S has
equivalent definitions in other sources. In [Abate 2001], f is said to be nondegen-
erate (respectively degenerate) along S, and in [Abate et al. 2004], f is said to be
tangential (respectively nontangential) along S.

When e = 1, we say that p is a simple point if f is nondicritical along S1 and
one of the following occurs:

(A) h1(0)= 0 and the multiplicity of the eigenvalue 0 is one.

(B) h1(0)= λ 6= 0, the multiplicity of the eigenvalue λ is one, and if µ is another
eigenvalue of f at p, then µ/λ /∈Q+.

When e = 2, we say that p is a dicritical simple corner if f is nondicritical
along S1, dicritical along S2, and either (A) or (B) as occurs above.

When e≥2, we say that p is a nondicritical simple corner if (up to a permutation
of the coordinates) f is nondicritical along S1 and S2, and we have h1(0)= λ 6= 0,
h2(0)= µ and µ/λ /∈Q+.

We say that p is a simple singularity of f if it is a simple point or a simple
corner.

The next proposition shows that simple singularities persist under blow-ups.

Proposition 3.3. If p is a simple singularity of f , then every singularity of f̃ in
π−1(p) is simple, where π denotes the blow-up at p. More precisely,

(a) If p is a simple point, then exactly one singularity p̃ of f̃ in π−1(p) is a simple
point and all others are nondicritical simple corners. Moreover, p and p̃ have
the same type (A) or (B).

(b) If p is a dicritical simple corner, then exactly one singularity p̃ of f̃ in π−1(p)
is a simple point or a dicritical simple corner and all others are nondicritical
simple corners. Moreover, p and p̃ have the same type (A) or (B).

(c) If p is a nondicritical simple corner, then every singularity of f̃ in π−1(p) is
a nondicritical simple corner.
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Proof. For (a) we can write f as

f j (z)=
{

z1+ za
1z1(λ+ O(1)) if j = 1,

z j + za
1

(
α j z1+

∑
2≤k≤n β j;kzk + O(2)

)
if j 6= 1.

In the canonical coordinates [w1 : · · · : wn] centered at q = [1 : q2 : · · · : qn],
f̃ is of the form

f̃ j (w)=


w1+w

a
1w1(λ+O(w1)) if j = 1,

w j+w
a
1

(
α j+

∑
k 6= j β j;k(wk+qk)+(β j; j−λ)(w j+q j )+O(w1)

)
if j 6= 1.

The point q is a singularity of f̃ if and only if α j+
∑

k 6= j β j;kqk+(β j; j−λ)q j =0
for all j 6= 1. Set 3 = (β j;k)2≤ j,k≤n and let {µi }2≤i≤n be the eigenvalues of 3.
If λ = 0, then µi 6= 0, and if λ 6= 0, then µi/λ /∈ Q+. In either case, the matrix
3−λIn−1 is of full rank and it has eigenvalues {µi −λ}2≤i≤n . Therefore we have
a unique singularity p̃ = [1 : q2 : · · · : qn], where

(q2, . . . , qn)
T
= (3− λIn−1)

−1(α2, . . . , αn)
T .

It is easy to see that p̃ has the same type as p.
We now choose local coordinates such that f is of the form

f j (z)=
{

z1+ za
1z1(λ+ O(1)) if j = 1,

z j + za
1

(∑
1≤k≤ j β j;kzk + O(2)

)
if j 6= 1.

Then the eigenvalues of f are λ and {β j; j }2≤ j≤n .
In the canonical coordinates [w1 : · · · : wn] centered at

q = [0 : · · · : 0 : 1 : q j+1 : · · · : qn] for 2≤ j ≤ n,

f̃ is of the form

f̃l(w)=


w1+w

a
1w

a
jw1

(
λ−β j; j −

∑
1≤k< j β j;kwk + O(w j )

)
if l = 1,

w j +w
a
1w

a
jw j

(
β j; j +

∑
1≤k< j β j;kwk + O(w j )

)
if l = j,

wl +w
a
1w

a
j ( · · · ) if l 6= 1, j.

Assume that q is a singularity of f̃ . If λ= 0, then β j; j 6= 0 and (λ−β j; j )/β j; j =

−1 /∈Q+. If λ 6=0, then β j; j/(λ−β j; j ) /∈Q+. Therefore q is a nondicritical simple
corner. This proves (a).

For (b) the argument is similar to above and we leave it to the reader.
For (c) see [Rong 2010, Proposition 2.3]. �
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Remark 3.4. The simple example

f j (z)=


z1+ za

1zb
2z1(λ+ O(1)) if j = 1,

z2+ za
1zb

2(z2+ z3+ O(2)) if j = 2,

z3+ za
1zb

2(z3+ O(2)) if j = 3,

where λ≤ 0, shows we may not be able to get rid of dicritical simple corners.

Before proving Theorem 1.1, let us take a closer look at the behavior of non-
dicritical nonnilpotent singularities under blow-ups. To state our next result, let
us single out a very special case in dimension two: in suitable local coordinates
(z, w) around a nondicritical nonnilpotent singularity p, f = ( f1, f2) is given by

(3-1)
f1(z, w)= z+ l(λz+ O(z2, zw,w2)),

f2(z, w)= w+ l(2λw+ O(z3, zw,w2)).

with λ 6= 0. One easily checks that the blow-up map f̃ has a dicritical singularity
in the exceptional divisor S.

Proposition 3.5. Let p be a nondicritical nonnilpotent singularity of f and let f̃
be the blow-up of f at p. Let S be the exceptional divisor of the blow-up. If p is
an absolutely isolated singularity of f and is not as in (3-1), then the singularities
of f̃ in S are all nondicritical and nonnilpotent.

Proof. If f has an eigenvalue λ of multiplicity k > 1, then in suitable local coordi-
nates around p, we can write f as

f j (z)=


z j + l(λz j + ε j z j+1+ O(2)) if 1≤ j < k,

zk + l(λzk + O(2)) if j = k,

z j + lgo
j if j > k,

where ε j ∈ {0, 1} for 1≤ j < k.
We claim that if ε j0 = 0 for some j0 with 1≤ j0 < k, then f̃ has infinitely many

singularities. Assume the premise. In the canonical coordinates [w1 : · · · : wn]

centered at q = [1 : q2 : · · · : qn], f̃ is of the form

f̃ j (w)=



w1+ l̃w1(λ+ ε1(w2+ q2)+ O(w1)) if j = 1,
w j + l̃(ε j (w j+1+ q j+1)− ε1(w2+ q2)(w j + q j )+ O(w1))

if 2≤ j < k,
wk + l̃(−ε1(w2+ q2)(wk + qk)+ O(w1)) if j = k,
w j + l̃( · · · ) if j > k.

If q is a singularity of f̃ , then ε j q j+1−ε1q2q j = 0 for 2≤ j < k, and−ε1q2qk = 0.
It is easy to check that if q j = 0 for j 6= j0+ 1, then we are free to choose q j0+1.
This proves the claim above.
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If f has n distinct eigenvalues {λi }1≤i≤n at p, then in suitable local coordinates
around p, we can write f as

f j (z)= z j + l(λ j z j + O(2)) for 1≤ j ≤ n.

Let qk = [0 : · · · : 0 : 1 : 0 : · · · : 0] with the k-th entry nonzero for 1 ≤ k ≤ n. It
is easy to see that {qk}1≤k≤n are the only singularities of f̃ in S, and f̃ takes the
following form at qk :

f̃ j (w)=

{
wk + l̃

(
λkwk + O(w2

k )
)

if j = k,
w j + l̃((λ j − λk)w j + O(wk)) if j 6= k.

If λ j 6= 2λk for any j and k, then clearly {qk}1≤k≤n are all nondicritical and
nonnilpotent. If λ j = 2λk for some j and k, then f̃ at qk has an eigenvalue of
multiplicity greater than one. Therefore, by the argument above we know that ˜̃f
has infinitely many singularities. (Note that p is not as in (3-1).)

Let {λi }1≤i≤m be the distinct eigenvalues of f at p. Assume that λi has multi-
plicity ki and set

si =
∑
j≤i

ki for 1≤ i ≤ m.

Set s0 = 0. Since p is an absolutely isolated singularity of f , we can write f as

f j (z)=
{

z j + l(λi z j + z j+1+ O(2)) if si−1 < j < si for 1≤ i ≤ m,
zsi + l(λi zsi + O(2)) if j = si for 1≤ i ≤ m

In the canonical coordinates [w1 : · · · : wn] centered at q = [1 : q2 : · · · : qn],
f̃ is of the form

f̃ j (w)=



w1+ l̃w1(λ1+ (w2+ q2)+ O(w1)) if j = 1,
w j + l̃((w j+1+ q j+1)

− (w2+ q2)(w j + q j )+ O(w1)) if 2≤ j < s1,

ws1 + l̃(−(w2+ q2)(ws1 + qs1)+ O(w1)) if j = s1,

w j + l̃((λi − λ1)(w j + q j )+ (w j+1+ q j+1)

− (w2+ q2)(w j + q j )+ O(w1)) if si−1 < j < si ,

2≤ i ≤ m,
wsi + l̃((λi − λ1)(wsi + qsi )

− (w2+ q2)(wsi + qsi )+ O(w1)) if j = si , 2≤ i ≤ m.

One readily checks that q = [1 : 0 : · · · : 0] is the only singularity of f̃ in this chart,
and it is nondicritical and nonnilpotent.
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In the canonical coordinates [w1 : · · · : wn] centered at q = [q1 : · · · : qk−1 : 1 :
qk+1 : · · · : qn] for 1< k < s1, f̃ is of the form

f̃ j (w)=



w j + l̃((w j+1+ q j+1)

− (wk+1+ qk+1)(w j + q j )+ O(wk)) if j 6= k− 1,
1≤ j < s1,

wk−1+ l̃(1− (wk+1+ qk+1)(wk−1+ qk−1)

+ O(wk)) if j = k− 1,
wk + l̃wk(λ1+ (wk+1+ qk+1)+ O(wk)) if j = k,
ws1 + l̃(−(wk+1+ qk+1)(ws1 + qs1)+ O(wk)) if j = s1,

w j + l̃((λi − λ1)(w j + q j )+ (w j+1+ q j+1)

− (wk+1+ qk+1)(w j + q j )+ O(wk)) if si−1 < j < si ,

2≤ i ≤ m,
wsi + l̃((λi − λ1)(wsi + qsi )

− (wk+1+ qk+1)(wsi + qsi )+ O(wk)), if j = si , 2≤ i ≤ m.

One readily checks that there are no singularities of f̃ in this chart.
In the canonical coordinates [w1 : · · · : wn] centered at q = [q1 : · · · : qk−1 : 1 :

qk+1 : · · · : qn], where k = s1, f̃ is of the form

f̃ j (w)=



w j + l̃((w j+1+ q j+1)+ O(ws1)) if 1≤ j < s1− 1,

ws1−1+ l̃(1+ O(ws1)) if j = s1− 1,

ws1 + l̃ws1(λ1+ O(ws1)) if j = s1,

w j + l̃((λi − λ1)(w j + q j )

+ (w j+1+ q j+1)+ O(ws1)) if si−1 < j < si , 2≤ i ≤ m,

wsi + l̃((λi − λ1)(wsi + qsi )+ O(ws1)) if j = si , 2≤ i ≤ m.

It is obvious that there are no singularities of f̃ in this chart.
Let qi =[0 : · · · :0 :1 :0 : · · · :0]with the (si−1+1)-st entry nonzero, for 1≤ i≤m.

Then a similar argument as above shows that they are the only singularities of f̃
in S. Moreover, they are all nondicritical and nonnilpotent. �

Proof of Theorem 1.1. Let p be an absolutely isolated singularity of f . By
Theorem 2.8 we can assume that p is nonnilpotent. By Proposition 3.5 we need to
show we can reduce nondicritical nonnilpotent singularities to simple singularities.

By Remark 3.1 we can assume that f is nondicritical along S1 at p. If h1(0)= 0
and there exists another S2 such that f is nondicritical along S2, then we have
h2(0) 6= 0 by Remark 2.2. In this case we can switch S1 and S2 and assume that
h1(0) 6= 0. Therefore we consider two cases:

(a) f is nondicritical along only S1 and h1(0)= 0;
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(b) f is nondicritical along S1 and h1(0) 6= 0.

For (a) we claim that p is a type (A) simple point or dicritical simple corner.
First, if e(S, p)≥3, then f is nondicritical along at least one more irreducible com-
ponent S2 by Remark 3.1 and h2(0) 6= 0 by Remark 2.2. Therefore 1≤ e(S, p)≤ 2.
Now it suffices to show that if the eigenvalue 0 has multiplicity greater than one,
then p is not an AIS.

Assume that the linear part Po
1 of go is of the form

Po
1,1 = 0, Po

1,i = zi−1 for 2≤ i ≤ k, Po
1, j = Po

1, j (zk+1, . . . , zn) for j > k,

where k ≥ 2 is the multiplicity of the eigenvalue 0. Consider the chart wk = zk and
w j = z j/zk for j 6= k. It is easy to check that the blow-up map f̃ in this chart has
ν(g̃o

j ) > 1 for j = 1 and j = k. Therefore p is not an AIS by Remark 2.2.
For (b) we consider an invariant Inv( f, S, p), which we now define (compare

with [Cano 1987]).
Set d(S, p) = #{Si : f is nondicritical along Si }. Let {αi }1≤i≤n be the set of

eigenvalues of f at p counted with multiplicity, with αi =hi (0) for 1≤ i ≤d(S, p).
If αi 6= 0 for some i in 1≤ i ≤ d(S, p), then we set

ci ( f, S, p)= #{α j/αi ∈Q+, j 6= i}.

Define c( f, S, p)=min{ci ( f, S, p) : αi 6= 0, 1≤ i ≤ d(S, p)}.
If d(S, p)= 1, then we set

J = { j : α j/α1 ∈Q+} and m =min{r ∈ Z+ : rα j/α1 ∈ Z+, j ∈ J }.

Define n( f, S, p)= m
∑

j∈J α j/α1.
If d(S, p)≥ 2 and αi 6= 0 for some 1≤ i ≤ d(S, p), then we set

Ji ={ j :α j/αi ∈Q+, 1≤ j ≤ d(S, p)}, mi =min{r ∈Z+ : rα j/αi ∈Z+, j ∈ Ji }.

Define ni ( f, S, p)=mi
∑

j∈Ji
α j/αi . If p is not a simple corner, then it is easy to

see that ni ( f, S, p)= n j ( f, S, p) for 1≤ i, j ≤ d(S, p), and we define n( f, S, p)
to be this common value.

If p is not a simple singularity, define

Inv( f, S, p)= (c( f, S, p), n− d(S, p), n( f, S, p)) ∈ N3.

Otherwise, define Inv( f, S, p)= (0, 0, 0).
We claim that

(?) Inv( f̃ , S̃, q) < Inv( f, S, p),

where S̃ is the strict transform of S under the blow-up π with center p, and q
is a singularity of f̃ in π−1(p). Here we compare the invariants above in the
lexicographic order of N3.



432 FENG RONG

Choose local coordinates such that f is of the form

f j (z)= z j + l
( ∑

1≤k< j

β j;kzk +α j z j + O(2)
)

for 1≤ j ≤ n.

In the canonical coordinates [w1 : · · · : wn] centered at q = [0 : · · · : 0 : 1 :
qi+1 : · · · : qn] for 1≤ i ≤ n, f̃ is of the form

f̃ j (w)=


w j + l̃

(∑
1≤k< j β j,kwk + (α j −αi )w j + O(wi )

)
if 1≤ j < i,

wi + l̃wi
(
αi +

∑
1≤k<i βi,kwk + O(wi )

)
if j = i,

w j + l̃
(∑

1≤k<i β j,kwk +β j,i +
∑

i<k< j β j,k(wk + qk)

+ (α j −αi )(w j + q j )+ O(wi )
)

if i < j ≤ n.

First assume that d(S, p) = 1. Set c = c( f, S, p) and assume without loss of
generality that {αi }1≤i≤c+1 are the eigenvalues with αi/α1 ∈Q+.

If q = [1 : q2 : · · · : qn] is a singularity of f̃ , then the eigenvalues of f̃ at q are α1

and {α j − α1}2≤ j≤n . Clearly, c( f̃ , S̃, q) ≤ c( f, S, p) and d(S̃, q) = d(S, p) = 1.
If c( f̃ , S̃, q)= c( f, S, p), then αi/α1 > 1 for 2≤ i ≤ c+1. Set αi/α1 = ri/si with
gcd(ri , si )= 1 for 2 ≤ i ≤ c+ 1. Then the value m is the same at p and q, and is
equal to lcm(s2, . . . , sc+1). Set ti = m/si for 2≤ i ≤ c+ 1. Then

n( f̃ , S̃, q)= n( f, S, p)−
∑

2≤i≤c+1

ti si = n( f, S, p)−mc < n( f, S, p).

If q = [0 : · · · : 0 : 1 : qi+1 : · · · : qn] for 2≤ i ≤ n is a singularity of f̃ , then the
eigenvalues of f̃ at q are {αi } and {α j −αi } j 6=i . Note that d(S̃, q)= 2> d(S, p).
If i > c+ 1, then q is a simple corner since αi/(α1− αi ) /∈ Q+. If 2 ≤ i ≤ c+ 1,
then α1/αi ∈Q+. Since (α j −αi )/αi ∈Q+ implies α j/α1 ∈Q+ for each j 6= 1, i ,
we have c( f̃ , S̃, q)≤ c( f, S, p).

Suppose d = d(S, p)≥ 2. If p is not a simple singularity, c= c( f, S, p)≥ d−1.
Assume without loss of generality that f j (z)= z j + lz j (α j +O(1)) for 1≤ j ≤ d
and that {αi }1≤i≤c+1 are the eigenvalues with αi/α1 ∈Q+.

If q = [0 : · · · : 0 : 1 : qi+1 : · · · : qn] for 1≤ i ≤ d is a singularity of f̃ , then the
eigenvalues of f̃ at q are {αi } and {α j−αi } j 6=i . Clearly, c( f̃ , S̃, q)≤ c( f, S, p). If
c( f̃ , S̃, q)= c( f, S, p), then α j −αi 6= 0 and q j = 0 for i +1≤ j ≤ d . Therefore,
d(S̃, q)= d(S, p). Set α j/αi = r j/s j with gcd(r j , s j )= 1 for 1≤ j ≤ d. Then the
value mi is the same at p and q, and is equal to lcm(s1, . . . , sd). Set t j = mi/s j

for 1≤ j ≤ d. Then

n( f̃ , S̃, q)= ni ( f̃ , S̃, q)= ni ( f, S, p)−
∑

1≤ j≤d, j 6=i

t j s j < ni ( f, S, p)= n( f, S, p).

If q=[0 : · · · :0 :1 :qi+1 : · · · :qn] for d+1≤ i ≤n is a singularity of f̃ , the eigen-
values of f̃ at q are {αi } and {α j −αi } j 6=i . Now, d(S̃, q)= d(S, p)+1> d(S, p).
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If i > c+1, then q is a simple corner since αi/(α1−αi ) /∈Q+. If d+1≤ i ≤ c+1,
then α1/αi ∈Q+. Since (α j −αi )/αi ∈Q+ implies α j/α1 ∈Q+ for each j 6= 1, i ,
we have c( f̃ , S̃, q)≤ c( f, S, p).

This completes the proof of the claim (?), and thus the theorem. �
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