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Let L and H be finite-dimensional restricted Lie algebras over a perfect
field F. Suppose u(L) ∼= u(H), where u(L) is the restricted enveloping
algebra of L. We prove that L ∼= H if L is p-nilpotent and abelian, or if
L is abelian and F is algebraically closed. We use these results to prove our
main result, that if L is p-nilpotent, then L/L′ p+γ3(L)∼= H/H ′ p+γ3(H).

1. Introduction

Let L be a restricted Lie algebra with restricted enveloping algebra u(L). We say
that a particular invariant of L is determined by u(L) if every restricted Lie algebra
H also has this invariant whenever u(L) and u(H) are isomorphic as associative al-
gebras. The restricted isomorphism problem asks whether the isomorphism type of
L is determined by u(L). This problem is motivated by the classical isomorphism
problem for group rings: Is every finite group G determined by its integral group
ring ZG? The survey article [Sandling 1985] contains most of the development
in this area. In the late 1980s, Roggenkamp and Scott [1987] and Weiss [1988]
independently settled the group ring problem for finite nilpotent groups.

There are close analogies between restricted Lie algebras and finite p-groups. In
particular, the restricted isomorphism problem is the Lie analogue of the modular
isomorphism problem that asks, Given finite p-groups G and H with the property
that FpG ∼= Fp H , can we deduce that G ∼= H? Here, Fp denotes the field of p
elements. There has been intensive investigation on the modular isomorphism
problem; however the main problem is rather far from being completely answered.
Unfortunately not every technique from finite p-groups can be used for restricted
Lie algebras. For example, it is known that the class sums form a basis of the
center of FG. It then follows that the center of G is determined; see [Sehgal 1978,
Theorem 6.6]. Whether or not the center of L is determined by u(L) remains an
interesting open question.
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In analogy with finite p-groups, we consider the class Fp of restricted Lie al-
gebras that are finite-dimensional and p-nilpotent. Let L ∈ Fp. It follows from
Engel’s theorem that L is nilpotent. We shall examine the nilpotence class of L in
Corollary 2.2. Whether or not the nilpotence class of G is determined by FpG has
been considered in recent years; however no major result is reported at this time;
see [Bagiński and Konovalov 2007].

We start investigating the restricted isomorphism problem by first considering
the abelian case. In Proposition 2.5, we prove that if L ∈Fp is an abelian restricted
Lie algebra over a perfect field F, then the isomorphism type of L is determined by
u(L). Furthermore, if F is algebraically closed, then every abelian restricted Lie
algebra is determined by its enveloping algebra; see Corollary 2.8.

It is not clear what the next step is beyond the abelian case in both the modular
isomorphism problem and the restricted isomorphism problem. Nevertheless, we
have proved in [Usefi 2008] that if L ∈Fp is a metacyclic restricted Lie algebra over
a perfect field, then the isomorphism type of L is determined by u(L). The main
result of this paper, which will be proved in Section 3, is another contribution in this
direction; a similar result for finite p-groups was proved by Sandling [1989]. For a
Lie subalgebra I⊆L , we denote by I p the restricted Lie subalgebra of L generated
by all x p for x ∈ I . Also, γi (L) denotes the i-th term of the lower central series
of L . Our main result is as follows:

Theorem. Let L ∈ Fp be a restricted Lie algebra over a perfect field. Then the
restricted Lie algebra L/(L ′p + γ3(L)) is determined.

2. Preliminaries

Let L be a restricted Lie algebra with restricted enveloping algebra u(L) over a
field F. By the Poincaré–Birkhoff–Witt (PBW) theorem (see [Jacobson 1962]), we
can view L as a restricted Lie subalgebra of u(L). Denote by ω(L) the augmenta-
tion ideal of u(L) that is the kernel of the augmentation map εL : u(L)→F induced
by x 7→ 0 for every x ∈ L .

Let H be another restricted Lie algebra such that ϕ : u(L)→ u(H) is an algebra
isomorphism. The map η : L → u(H) defined by η = ϕ − εHϕ is a restricted
Lie algebra homomorphism. Therefore, η extends to an algebra homomorphism
η : u(L)→ u(H). In fact, η is an isomorphism preserving the augmentation ideals,
that is, η(ω(L))=ω(H); see [Riley and Usefi 2007] for the proof of a similar fact
for Lie algebras. So, without loss of generality, we assume that ϕ : u(L)→ u(H)
is an algebra isomorphism that preserves the augmentation ideals.

Recall that L is said to be nilpotent if γn(L) = 0 for some n; the nilpotence
class cl(L) of L is the minimal integer c such that γc+1(L) = 0. We denote by
L ′p the restricted subalgebra of L generated by L ′ = γ2(L). The n-th dimension
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subalgebra of L is

Dn(L)= L ∩ωn(L)=
∑

i p j≥n

γi (L)p j
;

see [Riley and Shalev 1995].
Recall that L is said to be in the class Fp if L is finite-dimensional and p-

nilpotent. The exponent of x ∈ L , denoted by exp(x), is the least integer s such
that x ps

= 0. Whether or not L ∈ Fp is determined by the following lemma; see
[Riley and Shalev 1995].

Lemma 2.1. Let L be a restricted Lie algebra. Then L ∈Fp if and only if ω(L) is
nilpotent.

Now, consider the graded restricted Lie algebra

gr(L) :=
⊕
i≥1

Di (L)/Di+1(L),

where the Lie bracket and the p-map are induced from L . It is well known that
u(gr(L)) ∼= gr(u(L)) as algebras; see [Usefi 2008]. So we may identify gr(L) as
the graded restricted Lie subalgebra of gr(u(L)) generated by ω1(L)/ω2(L). Thus,
gr(L) is determined. We can now deduce the following:

Corollary 2.2. Let L and H be restricted Lie algebras such that u(L) ∼= u(H). If
L ∈ Fp, then |cl(L)− cl(H)| ≤ 1.

Proof. Let c = cl(L). We note that

γn(gr(L))=
⊕
i≥n

γi (L)+Di+1(L)/Di+1(L) for every n ≥ 1.

Since gr(L) is determined, γc+1(gr(H)) = 0. Hence, γc+1(H)⊆Dc+2(H). So,
γc+2(H)= γc+3(H). Since H is nilpotent, it follows that γc+2(H)= 0. �

Note that Dn(gr(L))=
⊕

i≥n Di (L)/Di+1(L). Thus, Dn(L)/Dn+1(L) is deter-
mined for every n ≥ 1. The methods of [Ritter and Sehgal 1983] and [Riley and
Usefi 2007] can be adapted to prove that Dn(L)/D2n+1(L) and Dn(L)/Dn+2(L)
are also determined for every n ≥ 1. In particular, L/D3(L) is determined. We
need the following analogue of [Riley and Usefi 2007, Lemma 5.1].

Lemma 2.3. If ϕ : u(L)→ u(H) is an isomorphism, then ϕ(Dn(L)+ωn+1(L))=
Dn(H)+ωn+1(H) for every positive integer n.

Now suppose that L is an abelian restricted Lie algebra. The conditions on the
p-map reduce to (x+y)p

= x p
+y p and (αx)p

=α px p for every x, y∈ L and α∈F.
Thus the p-map is a semilinear transformation. Let σ be an automorphism of F.
Consider the skew polynomial ring F[t; σ ] that consists of polynomials f (t)∈ F[t]
with multiplication given by αt iβt j

= αβσ
−i

t i+ j . It is well known that F[t; σ ]
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is a PID. Now suppose that F is perfect and let σ be the automorphism given by
σ(α) = α p. Note that F[t; σ ] acts on L by x · t = x p. Then, by the theory of
finitely generated modules over a PID, L decomposes as a direct sum of cyclic
F[t; σ ]-modules, with a unique number of the summands. We summarize this in
the following; see also [Jacobson 1962] or [Bahturin et al. 1992, Section 4.3]. We
denote by 〈x〉p the subalgebra generated by x .

Theorem 2.4. Let L be a finitely generated abelian restricted Lie algebra over a
perfect field F. Then there exist a unique integer n and generators x1, . . . , xn ∈ L
such that L = 〈x1〉p⊕ · · ·⊕ 〈xn〉p.

Proposition 2.5. Let L ∈ Fp be an abelian restricted Lie algebra over a perfect
field F. If H is a restricted Lie algebra such that u(L)∼= u(H), then L ∼= H.

Proof. We argue by induction on dimF L . Let A be the subalgebra of ω(L)
generated by all u p, where u ∈ ω(L). We observe that A ∼= ω(L p) as alge-
bras. Thus there is an induced isomorphism ω(L p) ∼= ω(H p). Since L ∈ Fp,
we have dimF L p < dimF L . Thus, by the induction hypothesis, there exists a
restricted Lie algebra isomorphism ϕ : L p ∼= H p. We now lift ϕ to an isomorphism
of L and H . By Theorem 2.4, there exist generators x1, . . . , xn ∈ L such that
L = 〈x1〉p⊕ · · ·⊕ 〈xn〉p. Without loss of generality we assume

L p
= 〈x p

1 〉p⊕ · · ·⊕ 〈x
p
m〉p for some m ≤ n.

Thus, x p
i = 0 for every i in the range m < i ≤ n. Note that dim L = n+ dim L p.

So, as mentioned in Theorem 2.4, n is determined. Let y1, . . . , yn ∈ H such that
H = 〈y1〉p⊕· · ·⊕〈yn〉p. Then H p

= 〈y p
1 〉p⊕· · ·⊕〈y

p
m〉p. So, we can assume that

ϕ(x p
i ) = y p

i for every 1 ≤ i ≤ m. We can verify that the map induced by xi 7→ yi

for every 1≤ i ≤ n is a restricted Lie algebra isomorphism between L and H . �

Corollary 2.6. Let L ∈ Fp be a restricted Lie algebra over a perfect field. Then
L/L ′p is determined.

Proof. Note that [u(L), u(L)]u(L) = L ′pu(L). Also, u(L/L ′p) ∼= u(L)/L ′pu(L).
Hence, u(L/L ′p) is determined. Since L/L ′p ∈Fp, it follows from Proposition 2.5
that L/L ′p is determined. �

It turns out that stronger results hold over an algebraically closed field. Before
we state the next result, we recall a well-known theorem; see [Jacobson 1962] or
[Bahturin et al. 1992, Section 4.3]. Let TL = 〈x ∈ L | x p

= x〉F, and denote by
Rad(L) the subalgebra of L spanned by all p-nilpotent elements.

Theorem 2.7. Let L be a finite-dimensional abelian restricted Lie algebra over an
algebraically closed field F. Then L = TL ⊕Rad(L).



ISOMORPHISM INVARIANTS OF RESTRICTED ENVELOPING ALGEBRAS 491

Corollary 2.8. Let L be a finite-dimensional abelian restricted Lie algebra over an
algebraically closed field F. If H be a restricted Lie algebra such that u(L)∼=u(H),
then L ∼= H.

Proof. Note that for every k ≥ 1,

dimF L/Dpk (L)= dimF L/Dp(L)+ · · ·+ dimF Dpk−1(L)/Dpk (L)

is determined. So dimF Dpk (L) is determined for every k ≥ 1. Let t be the least
integer such that Rad(L)pt

=0. It follows that Dpt (L)=TL . Hence, dimF Rad(L)=
dimF Rad(H) by Theorem 2.7. Note that L/TL

∼=Rad(L) as restricted Lie algebras.
We claim that ϕ(u(TL ))= u(TH ). If so, then ϕ(TL u(L))= TH u(H). So

u(L/TL )
∼= u(L)/TL u(L)∼= u(H)/TH u(H)∼= u(H/TH ).

Thus, u(Rad(L))∼=u(Rad(H)). Since Rad(L),Rad(H)∈Fp, Proposition 2.5 then
implies that there exists an isomorphism ϕ :Rad(L)→Rad(H). Clearly, ϕ can be
extended to an isomorphism of L and H .

Now, we prove the claim. Let z1, . . . , zn be a basis of Rad(H) and y1, . . . , ys

be a basis of TH , and assume that every yi is less than every z j . Let x ∈ TL and
express ϕ(x) in terms of PBW monomials in the yi and z j . So we have

ϕ(x)= u+
∑

αya1
1 · · · y

as
s zb1

1 · · · z
bn
n ,

where u is a linear combination of PBW monomials in the yi only and each term
in the sum has the property that b1+· · ·+ bn 6= 0. Note that for a large k we have
ϕ(x)pk

= u pk
∈ u(TH ). But ϕ(x) = ϕ(x)pk

. So, ϕ(x) ∈ u(TH ). Since u(TL ) is
generated by L and ϕ is an algebra homomorphism, we can get ϕ(u(TL ))⊆u(TH ).
But u(TL ) and u(TH ) are finite-dimensional. So we get ϕ(u(TL )) = u(TH ). This
proves the claim, completing the proof. �

3. The quotient L/L′ p+ γ3(L)

We first record a couple of easy statements.

Lemma 3.1. Let N be a restricted subalgebra of L. Then

ω(L)N + Nω(L)= [N , L] + Nω(L)

Lemma 3.2. For every restricted subalgebra N of L , we have

• L ∩ ([N , L] + Nω(L))= [N , L] + N p and

• Nu(L)/ω(L)N + Nω(L)∼= N/([N , L] + N p).

Now write JL = ω(L)L ′+ L ′ω(L)= ω(L)L ′p+ L ′pω(L). Since both ω(L)L ′ and
L ′ω(L) are determined, it follows that JL is determined.
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Corollary 3.3. If L ∈ Fp, then dimF(L/L ′p+γ3(L)) is determined.

Proof. Since L ′pu(L) and JL are determined, dimF(L ′p/L ′p+γ3(L)) is determined,
by Lemma 3.2. The result follows since L/L ′p is determined by Corollary 2.6. �

From now on we assume that L ∈ Fp and F is perfect. By Theorem 2.4, there
exist e1, . . . , en ∈ L such that L/L ′p = 〈e1+ L ′p〉p⊕· · ·⊕ 〈en + L ′p〉p. Let X be a
basis of L/L ′p consisting of ēp j

i , where ēi = ei + L ′p and 1≤ i ≤ n. Fix a set X of
representatives of X . So the elements of X are linearly independent modulo L ′p.

We define the height ν(x) of an element x ∈ L to be the largest integer n such
that x ∈ Dn(L) if n exists and to be infinite otherwise. The weight of a PBW
monomial xa1

1 . . . xat
t is defined to be

∑t
i=1 aiν(xi ). We observe that ν(ep j

i ) = p j

for every 1 ≤ i ≤ n and every 1 ≤ j < exp(ēi ). Indeed, if ep j

i ∈ Dm(L) for some
m > p j , then

ep j

i =
∑

k> j αkepk

i mod L ′p.

It follows then that e p̂
i ∈ L ′p, where p̂= pexp(ēi )−1, which is a contradiction. Let Y

be a linearly independent subset of L ′p such that Z = X ∪Y is a basis of L and the
set {z+ Dν(z)+1 | z ∈ Z} is a basis of gr(L). One way to construct such a subset Y
is to take coset representatives of a basis for⊕

i≥1

Di (L)∩ (L ′p +〈X〉F)/Di+1(L).

We need the following variant of [Riley and Shalev 1995, Theorem 2.1].

Lemma 3.4. Let L ∈ Fp. Let Z be a homogeneous basis of gr(L) with a fixed set
of representatives Z. Then the set of all PBW monomials in Z of weight at least k
forms a basis for ωk(L) for every k ≥ 1.

Note that JL is linearly independent with the set of all PBW monomials in X .
Let E denote the vector space spanned by JL and all PBW monomials in X of
degree at least two. The following lemma is easy to see, so we omit the proof.

Lemma 3.5. (1) ω(L)= L + E.

(2) (L + JL)∩ E = JL = E ∩ L ′pu(L).

(3) ω(L)/JL = L + JL/JL ⊕ E/JL .

Lemma 3.6. If L ∈ Fp then E/JL is a central restricted Lie ideal of ω(L)/JL .

Proof. The fact that E/JL is a central Lie ideal of ω(L)/JL easily follows from
the identity [ab, c] = a[b, c]+ [a, c]b, which holds in any associative algebra. So
we have to prove that E/JL is closed under the p-map. Since JL is an associative
ideal of ω(L), it is enough to prove that u p

∈ E for every PBW monomial u in E .
Let u = ea1

1 · · · e
an
n , where each ai is in the range 0 ≤ ai < pexp ēi . It is not hard

to see that u p
= epa1

1 · · · e
pan
n modulo JL . Since L ∈ Fp, each ēi is p-nilpotent. If
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pai < pexp(ēi ) for every 1 ≤ i ≤ n, then u p is a PBW monomial of degree at least
two. Now suppose that pai ≥ pexp(ēi ) for some i . If pai = pexp(ēi ), then ai is a
power of p. Since u has degree at least two, there exists j 6= i such that a j 6= 0. It
now follows that u p

∈ JL . If pai > pexp(ēi ) then epai
i ∈ JL , and so u p

∈ E . �

Lemma 3.7. We have H ∩ϕ(E)⊆JH .

Proof. We suppose JH =0 and prove that H∩ϕ(E)=0. Let v∈H∩ϕ(E)⊆ω2(H).
Let u ∈ E such that ϕ(u)= v. So, u ∈ω2(L). We prove by induction that u ∈ωn(L)
for every n. But ω(L) is nilpotent by Lemma 2.1, and so u= 0. Supposing now by
induction that u∈wn(L), we prove that u∈wn+1(L). So, v∈H∩wn(H)=Dn(H).
Thus, by Lemma 2.3, u ∈ (Dn(L)+ωn+1(L))∩ E . But

(Dn(L)+ωn+1(L))∩ E⊆ωn+1(L).

Indeed, let u =
∑
αi zi +w, where each zi ∈ Z has height n and w ∈ ωn+1(L). By

Lemma 3.4, w is a linear combination of PBW monomials in Z of weight at least
n + 1. Since u ∈ E , it follows by the PBW Theorem that αi = 0 for every i . So
u = w ∈ ωn+1(L), as required. �

Lemma 3.8. We have ω(H)/JH = H+JH/JH ⊕ϕ(E)/JH .

Proof. By Lemma 3.7, it is enough to prove ω(H)/JH⊆H + JH/JH ⊕ϕ(E)/JH .
Note that bothω(H)/JH and ϕ(E)/JH are determined. Since dimF(H+JH/JH )=

dimF(H/(H ′)p
+ γ3(H)) is determined by Corollary 3.3, the result follows from

Lemma 3.5. �

Noting that L+ JL/JL ∼= L/L ′p+ γ3(L) by Lemma 3.2, we can now finish the
proof of our main result.

Lemma 3.9. The restriction of the natural isomorphism ω(L)/JL→ω(H)/JH to
L + JL/JL induces an isomorphism of L + JL/JL and H + JH/JH .

Proof. We denote by ϕ the induced isomorphism ω(L)/JL → ω(H)/JH . Let
ϕ|L+JL/JL = ϕ1+ϕ2 denote the restriction of ϕ to L+ JL/JL , where ϕ1 maps from
L+ JL/JL to H + JH/JH . It is enough to prove ϕ1 is a restricted Lie algebra iso-
morphism. Since E/L is a central Lie ideal of ω(L)/JL by Lemma 3.6, ϕ(E)/JH

is a central Lie ideal of ω(H)/JH . So, for every x, z ∈ L , we have

ϕ([x, z] + JL)= [ϕ(x)+ JH , ϕ(z)+ JH ] = [ϕ1(x), ϕ1(z)] + JH .

So, ϕ1 preserves the Lie brackets. Also,

ϕ(x p
+ JL)= ϕ(x)p

+ JH = (ϕ1(x))p
+ (ϕ2(x))p

+ JH

Since (ϕ2(x))p
+ JH ∈ ϕ(E)/JH , it follows that ϕ1 preserves the p-powers. Also,

ϕ1 is injective by Lemma 3.5. Since L + JL/JL and H + JH/JH have the same
dimension by Corollary 3.3, it follows that ϕ1 is an isomorphism. �
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