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BATALIN-VILKOVISKY COALGEBRA OF STRING TOPOLOGY

XIAOJUN CHEN AND WEE LIANG GAN

We prove that the reduced Hochschild homology of a commutative DG
Frobenius algebra has the natural structure of a Batalin—Vilkovisky coalge-
bra, and the reduced cyclic homology has the natural structure of a gravity
coalgebra. As an application, this gives an algebraic model for a Batalin—
Vilkovisky coalgebra structure on the reduced homology of the free loop
space of a simply connected closed oriented manifold, and a gravity coalge-
bra structure on the reduced equivariant homology.

1. Introduction

Let M be a simply connected closed oriented m-manifold, and let LM be its free
loop space. Félix and Thomas [2008] gave a construction of the Batalin—Vilkovisky
algebra structure on the homology of LM in terms of Hochschild homology of a
Poincaré duality model of M. The aim of this paper is to show that the reduced
Hochschild homology, which gives the homology of LM relative to constant loops,
has the structure of a Batalin—Vilkovisky coalgebra. As a consequence it is also
shown that the reduced cyclic homology of the Poincaré duality model, which
models the equivariant homology of LM relative to the constant loops, has the
structure of a gravity coalgebra.

Throughout this paper, we shall work over the field of rational numbers. By
C.(-) and C*(-), we mean the complex of singular chains and the complex of
singular cochains. We shall grade C*( - ) negatively. By applying [Lambrechts and
Stanley 2008, Theorem 1.1] to the Sullivan minimal model of M, it follows that
there is a commutative differential graded (DG) algebra A such that

* A is connected, finite-dimensional, and quasiisomorphic to the DG algebra
C*(M); and

* there is an A-module isomorphism A — A" of degree m commuting with
the differential and inducing the Poincaré duality isomorphism H*(M) —
H,,++(M) on homology.
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Following Félix and Thomas [2008], we call A a Poincaré duality model for M.

Let C = AY, the dual space of A. Since A is a commutative DG algebra, C
is a cocommutative DG coalgebra. The linear isomorphism A-=>C[m] induces
the structure of a commutative DG algebra on C whose product is of degree —m.
Moreover, the coproduct

A:C—->CQ®C, x—x®x"

is a map of C-bimodules. Thus, C forms a commutative DG Frobenius algebra in
the following sense, which models the chain complex of M:

Definition 1. Let C be a chain complex over a field k. A commutative DG Frobe-
nius algebra of degree m on C is a triple (C, -, A) such that (C, -) is a DG com-
mutative algebra whose product is of degree —m, (C, A) is a DG cocommutative
coalgebra, and

D) G-y =@-y)®y ==D""Ix® 1" y) foranyx,yeC.

In Definition 1, C is not necessarily finite-dimensional.

From now on, we shall denote by C a commutative DG Frobenius algebra of
degree m with differential d, counit ¢, and a coaugmentation Q0 < C. By the
Hochschild homology HH,(C) and cyclic homology HC,(C) of C, we mean the
Hochschild homology and cyclic homology of the underlying DG coalgebra struc-
ture of C. We recall their definitions:

Definition 2. The Hochschild homology HH,(C) of C is the homology of the
normalized cocyclic cobar complex (CC,(C), b), where

cc.(O)=[]ceEo)®,

n=0
and
b(aolar|- - -lan]) )
= daolar|- - -|a,] + (=Dl lellgfay | - |day | -+ - |ay)
i=l
+Z(_1)Iao\+l[a1\-~~|af71|a{]|a0[a1| e ldllal] - ag)

i=1
+ (= Dlag([ag |a| - - |a,] — (=D Wo=Dllalladifg | ya, |ag]).
Here, C :=C/Q~ker{¢:C — Q} and X is the desuspension functor (shifting the

degrees of C down by one), and we write the elements of C ® (X C)®" in the form
aolai| - - - |a,]. In particular, the degree |[a; | - - - |a, ]| is (Jai|—1)+- - -+ (Ja,|—1).
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One easily checks that b*> = 0. Connes’ cyclic operator on the normalized co-
cyclic cobar complex is given by

B: CC,(C) — CCyuri(C),

n
alay] -+ |ay] > D (=Dllal-landllar-la-ll
i=1 e(ag)ailais1] -+ lanlay| - |ai_1].

One has B2=0and bB + Bb = 0.

Definition 3. The cyclic homology HC,(C) of the coalgebra C is the homology of
the chain complex CC,(C)[u], where u is a parameter of degree 2, with differential
b+ u~'B defined by

ba@u*+Ba@u"' ifn>0,
ba ifn=0

b+u"'B)a®@u") = [
for a € CC.(C).
As in the algebra case, one has Connes’ exact sequence:
E
(2) -+ ——=HH.(C) —= HC.(C)
—— HC.2(C) —> HH,_1(C) — - -+ ;

compare with [Chen 2007, Theorem 8.3]. We now recall the Batalin—Vilkovisky
algebra structure on the Hochschild homology of a commutative DG Frobenius
algebra.

Definition 4. A Batalin—Vilkovisky algebra is a graded commutative algebra (V, )
together with a linear map A : V, — V,4| suchthat AocA =0, and foralla, b,ceV,

(3) A(asbec)=A(@sb)ec+ (=1)age Abec)+ (—=1)1=DPIpe A(aec)
—(Aa)ebec— (—D)ae(Ab)ec— (=) Plgepe(Ac).

Now for a commutative DG Frobenius algebra C, define a product
¢ 1 CCL(C)RCCL(C) — CCL(O)
by
aolat| -+ |anlebolby| -+ |b,]:= (=D ledagbolay | - - fay by - 1b,].

Theorem 5 [Tradler 2008]. The Hochschild homology HH,(C)[m] is a Batalin—
Vilkovisky algebra with differential B and product .
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Using the maps E and M in Connes’ exact sequence (2), define, for each integer
n > 2, amap c, of degree 2 —n by
Cn t HC,(C)[m —2]1%" — HC,(C)[m — 2]
0 ® - oy — (_1)6 EM(ai)e -+ «M(ay)),

where € = (n — 1)|a1| + (n — 2)|az| + - - - + |o,—1]. The corollary, which follows
from a general result (see Proposition 24), is this:

Corollary 6. The cyclic homology (HC.(C)[m — 2], {c,}) is a gravity algebra.

Definition 7. A gravity algebra is a graded vector space V with a sequence of
graded skew-symmetric operators

{xl,...,xk}:V®k—>V fork=2,3,...
of degree 2 — k that satisfy the generalized Jacobi identities
(4) Z (_I)E(i’j){{xi,xj}ﬁxlﬁ"'5'xAi""’xAj""’xk’yl’""yl}
I<i<j<k
I ((ETRE T R B I B
0 if 1 =0.
where €(i, j) = (lx1] 4+ -+ it Dlxi | 4+ (oen | 4 -+ Ixi-a Dl [+ | fx ]

In this paper, by the reduced Hochschild homology HH.(C ) of C, we mean the
homology of

CC.(C) :=CC,(C)/C =[] C®(zO)®".
n=1

By the reduced cyclic homology HC, (C) of C, we mean the homology of
CC.(O)lul = CC(C)ul/Clul.

As above, we have E : ﬁﬁ*(C) — ﬁé*(C) and M : ﬁak(C) — ﬁﬁ*+1(C).
Define a coproduct

V1 CC,(C) — CC.(C)® CC.(C)

by
(&) Vlaolai| - layl)
n—1
= (=D (@oa)[a1] -+ |11 ® (aoa) [ais1 | -+ |an],
i=2
where € (i) = |aol + (1 + lai| + [(aoai) "Dllar | - - - lai—1 ]I

Our main result is the following.
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Theorem 8. The reduced Hochschild homology HH,(C )1 — m] is a Batalin—
Vilkovisky coalgebra with differential B and coproduct V.

The proof of Theorem 8 uses several identities at the chain level involving certain
homotopies which we will give in Section 5.

Similarly to above, define a map s, : EE* OR2-m]— FIZ’; (O)[2 —m]®" of
degree 2 — n by

sp(@)=EQ® - ®E)o(V®id® o --- o (V®id) o VoM(a)
for any a € ﬁé*(C)[2—m].

Corollary 9. The reduced cyclic homology (ITIE*(C)[Z — ml], {s,}) is a gravity
coalgebra.

In the two statements above, the Batalin—Vilkovisky coalgebra and gravity coal-
gebra are defined as dual versions of the corresponding algebras (see Definitions 14
and 15). The Batalin—Vilkovisky algebra and the gravity algebra structures of
HH,(C) and HC,(C) descend to HH,(C ) and HC, (C), respectively. Thus, we
obtain both Batalin—Vilkovisky algebra and coalgebra structures on HH,(C), and
gravity algebra and coalgebra structures on HC.(C ).

Let A be a Poincaré duality model for M and C = A". Let LM be the free loop
space of M. From [Jones 1987], one has isomorphisms

H.(LM, M) = HH,.(C) and HS (LM, M)= HC,(C).

Following [Chas and Sullivan 2004], we call Hy,(LM, M) the reduced homology
of the free loop space, and H? 1 (LM, M) the reduced equivariant homology of the
free loop space. As a consequence, the choice of a Poincaré duality model for
M gives the reduced homology of the free loop space the structure of a Batalin—
Vilkovisky coalgebra, and the reduced equivariant homology of the free loop space
the structure of a gravity coalgebra. In string topology, the loop product e was first
introduced in [Chas and Sullivan 1999]; see also [Cohen and Jones 2002]. The
coproduct Vv was introduced in [Sullivan 2004]. The operators ¢, and s, were first
introduced in [Chas and Sullivan 2004] and discussed further in [Sullivan 2004];
see also [Westerland 2008].

Getzler [1994a; 1994b; 1995] studied Batalin—Vilkovisky algebras and gravity
algebras in his works on topological conformal field theories (TCFT). He showed
that a (genus zero) TCFT (respectively, an equivariant TCFT) with one output is
the same as a Batalin—Vilkovisky algebra (respectively, a gravity algebra). If we
consider multiple inputs and outputs, we then obtain both Batalin—Vilkovisky alge-
bra and coalgebra (respectively, gravity algebra and coalgebra). Our construction
gives an algebraic proof that string topology is a part of a (genus zero) TCFT. We
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expect that the constructions above can be generalized to homotopy versions of
commutative DG Frobenius algebras.

Remark 10. Sullivan’s coproduct V is not the same as the loop coproduct intro-
duced in [Cohen and Godin 2004]; see also [Godin 2007].

Remark 11. Theorem 5 is not new; it is well known that the Hochschild cohomol-
ogy of a Frobenius algebra has the structure of a Batalin—Vilkovisky algebra; see,
for example, [Menichi 2004] and [Tradler 2008]. However, notice that the formulas
we give above in terms of the Hochschild homology of a Frobenius coalgebra are
really explicit and simple. The proof of Theorem 5 is included in this paper so that
the reader can compare it with the proof of Theorem 8. As far as we are aware,
Theorem 8 is new. Its statement is not true in general at the chain level, and the
homotopy operators that appear in its proof are also new.

The BV coalgebra structure in Theorem 8 also appears to be related to [Eu and
Schedler 2009, Question 2.3.72].

The rest of this paper is organized as follows. We recall the definitions of
Batalin—Vilkovisky algebras and gravity algebras in Section 2 and the proof of
Theorem 5 in Section 3. We give the proof of Corollary 6 in Section 4, the proof
of Theorem 8 in Section 5, and the proof of Corollary 9 in Section 6.

Koszul sign rule. All £ signs in this paper are determined by the Koszul rule for
signs. Thus, whenever we switch two elements a ® b — b ® a, we put (—1)!/?!
in front of b ® a and write £b ® a. Also, if f and g are operators of homogeneous
degree, then (f ®g)(a®b) ==+ f(a)®g(b) = (—1)¢114l £ (a) @ g(b). For example,
in (5), to see that €(i) = |ap| + (1 + |a;| + [(aoa;)'D|la1] - - - |ai_1]| is given by
the Koszul sign rule, note that the term (1 + |a;])|[a; | - - - |a;—1]| comes from first
moving [a;] to the left of [a;]| - - - |a;_1], the term |ap| comes from moving a sus-
pension operator to the right of ag to apply it to [a;], and |(apa;)”||[a1] - - - |ai—1]|
comes from moving (apa;)” to the right of [a | - -- |a;_1]. Similarly, the signs in
the formulas above for b, B, the product e, c¢,, and so on, are also all given by the
Koszul sign rule.

2. Batalin—Vilkovisky algebras and gravity algebras
Lemma 12. Let (V, o, A) be a Batalin—Vilkovisky algebra. Define
{-,-}:VV->V

by
{a,b} ;== (=D A(aeb) — (=1)*(Aa) e b —a « (AD).

Then (V[—11,{-, -}, A) is a DG Lie algebra.
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Proof. See [Getzler 1994a, Proposition 1.2]. O

More generally, one has the following result proved by Getzler; see [1994b,
Theorem 4.5] and [1995, §3.4].

Theorem 13. Let (V, o, A) be a Batalin-Vilkovisky algebra. For k =2,3,...,
define

(..., }: V& Sy
by

k
{ar, ..., a4} = (=1)° (A(alaz cag) = ) (=Dl (Agy) - 'ak),
i=1

where € = (k — 1)|ai| + (k — 2)|az| + - - - + |ax—1|. Then V[—1] is a DG gravity
algebra with differential A and brackets {ay, ..., a;}.

A DG gravity algebra is a gravity algebra with a differential commuting with
all the brackets. Thus, for a Batalin—Vilkovisky algebra (V, e, A), its homology
H(V, A)[—1] has a gravity algebra structure. Taking k =3 and [ =0in (4) gives the
graded Jacobi identity. Hence, a gravity algebra has a graded Lie algebra structure.

Analogously, we may introduce the notions of a Batalin—Vilkovisky coalgebra
and a gravity coalgebra.

Definition 14. A Batalin—Vilkovisky coalgebra is a graded cocommutative coal-
gebra (V, V) together with a linear map A : V, — V,4; such that Ao A =0,
and

(A ®id®? +id ®A ®id+id®* ®A) o (V ®id) o V(a)
=(2+1+id)o (Vo A®id)oV(a)+ (V®id)o Vo A(a)
for all a € V, where 7 is the cyclic permutation 7 : a @b Q@ c+— c®@a @ b.

Similarly to the Batalin—Vilkovisky algebra case, the chain complex (V, A) is
a DG gravity coalgebra:

Definition 15. A gravity coalgebra is a graded vector space V with a sequence of
graded skew-symmetric operators

mp:V— Ve fork=23,4,...
of degree 2 — k, such that
6)  Spk20(my®@id® ) omy_1 1 = (m ®id®*)omyyy 1 V — VE,

where the range of the mapping (m> ® id®*~2) o my_14; : V — V¥t is identified
with V€2 @ V2@ V® and S, ;_, is the shuffle product V&2 @ V&2 . y &k,
and if / =0, we set m; =0.
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Theorem 16. Let (V, Vv, A) be a Batalin—Vilkovisky coalgebra. For any x € V, let
Vk(.x) = (v®id®k—2)o. o(\/®1d)o\/(_x) =Z_x1 ®x2®' "®xka
and let

se(x) := Z(_ 1)(k*1)IX1 [+ (k=2)|xa |4+ +|xx—1

k—1
. (\/k(Ax) ~>7d® @A ®id® o \/k(x)),
i=0

Jork =2,3,.... Then V[1] is a DG gravity coalgebra with differential A and
cobrackets {s,}. In particular, (V[1], 52, A) is a DG Lie coalgebra.

The proof of the theorem is completely dual to that of Theorem 13.

3. The Batalin—Vilkovisky algebra

Next we recall the proof of Theorem 5 from [Chen 2007].

Lemma 17. The chain complex (CC,(C)[m], b) is a DG algebra with product e.

Proof. The proof is by direct verification; see [Chen 2007, Lemma 4.1]. U
The product e on CC,(C)[m] is not commutative, but homotopy commutative:

Lemma 18. Define a bilinear operator
as follows: for o« = aglar | -~ |1, f = bolb1| -~ 1b,] € CC.(C),
(7 axp:= Z(_l)lbo|+(\ﬁ|—1)|[a,-+]|,..|an]|

i=1

-e(aibo)aolar | -+ |ai—1|b1| -+ |brlaiv1] -+ |an].
Then
®)  blaxp)=baxf+(D"axbp+ (1) (@s - (=1)"VIgeq).
Proof. The proof is by direct verification; see [Chen 2007, Lemma 5.1]. (]

It follows from Lemma 17 and Lemma 18 that (HH,(C)[m], ) is a graded
commutative algebra.
Define the binary operator

{-,-}1:CCL(C)®CC(C) — CC(C)
to be the commutator of * above, namely

{a, By i=ax f— (—=D)1FDUEHD g w6 for a, B € CC4(C).
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Lemma 19. The chain complex (CC(C)[m — 1], b) is a DG Lie algebra with the
Lie bracket { -, - }.
Proof. The proof is direct; see [Chen 2007, Lemma 5.4 and Corollary 5.5]. O

In particular HH,.(C)[m — 1] is a graded Lie algebra. Moreover, » and { -, - } are
compatible in the following sense, which makes HH .. (C)[m] into a Gerstenhaber
algebra:

Definition 20 [Gerstenhaber 1963]. Let V be a graded vector space. A Gersten-
haber algebra on V is a triple (V, -, {-, - }) such that

(1) (V,-) is a graded commutative algebra;

(i) (V,{-,-}) is a graded Lie algebra whose Lie bracket is of degree 1;
(iii) for any a, 8, y € V, one has
©) faepyy=as(f, 7} + DTG yyep.

Theorem 21. The Hochschild homology HH,.(C)[m] is a Gerstenhaber algebra,
with product  and bracket { -, - }.

Proof. From above, HH . (C)[m] is both a graded commutative algebra and a degree
one graded Lie algebra. Equation (9) is immediate from Lemma 22. ([

Lemma 22. For any
a=aolay|---la,], p=bolbr]---1b], 7y =colci|---1lc/] e CCk(C),
one has

() (asp)xy =ae(Bxy)+(=DPIUTD(axy)ep;and
(i) y *(@ef)—(y xa)e f— (=) FDge(y xf) = (bop—pob)(a®B®Y),
where

pla®B®y) =D (=D e(ciap)e(cibo)coler| - cimtlar| -+ |an|cit]

i< e lejlbr] - bplcjr] oo e,
and € = (|a| — Dl[cit1] -+~ |call + (B = Dllcjr] - -~ [call.
Proof. The proof is by direct verification; see [Chen 2007, Lemma 5.8]. U

Theorem 5 follows from [Getzler 1994a, Proposition 1.2], Theorem 21, and the
following:

Lemma 23. Forany a, € HH,(C)[m], one has

{a, B} = (=D B(a e p) — (—=1)“'B(a) s p — a « B(p).
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More precisely, for o. = x[ay| - - - |ay] and p = y[by| - - - |b;] € CC,(C), define

¢(a, B)
:=Zi8(X)8(ajy)ai[ai+1| o laj-r byl -+ Drlajir ] -+ - lanlar| -+ - lai—1],

i<j

w(a, B)

= Zig()’)g(blx)bk[kal e lbiylar] - lag bl - b by - bkt ],
k<l

and let 0 := ¢ + y. (The % signs are determined by the Koszul sign rule.) Then

(boB+600b)(a®p)
={a, B} — (=D B(a s ) = (=D)VPHFDEHD g e B(a)) + oo B(B).
Proof. The proof is by a direct verification; see [Chen 2007, Lemma 7.3]. ([

4. The gravity algebra
We define the complex (CC,(C)[u, u™'],b+u~'B) by
b+u"'B)a®@u")=ba@u"+ Ba@u""" forall n.

The quotient of (CC,(C)[u, u~'], b+u~'B) by its subcomplex CC,.(C)[u"u~"
is the complex (CC,(C)[u], b+ u~'B) in Definition 3. The short exact sequence

-1
0 — CC,(C) — CC4(C)[u] — CC(C)[u] = 0
induces the long exact sequence (2). By diagram chasing, one can see that
MoE=B: HH*(C) — HH*+1(C).

Corollary 6 is immediate from Theorem 5 and the following general result; see
[Chen 2007, Theorem 8.5].

Proposition 24. Let (V, o, A) be a Batalin-Vilkovisky algebra, and let W be a
graded vector space. LetE : V, — W, and M : W, — V., be two maps such that
EoM=0and MoE = A. Then (W[-2], {cn}) is a gravity algebra, where

(@1 ® - Qay) = (_1)(n*1)\a1|+(n*2)|a2|+--~+|an71IE(M(al) oo M(ay)).
Proof. It follows from (3), by induction on n, that

(1) Ariexze---ox) =D EAMox)exie- oo -eFje o,
i<j

H2) Y e A,
i
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Now let x; = M(a,;), and apply E to both sides of the above equality; we obtain

Eo A(M(a1) s M(a2) » - - - « M(at))
= Z:‘:EO (A(M((ll) ‘M(OCJ)) OM(OCI) ®. .. oM(O!l') ®. .. OM(OL/) ®. .. oM(O!n))

i<j

+(n—2) D +EM(ar)e---e AoM(a;)e- -« M(an)).

Sincce Eo A =EoMoE=0and AoM=MoEoM =0, we have

Z +epo1(2(@i ®a)@a1® Qi ® -4, ® - ®a,) =0,
I<i<j<n
Similarly, by multiplying y; e - - - ¢ y; on both sides of (10), letting y; = M(f;),
and then applying E on both sides, we obtain

> den1(2ei®0)®a @ R&® AR U@ f)
1<i<j<n

=ct1(cn(@1® - ®a) @1 ® - ® Bi)
for [ > 0. This proves the proposition. (]

Proposition 24 can also be applied to the Hochschild homology of a Calabi-Yau
algebra (see [Ginzburg 2006, Theorem 3.4.3]) to give a gravity algebra structure
on its cyclic homology.

5. The Batalin—Vilkovisky coalgebra
The proof of Theorem 8§ is similar to the proof of Theorem 5.

Lemma 25. The chain complex (CC, (C)[1 —m], b) is a DG coalgebra with co-
product V.

Proof. It is clear that V is coassociative. Therefore we only need to check that b is
a derivation with respect to V. Observe that the expressions b o V(a) and V o b(a)
have two parts, one contains those terms involving the differentials of the entries
in a (which we call the differential part), the other contains those terms involving
the coproducts of the entries in o (which we call the diagonal part). It follows
directly from the definition of Vv that the differential parts of o Vv (a) and VvV ob(a)
are equal. For the diagonal parts, omitting the signs determined by the Koszul sign
rule from our notation (see 32), we have

(11) boV(aolar] --- |anl)
(12) = D b((aa)'Tar] -+ lai—1]) ® (aoa) Tais1] - - @]

l<i<n
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a3) £ D (@a) @] i @b ((@0a) ai | - lan])

l1<i<n
14 = > H(aa)[ar] - |a}|a]| - |ai1]1® (aoa;) [air1 ] - - |an]
1<j<i<n
(15) + Zi((aodi)/)/[((aoai)/)”|a1| - ai—11® (aoai) " [aiv1| - - - |an]
l<i<n
(16) — > £((aoa)))'lar] -~ lai11((a0a))1® (aoa)'[ai11] - -+ |@n)
l<i<n
(17) + D H(aoa) lar| - |ai—1]1® (aoa) aiy| -+ |a}|af] -+ | an)
l<i<j<n
(18) + D H(aoa) [ar] -+ lai—1]1® (a0a)") [((aoai)") |ais1 | -+ | an)
1<i<n
(19) — > +(aoa) lar| -+ 1ai11® ((aoai)"Y [ais1] - -+ 1an| ((a0ai)")"],
l<i<n
while
(20)  vob(aglai| - lanl)
@ = > Ha)[ar] - |a)la]| - |ai11® (aoai) [ait1] - - |an]
I<j<i<n
(22) + D *(aoa) [ar| -+ |ai—11® (@oai) [ais| - |d}|af] -+ |an]
l<i<j<n
(23) + D *(aoa) | - lai-11® (aoa)) [a] |ai1 | - - |a]
l<i<n
(24) £ (a0a,) a1 -+ - |an—11® (aoa,)"[a,]
(25) =+ (a0a))'[a}1® (aoa))"[az| - - - |an]
(26) + D *(aoa]) lar] -+ - lai1|a]1® (aoa)) laig1] - -+ |an]
l<i<n
27) + (apa1) [agl ® (agar)"[az] - - - |an]
(28) + > H(agai) laglar| -+ 1ai11® (aga) a1 | -+ |ay]
l<i<n
(29) — > Hapa) [ar| -+ lai-11® (aoa;) [air1 | - - |an|af]
l<i<n
(30) — £(agan)'lar] -+ lan—11® (agan)"lag].

Keeping (1) in mind, we see that (14) and (21) are equal; so are (15) and (28),
(16) and (26), (17) and (22), (18) and (23), and (19) and (29). Also, (24) and (30)
cancel; so do (25) and (27). Hence, (11) = (20). O
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Define the permutations 7 and o by
7: CC(C) ® CC+(C) — CCL(C) ® CC.(C)
o1 ®ayt— far@a
and
0 : CC(C) ® CC.(C) ® CCL(C) — CCL(C) ® CC4(C) ® CC,(C)
a1®@ax®@a3 > tax @az @ ay.

The following lemma says that V is cocommutative up to homotopy, and therefore
(HH4(C)[1 —m], V) is a graded cocommutative, coassociative coalgebra.

Lemma 26. Let h : CC+(C) — CC,(C) ® CC4(C) be defined by
h(a) == Ziao[all e laizilaje ] - lagl ®@aiajlaiya | - - laj—1]
i<j
for any o = aplay| --- |a,] € C,‘Z‘;(C). (The + sign is determined by the Koszul
sign rule on page 32.) Then
31 boh(a)—hob(a)=10oV(a)—V(a).

Proof. It is easy to see that the differential parts of the left side of (31) cancel each
other, so we only need to consider the diagonal parts. In fact, the diagonal parts of
h(ba) are equal to

32 D Faplainl-la] @ (agala] - - lai 1]

(33) + D +aglaglail---lai-ilajil - lay] ® (@iaj)laipl - - laj-i]

i<j

34 — D Haplai] - lai 1@ (@ag)lai] - - |an]

(35) — > *aglar| - -lai—ilajsil - lanlag] ® (aiap)laia] - laj 1]

i<j

(36) + Ziao[all o laglal] - lan) @ (aiaj)aiyil - - - laj—1]

37 + D alal - lai-ilajn] - la ) ® @a)lair| - laglay| - laj 1]

i<k<j
38) + > Haplai| - laiilajyi] - la] ® (@a;) [(@a;) |ai | -+ |aji1]
i<j

39) — > Faolar] - lai—1lajl - ) ® (@ia;) laia] - - laji|(@ia;)"],

i<j
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(where the sum in (36) is taken over all k <i < jandi < j <k).
Now (33)4(35)4+(36)+(37)+(38)+(39) is exactly b(ha), while the remaining

terms (32) + (34) are exactly —z o V(a) + V(). O
Lemma 27. Let h be as in Lemma 26. Define S : 66‘;((7) — EEK(C) ® EZ’;(C)
by

S(@):=h(a)—toh(a) foranyo € C"\C—"*(C).

Then the chain complex (E'E* (C)[2 —m], b) is a DG Lie coalgebra with the co-
bracket S.

Proof. 1t follows from the definition that S is skew-symmetric, and » commutes
with S by (31). Now, for any o = apla;| - - - |a,],

(h®Dh(a) — (1@ h)h(a)

= Zﬂ:ao[all o lag—rlaggr | - lai—rlajr| - lag]
ketsis Qaralags1] -+ a1 ®aiajlaiy | - -+ laj—1]
+ Zﬂ:ao[al [ -+ lai—ilaj1] - lag—1lai1] -+ - |anl
feyskd Qarailary1] - - la—1l1®ajajlaiy1] -+ laj-1]

=1 ®1)(h® Dh(a) — (1@ h)h(a)).
It follows that
A+o+e)HES DS

=l+o +02)((h® Dh—(1®hh—(1®1)(h®1)h—(1Qh)h)) =0,
so the co-Jacobi identity holds. ([

It follows that (Itlﬁ «(O)[2—m], S) is a graded Lie coalgebra. The Lie cobracket
S and the cocommutative coproduct V are compatible in the following sense:

Definition 28. Let V be a graded vector space. A Gerstenhaber coalgebra on V
is a triple (V, v, S) such that

(1) (V, V) is a graded cocommutative coalgebra;
(ii) (V, S) is a graded Lie coalgebra whose Lie cobracket is of degree 1; and

(iii) S: V — V ® V is a coderivation with respect to Vv, that is, the following
diagram commutes:

Vv

S l
vEid

VRV —VQRVRV

Vev

l (Id®7)o(S®id)+id ®S
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Theorem 29. The reduced Hochschild homology (HH.(C N1—m], Vv, S)isa Ger-
stenhaber coalgebra.

Proof. From the definition of 4 in Lemma 26, the diagram

cC CC®CC
hl L(id ®1)o(h®id)+id ®h
cC®CC CCRCC®CC
commutes. We next show that
(40) cC —>CC®CC
Tohl l(id ®7)o(r0oh®id)+id ®7oh
cCecC CC®CC®CC,
commutes up to homotopy, and therefore, from S =/ — 7 o h, the diagram
HH - HH ® HH
Sl l(id ®1)o(S®id)+id ®S
HH ® HH HH ® HH ® HH

commutes. Let p : CC — CC® CC® CC be the map defined by

o(a) :== Z taolar| - lai—ilajprl - lak—1laer] - - - 1an]

i <j<k<l

RIsEE ®aiajlait1| - laj—11@arailags1| -+ - |ai-1],
for any a = agla;| --- |a,]. (The % sign is determined by the Koszul sign rule.)

Let p :=0 op. Then
(41) (bop—pob)(a)=((vV®id)o(roh)—((id ®7)o(r0h®id)+id @z oh)oV)(a)
for any a € CC. Indeed, one has

eob(a)—bog(a)=

(42) > *(aoa) [ai| -+ laj1lars] -+ |ay]
i<j<k .
® (aoa;) a1 -+ lai—11® (aja)ajpr] - - - |ak—1]
@3)  + > zaolar] - |ajilaxs1] - la]
j<i<k , y
®(ajaka;) [ajr1] - lai—1]1® (ajaxa;) [aiv1| - - lag-1]
@4+ > H(aa)lar| -+ laj 1 lagi] -+ lai1]
j<k<i

Qaja)laji| - lar—11® (aoa;) [ait1| - -« lay].
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After applying o, (42) becomes (id @7 o h) o V(a), (43) becomes (V ® id) o
(r oh)(a), and (44) becomes (id ®7) o (r o h ®id) o V(a). This proves the identity
(41), and hence (40) is proved. ([l

Theorem 8 follows from the dual version of [Getzler 1994a, Proposition 1.2],
Theorem 29, and the following lemma.

Lemma 30. For any a = aplay|---|a,] € C’TCT*(C), let

@5) ¢(@):= D Fe(@dailaipi] - lajilacsi| -+ lanlar| -+ ai1]

i<j<k
®ajarlajir] -+ lax-1],
46) y(a):= > *elao)ajarlajyi] -+ |ax1]

Jj<k<i
®ailaiy1] - laplay| -+ |laj-1|ags1| -+ lai-1],
and let 8 = ¢ + y. (The % signs are determined by the Koszul sign rule.) Then

boO+0ob=VoB—BoVv-—3S,

where S is as defined in Lemma 27.

Proof. The proof is similar to that of Lemma 23. For any a = aglay]| - - - |a,], the
terms on the right hand side of the desired equation are

VoB(a)=
@7 D Fe(ao)@a;) [ain |-+ lanlar] - laj 1]
= Qaia;) [ajs1] - lai-1]
48) + Z:ES(ao)(aiaj)/[ai-i-” e laj1]
= ®(aia;)"[aji1]-- - lanlai] - - lai-1],
Bov(a)=
49) D Falal - laiailal] - a1 @ aoailai| - - |an]
i>k
(50) + D Faoailar| - |ai 1@ alaryi| - lanlai] - lag-1],
i<k
S(a) =
S D Haglar| - laiilaji ] la] @ aiajlai] - - laj]
i<j

(52) + D Faajlait1| - laj_(1®aolar| -+ laiilaj1 - |an).

i<j
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It follows that
pob(a)=—bop(a)+ (47) — (49) — (51),

while
wob(a)=—bow(a)+ (48) — (50) — (52). O

6. The gravity coalgebra

Corollary 9 is immediate from Theorem 8 and the following result.

Proposition 31. Ler (V, Vv, A) be a Batalin—Vilkovisky coalgebra, and let W be a
graded vector space. Let E: V, — W, and M : W, — V.. be two maps such that
EoM=0and MoE = A. Define s, : W — W®" forn > 2 by

sp(@) :=E®---®E)o(V®id® 2)o---0VoM(a)
forany o € W. Then (W[1], {s,}) is a gravity coalgebra.

Proof. The proof is analogous to that of Proposition 24. By induction on n, we
deduce from the identity in Definition 14 that

n—1

(53) VyoA(x)—(n—2) (Z id® QA ® id®"—"—1) 0 V()
i=1
=S, 20(VoA®iId® ) oV, i(x),

for all x € V, where we set V,, := (V& id®"‘2) o0---0V:V — V& a5 before.
Let x = M(a) where a € W. Applying E®" to both sides of (53), we get

n—1

E®" o (v,, o AM(a)) — (n—2) Z(id@"’ QA ®id®" "o \/,,(M(oc)))
i=l1

=E® 08,-20(VoA®id®" ) oV,_1(M()),
where the left side vanishes since A =MoE and E o M = 0. Hence, we have
0=E* 05, 20(VoA®id* ?) oV, (M)
=E®" 085, 20(VoMoE®id®" ) oV,_1(M(a))
= S$2,-20(E®? 0 Vo (MoE)®E® %) oV, 1 (M())
= $r4-20(2®id®" ) 05,_1(a).

This proves the identity (6) in the definition of a gravity coalgebra for the case
1=0.
Now let [ > 0. Let x = M(a) where a € W and suppose

Vigl(x) =x1® - @ x141.
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Applying the identity (53) to the first component on both sides, by the same argu-
ment as above, we obtain

Son20 (52 ®id®" ) 05,1 41(a) = (5, ®1d®) 05741 ().

This proves the identity (6) for the case [ > 0. O
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