
Pacific
Journal of
Mathematics

INVARIANT FINSLER METRICS
ON POLAR HOMOGENEOUS SPACES

SHAOQIANG DENG

Volume 247 No. 1 September 2010



PACIFIC JOURNAL OF MATHEMATICS
Vol. 247, No. 1, 2010

INVARIANT FINSLER METRICS
ON POLAR HOMOGENEOUS SPACES

SHAOQIANG DENG

We study invariant Finsler metrics on polar homogeneous manifolds. After
establishing existence results, we prove that an invariant Finsler metric on
a nonsymmetric polar homogeneous manifold of a simply connected com-
pact simple Lie group is Berwaldian if and only if it is Riemannian. As
an application, we prove that on each such manifold with generalized rank
of at least 2, there exist infinitely many invariant Finsler metrics that are
reversible, non-Berwaldian and of vanishing S-curvature; this kind of space
is sought after in an open problem of Shen. Finally, using one type of polar
homogeneous manifold, we give a classification of homogeneous Randers
spaces with positive constant flag curvature.

Introduction

A fundamental problem in Riemann–Finsler geometry is that of classifying the
Finsler metrics on a given manifold. In full generality, this problem is intractable,
so we must focus on metrics with certain special properties (particularly curvature
properties), such as spaces of constant flag curvature and spaces with isotropic
S-curvature. One of the most important advances has been the classification of
Randers metrics with constant flag curvature obtained by Bao et al. [2004]. Also
important is the work of Szabó [1981; 2006] on symmetric Berwald spaces.

Here we consider this problem for invariant Finsler metrics on homogeneous
manifolds. More precisely, let G be a Lie group and H be a closed subgroup of G.
Then the coset space G/H admits a (unique) differentiable structure such that the
action of G on G/H is smooth; that is, G can be viewed as a Lie transformation
group on the manifold G/H . Our goal is to classify the G-invariant Finsler metrics
on G/H and study the geometrical properties of such metrics. In previous work,
we have obtained some partial results. For example, in [Deng and Hou 2004a], we
proved that there exist invariant non-Riemannian Finsler metrics on G/H , provided
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H is compact and the action of H on the tangent space of G/H at the origin
o= eH (that is, the action of the linear isotropic representation) is not irreducible;
in other words, we assumed that there exist nontrivial invariant subspaces of H .
However, when the linear isotropic representation is irreducible, the situation is
very complicated. For example, if (G, H) is a Riemannian symmetric pair and
the symmetric space G/H is irreducible of rank 1, then any G-invariant Finsler
metric on G/H must be Riemannian. However, if the rank is at least 2, then there
exist infinitely many G-invariant Finsler metrics on G/H that are non-Riemannian
[Szabó 1981]. Therefore it is interesting to find the conditions under which a coset
space with irreducible linear isotropic representation has invariant non-Riemannian
Finsler metrics and to classify those metrics.

Coset spaces with irreducible linear isotropic representation are called isotropic
irreducible homogeneous spaces. Wolf [1968; 1977] has studied the interesting
geometry of these manifolds extensively. It is known that a connected, simply
connected, noncompact, isotropic irreducible homogeneous space is either flat or
a Riemannian symmetric space [Besse 1987]. Therefore we are only interested in
the compact case. In this case, a classification of a special type of such spaces
(strongly isotropic irreducible homogeneous spaces) was obtained independently
by Manturov [1961a; 1961b; 1966], Wolf [1968], and Krámer [1975]. Wang and
Ziller [1991] studied a more generalized class of Riemannian spaces: isotropy irre-
ducible Riemannian spaces. It turns out that many such spaces are nonsymmetric.
So, our first step is to classify the invariant Finsler metrics on compact isotropic
irreducible homogeneous manifolds.

A deep analysis of this problem shows that a general classification is unreach-
able even if we confine ourselves to the isotropic irreducible homogeneous spaces.
However, the situation simplifies if the isotropic representation is polar, meaning
that there exists a subspace of the tangent space that intersects every orbit of the
isotropic group and does so perpendicularly at any intersection. Then the algebraic
methods of representation theory are available, and we can obtain a satisfactory
classification theorem.

Our main results can be summarized as follows: We first use the notion of
Minkowski representations of Lie groups to refine Szabó’s result on the existence
of invariant non-Riemannian Finsler metrics on Riemannian symmetric spaces to
establish a bijection between the invariant Finsler metrics on a polar homogeneous
space and the Weyl-invariant Minkowski norms on a generalized Cartan space. In
the compact case, we study the geometric properties of such metrics. In particular,
we prove that an invariant Finsler metric on a nonsymmetric polar homogeneous
manifold of a simply connected compact simple Lie group is Berwaldian if and
only if it is Riemannian. As an application, we prove that on each nonsymmetric
polar homogeneous manifold of a compact simple Lie group with generalized rank
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of at least 2, there exist infinitely many invariant Finsler metrics that are reversible,
non-Berwaldian and have vanishing S-curvature. Finally, using one type of polar
homogeneous manifold, we obtain a classification of homogeneous Randers spaces
with positive constant flag curvature. The bijection established here is new, and
can be viewed as a way to classify invariant Finsler metrics on polar homogeneous
spaces. We also mention that Szabó gave a classification of invariant Berwald
metrics on Riemannian symmetric spaces by explicit construction via Chevalley
polynomials. It is an interesting problem to consider the generalization of his
method to the polar cases.

This paper is organized as follows. In Sections 1 and 2, we recall the general
properties of Minkowski representations and polar representations. Section 3 gives
our classification of invariant Finsler metrics on polar homogeneous manifolds,
while Section 4 classifies invariant Finsler metrics in general. In Section 5, we
study the geometrical properties of such metrics. In Section 6, we give a complete
classification of invariant Randers metrics on polar homogeneous manifolds.

1. Minkowski representations of Lie groups

Definition 1.1. Let V be an n-dimensional real vector space. A Minkowski norm
on V is a functional F on V that is smooth on V \{0} and satisfies these conditions:

• F(u)≥ 0 for all u ∈ V .

• F(λu)= λF(u) for all λ > 0.

• For any basis ε1, ε2, . . . , εn of V , write F(y) = F(y1, y2, . . . , yn), where
y = y jε j . Then the Hessian matrix

(gi j ) :=
([1

2 F2]
yi y j

)
is positive definite at any point of V \ {0}.

If V is a real vector space endowed with a Minkowski norm F , then (V, F)
is called a Minkowski space. Minkowski spaces play a role in Finsler geometry
analogous to the role Euclidean spaces play in Riemannian geometry. In fact, a
Finsler space is just a smooth manifold endowed with a smoothly varying family
of Minkowski norms on its tangent spaces. Unlike in Riemannian manifolds, in a
Finsler space the Minkowski norms in different tangent spaces may not be linearly
isomorphic to each other.

Definition 1.2. Let G be a Lie group, and (V, ρ) a (real) representation of G. If
F is a Minkowski norm on V such that

F(ρ(g)v)= F(v) for all g ∈ G and v ∈ V,

then we call (V, ρ, F) a Minkowski representation of G.
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The notion of Minkowski representations of Lie groups is a natural and obvious
generalization of orthogonal representations.

Proposition 1.3 [Deng and Hou 2004a]. Suppose G/H is a coset space of a Lie
group G. Then there exists a bijection between the invariant Finsler metric F on
G/H and the Minkowski norm F0 on g/h, such that (g/h,Ad, F0) is a Minkowski
representation of H , where g and h are the Lie algebras of G and H and Ad is the
adjoint action of H on g/h.

Does a given homogeneous manifold admit an invariant non-Riemannian Finsler
metric? In [Deng and Hou 2004a], we proved that it does if the adjoint action of
H on g/h is not irreducible. When the adjoint action is irreducible, the situation
is more complicated, and in general, a necessary and sufficient condition seems to
be unattainable. However, we can give a complete answer when the action of H
on g/h is polar. Let us first recall some definitions in the next section.

2. Polar actions of Lie groups

Let G be a compact Lie group with Lie algebra g and a real representation (ρ, V ).
By Weyl’s unitary trick, there is an inner product 〈 · , · 〉 that is invariant under ρ(g)
for all g ∈ G. Therefore, we get a continuous homomorphism ρ from G to O(V ),
where O(V ) is the orthogonal group with respect to 〈 · , · 〉. In many situations, we
hope to find a linear subspace of V that intersects every orbit of the G-action and
is of minimal possible dimension. In studying G-invariant differential equations
or differential operators, such a subspace can be used for reduction of variables. It
is also useful in analyzing orbit structure, which is important in geometry.

The existence of such a cross section comes from a simple fact: As pointed out
in [Dadok 1985], if for v ∈ V we let av = {u ∈ V | 〈u, g · v〉 = 0} = (g · v)⊥, then
the linear space av intersects every G-orbit. The action of g on V is the differential
of that of G, and hence g · v is just the tangent space to the G-orbit through v.
To obtain a cross section of minimal dimension, we only need to choose v on an
orbit of maximal dimension. A vector v in V is called regular if g ·v is of maximal
possible dimension. In some special cases, we may choose a cross section that
intersects each orbit orthogonally.

Definition 2.1 [Dadok 1985]. A representation ρ : G→ O(V ) is called polar if it
satisfies any of the following equivalent conditions:

• For any regular elements v1 and v2, we have g ·v1= k ·(g ·v2) for some k ∈G.

• For any regular elements v1 and v2, we have av1 = k · av2 for some k ∈ G.

• For any regular element v∈V and u∈av, the scalar product 〈g·u, av〉 vanishes.
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For a polar representation (ρ, V ) of G, any minimal linear cross section av is
called a Cartan subspace. The dimension of a is called the (generalized) rank of
the representation.

The notion of a polar representation is closely related to that of a polar action of
a compact Lie group on a Riemannian manifold. An isometric action of a compact
Lie group G on a Riemannian manifold M is called polar if there exists a closed,
connected submanifold 6 of M that meets all G-orbits and meets these orbits
orthogonally. Any such 6 is called a section of the action. A section is necessarily
totally geodesic in M . If the section is flat in the induced Riemannian metric, then
the action is called hyperpolar. Therefore, a polar representation is just a hyperpolar
action consisting of linear isometries on a Euclidean space.

Now we recall some known results and terminology of polar representations.
Let a be a fixed Cartan subspace, and let NG(a) and ZG(a) be respectively the
normalizer and centralizer of a in G:

NG(a)= {g ∈ G | ρ(g)(a)⊂ a}, ZG(a)= {g ∈ G | ρ(g)(X)= X for X ∈ a}.

Then the Lie algebras of NG(a) and ZG(a) coincide by [Dadok 1985]. Hence
W = NG(a)/ZG(a) is a finite group acting on a. W is called the Weyl group of
the representation.

Theorem 2.2 [Dadok 1985]. Let ρ :G→ O(V ) be a polar representation, and let
a be a Cartan subspace. Then for any x ∈ V , the orbit G · x intersects a at finitely
many points and the set of intersections comprises a single W -orbit.

Definition 2.3. A symmetric space representation of a connected compact Lie
group G (with Lie algebra g) is an orthogonal representation ρ :G→ SO(V ) such
that there exists a noncompact real Lie algebra g1 with a Cartan decomposition
g1 = k1 + m1, a Lie algebra isomorphism A : g → k1, and a real vector space
isomorphism L : V →m1 such that L ◦ρ(X)(y)= [A(X), L(y)] for all X ∈ g and
y ∈ V .

Theorem 2.4 [Dadok 1985, Proposition 6]. Let ρ : G → SO(V ) be a polar rep-
resentation of a connected compact Lie group G. Then there exist a connected
compact Lie group G1 and a symmetric space representation ρ1 : G1 → SO(V )
such that the G- and G1-orbits coincide.

Remark 2.5. The fact that the G- and G1-orbits coincide does not mean that they
are equivalent representations. In fact, the classification of polar representations
implies there are irreducible polar representations that are not equivalent to the
isotropic representation of a Riemannian symmetric space; see Section 6.

The following result will be useful in proving the main results of Section 3.
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Proposition 2.6. Let ρ : G → SO(V ) be a symmetric space representation of a
connected compact Lie group G. On the vector space g = g + V (direct sum),
there is a Lie algebra structure that makes g into a noncompact semisimple Lie
algebra and such that g= g+V is a Cartan decomposition. Further, there exists a
Riemannian globally symmetric space G/K of noncompact type such that g=g+V
is the canonical decomposition of the corresponding Lie algebra, and the G-orbit
in V coincides with the K -orbit in V of the adjoint representation of K on V .

Proof. Let g1, k1, m1, A, L be as in Definition 2.3. In the vector space g = g+ V
(where the addition is direct sum of subspaces), we introduce a bracket: On g

we take the same bracket operation as that of the Lie algebra. For x, y ∈ V ,
the bracket is equal to A−1([L(x), L(y)]), where the Lie bracket is the same
as that of g1. (Note that L(x), L(y) are contained in m1, so [L(x), L(y)] lies
in k1 and A−1([L(x), L(y)]) is contained in g.) For X ∈ g, x ∈ V , we define
[X, x] = L−1([A(X), L(x)]), which is an element in V . It can be checked directly
(albeit nontrivially) that g with the brackets above forms a Lie algebra that is iso-
morphic to g1. Since g1 is a noncompact semisimple Lie algebra, so is g, and
since g1 = k1 +m1 is a Cartan decomposition, so is g = g+ V . Now, according
to the theory of orthogonal symmetric Lie algebras [Helgason 1978], there exists
a Riemannian symmetric pair (G, K ) of noncompact type with Lie G = g and
Lie K =g. Moreover, by the definition of the brackets, the differential of the adjoint
representation of K on V is just the induced action of g on V of the representation
ρ of G. Since ρ is an orthogonal representation, the inner product 〈 · , · 〉 on V
is invariant under the action of G. Hence, ρ(X) is skew-symmetric with respect
to 〈 · , · 〉 for any X ∈ g. Since in the Riemannian symmetric pair of noncompact
type, the subgroup must be compact and connected [Helgason 1978], K must be a
connected compact Lie group. This implies that the exponential map of g to K must
be surjective [Kobayashi and Nomizu 1963]. Thus 〈 · , · 〉 is also invariant under
the action of K . Hence, there is a G2-invariant Riemannian metric Q on G2/K2

whose restriction on To(G/K )= V is 〈 · , · 〉, where o is the origin of G/K . Then
(G/K , Q) is a Riemannian globally symmetric space [Helgason 1978]. Now the
proposition follows from the facts that the exponential map of G is surjective, and
that the differentials of ρ and of the adjoint representation of K2 on V coincide. �

3. Classification of Minkowski representations associated
with a polar representation

In the two theorems below, let G be a compact connected Lie group with a polar
representation (V, ρ).

Theorem 3.1. Let a⊂ V be a Cartan subspace and W be the corresponding Weyl
group. Then there exists a bijection between the set of Minkowski norms on V that
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make (V, ρ, F) a Minkowski representation, and the set of W -invariant Minkowski
norms on a.

Theorem 3.2. • If the generalized rank of (V, ρ) is 1, then there does not exist
a non-Euclidean Minkowski norm F on V such that (V, ρ, F) is a Minkowski
representation of G.

• If the generalized rank of (V, ρ) is at least 2, then there exist infinitely many
non-Euclidean Minkowski norms F on V such that (V, ρ, F) is a Minkowski
representation of G.

We remark here that Szabó’s argument [1981] on the existence of invariant non-
Riemannian Finsler metrics on a Riemannian symmetric space is also valid for
polar homogeneous space, since on a polar homogeneous space the isotropic rep-
resentation has the same orbit as that of a Riemannian symmetric space. Hence
Theorem 3.2 should not be viewed as a new result. The main point here is that
our refinement of Szabó’s argument can be used to establish the bijection stated in
Theorem 3.1. This will lead to a classification of all the invariant Finsler metrics
on a polar homogeneous space; see Section 4.

To prove the two theorems above, we need several lemmas.

Lemma 3.3. Let G, (V, ρ), a and W be as in Theorem 3.1. Then any W -invariant
Minkowski norm on a can be uniquely extended to a G-invariant functional on V
that is smooth on V \ {0}.

Proof. We use the same argument as in [Szabó 2006]. Since a is a Cartan subspace,
according to Definition 2.1, a intersects every orbit of the action of G on V . Thus
for any y ∈ V , there exist a ya ∈ a and gy ∈ G (not necessarily unique) such
that gy(ya) = y. We now define a functional L on V by L(y) = F(ya). Since
F is W -invariant, it is easy to check that L is well defined. To prove that L is
smooth on the slit space V \ {0}, we need a result of [Dadok 1982], which says
that the extension of a smooth W -invariant function on a to V is also smooth.
The Minkowski norm F is only smooth on a \ {0} but is continuous on the whole
space a. Define a functional F1 by

F1(y)= e−1/〈y,y〉
· F(y) for y ∈ V \ {0}; F1(0)= 0,

where 〈 · , · 〉 is the inner product on a. Then F1 is smooth on all of a. Since ρ is
an orthogonal representation, 〈 · , · 〉 is G-invariant. Thus F1 is also W -invariant.
Also, the extension of F1 to V is equal to e−1/〈X,X〉F(X) on g \ {0}. From this the
smoothness of F on g\{0} follows. The uniqueness of the extension is obvious. �

Lemma 3.3 establishes the smoothness of the extension of the W -invariant Min-
kowski norms. Next we consider the strong convexity of the extension. Since it is
very difficult to obtain strong convexity directly, we first prove a lemma about strict
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convexity. For this we need some results related to Kostant’s celebrated convexity
theorem, whose theory we now sketch.

Let (G/H, Q) be a globally Riemannian manifold, and let (g, σ ) be the corre-
sponding orthogonal Lie algebra. Let g= h+p be the canonical decomposition of
the orthogonal Lie algebra. Then we can identify the tangent space TeH (G/H)
of G/H at the origin with the space p. The isotropic representation of H on
TeH (G/H) then corresponds to the adjoint representation of H on p. Let t be
a maximal commutative subspace in p. Then t is a cross section of the action of H
and it intersects every orbit orthogonally. Therefore the isotropic representation is
polar. Let W be the corresponding Weyl group and π be the orthogonal projection
of p onto t.

Kostant’s convexity theorem [1973]. For any point x ∈ t, the subset π(H · x) is
equal to the convex hull of the points W · x , where H · x is the orbit of the point x.

To prove the strong convexity of the extension, we still need a lemma on the
convexity of the orbit of a convex domain in V . Let g be a noncompact semisimple
Lie algebra, let g = k+ p be a Cartan decomposition of g, and let t be a maximal
commutative subspace of p. Let Wt be the corresponding Weyl group and C be a
fixed Weyl chamber in t. The Cartan–Killing form B of g is positive definite on p,
so 〈x, y〉 = B(x, y) defines an inner product on p. The restriction of this inner
product to t, which we still denote by 〈 · , · 〉, is Wt-invariant. The dual cone of C ,
denoted by C∗, is defined by x ∈ C∗ if and only if 〈x, y〉 ≥ 0 for all y ∈ C . A
partial order can be defined on t such that x ≥ y if and only if x − y ∈ C∗. Then
Kostant [1973] proved that x ≤ y for x, y ∈ C if and only if x lies in the convex
hull of the W -orbit of y. Let H be the maximal compact subgroup of the adjoint
group Int g of g. It is well known that each H -orbit in g intersects C at exactly one
point [Helgason 1978]. For x ∈ p, we denote by C(x) the unique element of the
intersection of the orbit G · x = {g · x | g ∈ G} and C .

The following result is proved using Kostant’s convexity theorem.

Theorem 3.4 [Tam 1998]. For any x, y ∈ p, we have C(x + y)≤ C(x)+C(y).

The following lemma will be useful in proving the main result of this paper.

Lemma 3.5. Let D be a strictly convex domain in t containing the origin, with
smooth boundary S, and let D be invariant under the action of Wt. Then the orbit
of D under the action of H forms a strictly convex domain in p.

Proof. Since D is W -invariant, the boundary S is also Wt-invariant. Define a
nonnegative function h1 on t by h1(y)= 1/t where t > 0 is such that t y ∈ S. Then
h1 is smooth on t \ {0}, and h1(λy)= λh1(y) for any λ > 0. Also, h1 satisfies the
triangle inequality: h1(x+ y)≤ h1(x)+h1(y) with the equality holding if and only
if x = αy or y = αx for some α ≥ 0 [Bao et al. 2000]. Moreover, the function h1
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is obviously Wt-invariant. Hence h1 can be extended to a well-defined function h2

on p by defining h2(g · y) = y for g ∈ H and y ∈ t. Then it is easily seen that h2

is H -invariant and the orbit of D forms the set D1 = {y ∈ g | h2(y) < 1}. Now
suppose y1, y2 ∈ D1 and 0≤ λ≤ 1. Let g ∈ H be such that

g · (λy1+ (1− λ)y2)= C(λy1+ (1− λ)y2).

Then we have

h2(λy1+ (1− λ)y2)= h2(g · (λy1+ (1− λ)y2))= h1(C(λy1+ (1− λ)y2)).

Suppose Wt = {w1, w2, . . . , ws}, where s = |Wt|. Then by Theorem 3.4 and
Kostant’s convexity theorem, there exist nonnegative numbers αi for i=1, 2, . . . , s
that sum to one and satisfy

C(λy1+ (1− λ)y2)=

s∑
i=1

αiwi (C(λy1)+C((1− λ)y2)).

Hence

h1(C(λy1+ (1− λ)y2))

= h1

( s∑
i=1

αiwi (C(λy1)+C((1−λ)y2))
)
≤

s∑
i=1

h1(αiwi (C(λy1)+C((1−λ)y2)))

=

s∑
i=1

αi h1(wi (C(λy1)+C((1−λ)y2)))=

s∑
i=1

αi h1((C(λy1)+C((1−λ)y2)))

≤

s∑
i=1

αi (h1(C((λy1))+ h1(C(1−λ)y2)))=

s∑
i=1

αi (h2(λy1)+ h2((1−λ)y2))

=

s∑
i=1

αi (λh2(y1)+ (1−λ)h2(y2))= λh2(y1)+ (1−λ)h2(y2)≤ λ+ (1−λ)= 1.

Thus λy1 + (1− λ)y2 ∈ D1. Further, if h2(λy1 + (1− λ)y2) = 1, then from the
above equation we see that either h2(y1)= 1 with λ= 1 or h2(y2)= 1 with λ= 0;
that is, either λy1+ (1− λ)y2 = y1 or λy1+ (1− λ)y2 = y2. Hence the interior of
the line segment joining y1 and y2 is contained in D1. This proves the lemma. �

Corollary 3.6. Let G, V , ρ and a be as in Theorem 3.1. Let D be a strictly convex
domain in a containing the origin and invariant under the action of the Weyl group.
Then the orbit of D under the action of G forms a strictly convex domain in V .

Proof. By Dadok’s result, the G-orbit coincides with that of a symmetric space
representation ρ1 : G → SO(V ). Then by Proposition 2.6, we can assume that a

is a Cartan subspace of a Riemannian symmetric space of the noncompact type,
and that the action ρ1 of G on V is exactly the isotropic representation of the
Riemannian symmetric space. Now the corollary follows from Lemma 3.5. �
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Proof of Theorem 3.1. If F is a Minkowski norm on V such that (V, ρ) is a
Minkowski representation of G, then F |a is a W -invariant function and obviously
a Minkowski norm on a. It is a direct consequence of the definition of the Cartan
subspace that this correspondence is one-to-one. To prove it is surjective, let F1 be
a W -invariant Minkowski norm on a. For any x ∈ V , there exists g ∈ G such that
ρ(g)(x)∈ V . We then define a function F on V by F(x)= F1(ρ(g)(x)). Since F1

is W -invariant, F is well defined. By Lemma 3.3, F is smooth on V \ {0}. Next
we prove that F is a Minkowski norm on V . Let α1, . . . , αm be an orthonormal
basis of a with respect to the inner product restricted to a, and write F1(z) =
F1(z1, z2, . . . , zn) for z =

∑m
i=1 ziαi . Then we define the Hessian matrix of F1 by

[Bao et al. 2000]
(ai j )=

([1
2 F2

1
]

zi z j

)
.

For any y 6= 0, denote the minimal eigenvalue of the matrix (ai j (y)) by µ(y). Let

µ= inf
{y∈a|〈y,y〉=1}

µ(y).

Since F1 is a Minkowski norm, µ(y)>0 for any y∈a\{0}. Since {y∈a | 〈y, y〉=1}
is compact and the function µ(y) is continuous, we have µ> 0. Now on a we write

F1(x)=
√(

F2
1 (x)−

1
2µ〈x, x〉

)
+

1
2µ〈x, x〉 =

√
L∗(x)+ 1

2µ〈x, x〉,

where L∗(x)= F2
1 (x)−

1
2µ〈x, x〉. Since F2

1 (x)=
∑n

i, j=1 ai j (x)x i x j for x ∈V \{0},
we have

F2
1 (x)≥

n∑
i=1

µ(x)x i x i
= µ(x)〈x, x〉.

Hence L∗(x) > 0 for any x 6= 0. Further, the Hessian matrix of
√

L∗(x) is positive
definite at any x ∈a\{0}. Hence

√
L∗ is also a Minkowski norm on a. In particular,

the domain {y ∈ a | L∗(y) < 1} is strictly convex [Bao et al. 2000]. Denote its
boundary by S. Since 〈x, x〉 is W -invariant, L∗(x) is also W -invariant. Therefore
L∗(x) can be uniquely extended to a functional L on V that is smooth on V \{0}. By
Lemma 3.5, the orbit of S under the action of G is the boundary of a strictly convex
domain D1 in V . But it is obvious that D1 = {y ∈ V | L(y) < 1}. Therefore, the
Hessian matrix of

√
L (with respect to certain basis of V ) is positive semidefinite

[Bao et al. 2000]. Therefore the Hessian matrix of F is positive definite at any
x 6= 0. Thus F is a Minkowski norm. This proves that the correspondence above
is surjective. Therefore it is a bijection. �

Proof of Theorem 3.2. By Theorem 3.1, we only need to consider the W -invariant
Minkowski norms on a Cartan subspace a.

If dim V = 1, the conclusion is obvious. Therefore, we suppose that dim V ≥ 2.
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If the generalized rank of the polar representation is 1, then we assert that the
Weyl group W consists of two elements: W = {1,−1}. In fact, since the Weyl
group is generated by reflections, we have only two possibilities: either W = {1}
or W = {1,−1}. If W = {1}, each W -orbit consists of only one point. Consider the
unit sphere S of V , and let u and −u be the unit element in a. Since each G-orbit
intersects a at one point, we have S = G · u ∪G · (−u) and G · u ∩G · (−u)=∅.
Now a contradiction arises, because by the theory of Lie transformation groups, the
orbits G ·u and G ·(−u) are connected closed submanifolds of S [Helgason 1978].
Hence W = {1,−1}. Suppose F is a W -invariant Minkowski norm on a. Then we
have F(x) = F(−x). Since dim a = 1, we see that F is a Euclidean norm on a.
Suppose F(x)= c

√
〈x, x〉 for x ∈ a, where 〈 · , · 〉 is the G-invariant inner product

on V and c is a positive constant. Then by Theorem 3.1, the extension of F to V
must be equal to c

√
〈 · , · 〉 on V . This proves the first conclusion of the theorem.

Now we suppose that the generalized rank of the polar action is at least 2. By
Dadok’s result and Proposition 2.6, there exists a Riemannian symmetric space
G1/H1 of noncompact type with canonical decomposition g1 = h1+ p1 such that
V is linearly isometric to p1 through a linear isometry τ , and such that the G-
orbit corresponds to the H1-orbit of the isotropic representation on p1 through τ .
It is easily seen that a1 = τ(a) is a maximal abelian subalgebra (that is, a Cartan
subspace of the polar action of H1 on p1) of p1. Let W1 be the corresponding Weyl
group. Then W-orbits correspond to W1-orbits. Hence, to prove the theorem in this
case, we only need to prove that there are infinitely many W1-invariant Minkowski
norms on a1. Fix one Weyl chamber, say C. It is known that the closure C of C

is a fundamental domain of the action of W1. That is, every orbit intersects C at
exactly one point. Now we assert that there exist infinitely many functions f on C

such that

• f (λx)= λ f (x) for all λ > 0,

• f can be extended to a W -invariant smooth function f1 on a1 \ {0}, and

• the domain {x ∈ a1 | f1(x) < 1} is strictly convex.

For example, we first choose a sphere (centered at the origin) with respect to the
inner product on a1. Then we choose a hyperplane whose the intersection with the
sphere is contained in C. In this way, we get a hypersurface S1, which, together
with the Weyl walls of C, bounds a strictly convex domain. The hypersurface S1

is of course not smooth, but it is easily seen that we can make it smooth, while
keeping the bounded domain strictly convex. We denote one such hypersurface by
S and define a function f (x) on C by f (x) = λ if x/λ ∈ S. Then f (x) satisfies
the conditions above. It is obvious that there exist infinitely many functions of this
type. Now, each such f can be extended to a function F1 on a1 and, similarly to
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the proof of Theorem 3.1, we see that the function

F(u)=
√

F2
1 (u)+〈u, u〉,

with u ∈ a1, defines a W1-invariant Minkowski norm on a1. �

4. Invariant Finsler metrics: A classification

Let G be a Lie group and H be a closed subgroup of G. Then on the coset space
G/H there exists a smooth structure such that G becomes a Lie transformation
group of G/H . A fundamental problem in geometry to study the G-invariant
geometric structures on G/H . In [Deng and Hou 2004a], we considered this
problem for Finsler metrics. We proved that there is a one-to-one correspondence
between the G-invariant Finsler metrics on G/H and the H -invariant Minkowski
norms on the tangent space To(G/H) of G/H at the origin o= eH . Therefore, to
classify the G-invariant Finsler metrics, we only need to classify the Minkowski
representations of H on To(G/H).

Without losing generality, we can assume that H is a compact subgroup of G.
In fact, if (M, F) is a connected homogeneous Finsler space, then the isotropic
subgroup (at a fixed point x ∈M) of the full group Ix(M, F) of isometries I (M, F)
must be a compact subgroup of I (M, F) by [Deng and Hou 2002]. Hence M =
I (M, F)/I0(M, F) and F can be viewed as an I (M, F)-invariant Finsler metric
on M . The compactness of H implies that there exist H -invariant inner products
on the tangent space To(G/H). Fix one such inner product, and denote it by 〈 · , · 〉.
Then 〈 · , · 〉 can be extended to g= Lie G so that

〈Ad(h)(x),Ad(h)(y)〉 = 〈x, y〉 for all h ∈ H and x, y ∈ g.

Let m be the orthogonal complement of h= Lie H . Then m satisfies

(4-1) Ad(h)m⊂m and g= h+m.

Hence the tangent space To(G/H) can be identified with m, and the isotropic
representation of H on To(G/H) corresponds to the adjoint representation of H
on m.

Our goal is to a classify all the G-invariant Finsler metrics on G/H . We stress
here that this problem for Riemannian metrics is easy. In fact, since H is compact,
m can be decomposed into a direct sum of subspaces

m=m0+m1+ · · ·+mk,

where m0 consists of H -fixed vectors in m, and mi for i = 1, 2, . . . , k are invariant,
irreducible subspaces of H . For simplicity, we assume that the submodules mi are
not equivalent to each other. If there are two H -invariant inner products on m,
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then by Schur’s lemma, for each i with 1≤ i ≤ k, the restrictions of the two inner
products to mi must differ only by a positive multiple. On the other hand, any inner
product is H -invariant on m0. Fix an H -invariant inner product 〈 · , · 〉i on mi for
i = 1, 2, . . . , k. Then any H -invariant inner product must be of the form

〈 · , · 〉0+ c1〈 · , · 〉1+ · · ·+ ck〈 · , · 〉k,

where 〈 · , · 〉0 is an arbitrary inner product on m0, and c1, c2, . . . , ck are arbitrary
positive real numbers. This classifies H -invariant inner products on m, and hence
G-invariant Riemannian metrics on G/H .

Therefore, the difficult case is that of non-Riemannian Finsler metrics. Since
the general problem seems to be unsolvable, we restrict to the special case where
the isotropic representation is polar. Theorems 3.1 and 3.2 give this:

Theorem 4.1. Let G be a Lie group and H be a compact subgroup of G. Suppose
that the isotropic representation of G/H at the origin o= eH is polar and m is as
in Equation (4-1).

• If the generalized rank of the adjoint action of H on m is 1, then there does
not exist any non-Riemannian invariant Finsler metric on G/H.

• If the generalized rank of the action of H on m is at least 2, then there exist
infinitely many non-Riemannian invariant Finsler metrics on G/H (even if
we do not distinguish those metrics that are differ only by a positive multiple).
In this case, there is a one-to-one correspondence between the G-invariant
Finsler metrics on G/H and the W -invariant Minkowski norms on a, where a

is a Cartan subspace of m and W is the corresponding Weyl group.

Now we consider some special cases of Theorem 4.1. Suppose (G, H) is a
Riemannian symmetric pair. That is, G is a connected Lie group and H is a
closed subgroup of G such that there exists an involutive automorphism σ such
that (Gσ )e ⊂ H ⊂ Gσ , where Gσ denotes the fixed points of σ and (Gσ )e denotes
its unit components. Suppose also that the isotropic action of H at To(G/H) leaves
certain inner products invariant. We consider the classification of all G-invariant
Finsler metrics on G/H . Note that in this case the isotropic action is polar.

Theorem 4.2. Let (G, H) be a Riemannian symmetric pair. Let g = h + m be
the canonical decomposition of the Lie algebra of G. Fix one maximal subspace
a of m, and let W be the corresponding Weyl group. Then there exists a bijection
between the G-invariant Finsler metrics on G/H and the W -invariant Minkowski
norms on a. In particular, if the rank of G/H is 1, there does not exist any G-
invariant non-Riemannian Finsler metric on G/H ; if the rank of G/H is at least 2,
there exist infinitely many G-invariant non-Riemannian Finsler metrics on G/H.
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The existence part of this theorem was established in [Szabó 1981], but the
one-to-one part was not given there.

By [Deng and Hou 2007], any G-invariant Finsler metric on G/H is a globally
symmetric Berwald metric; and by [Deng and Hou 2005a], any globally symmetric
Berwald metric can be constructed in this way. Therefore, Theorem 4.2 can be
viewed as a classification of all globally symmetric Berwald metrics.

Example 4.3. Consider the unit sphere Sn in Euclidean Rn+1. It is a Riemannian
symmetric space of rank 1. The special orthogonal group SO(n + 1) acts tran-
sitively on Sn , and the isotropic subgroup at (1, 0, . . . , 0) can be identified with
the subgroup SO(n) of SO(n + 1). Thus Sn can be viewed as the coset space
SO(n + 1)/SO(n), and the induced Riemannian metric on Sn can be viewed as
an SO(n+ 1)-invariant metric on SO(n+ 1)/SO(n). By Theorem 4.2, there is no
SO(n + 1)-invariant non-Riemannian Finsler metric on Sn . Now we consider the
product manifold Sn

× Sm , where m, n ≥ 1. Write Sn
× Sm as

G/H = (SO(n+ 1)×SO(m+ 1))/(SO(n)×SO(m)).

The rank of G/H is 2. Therefore there exist infinitely many G-invariant non-
Riemannian Finsler metrics on G/H . All these metrics are globally symmetric
and of Berwald type. Now we can give an explicit description of these metrics.
Let a1 and a2 be Cartan subspaces of SO(n + 1)/SO(n) and SO(m + 1)/SO(m),
respectively. The corresponding Weyl groups on a1 and a2 are W1=W2={1,−1}.
The direct sum a = a1⊕ a2 is a Cartan subspace of G/H , and the corresponding
Weyl group W consists of four elements: W = {1, σ1, σ2, σ3}, where

σ1(x+y)=−x+y, σ2(x+y)= x−y, σ3(x+y)=−x−y for x ∈a1, y ∈a2.

Therefore a Minkowski norm F on a is W -invariant if and only if F satisfies

(4-2) F(±x ± y)= F(x + y) for x ∈ a1, y ∈ a2.

By Theorem 4.2, there is a one-to-one correspondence between the G-invariant
Finsler metrics on Sn

× Sm and the Minkowski norms on a satisfying (4-2). It is
easily seen that there actually exist infinitely many Minkowski norms on a that
satisfy (4-2). For example, identifying a1 and a2 with R1, we can define a set of
Minkowski norms by

Fµ(x + y)=
√

x2+ y2+µ
√

x4+ y4 for x, y ∈ R1,

where µ is an arbitrary positive real number. These norms satisfy (4-2) and are
pairwise not mutually linearly isometric [Bao et al. 2000].

Similarly, we can consider other Riemannian symmetric spaces of rank 1 and
their product. Next we give an irreducible example of rank at least 2.
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Example 4.4. Consider the Riemannian symmetric pair (SL(n,R),SO(n)), where
n ≥ 3. The rank is n − 1. So there exist infinitely many SL(n,R)-invariant non-
Riemannian Finsler metrics on SL(n,R)/SO(n). Now we explicitly describe these
metrics. The canonical decomposition of the Lie algebra is sl(n,R) = so(n)+ p,
where p consists of all n× n traceless symmetric matrices. A Cartan space can be
taken as the space of all diagonal matrices in p, denoted by a. The corresponding
Weyl group is isomorphic to the full permutation group of n indices, which acts on
a by permuting the entries along the diagonal [Helgason 1978]. Therefore, if we
write the elements in a as

diag(λ1, λ2, . . . , λn), where
∑n

i=1 λi = 0,

then a Minkowski norm F on a is W -invariant if and only if F(λ1, . . . , λn) is a
symmetric function of λ1, λ2, . . . , λn . An explicit series of such norms can be
constructed as follows:

Fµ(λ1, . . . , λn)=

√
n∑

i=1
λ2

i +µ

√
n∑

i=1
λ4

i ,

where µ is an arbitrary positive real number. As in Example 4.3, the Minkowski
norms above define infinitely many SL(n,R)-invariant non-Riemannian Finsler
metrics on SL(n,R)/SO(n). These metrics are all of the Berwald type.

Next we consider nonsymmetric polar homogeneous manifolds. By Kollross
and Podestà [2003] classified the polar homogeneous spaces of a connected, simply
connected, simple Lie group. Combining their list and Theorem 4.1 gives this:

Theorem 4.5. Let G/H be a connected, simply connected, isotropic polar homo-
geneous manifold, where G is a simply connected simple compact Lie group and
H is a closed subgroup of G. Then the pair (G, H) must be either a Riemannian
symmetric pair or one of the pairs in Table 1. Among the manifolds in Table 1,
any G-invariant Finsler metric on G/H must be Riemannian in types VIII and IX.
In any of the other types, however, there exist infinitely many G-invariant non-
Riemannian Finsler metrics on G/H.

Proof. Because Kollross and Podestà [2003] listed the isotropic polar homogeneous
manifolds, we only need to find which type is of rank 1. Since H is compact, the
action of H on the tangent space To(G/H) leaves the inner product invariant.
Therefore, we can view H as a subgroup of SO(m) (note that H is connected
in all the types in Table 1), where m = dim To(G/H). Therefore, to find out
which type is of rank 1, we only need to find in which case H acts transitively
on Sm−1. The compact connected subgroups of SO(m) that act transitively on Sm−1

were classified by Montgomery, Samelson, and Borel [Besse 1987]. Therefore the
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Type G H Rank

I SU(n+ 1) SU(n) ≥ 2
II Sp(n+ 1) Sp(n) ≥ 2
III Sp(n+ 1) U(1)×Sp(n) ≥ 2
IV SU(p+ q) SU(p)×SU(q), p < q ≥ 2
V Spin(2n) SU(n), n odd ≥ 2
VI E6 Spin(10) ≥ 2
VII Spin(9) Spin(7) ≥ 2
VIII Spin(7) G2 1
IX G2 SU(3) 1

Table 1. Pairs (G, H) occurring in Theorem 4.5.

theorem can be proved through a case-by-case computation of the dimensions of
the manifolds G/H . �

Now we give a description of the invariant Finsler metrics on the homogeneous
manifolds of type I in Table 1.

Example 4.6. Consider a homogeneous manifold

M = G/H = SU(n+ 1)/SU(n), with n ≥ 2.

Now we give a realization of the manifold M . The group G = SU(n + 1) acts
in the standard way on the standard Hermitian space Cn+1

= R2n+2. The action
keeps the sphere S2n+1 invariant, and the restriction of the action to the sphere is
transitive. The subgroup H = SU(n) can be identified with the isotropic subgroup
of G at the point o= (1, 0, . . . , 0)′ ∈ S2n+1, that is,

A ↪→
(1 0

0 A

)
for A ∈ H.

Therefore M is just the sphere S2n+1. Now we make some observations on the
isotropic representation. By selecting a certain local coordinate system, we can
identify the tangent space of G/H at o with the hyperplane

P = {(1, b1, b2, . . . , b2n+1)
′
∈ R2n+1

}

through the mapping

b = (b1, b2, . . . , b2n+1) ↪→ (1, b1, b2, . . . , b2n+1)
′.

Then the isotropic representation can be described as follows. For

b = (b1, b2, . . . , b2n+1) ∈ To(G/H) and A ∈ H,
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define b̃ = (1+ b1
√
−1, b2+ b3

√
−1, . . . , b2n + b2n+1

√
−1)′ ∈ Cn+1. Let

c =
(1 0

0 A

)
· b̃ =

(
1+ b1

√
−1, c1+ c2

√
−1, . . . , c2n−1+ c2n

√
−1
)′
∈ Cn+1,

where c j , j = 1, 2, . . . , 2n are real numbers. Then

A · b = (b1, c1, c2, . . . , c2n).

Therefore, the isotropic representation is equal to the identity transformation on
the subspace V1= {(b1, 0, . . . , 0)∈ To(M)}. On the other hand, the action of H on
the subspace V2 = {(0, b2, . . . , b2n+1) ∈ To(M))} is just the standard action of the
group SU(n) on Cn . Therefore, H is transitive on the unit sphere in V2. From this,
we see that the action of H on V2 is polar of rank 1. Since To(M) is the orthogonal
sum of V1 and V2, the action of H on To(M) is polar, and a Cartan space can be
chosen to be a= V1+a2, where a2 is an arbitrary one-dimensional subspace in V2.
As in Example 4.3 any Minkowski norm F on a satisfying

F(±x ± y)= F(x + y), x ∈ V1, y ∈ a2

can be extended uniquely to a H -invariant Minkowski norm on To(M), and hence
corresponds to a G-invariant Finsler metric on M .

5. General geometric properties

Let (G, K ) be a Riemannian symmetric pair. Then by the results of [Szabó 1981] it
is easily seen that any G-invariant Finsler metric on G/K must be a (reversible or
nonreversible) affine symmetric Berwald space. By Dadok’s results, we have seen
that a polar representation must have the same orbits as the isotropic representation
of a certain Riemannian symmetric space. It is therefore natural to ask whether the
result above holds for polar homogeneous spaces, that is, whether any invariant
Finsler metric on a polar homogeneous space must be Berwaldian. We will in-
vestigate this problem in this section. It is somehow surprising that the answer is
negative. In fact we can prove that in any polar homogeneous manifold in Table 1,
an invariant Finsler metric F on G/H is Berwaldian if and only if it is Riemannian.
As an application, we show that on any polar homogeneous space of rank at least 2
in Table 1, there exist infinitely many invariant Finsler metrics that are reversible,
non-Berwaldian and of vanishing S-curvature. The problem of the existence of
such spaces was posed by Shen [2009], and in our paper [Deng and Hou ≥ 2010],
we constructed some low-dimensional examples of Finsler spaces with the above
properties.

We begin with the notions of weakly symmetric Finsler spaces and geodesic
orbit Finsler spaces. Let (M, F) be a connected Finsler space. Then (M, F) is
called weakly symmetric if for any two points p and q there exists an isometry σ
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of (M, F) that interchanges them, that is, σ(p) = q and σ(q) = p. It is called
a geodesic orbit Finsler space if any geodesic γ is the orbit of a one-parameter
subgroup of the full group of isometries, that is, if there exists a vector X in the
Lie algebra g of the full group G of isometries such that γ (t)= exp(t X) ·o, where
o = γ (0) and exp is the exponential mapping of G. It is obvious that a weakly
symmetric space must be reversible and homogeneous and that a geodesic orbit
Finsler space must be homogeneous. Berndt et al. [1997] proved that a connected
weakly symmetric Riemannian manifold must be a geodesic orbit space. Their
proof is also valid for the Finslerian case, so a weakly symmetric Finsler must be
a geodesic orbit space. Also it is easy to prove that a geodesic orbit space must
have vanishing S-curvature [Deng and Hou ≥ 2010].

Nguyen [2000] introduced a way to construct weakly symmetric Riemannian
manifolds. Let G be a connected Lie group and θ be an involutive automorphism
of G. Suppose H is a θ -stable compact subgroup of G. Select a complement
subspace m of h in g that is also invariant under Adg/h(H). Then (G, H, θ) is
called a weakly symmetric triple if, given any element X ∈ m, there exists an
element h ∈ H such that (Ad(h))◦dθ(X)=−X . Nguyen proved that if (G, H, θ)
is weakly symmetric pair, then any G-invariant Riemannian metric on G/H is
weakly symmetric. Using this method we can also construct weakly symmetric
Finsler spaces.

Proposition 5.1. If (G, H, θ) is a weakly symmetric triple, then any G-invariant
reversible Finsler metric on G/H is weakly symmetric.

The proof is similar to the Riemannian case, so we omit it [Nguyen 2000].

Theorem 5.2. Let G/H be one of the polar homogeneous spaces in Table 1 (with
nontrivial subgroup H ) that is not of type II (that is, not Sp(n + 1)/Sp(n)). Then
any reversible G-invariant Finsler metric on G/H must be weakly symmetric. In
the coset space Sp(n)/Sp(n − 1) for n ≥ 2, there exist infinitely many invariant
weakly symmetric non-Riemannian Finsler metrics. In particular, in any of the
polar homogeneous manifolds of rank at least 2 in Table 1, there exist infinitely
many invariant weakly symmetric non-Riemannian Finsler metrics.

Proof. The first claim follows from the classification of compact weakly symmetric
Riemannian spaces by Nguyen [2000] and Yakimova [2004]. Also some of these
homogeneous manifolds are known to be weakly symmetric [Ziller 1996]. We now
give a case-by-case clarification. The manifolds SU(n)/SU(n−1), with n ≥ 3, are
known to be weakly symmetric [Ziller 1996]. The involutive automorphism θ

of SU(n) can be defined in the following way: Let SU(n) act in the standard
way on the unit sphere in Cn , and let µ be the transformation taking the complex
conjugation on each coordinate. Define θ(g) = µgµ−1. It is easy to check that
(SU(n),SU(n−1), θ) is a weakly symmetric triple. Therefore by Proposition 5.1,
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SU(n)/SU(n− 1) endowed with any invariant reversible non-Riemannian Finsler
metric must be a weakly symmetric Finsler space. This argument is also valid
for the homogeneous space SU(p + q)/SU(p)× SU(q), with p < q . Therefore
SU(p + q)/SU(p)× SU(q) endowed with any reversible Finsler spaces must be
weakly symmetric. According to Nguyen [2000], the homogeneous space G/H =
Sp(n)/Sp(n− 1) ·U (1) is weakly symmetric with respect to G, meaning that for
any X ∈ To(G/H), there exists an h ∈ H such that dh(X) = −X . Similarly to
the Riemannian case, this means that any invariant reversible Finsler metric on
G/H must be weakly symmetric [Ziller 1996]. Now by [Nguyen 2000], the space
SO(2n)/SU(n), with n odd, is weakly symmetric. Since the space Spin(2n)/SU(n)
is the universal covering of SO(2n)/SU(n), we see that Spin(2n)/SU(n) endowed
with any reversible must weakly symmetric [Yakimova 2004]. The situation is the
same for the space Spin(9)/Spin(7). Finally, the space E6/Spin(10) appears in
the list in [Nguyen 2000] (note that D5 is exactly Spin(10)). Therefore, if G/H
is a homogeneous manifold of rank at least 2 in Table 1 not of type II, then any
invariant reversible Finsler metric on G/H must be weakly symmetric.

Now we consider spaces of type II, that is, Sp(n)/Sp(n− 1) with n ≥ 2. Note
that Sp(n) acts transitively on the sphere S4n−1 in the standard way, and that any
isotropy subgroup is isomorphic to Sp(n − 1). Hence Sp(n)/Sp(n − 1) = S4n−1.
In this way, we can also view Sp(n) as a subgroup of SU(2n). Since we have
SU(2n)/SU(2n− 1)= S4n−1, we see that any SU(2n) invariant Finsler metric on
the sphere S4n−1 must be an invariant metric on the coset space Sp(n)/Sp(n− 1).
From this the theorem follows. �

Theorem 5.3. Let G be a connected simply connected compact simple Lie group
and H be a closed subgroup of G. Let G/H be a nonsymmetric polar homo-
geneous manifold. Then a G-invariant Finsler metric on G/H is Berwaldian if
and only if it is Riemannian.

Lemma 5.4. Let G be a compact connected Lie group and H be a closed subgroup
of G. Suppose G/H is diffeomorphic to the n-sphere, with n ≥ 2. Then any G-
invariant Riemannian metric on G/H is holonomy irreducible.

Proof. Suppose conversely that a G-invariant Riemannian metric Q on G/H is
holonomy reducible. Then by the de Rham decomposition theorem, we have a
Riemannian manifold decomposition

G/H = M1×M2× · · ·×Ms,

where M1,M2, . . . ,Ms are holonomy irreducible. By Hano’s result [1955], the
full group K of isometries of (G/H, Q) is isomorphic to the product of the groups
of isometries of Mi for 1 ≤ i ≤ s. This fact combined with the homogeneity of
(G/H, Q) implies that for each i , the group of isometries of Mi must be transitive
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on Mi ; in particular, it has dimension at least 1. Thus the identity component K 0

of K is not a simple Lie group. Now by the complete list of compact connected Lie
groups that act transitively on the spheres [Besse 1987], K 0 must be one of U(n)
with n≥2, Sp(n)Sp(1)with n≥1, or Sp(n)U(1)with n≥1. This means that s=2
and M1 can be chosen to be a coset space of U(1) = S1 or Sp(1) = SU(2) = S3.
But it is easily seen that the coset spaces of U(1) or Sp(1) must be diffeomorphic
to S1, S2 or S3. Therefore we have Sn

= G/H = S j
× M2 for n > j . But this

decomposition is impossible since the j-th homotopy group of Sn (where j = 1, 2,
or 3 and n > j) is the identity group and π j (S j )= Z. �

Oniscik [1963] proved that the only compact connected groups that act tran-
sitively on the projective complex spaces are SU(n) (on CPn−1), and Sp(n) (on
CP2n−1). Similar to Lemma 5.4, we have this:

Lemma 5.5. Let G be a compact connected Lie group and H be a closed subgroup
of G. Suppose the coset space G/H is diffeomorphic to the projective complex
space CPn . Then any G-invariant Riemannian metric on G/H must be holonomy
irreducible.

To state the next lemma, we need some definitions about Hermitian symmetric
spaces. Let (G, H) be an irreducible Riemannian metric of compact or noncompact
type. Then it is well known that G/H can be made into a Hermitian symmetric
space if and only if the (connected) compact subgroup H has nondiscrete center,
in which case the center of H is a one-dimensional Lie group [Helgason 1978].
Let g = h + m be the canonical decomposition of the Lie algebra. Let a be a
maximal abelian subspace of m and extend a to a Cartan subalgebra t of g. Then
on the subspace m there is a complex structure J corresponding to the root sys-
tem of (g, t) (not necessary the complex structure induced by that of the manifold
G/H ) [Korányi and Wolf 1965]. Let Z J be the element in the center zh of h

that corresponds to the complex structure above. Then we have a decomposition
Z J
= Z0
+Z ′, where Z0 defines the complex structure on the polydisc or the poly-

sphere inside G/H when G/H is realized as a generalized half-plane [Korányi and
Wolf 1965] and Z ′ is an element in h that centralizes a. The Hermitian symmetric
space G/H is said to be of tube type if in the decomposition above we have Z ′= 0.
Let H = Z H · Hs be the decomposition of H , where Z H is the one-dimensional
center of H and Hs is the semisimple part of H . Let S′ = {exp(t Z ′) | t ∈ R}. It is
known that if G/H is not of the tube type, then Z ′ is not in the center zh and we
have H = S′Hs = Hs S′. Further,

(5-1) m= Ad(Hs)(a).

Lemma 5.6. Let G be a compact connected simply connected simple Lie group
and H be a closed subgroup of G such that (G, H) is an irreducible Hermitian
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symmetric pair of nontube type. Let H = Z H Hs be the decomposition of H , where
Z H is the one-dimensional center of H and Hs is the semisimple part of H. Then
any G-invariant Riemannian metric on the coset space G/Hs must be holonomy
irreducible.

Proof. Let g=h+m be the canonical decomposition of the symmetric pair (G, H).
Then we can identify the tangent space To(G/H) with m. Since (G, H) is irre-
ducible, the action of H on m is irreducible. Now we claim that the action of the
semisimple part Hs of H on m is also irreducible. In fact, if this is not true, then
we can find a nontrivial subspace V1 of m that is invariant under Hs . Let X ∈ V1.
Then by (5-1) there exists k ∈ Hs and Xa ∈ a such that X = Ad(k)(Xa). Now for
any s ∈ S′, select s1 ∈ S′, k1 ∈ Hs such that sk = k1s1. Then

(5-2) Ad(s)(X)= Ad(s)Ad(k)(Xa)= Ad(k1s1)(Xa)= Ad(k1)(Xa)

= Ad(k1k−1)Ad(k)(Xa)= Ad(k1k−1)(X) ∈ V1,

where we have used the fact that Z ′ centralizes a. Now (5-2) means that V1 is also
invariant under the action of S′. Hence it is invariant under H . This contradicts
the assumption that G/H is irreducible, and proves our claim. The claim means
that the action of Hs on the tangent space To(G/Hs), which can be identified with
s+m (direct sum), where s is the one-dimensional Lie algebra of S1, decomposes
as the sum of irreducible subspaces s and m. By Schur’s lemma, this implies that
any Hs-invariant inner product on To(G/H ′) must be of the form

(5-3) Q1+α(−B)|m×m,

where Q1 is an arbitrary inner product on a (which is unique up to a positive
scalar), B is the Cartan–Killing form of the Lie algebra g, and α is an arbitrary
positive number. Now by the construction of D’Atri and Ziller [1979], any inner
product of the form (5-3) induces a naturally reductive G-invariant Riemannian
metric on G/H ′. Such a Riemannian metric on a simply connected coset space
of a connected simple Lie group must be holonomy irreducible [Kobayashi and
Nomizu 1969, page 215]. �

Proof of Theorem 5.3. We need only prove the “only if” part. We divide the
homogeneous manifolds in Table 1 into three groups. Group 1 consists of types I,
II, VII, VIII, and IX. Homogeneous manifolds in this group are diffeomorphic to a
sphere. Group 2 consists of type III, the manifold Sp(n)/(U(1)×Sp(n−1)). It has
a symmetric extension ((SU(2n),SU(2n−1)×U(1)); in other words, the quotient
Sp(n)/(U(1)×Sp(n− 1)) is diffeomorphic to the projective complex space

CP2n−1
= SU(2n)/(SU(2n− 1)×U(1)),
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where we consider Sp(n) as a subgroup of SU(2n). Group 3 consists of types IV,
V, and VI. Homogeneous manifolds in this type are S1-bundles over Hermitian
symmetric spaces of nontube type [Nguyen 2000]. Let G/H be one of the homo-
geneous manifolds in Table 1. Then by Lemmas 5.4, 5.5, and 5.6, we have seen
that any G-invariant Riemannian metric on G/H must be holonomy irreducible.
Suppose F is an invariant Finsler metric on G/H of the Berwald type. Then there
exists a Riemannian metric Q on G/H whose Levi-Civita connection coincides
with the Chern connection of F [Szabó 1981]. Let A(Q) and I (Q) be the group
of affine transformations and the group of isometries of Q. Then any isometry of F
must be contained in A(Q) [Deng and Hou 2005b]. In particular, G ⊂ A(Q). On
the other hand, since G/H is compact, we have A(Q)0 = I (Q)0 [Kobayashi and
Nomizu 1963, page 244]. Since G is connected, we have G ⊂ A(Q)0 = I (Q)0.
That is, any element of G is an isometry of Q, or in other words, Q is a G-
invariant Riemannian metric and hence must be holonomy irreducible. If F is not
Riemannian, then according to [Szabó 1981], (G/H, Q) must be an irreducible
Riemannian symmetric space of rank at least 2. In particular, let K be the full
group of isometries of Q, let K0 be the identity component of K , and let N be
the isotropic subgroup of K0 at a fixed point. Then G ⊂ K 0, and (K0, N ) is a
Riemannian symmetric pair [Helgason 1978]. This means that the pair (G, H) has
a symmetric extension with rank at least 2. The symmetric extension of weakly
symmetric homogeneous manifolds has been classified by Yakimova [2004]. The
list shows that the manifolds of types I, III, VII, VIII, and IX in Table 1 have
symmetric extension of rank 1, and that the manifolds in other types do not admit
any symmetric extension. On the other hand, Sp(n)/Sp(n− 1) is the only homo-
geneous manifold in Table 1 that is not weakly symmetric. But Sp(n)/Sp(n − 1)
is diffeomorphic to the sphere S4n−1. Hence (Sp(n),Sp(n − 1)) has as its only
symmetric extension (SO(4n),SO(4n−1)), which is of rank 1. This contradiction
proves the theorem. �

Since a weakly symmetric Finsler space has vanishing S-curvature, combining
Theorems 5.2 and 5.3 gives this corollary:

Corollary 5.7. Let G be a connected simply connected compact Lie group, and let
H be a closed subgroup of G. Let G/H be a nonsymmetric polar homogeneous
manifold of rank 2. Then there exist infinitely many invariant Finsler metrics on
G/H that are reversible, non-Berwaldian, and of vanishing S-curvature.

6. Randers metrics

We now consider invariant Randers metrics on the homogeneous manifolds in
Table 1, and give a (global) complete classification of such metrics. As pointed
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out in Theorem 5.3, all the non-Riemannian Randers metrics we find are non-
Berwaldian. As an application, we give a classification of homogeneous Randers
spaces with positive constant flag curvature.

We first recall some known results. Let G be a Lie group, and let H be a closed
subgroup of G. Suppose Q is an invariant Riemannian metric on G/H . Then by
the results of [Deng and Hou 2004b], there exists a bijection between the invariant
Randers metrics on G/H with underlying Riemannian metric Q and the invariant
vector fields on G/H with length < 1. Suppose the coset space G/H is reductive,
that is, that there exists a subspace m of g (the Lie algebra of G) such that

g= h+m (direct sum of subspaces),

and Ad(h)m⊂ m, for all h ∈ H . Then invariant vector fields are in bijection with
the set

V = {X ∈m | Ad(h)(X)= X for all h ∈ H}.

Therefore, to find all the invariant Randers metrics on G/H , we need first to find
all the invariant Riemannian metrics with respect to which all vectors in V have
length less than 1.

Now we consider SU(n)/SU(n− 1). In this case we have a decomposition

(6-1) su(n)= su(n− 1)+m,

where

(6-2) m=

{(
a
√
−1 α

−ᾱ′ − 1
n−1a
√
−1In−1

) ∣∣∣∣ a ∈ R, α ∈ Cn−1
}
.

A direct computation shows that

V =
{

diag
(
−a
√
−1, 1

n−1a
√
−1, . . . , 1

n−1a
√
−1
) ∣∣ a ∈ R

}
.

Theorem 6.1. There is a one-to-one correspondence between the invariant Ran-
ders metrics on SU(n)/SU(n−1) and the Minkowski norms on m in (6-2). This
bijection is defined by

Fo(X)=
√

c1a2+ c2αᾱ′+ c1ca, X =
(

a
√
−1 α

−ᾱ′ − 1
n−1a
√
−1In−1

)
∈m,

where c1, c2 are positive real parameters and c is a real number with |c|< 1/
√

c1.

Among these Randers metrics, given any positive number k, the family with
parameters

c1 =
d2
+k2
−kd2

(k−d2)2
, c2 =

( k
k−d2

)2
, c =

d(d2
− k)

d2+ k2− kd2 ,
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has constant flag curvature k, where d is a real parameter satisfying |d| <
√

k.
Moreover, up to isometry these are all the connected simply connected homo-
geneous Randers spaces with positive constant flag curvature.

Moreover, any non-Riemannian Randers metric above is not of the Douglas
type, and hence is not projectively flat.

Proof. As stated above, to obtain the classification of invariant Randers metrics
on SU(n)/SU(n− 1), we first need to determine all invariant Riemannian metrics
thereon. These metrics are in bijection with the SU(n−1)-invariant inner products
on m. Now the vector space m, as a representation space of SU(n − 1), has the
decomposition m= V +m1, where

m1 =

{( 0 α
−ᾱ′ 0

) ∣∣∣ α ∈ Cn−1
}
.

Moreover, the subrepresentations V and m1 are irreducible. By Schur’s lemma, it
is easily seen that any SU(n−1)-invariant inner product on m must be of the form

〈X1, X2〉 = c1a1a2+ c2 Re(α1ᾱ
′

2) for c1, c2 > 0,

where

X i =

(
ai
√
−1 αi

−ᾱ′i −
1

n−1ai
√
−1

)
for i = 1, 2.

Therefore, the SU(n)-invariant Randers metric on SU(n)/SU(n − 1) determined
by 〈 · , · 〉 and

X0 =

(
c
√
−1 0

0 −
1

n−1 c
√
−1

)
∈ V, with

√
c1c < 1,

must be the one stated in the theorem.
Now we prove the theorem’s second claim. Note that SU(n) is a closed subgroup

of SO(2n) and is transitive on the sphere S2n−1
=SO(2n)/SO(2n−1). This means

that any SO(2n)-invariant Riemannian metric must be SU(n)-invariant. Thus for
any k > 0 there is one SU(n)-invariant Riemannian metric on SU(n)/SU(n − 1)
with constant sectional curvature k. We denote this Riemannian metric by Qk , and
next determine it explicitly. For two orthogonal unit vectors X, Y ∈m, the sectional
curvature of the plane spanned by X, Y is given by [Besse 1987, p. 183]

K (X, Y )=− 3
4

∣∣[X, Y ]m
∣∣2− 1

2〈[X, [X, Y ]]m, Y 〉

−
1
2〈[Y, [Y, X ]]m, X〉+ |U (X, Y )|2−〈U (X, X),U (Y, Y )〉,

where 〈 · , · 〉 is the inner product determined by Qk , | · | is the length function
of 〈 · , · 〉, [ · , · ] is the Lie bracket of su(n), [X, Y ]m denotes the projection of
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[X, Y ] to m corresponding to the decomposition (6-1), and U is a symmetric bi-
linear mapping from m×m to m defined by

〈U (X, Y ), Z〉 = 1
2

(
〈[Z , X ]m, Y 〉+ 〈[Z , Y ]m, X〉

)
.

Up to homotheties, the set of invariant Riemannian metrics on SU(n)/SU(n−1) has
dimension 1, so there must be a c1>0 such that the inner product c1a1a2+Re(α1ᾱ

′

2)

defines a Riemannian metric with constant sectional curvature. To find this c1, we
select three vectors in m:

X1 = diag
(√
−1
√

c1
,−

√
−1

(n−1)
√

c1
In−1

)
,

X2 =

( 0 α2
−α′2 0

)
, α2 = (1, 0, . . . , 0) ∈ Rn−1, X3=

√
−1X2.

Then a direct (albeit somewhat tedious) computation shows that

U (X1, X1)=U (X2, X2)=U (X3, X3)= 0,

U (X1, X2)=
1
2

( n
(n−1)

√
c1
− 2
√

c1

)
X3,

U (X1, X3)=
1
2

(
−

n
(n−1)

√
c1
+ 2
√

c1

)
X2,

U (X2, X3)= 0.

Substituting the above into the formula of sectional curvature, we get

K (X1, X2)= c1+
n

n−1
(1−
√

c1) and K (X2, X3)= 4− 3c1.

Now the equation K (X1, X2)= K (X2, X3) has a unique positive solution c1 = 1,
and in this case the sectional curvature is equal to 1. Therefore the inner product

(1/k)a1a2+ (1/k)Re(α1ᾱ
′

2)

defines the invariant Riemannian metric Qk on SU(n)/SU(n − 1) with constant
sectional curvature k.

Now for any X ∈ V with Qk(X, X) < 1, we can construct an invariant Randers
metric Fk,X on SU(n)/SU(n−1). Since Qk is SU(n)-invariant, the one parameter
group {exp(t X) | t ∈R} consists of isometries of Qk . In particular, for any U, V ∈m,
we have Qk

(
Ad(exp(t X))(U ),Ad(exp(t X))(V )

)
= Qk(U, V ) for all t . Taking the

derivative and considering the value at t = 0, we get

Qk([X,U ]m)+ Qk(U, [X, V ]m)= 0.

In other words, LX̃ Qk is equal to 0 at the origin. Since both the Riemannian metric
and the vector field X̃ are SU(n)-invariant, we have LX̃ Qk = 0 everywhere. By
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the criterion for a Randers metric to have constant flag curvature [Bao et al. 2004],
the Randers metric with navigation data (Qk, X̃), where

X =
(

d
√
−1 0

0 −
1

n−1 d
√
−1

)
, with |d|<

√
k,

has constant flag curvature k. By the transformation formulas between the defining
data and navigation data of Randers metrics [Chern and Shen 2005], we see that
the Randers metrics with parameters as described in the theorem have constant flag
curvature k.

Now we prove the converse of the conclusion above. Suppose (M, F) is a
connected simply connected homogeneous non-Riemannian Randers metric with
constant positive flag curvature k. Suppose the underlying Riemannian metric is Q
and the corresponding vector field is X̃ . Then (M, Q) is a connected simply con-
nected Riemannian metric with constant positive sectional curvature k. Thus M is
diffeomorphic to a sphere and X̃ is invariant under the full group of isometries of
(M, Q). In particular, X̃ has constant length with respect to Q. This means that
the Randers metric is in the corrected Yasuda–Shimada family. That is, it satisfies
θ = 0, and up to isometry there is only one family of such Randers metrics on
odd-dimensional spheres [Bao et al. 2004]. Therefore they must be exactly the
metrics constructed above.

Finally, by our previous result [An and Deng 2008], the Randers metric Fk,X is
of Douglas type if and only if Qk(X, [U, V ]m) = 0 for all U, V ∈ m. A simple
direct computation shows that this holds only if X = 0. Thus any non-Riemannian
Randers metric constructed above is not of the Douglas type. �

Other cases can be treated similarly; we omit the details here. The conclusion
is that on each of the homogeneous manifolds other than the types VII, VIII, and
IX, there exist invariant non-Riemannian Randers metrics. Any such metric is not
of the Douglas type. On Sp(n)/Sp(n− 1) with n ≥ 2, and given any k > 0, there
is also a family of invariant Randers metrics with constant flag curvature k. By
the arguments above, this family must be isometric to the corresponding family
on SU(2n)/SU(2n − 1) = S4n−1 that has constant flag curvature k. Moreover,
on Spin(9)/Spin(7), since the isotropy representation has no fixed nonzero points
[Ziller 1996], there are no Spin(9)-invariant non-Riemannian Randers metrics, al-
though there do exist invariant non-Riemannian metrics. Of course, there are no
invariant non-Riemannian metrics on the homogeneous manifolds of types VIII
and IX.
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