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To Paul Concus and Robert Finn

Consider a nonparametric capillary or prescribed mean curvature surface
z = f (x, y) defined in a cylinder �× R over a two-dimensional region �
that has a boundary corner point at O with an opening angle of 2α. Suppose
2α ≤ π and the contact angle approaches limiting values γ1 and γ2 in (0, π)
as O is approached along each side of the opening angle. Our results yield
a proof of the Concus–Finn conjecture, which provides the last piece of the
puzzle of determining the qualitative behavior of a capillary surface at a
convex corner. We find that
• if (γ1, γ2) satisfies 2α+|γ1− γ2|> π , then f is bounded but discontin-

uous at O and has radial limits at O from all directions in � and, these
radial limits behave in a prescribed way;

• if (γ1, γ2) satisfies |γ1 + γ2 − π | > 2α, then f is unbounded in every
neighborhood of O; and

• otherwise f is continuous at O.

1. Introduction and statement of theorems

Let � ⊂ R2 be a connected, open set. Consider the prescribed mean curvature
problem

N f = H( · , f ( · )) in �,(1)

T f · ν = cos γ almost everywhere on ∂�,(2)

where T f =∇ f/
√

1+ |∇ f |2, N f =∇ ·T f , ν is the exterior unit normal on ∂�,
H(x, t) is a weakly increasing function of t for each x ∈� and γ = γ(x) ∈ [0, π].
If (1) specifically is

(3) N f = κ f + λ in �

(that is, H(x, t) = κt + λ), where κ and λ are constants with κ ≥ 0, then the
surface z = f (x) for x ∈ � represents the stationary liquid-gas interface formed
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Figure 1. The domain �.

by an incompressible fluid in a vertical cylindrical tube with cross section � in a
microgravity environment or in a downward oriented gravitational field; here the
subgraph U = {(x, t) ∈�×R : t < f (x)} represents the fluid-filled portion of the
cylinder and γ(x) is the angle at which the liquid-gas interface meets the vertical
cylinder at (x, f (x)) [Finn 1986].

Since 1970, Paul Concus and Robert Finn have made fundamental contributions
to the mathematical theory of capillary surfaces and have discovered that these
surfaces can behave in very peculiar and unexpected ways; see for example [Finn
1999; 2002b; 2002a]. Of particular interest, to both the mathematical and physical
theories in vertical cylinders, are domains � whose boundaries contain corners.

Suppose O = (0, 0) ∈ ∂� and � has a corner of size 2α ≤ π at O . With � as
illustrated in Figure 1, suppose there exist γ1, γ2 ∈ (0, π) such that

(4) lim
∂+�3x→(0,0)

γ(x)= γ1 and lim
∂−�3x→(0,0)

γ(x)= γ2.

Then Figure 2 can be used to illustrate our knowledge of the behavior of a solution
f of (3) and (2) at the corner O; here let R, D±1 and D±2 be the indicated open
regions in the (open) square (0, π) × (0, π). If (γ1, γ2) ∈ R ∩ (0, π) × (0, π),
then f is continuous at O; see [Concus and Finn 1996, Theorem 1; Lancaster
and Siegel 1996a, Corollary 4]. If (γ1, γ2) ∈ D±1 , then f is unbounded in any
neighborhood of O and the capillary problem has no solution if κ = 0 [Concus
and Finn 1996; Finn 1996]. If (γ1, γ2) ∈ D±2 , then f is bounded [Lancaster and
Siegel 1996a, Proposition 1] but its continuity at O is unknown. Concus and Finn
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Figure 2. The Concus–Finn rectangle.

discovered bounded solutions of (3) and (2) in domains with corners whose unit
normals (that is, Gauss maps) cannot extend continuously as functions of (x, y)
to a corner on the boundary of the domain (for example [Finn 1988b; Finn 1988a,
page 15; Concus and Finn 1996, Example 2; Finn 1996]). In 1992, as a result
of computational experiments, they formulated a conjecture on the continuity of
such surfaces [Concus et al. 1992; Concus and Finn 1996, page 67]; additional
numerical experiments in 1994 by Concus and Finn and in 1996 by Mittelmann
and Zhu found evidence to support the conjecture, which says that if (γ1, γ2)∈D±2 ,
then f has a jump discontinuity at O [Finn 1999, page 776]. Writing the conditions
for a pair of angles to be in D±2 yields the following formulation of the conjecture:

Concus–Finn conjecture. Suppose that 0< α < π/2, that the limits (4) exist and
that 0 < γ1, γ2 < π . If 2α+ |γ1− γ2| > π , then any solution of (1) and (2), with
H(x, z)= κz+ λ and κ nonnegative, has a jump discontinuity at O.

We will prove this conjecture when ∂�\{(0, 0)} is locally Hölder continuously
differentiable and γ is locally Hölder continuous on ∂�\{(0, 0)} in a neighborhood
of the origin. For convenience, we will adopt the following notation throughout
this paper. We will write points of R2 as lower case letters (for example, x) and
points of R3 as upper case letters (for example, X ). For m ∈ N with m ≥ 2, we
will write Om as the origin in Rm ; however, we will write O for O2 = (0, 0). We
denote by Bm(P, r) the open ball in Rm of radius r > 0 centered at P ∈Rm and by
B(x, r) the ball B2(x, r) for x ∈ R2. We will fix ρ∗ ∈ (0, 1) and α ∈ (0, π]; later
we will assume α ≤ π/2. We will write ω(θ) for (cos(θ), sin(θ)) for θ ∈ R.
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Our domain � will be a connected, simply connected open set in R2 such that
O ∈ ∂�, ∂� \ {O} is a piecewise C1 curve, ∂� has a corner of size 2α at O , and
the tangent cone to ∂� at O is L+∪ L−, where polar coordinates relative to O are
denoted by r and θ , and L+ = {θ = α} and L− = {θ =−α}. We will assume there
exists δ∗>0 such that ∂+�=∂�∩B(O, 3δ∗)∩T+ and ∂−�=∂�∩B(O, 3δ∗)∩T−

are connected, C1,ρ∗ arcs such that the tangent rays to ∂+� and ∂−� at O are L+

and L− respectively; here T+ = {x ∈R2
: x2 ≥ 0} and T− = {x ∈R2

: x2 ≤ 0}. We
set 3= ∂� \ (∂+�∪ ∂−�) and obtain

∂�= ∂+�∪ ∂−�∪3 with O ∈ ∂+�∩ ∂−� and B(O, 3δ∗)∩3=∅.

We will assume �⊂ {rω(θ) : r > 0,−π < θ <π}. Let us define τ+ ∈C0,ρ∗(∂+�)

and τ− ∈ C0,ρ∗(∂−�) such that τ+(O)= α, τ−(O)=−α,

(cos(τ+(x)), sin(τ+(x)), 0) is a unit tangent to ∂+�×R for x ∈ ∂+�

and

(cos(τ−(x)), sin(τ−(x)), 0) is a unit tangent to ∂−�×R for x ∈ ∂−�.

We will assume (4) holds and that γ ∈ C0,ρ∗(∂+�) (when γ(O) is set equal to γ1)
and γ ∈ C0,ρ∗(∂−�) (when γ(O) is set equal to γ2.) If γ1 = π/2 or γ2 = π/2, we
will need to be able to use slicing [Allard 1972, 4.10] and so we will assume

(5) |Dγ| ∈ L1(∂+�) if γ1 =
1
2π and |Dγ| ∈ L1(∂−�) if γ2 =

1
2π.

We will also assume (γ,�, O) is admissible as defined in Definition 3.4 (which
essentially says Emmer’s (boundary) condition holds at each point of ∂� \ {O}).
For a solution f ∈ C2(�)∩C1,ρ∗(� \ {O}) of (1) and (2), we let

En(X)= En f (X)=
(∇ f (x),−1)√
1+ |∇ f (x)|2

, where X = (x, t) ∈ (� \ {O})×R,

denote the downward unit normal to the graph of f ; in the capillary interpretation,
En represents the inward unit normal with respect to the fluid region. Using compari-
son theorems (for example, [Finn 1986, Theorem 5.1]) and existence and regularity
theorems for variational solutions (for example, [Finn 1986, Theorem 7.5 together
with Lemma 4.1]), we see that we may assume f is a variational (BV(�)) solution.
Since our interest will be in the local behavior of solutions of (1) and (2) near the
corner O , we sometimes think of � as the intersection of a larger domain with an
appropriate neighborhood of O and a solution f of (1) and (2) as the restriction to
� \ {O} of a function F that is a solution of a boundary value problem, perhaps
like (1) and (2), in this larger domain; in this case, restricting the problem to a
subdomain � for which (γ,�, O) is admissible is straightforward.

The following theorem will establish the validity of the Concus–Finn conjecture.
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Theorem 1.1. Let � and γ be as above with α ∈ (0, π/2], and suppose that
f ∈C2(�)∩C1,ρ∗(�\{O}) is a bounded solution to (1) satisfying (2) on ∂±�\{O}
with |H |∞ = supx∈� |H(x, f (x))| <∞. Suppose (4) holds and γ1, γ2 ∈ (0, π).
Then f is discontinuous at O whenever (γ1, γ2) satisfies

(6) 2α+ |γ1− γ2|> π.

Notice that we exclude cases in which γ1 or γ2 equals 0 or π . It seems likely that
an argument in this exceptional situation might use ideas from [Finn 1988b], and
it would be interesting to see the details of a proof.

For linear elliptic partial differential equations, especially uniformly elliptic
equations, the qualitative behavior “at” a boundary point of the solution f of a
boundary value problem can be determined by local information such as the pre-
scribed boundary information and bounds on the maximum rate at which | f | can go
to infinity “at” the boundary point (for example, [Bear and Hile 1983]). However
this is usually not true for quasilinear equations. The Concus–Finn conjecture,
if true, represents one of the rare situations when the qualitative behavior of a
solution (that is, its continuity at a convex corner) is determined by the boundary
information (that is, α, γ1 and γ2) in an arbitrarily small neighborhood of the
boundary point. At a nonconvex corner O (that is, α > π/2), [Shi and Finn 2004]
shows that information about ∂� ∩ Bε(O) and γ in Bε(O) for some ε > 0 need
not be sufficient to determine the continuity at O of a solution of (3) and (2).

Lancaster and Siegel [1996a] investigated the behavior of bounded solutions
of (3) and (2) at corners, both convex and nonconvex corners, and they noted in
[1996a; 1996b] that the conclusions in [1996a] carry over to solutions of (1) and (2)
when H satisfies some minor restrictions (that is, H(x, z) is either real-analytic or
strictly increasing in z); in this case, a bounded solution f ∈C2(�)∩C1(�\{O})
of (1) satisfying (2) on ∂±�\{O} is in C0(�) when (γ1, γ2)∈ R∩(0, π)×(0, π).
The arguments in [Concus and Finn 1996] and [Finn 1996] continue to show that
if (γ1, γ2) ∈ D±1 , then either (1) and (2) has no solution in a neighborhood of O or
f is unbounded in any neighborhood of O when H satisfies some extremely minor
restrictions. Thus, under mild restrictions on H , Figure 2 continues to illustrate the
behavior at O of solutions of (1) and (2). (See Remark 3.1 for a comment about
[Lancaster and Siegel 1996a].)

Once we know that a solution of (1) and (2) is discontinuous at a convex corner
O = (0, 0), it is natural to ask about its behavior nearby. In [Lancaster and Siegel
1996a, Theorem 1], it is proven that if ε ≤ γ ≤ π − ε for some ε > 0, then the
radial limits of f ,

R f (θ)= lim
r↓0

f (r cos(θ), r sin(θ)),
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exist for all θ ∈ (−α, α) and R f ∈C0([−α, α]), where R f (−α) and R f (α) are the
limits of the trace of f on ∂−� and ∂+� respectively; the continuity of the trace
of f on ∂−� and on ∂+� is a conclusion of this theorem.

Now suppose (4) holds and 2α+ |γ1− γ2| > π . Then Theorem 1.1 above and
[Lancaster and Siegel 1996a, Theorems 1 and 2] imply that there exist α1 and α2

with −α < α1 < α2 < α such that

R f (θ)=


constant if −α ≤ θ ≤ α1,

strictly monotonic if α1 ≤ θ ≤ α2,

constant if α2 ≤ θ ≤ α

and α1 − (−α) ≥ π − γ2 and α − α2 ≥ γ1 if R f is increasing on (α1, α2), while
α1 − (−α) ≥ γ2 and α− α2 ≥ π − γ1 if R f is decreasing on (α1, α2). Lancaster
and Siegel [1996a] call the intervals [−α, α1] and [α2, α] fans (of constant radial
limits), due to the shape of a region {(r cos(θ), r sin(θ)) : r > 0, α2 ≤ θ ≤ α} on
whose closure f is continuous; for nonconvex corners, a central fan (of constant
radial limits) with size π can also exist. In particular, we see that Theorem 1.1
implies f has a jump discontinuity at O .

This work arose as a consequence of the Summer School on Capillarity held at
the Max-Planck-Institut für Mathematik in Leipzig in June and July of 2003. While
the Concus–Finn conjecture was discussed at meetings prior to 2003 (for exam-
ple, the International Conference on Differential Equations and Dynamic Systems,
University of Waterloo, Waterloo, Canada, August, 1997), the 2003 summer school
brought together experts such as Maria Athanassenas, Robert Finn, Kirk Lancaster,
John McCuan, Erich Miersemann, David Siegel, Tom Vogel and Henry Wente. In
particular, Athanassenas and I worked (unsuccessfully) to find a counterexample
to the Concus–Finn conjecture while others attempted to find a proof; our failure to
find a counterexample together with the strong confidence in the correctness of the
conjecture by others, especially John McCuan, inspired me to attempt to prove the
conjecture. After the idea for a proof in the zero mean curvature case was obtained
in 2004, Robert Finn strongly encouraged me to find a proof in the general case. In
2005, I did discover the idea of a proof; modulo some essentially minor technical
modifications, this idea forms the basis for this work. This discovery may not have
happened without the contributions of Athanassenas, Finn and McCuan. On the
other hand, the absence of a subsequent summer school on capillarity, perhaps in
the United States, may have delayed progress on important questions in capillarity
(for example, [Athanassenas and Lancaster 2008; Finn 1999, 2002b; 2002a].)

2. Image of the Gauss map

In this section, we characterize in Theorem 2.1 the behavior of the limits at points
of {O} × R of the Gauss map for the graph of f . The proof involves the use
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of a 1975 result by Massari and Pepe [1975], generalized solutions (for example,
[Giusti 1980]) and Leon Simon’s capillarity paper [1980].

The following proposition is [Massari and Pepe 1975, Theorem 3], provided in
translation for the convenience of the reader; the author thanks Professor Giuseppe
Tenti of the Department of Applied Mathematics of the University of Waterloo for a
translation of that paper. Here ∂∗A denotes the reduced boundary of a Caccioppoli
set A,

νA(x)= lim
ρ→0

∫
B(x,ρ) DφA∫

B(x,ρ) |DφA|

and |νA(x)| = 1 for x ∈ ∂∗A; if ∂A is a C1 hypersurface, x ∈ ∂A, and ν(x) is
the interior unit normal to ∂A, then νA(x) = ν(x); see for example [Giusti 1984,
Chapter 3]. In the proposition, νh(x) denotes νEh (x), ν(x) denotes νE(x), and �
denotes an open set in Rn; in the context used in this paper, such an open set might
be B3(X, r) for X ∈ R3 and r > 0, or �∞×R.

Proposition 2.1. Let {Eh}h be a sequence of Caccioppoli sets of mean curvature
Ah ∈ L p

loc(�) with p > n. If

φEh (x)→ φE(x) in L1
loc(�),(7)

∂Eh ∩� 3 xh→ x ∈ ∂∗E ∩�,(8)

Ah(x)→ A(x) in L1
loc(�)(9)

and if for every compact K of � there exists a constant γ(K ) such that

(10) ‖Ah‖L p(K ) < γ(K ) for all h ∈ N,

then there exists h0 ∈ N, such that, for every h > h0, we have

xh ∈ ∂
∗Eh ∩�,(11)

lim
h→∞

νh(xh)= ν(x).(12)

Remark 2.1. We define densities in the usual manner. If µ is a measure on Rn

and a ∈ Rn , we define the m-dimensional upper density 2∗m(µ, a), lower density
2m
∗
(µ, a) and density 2m(µ, a) of µ at a as in [Allard 1972]. For example,

2∗m(µ, x)= lim sup
r↓0

µ(Bn(x, r))
αmrm .

If A ⊂ Rn , x ∈ Rn and m ≤ n, we define the m-dimensional upper (mass) den-
sity 2∗m(A, x), the m-dimensional lower (mass) density 2m

∗
(A, x) and the m-

dimensional (mass) density 2m(A, x) of A at x in the usual way. For example,

2m
∗
(A, x)= lim inf

r↓0

H m(Bn(x, r)∩ A)
αmrm ;



82 KIRK E. LANCASTER

here αm = H m(Bm(Om, 1)) denotes the m-dimensional volume of the unit ball
in Rm .

Recall that a m-dimensional varifold in Rn is a Radon measure on Rn
×G(n,m).

We denote the space of m-dimensional varifolds in Rn (with the weak topology) by
Vm(R

n). To each Hm measurable and (Hm,m) rectifiable set S in Rn is associated a
varifold (for example [Allard 1972, Sections 3.5 and 4.7; Taylor 1976, Section I]);
we adopt the notation v(S) of [Allard 1972] for this varifold, whereas [Taylor 1976]
uses the notation |S|. We denote the first variation of V ∈ Vm(R

n) by δV , as in
[Allard 1972, Chapter 4].

For r > 0, let µr : Rn
→ Rn be defined by µr (X) = r X for X ∈ Rn . Let

V ∈ Vm(R
n). We set Vr = µr#V (for example [Allard 1972, Section 3.2; Taylor

1976, Section I]); then

(13) ‖Vr‖ = rmµr#‖V ‖ and ‖δVr‖ = rm−1µr#‖δV ‖

by [Allard 1972, 3.2(2) and 4.12(1)], respectively. Notice that if L > 0, then

‖µr#V ‖(B(On, L))= rmµr#‖V ‖(B(On, L))

= rm
‖V ‖(B(On, L/r))= Lm ‖V ‖(B(On, L/r))

(L/r)m
.

Thus, if 2∗m(‖V ‖, On) <∞,

(14) lim sup
r→∞

‖µr#V ‖(B(On, L))≤ Lmα(m)2∗m(‖V ‖, On).

Similarly, if k = m− 1 and 2∗k(‖δV ‖, On) <∞, then

(15) lim sup
r→∞

‖δ(µr#V )‖(B((On, L)≤ Lkα(k)2∗k(‖δV ‖, On).

Theorem 2.1. Suppose � and γ are as in Theorem 1.1 such that (4) holds with
γ1, γ2 ∈ (0, π) and γ2 − γ1 > π − 2α, that is, (γ1, γ2) ∈ D+2 . Let f ∈ C2(�) ∩

C1,ρ∗(� \ {O}) be a bounded solution of (1) and (2) and suppose there exists
J ∈ (0,∞) such that |H(x, f (x))| ≤ J on �×R. Let β ∈ (−α, α) and let (x j ) be
a sequence in � satisfying lim j→∞ x j = O and

(16) lim
j→∞

x j/|x j | = (cos(β), sin(β)).

(i) If β ∈ [−α+π − γ2, α− γ1], then lim j→∞ En(x j )= (− sin(β), cos(β), 0).

(ii) If β ∈ (−α,−α+π − γ2], then

lim
j→∞
En(x j )= (− sin(−α+π − γ2), cos(−α+π − γ2), 0).

(iii) If β ∈ [α− γ1, α), then lim j→∞ En(x j )= (− sin(α− γ1), cos(α− γ1), 0).
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The proof consists of minor modifications of the proof of [Simon 1980] and
the use of generalized solutions [Giusti 1980; Jeffres and Lancaster 2007]. The
rationale for using results from [Simon 1980] and [Giusti 1980] is essentially the
same as that used in [Tam 1986c]. (See Remark 2.3.) Simon’s technique is the
standard one (for example, [Federer 1969, Sections 3.1 and 5.4]) of blowing up
the graph of a solution of (1) and (2) about the origin O3 ∈ R3; Simon obtains a
plane through the origin, and we modify that proof to show that the limit of a blow-
up about O3 of the graph of f − R f (β) is a vertical half-plane π1. Unfortunately,
the third component of the image (x jk/ε jk , [ f (ε jk x jk )− R f (β)]/ε jk ) of the blow-
up sequence being used might diverge to infinity. We therefore consider a type of
sequence introduced in [Tam 1986c] and use the result above, Proposition 2.1 and
BV(�× R) techniques (for example, [Jeffres and Lancaster 2007]) to determine
the unit normal to π1. One might wish to read Remark 2.4 before examining the
proof of this theorem.

It will be convenient to define some quantities and state an assumption. Set

ε0 =
1
8 min{γ1, π − γ1, γ2, π − γ2}, ζ = 1

2π − 2ε0,

c1 =
1
4(cos(2ε0)− | cos(γ1)|), λ1 = (cos(α− ζ ), sin(α− ζ ), 0),

c2 =
1
4(cos(2ε0)− | cos(γ1)|), λ2 = (cos(−α+ ζ ), sin(−α+ ζ ), 0),

C = (min{sin(ε0), c1, c2})
−1 .

A quick calculation shows lim inf∂+�3x→0(−ν(x) ·λ1+ cos(γ(x))En(x) ·λ1)≥ 4c1

and lim inf∂−�3x→0(−ν(x) ·λ2+cos(γ(x))En(x) ·λ2)≥ 4c2. We will assume δ∗> 0
was chosen small enough that

(a) |τ+(x)−α|< α/4 and |τ−(x)+α|< α/4 if |x | ≤ 3δ∗.

(b) �∩ B(O, 3δ∗)⊂ {rω(θ) : r > 0, θ ∈ [−α− ε0, α+ ε0]}.

(c) −ν(x) · λ1+ cos(γ(x))En(x) · λ1 ≥ 2c1 if x ∈ ∂+� and |x | ≤ 3δ∗.

(d) −ν(x) · λ2+ cos(γ(x))En(x) · λ2 ≥ 2c2 if x ∈ ∂−� and |x | ≤ 3δ∗.

Notice that (a) and (b) imply there exist x± : [0, 3δ∗]→R2 that are parametrizations
of ∂±� such that x = x+(|x |) for x ∈ ∂+� and x = x−(|x |) for x ∈ ∂−�. Let
�λ =�∩ B(O, λ) for λ > 0.

Proof. Consider β ∈ (−α, α) fixed and set u(x)= f (x)− R f (β), as in [Lancaster
and Siegel 1996a]. Set δ0 = 2δ∗. Let

U = {(x, t) : x ∈�, t < u(x)} be the subgraph of u
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and
M0 = {(x, u(x)) : x ∈�∩ B(O, 3δ∗)},

M= {(x, u(x)) : x ∈�∩ B(O, 3δ∗) \ {O}},

∂+M= {(x, u(x)) : x ∈ ∂+� \ {O}},

∂−M= {(x, u(x)) : x ∈ ∂−� \ {O}}.

Notice that ∂U ∩ (�3δ∗ ×R) =M0. Let V = v(M) and V0 = v(M0) and note that
these are both two-dimensional integral varifolds; see for example [Allard 1972,
Section 3.5].

We will first use a variation of the argument in [Simon 1980, Section 1]1 to show
that

(17) H1(∂+M∪ ∂−M) <∞.

As in [S], let η denote the unit vector normal to ∂M= ∂+M∪ ∂−M that is tangent
to M and points into �×R; in the notation here,

η(X)=
−ν(X)+ (En(X) · ν(X))En(X)
|−ν(X)+ (En(X) · ν(X))En(X)|

=
−ν(X)+ cos(γ)En(X)
|−ν(X)+ cos(γ)En(X)|

.

Let h1, h2, s ∈C∞(R) with 0≤ h1(t), h2(t), s(t)≤ 1 for t ∈R, such that h1= 0 on
(−∞,−α/2] and h1 = 1 on [α/2,∞), with h2 = 1− h1 and s(t)= 1 if |t | ≤ 2δ∗

and s(t)= 0 if |t | ≥ 3δ∗. Define φ1, φ2 ∈ C∞((� \ {O})×R) such that

φ1(rω(θ), z)= h1(θ)s(r)λ1 and φ2(rω(θ), z)= h2(θ)s(r)λ2

for 0 < r < ∞ and θ ∈ (−π, π) that satisfy rω(θ) ∈ � \ {O}. Notice that
sup r |Dφ1|<∞ and sup r |Dφ2|<∞. As in [S, (1.4)], we obtain

ρ−1
∫

M∩[B(O,ρ)×R]

(φ1 · δ
Mr) dH2

+

∫
∂+M

min{r/ρ, 1}φ1 · η dH1

=−

∫
M

min{r/ρ, 1}(δM
·φ1+ Hν ·φ1) dH2,

since h1(t)= 0 if t ≤−α/2, and

ρ−1
∫

M∩[B(O,ρ)×R]

(φ2 · δ
Mr) dH2

+

∫
∂−M

min{r/ρ, 1}φ2 · η dH1

=−

∫
M

min{r/ρ, 1}(δM
·φ2+ Hν ·φ2) dH2,

since h2(t)= 0 if t ≥ α/2. From (b) and (c), we see that

φ1(X) · η(X)≥ c1h1(θ)s(r) if X = (rω(θ), z) ∈ ∂+M with θ ∈ (0, α+ ε0)

1In this proof, we refer to [Simon 1980] as [S].
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and, from (b) and (d), that

φ2(X) · η(X)≥ c2h2(θ)s(r) if X = (rω(θ), z) ∈ ∂−M with θ ∈ (−α− ε0, 0).

Using the argument on [S, page 367], we obtain

H1(∂+M∩ (B(O, δ0)×R)) <∞ and H1(∂−M∩ (B(O, δ0)×R)) <∞.

Since f , and so u, is in C1,ρ∗(� \ {O}), we see that (17) holds.
As in the proof of [S, (1.8)], we see using [Allard 1972, 4.2, 4.3(5), 4.7] that

(1), (17) and [S, (1.1)] imply

‖δV ‖(B(O, r)×R)≤ JH2(M∩ (B(O, r)×R))+H1(∂M∩ (B(O, r)×R))

and therefore

(18) ‖δV ‖(B(O, r)×R) <∞ for 0< r < R2.

Set K =max{sup�×R |δ
M
·φ1|, sup�×R |δ

M
·φ2|}.

Now let us substitute in [S, (1.4)] successively φ = φ1ψ and φ = φ2ψ , where
ψ ∈ C1

0(B(O, 3δ∗)×R). If we argue as in [S], we obtain the following analogues
for k = 1, 2 of [S, (1.10)]:

ρ−1
∫

M∩(B(O,ρ)×R)

ψ(φk · Dr)dH2
+

∫
∂M
ψ(φk · η)dH1

≤ (K + J ))
∫

M
(ψ + |δMψ |)dH2

+ o(1) as ρ→ 0.

Now (b) implies λ1 · Dr ≥ sin(ε0) on the support of φ1 and λ2 · Dr ≥ sin(ε0) on
the support of φ2. Therefore, if 0< ρ < δ0, then

lim sup
ρ↓0

ρ−1
∫

M∩(B(O,ρ)×R)

h1ψdH2
+

∫
∂M

h1ψdH1

≤ C(K + J )
∫

M

(
h1ψ + |δ

M(h1ψ)|
)
dH2

and

lim sup
ρ↓0

ρ−1
∫

M∩(B(O,ρ)×R)

h2ψdH2
+

∫
∂M

h2ψdH1

≤ C(K + J )
∫

M

(
h2ψ + |δ

M(h2ψ)|
)
dH2.
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By adding these inequalities, we see that if 0< ρ < δ0 then

lim sup
ρ↓0

ρ−1
∫

M∩(B(O,ρ)×R)

ψdH2
+

∫
∂M
ψdH1

≤ C(K + J )
∫

M

(
ψ + |δM(h1ψ)| + |δ

M(h2ψ)|
)
dH2

≤ C(K + J )
∫

M

(
ψ(1+ |δM(h1)| + |δ

M(h2)|)+ |δ
M(ψ)|

)
dH2.

From the first part of [Allard 1972, 3.1(2)], we see this implies for the varifold
V = v(M) that

(19) ‖δV ‖(ψ)≤ C(K + J )
∫ (
ψ(1+ |δM(h1)| + |δ

M(h2)|)+ |δ
M(ψ)|

)
d‖V ‖,

which is an analogue of [S, (1.11)]. As in [S], this implies

(20) H2(M∩ B3(Y, ρ))≥ Cρ2(1+ δ0),

for some constant C > 0, and therefore

(21) 22
∗
(‖V ‖, Y )≥ C > 0

if 0<ρ < δ0 and Y ∈M∩(B(O, σ )×R). (These two conclusions can be obtained
independently using BV(�) techniques and Lemma 3.1.)

Let
F1 = {(x, t) : x ∈ ∂+� \ {O}, t ≤ u(x)},

F̃1 = {(x, t) : x ∈ ∂+� \ {O}, t ≥ u(x)},

F2 = {(x, t) : x ∈ ∂−� \ {O}, t ≤ u(x)}, and

F̃2 = {(x, t) : x ∈ ∂−� \ {O}, t ≥ u(x)}.

Let W1=v(F1), W̃1=v(F̃1), W2=v(F2) and W̃2=v(F̃2), be the two-dimensional
varifolds associated with F1, F̃1, F2 and F̃2, respectively (for example, [Allard
1972, Sections 3.5 and 4.7] and [Taylor 1976, Section 1]). Set

E1 = {x ∈ ∂� : γ(x) < 1
2π}×R and E2 = {x ∈ ∂� : γ(x) > 1

2π}×R.

Define Z to be the two-dimensional varifold given by

Z = V −W1 cos(γ)χE2 + W̃1 cos(γ)χE1 −W2 cos(γ)χE2 + W̃2 cos(γ)χE1 .

The monotonicity formula [S, (2.6)] holds for Z ; that is, there exists c ≥ 0 such
that

(22) exp(crβ)
‖Z‖(B3(O3, r))

r2 is increasing in r for 0< r < R,
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and, in conjunction with (21), we see that the two-dimensional density of Z at O3

exists and

(23) 22(‖Z‖, O3) ∈ (0,∞).

We note, for example, that if γ1 = π/2, then (5) is used in a slicing argument (that
is, [Allard 1972, 4.10(1)]) to show that [S, (2.3)] (with ∂� replaced by ∂+�) holds.

Suppose (x j ) is a sequence in� converging to O as j→∞ and satisfying (16).
For each j ∈ N, set ε j = |x j | and � j = {x ∈ R2

: ε j x ∈ �}, and define f j , u j ∈

C2(� j )∩C1(� j \ {O}) by

f j (x)=
f (ε j x)− f (x j )

ε j
and u j (x)=

f (ε j x)− R f (β)
ε j

=
u(ε j x)
ε j
;

notice that ∇u j =∇ f j on � j and u j (x)= f j (x)+c j if c j = ( f (x j )− R f (β))/ε j .
Let En j be the downward unit normal to the graph of f j (and the graph of u j ), so
that

En j (x)= En(ε j x)=
(

T f j (x),
−1√

1+|∇ f j (x)|2

)
for x ∈� j .

Let U j ={(x, t)∈� j×R : t < u j (x)} be the subgraph of u j for each j ∈N. Notice
that µ1/ε j (M0)= ∂U j ∩ (� j ×R) and µ1/ε j (M)⊂ ∂U j ∩ ((� j \ {O})×R).

From [Allard 1972, 2.6(2)(a)] with G = {B(O3, L)×G(3, 2) : L > 0}, we see
that (14) implies that there is a subsequence (ε jk ) of (ε j ) and a varifold C ∈V2(R

3)

in the varifold tangent of Z at O such that

C = lim
k→∞

Z1/ε jk
,

where Z1/ε jk
= µ1/ε jk #(Z). By (14) and [Allard 1972, 2.6(2)(c)],

‖C‖(B(O3, L))= C(B(O3, L)×G(3, 2))≤ L2α(2)22(‖Z‖, O3);

from (22), we see that µr#‖C‖=‖C‖ for all r > 0 (as observed in [Simon 1980], p.
576). Since ‖V ‖(�×R)=‖Z‖(�×R) and (17) holds (hence H2(M∩(∂�×R))=

0), we see that
2∗2(‖V ‖, O3)≤2

2(‖Z‖, O3) <∞.

Using (14) and [Allard 1972, 2.6(2)(a)], we notice that there is a subsequence of
(ε jk ), still denoted (ε jk ), and a varifold V∞ ∈ V2(R

3) in the varifold tangent of V
at O3 such that

V∞ = lim
k→∞

V1/ε jk

and, by (14) and [Allard 1972, 2.6(2)(c)],

‖V∞‖(B(O3, L))= V∞(B(O3, L)×G(3, 2))≤ L2α(2)22(‖Z‖, O3).
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In a similar manner (as in [S, page 370]), we see that

W1,∞ = lim
k→∞

µ1/ε jk #(W1 a(− cos(γ1)) cos(γ1)χF1),

W̃1,∞ = lim
k→∞

µ1/ε jk #(W̃1 a(cos(γ1)) cos(γ1)χF̃1
),

W2,∞ = lim
k→∞

µ1/ε jk #(W2 a(− cos(γ2)) cos(γ2)χF2),

W̃2,∞ = lim
k→∞

µ1/ε jk #(W̃2 a(cos(γ2)) cos(γ2)χF̃2
)

all exist and

C = V∞− cos(γ1)W1,∞+ cos(γ1)W̃1,∞− cos(γ2)W2,∞+ cos(γ2)W̃2,∞.

Notice that W1,∞=0 if cos(γ1)<0 and W̃1,∞=0 if cos(γ1)>0, and that W2,∞=0
if cos(γ2) < 0 and W̃2,∞ = 0 if cos(γ2) > 0.

Using the arguments in [S, Section 3 up to the top of page 373 (including (3.5)′)],
we see the following.

(i) For each ρ > 0, there is a sequence {δk} of positive reals that converges to
zero such that

B3(O3, ρ)∩M jk ⊂ {Y ∈ B3(O3, ρ) : dist(Y, spt (‖V∞‖)) < δk},

where M jk = µ1/ε jk
M for each k ∈ N (that is, [S, (2.7)].)

(ii) M∞ = limk→∞M jk , taken in �∞ × R in the varifold sense, exists, and we
have

V∞ (�∞×R)= v(M∞)

and
µr (M∞)=M∞ for r > 0 (that is, M∞ is a cone).

(iii) M∞ is empty or M∞=
⋃N

j=1 π j ∩(�∞×R), where the π j are planes through
the origin and πi ∩π j ∩ (�∞×R)=∅ if i 6= j .

(iv) Either

Case 1. N = 1 and M∞ = π1 ∩ (�∞×R) for some plane π1 whose intersection
with {O}×R is {O3}; or

Case 2. N <∞ and M∞ =
⋃N

j=1 π j ∩ (�∞×R), where π1, . . . , πN are planes
with the line {O}×R in common.

(v) The subgraphs U jk of u jk and U∞ = limk→∞ µ1/ε jk
(U ) minimize appropriate

functionals (for example, [S, (3.4)′]).

Using (19) and arguing as in the proof of [S, (3.7), pages 373–4], we see that

M∞ 6=∅ and V∞ = v(M∞).
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(We note that this argument, specifically in the paragraph after [S, (3.7)], implies
2∗1(‖δV ‖, O3) <∞ and allows (15) to be used.) In particular, spt (‖V∞‖)=M∞
and so (i) says that for each ρ > 0, there is a sequence {δk} of positive reals that
converges to zero such that

(24) B3(O3, ρ)∩M jk ⊂ {Y ∈ B3(O3, ρ) : dist(Y,M∞) < δk}.

The conclusions in [S, Sections 2 and 3 up to, but not including, the paragraph
containing (3.17)] hold and imply that N = 1, M∞ = π1 ∩ (�∞×R) and either

• π1 ∩ ({O}×R)= {O3}, or

• {O}×R⊂ π1.

(See also [Jeffres and Lancaster 2007].) We observe that the first is impossible
when (γ1, γ2) ∈ D+2 (or (γ1, γ2) ∈ D−2 ) since no plane can meet ∂+�∞ × R in
angle γ1 and ∂−�∞×R in angle γ2 (as Concus and Finn [1996] observed and an
easy calculation confirms). Therefore there exists ξ1, ξ2 ∈ R with ξ 2

1 + ξ
2
2 = 1 and

ξ = (ξ1, ξ2, 0) ∈ S2 such that

π1 = {X ∈ R3
: X · ξ = 0} and U∞ = {X ∈�∞×R : X · ξ > 0}.

Hence

(25) M∞ = {X ∈ R3
: X · ξ = 0} ∩ (�∞×R)

and we may write U∞ = U (1)
∞ × R, where U (1)

∞ = {x ∈ �∞ : ξ · (x, 0) > 0}.
Using the arguments in [S, pages 374–5], which yield [S, (3.13), (3.15)–(3.16) and
(3.18)–(3.18)′] and, for example, defining

E (1)
∞
(W )=H1(∂W ∩�∞ ∩ B(O, 1))− cos(γ1)H

1(∂W ∩ ∂+�∞ ∩ B(O, 1))

− cos(γ2)H
1(∂W ∩ ∂−�∞ ∩ B(O, 1))

for any open set W ⊂�∞ satisfying

H1(∂W ∩ B(O, 1)) <∞ and (W4U (1)
∞
)∩ B(O, 1)⊂⊂ B(O, 1),

we obtain

E (1)
∞
(U (1)
∞
)≤ E (1)

∞
(W )

for any set W as described above (compare with [S, (3.16)].)
Note that f j ∈BV(� j ) is a variational solution and hence a generalized solution

of (1) and (2) with �, γ and H(x, z) replaced by � j , γ j and H∗j (x)= ε j H∗(ε j x)
(with H∗ as in (46)) respectively. By Lemma 3.2, ( f jk ) has a subsequence, still
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denoted ( f jk ), that converges to a generalized solution f∞ :�∞→ [−∞,∞] of

Nv = 0 in �∞,

T v · ν+
∞
= cos(γ1) almost everywhere on ∂+�∞,

T v · ν−
∞
= cos(γ2) almost everywhere on ∂−�∞,

where ν+
∞
= (cos(α+ 1

2π), sin(α+ 1
2π)) and ν−

∞
= (cos(−α− 1

2π), sin(−α− 1
2π)).

Let us denote the subgraph of f j by

(26) U∗j = {(x, t) ∈� j ×R : t < f j (x)} for j ∈ N,

and denote by U∗
∞

the subgraph of f∞. Notice that (16) and f j (x j/|x j |) = 0 for
j ∈ N imply

(a) if K is open with K ⊂⊂ �∞ and (cos(β), sin(β)) ∈ K , then there exists
m(K ) ∈ N such that K ⊂� j and x j/|x j | ∈ K whenever j ≥ m(K );

(b) (x j/|x j |, 0) ∈ ∂U∗j for j ∈ N; and

(c) (x j/|x j |, 0)→ (cos(β), sin(β), 0) as j→∞.

Set xβ = (cos(β), sin(β)) and Xβ = (cos(β), sin(β), 0). From interior density
bounds (for example, [Tam 1986b, Lemma 3.1]), we see that Xβ ∈∂U∗

∞
∩(�∞×R).

Notice that M∗ = ∂U∗
∞
∩ (�∞ × R) is a smooth surface whose (“downward”)

unit normal can be denoted by Eχ(X) = (χ1(X), χ2(X), χ3(X)) for X ∈ M∗; then
χ3(X)≤ 0 for all X ∈M∗. By Proposition 2.1, we see that

(27) En jk (yk)→ Eχ(X) as k→∞ whenever (yk, f jk (yk))→ X ∈M∗;

in particular, (c) implies En jk (x jk/ε jk )→ Eχ(Xβ) as k→∞ (with the set � in the
proposition being a neighborhood of X (or Xβ) in R3.) We claim that either

(ℵ) χ3(X) < 0 for all X ∈M∗ or

(ω) Eχ is constant, χ3(X)= 0 for all X ∈M∗ and M∗ is the intersection of �∞×R

with the vertical plane π2 containing Xβ and normal to Eχ .

(To see this, we may represent the minimal surface M∗ in isothermal coordinates
as the (downward oriented) parametric surface X : B(O, 1)→ R3 (for example,
[Courant 1977; Lancaster 1985; Elcrat and Lancaster 1986; Lancaster and Siegel
1996a]) and obtain the Weierstrass ( f, g)-representation of M∗, where

g(w)= S( Eχ(X (u, v))) for w = u+ iv ∈ C, |w|< 1,

is the composition of the (north pole) stereographic projection S with the Gauss
map Eχ ◦ X : B(O, 1)→ S2

−
. Then g is a holomorphic map from the open unit

ball in C into the closed unit ball in C. If χ3(X p) = 0 for some X p ∈ M∗, then
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X p = X (u p, vp) for some (u p, vp) ∈ B(O, 1) and |g(wp)| = 1 for wp = u p+ ivp;
the maximum modulus principle implies g is constant. The claim follows.)

Suppose (ℵ) holds and χ3(X) < 0 for all X ∈M∗. Then f∞ ∈ C2(�∞) and M∗

is the graph of f∞ over �∞. Let 0 < R < R < dist(xβ, ∂�∞); then there exists
L ≥ 0 such that |∇ f∞(x)| ≤ L for all x ∈ B(xβ, R). Now (27) together with the
uniform interior Hölder estimates for the unit normal (or Gauss) map of the graphs
of solutions of (1) (for example, [Gilbarg and Trudinger 1983, Theorem 16.18]
with K =−1 and K ′ = J (R− R)2 or [S, (3.1)]) imply there exists K (R, R) such
that if k ∈ N satisfies k ≥ K (R, R), then B(xβ, R)⊂� jk and

(28) |∇u jk (x)| ≤ L + 1 for all x ∈ B(xβ, R).

Notice that for k large enough, (28) contradicts (24) and (25) and so (ℵ) cannot
hold. Therefore (ω) holds, M∗ is the intersection of �∞×R with the plane π2, we
may write

Eχ = (cos(θ), sin(θ), 0) for some θ ∈ (−π, π]

and U∗
∞
= {X ∈�∞×R : (X− Xβ) · Eχ > 0}. (Notice then that (24) and (25) imply

Eχ = Eξ and π2 = π1.)
We will use the theory of generalized solutions (for example, [Giusti 1980]) to

determine θ . We claim that

(29) θ =


−α+π − γ2+π/2 if β ∈ (−α,−α+π − γ2],
β +π/2 if β ∈ [−α+π − γ2, α− γ1],

α− γ1+π/2 if β ∈ [α− γ1, α).

The sets

(30) P= {x ∈�∞ : f∞ =∞} and N= {x ∈�∞ : f∞ =−∞}

each minimize an appropriate functional, and the arguments in [JL]2 show that
U∞ =P×R, where P is given in one of [JL, (iv), (vi) or (viii) of Theorem 1] and
N=�∞ \P.

Suppose β ∈[−α+π−γ2, α−γ1] holds. We see that [JL, Theorem 1, case (viii)]
must hold. Since ∂P is a line going through O and (cos(β), sin(β)), we have
Eχ = (− sin(β), cos(β), 0) and θ = β +π/2.

Suppose β ∈ (−α,−α+ π − γ2] holds. Then [JL, Theorem 1, case (vi)] must
hold, Eχ = (− sin(−α+π−γ2), cos(−α+π−γ2), 0) and θ =−α+π−γ2+π/2.

Finally, suppose β ∈ [α − γ1, α). Then [JL, Theorem 1, case (iv)] must hold,
Eχ = (− sin(α − γ1), cos(α − γ1), 0) and θ = α − γ1 + π/2. Our claim (29) is
therefore proven.

2Here [JL] stands for [Jeffres and Lancaster 2007].
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We have taken an arbitrary sequence (x j ) in � that satisfies (16) and shown that
it has a subsequence (x jk ) for which (En(x jk )) converges to Eχ = (cos(θ), sin(θ), 0)
with θ given by (29). Therefore, if (y j ) is any sequence in � that satisfies (16)
such that lim j→∞ En(y j )= Eλ for some S2

3 Eλ 6= Eχ , it must have a subsequence (y jk )

for which En(y jk ) converges to both Eλ and Eχ , which is a contradiction. Thus, we
see that the conclusion of Theorem 2.1 follows. �

Remark 2.2. Notice that (γ1, γ2) ∈ D−2 if and only if (γ2, γ1) ∈ D+2 and therefore
we see that the conclusion of an appropriate version of Theorem 2.1 for the situation
where (γ1, γ2) ∈ D−2 follows using a reflection in the x-axis and Theorem 2.1.

Remark 2.3. The proof of [Tam 1986c, Section 1] is essentially the same as that
used in [Simon 1980] with the modification that [S, (1.12)] does not hold, the two-
dimensional density 22(‖Z‖, O3) = 0 and M∞ = ∅. Unfortunately the proofs of
the claim in [Tam 1986c, Section 2] that (i) a subsequence of { f j } (called {u j }

therein) converges “locally to a generalized solution” f∞ (called therein u∞) (that
is, φU∗j → φU∗∞ in L1

loc(�∞×R) with U∗j given by (26)) and (ii) the “graph” of this
generalized solution (that is, ∂U∗

∞
) is a vertical plane are absent; the “blow-up” in

that section does not correspond to the process of blowing up with respect to a fixed
point (that is, O3) used in [Simon 1980]. (In spite of this, the ideas in [Tam 1986c,
Section 2] are remarkable.) One difficulty is that even if a subsequence of { f j }

should happen to converge in the sense of [Giusti 1980] to a generalized solution
h∞, the technique used here (for example, (24), (25), (28)) to show that ∂U∗

∞
is a

vertical plane cannot be used in [Tam 1986c] to show that h∞ is the generalized
solution u∞ illustrated in [Tam 1986c, Figure 2 (see page 478)]. Even if Tam’s
proof can be correctly completed, the details would be sufficiently nontrivial that
they should be provided to the reader. This new proof might be somewhat similar
in outline to that of Theorem 2.1 above. (Of course, if α+γ <π/2 in [Tam 1986c],
no such proof could exist; the potential correction would need to be cognizant of
this fact.)

Remark 2.4. In some uses of geometric measure theory in the literature (for exam-
ple, [Allard 1972; Taylor 1977]), the authors leave important details to the reader
or adopt a glib, hand waving, style. In this style, the proof of Theorem 2.1 can be
shortened to the following:

Proof sketch. Suppose (x j ) is a sequence in � converging to O as j →∞ and
satisfying (16). For each j ∈ N, set ε j = |x j | and � j = {x ∈ R2

: ε j x ∈ �}, and
define f j , u j ∈ C2(� j )∩C1(� j \ {O}) by

f j (x)=
f (ε j x)− f (x j )

ε j
and u j (x)=

f (ε j x)− R f (β)
ε j

.
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Using the techniques and results in [Simon 1980], we see that there is a vertical
plane π1 containing O3 with unit normal Eχ such that for each ρ > 0, there is a
sequence {δk} of positive reals that converges to zero such that

(31) B3(O3, ρ)∩M jk ⊂ {Y ∈ B3(O3, ρ) : dist(Y, π1) < δk},

where M j = µ1/ε j M for each k ∈ N; recall that µr (X) = r X , X ∈ R3, and M =

{(x, f (x)− R f (β)) : x ∈�∩ B(O, 3δ∗) \ {O}}.
Now the sequence { f j } has a subsequence that converges (as in [Giusti 1980])

to a generalized solution f∞ of (1) and (2) (this is Lemma 3.2). Since f j (x j )= 0,
we have (x j , 0) ∈ ∂U∗j for each j ∈ N, where U∗j = {(x, t) ∈� j ×R : t < f j (x)}.
Interior density bounds (for example, [Tam 1986b, Lemma 3.1]) imply

(cos(β), sin(β), 0) ∈ ∂U∗
∞
∩ (�∞×R),

where U∗
∞

is the subgraph of f∞. If ∂U∗
∞

is not a vertical plane, then [Massari
and Pepe 1975, Theorem 3] (that is, Proposition 2.1) and [Gilbarg and Trudinger
1983, Theorem 16.18] imply a uniform bound on |∇ f j | in a neighborhood of
(cos(β), sin(β)) in �∞, and this contradicts (31) since ∇u j =∇ f j for each j ∈N.
The conclusions of Theorem 2.1 now follow from [Jeffres and Lancaster 2007,
Theorem 1].

3. Proof of Theorem 1.1

The proof of this theorem uses the conformal (or isothermal) representation of
a prescribed mean curvature surface discussed in [Lancaster and Siegel 1996a]
and properties of two-dimensional quasiconformal maps to obtain a contradiction
to the assumption that the solution f is continuous at the origin. This proof uses
Kenmotsu’s theorem [1979], Theorem 2.1, Gehring’s lemma [1973] and properties
of solutions of Riemann–Hilbert problems to obtain a contradiction, illustrated in
Figure 3, of the Phragmén–Lindelof theorem.

Proof. By Remark 2.2, we may assume (γ1, γ2) ∈ D+2 . Assume f is continuous
at O; then f is bounded in a neighborhood of O . Fix θ1 ∈ (−α,−α+π−γ2) and
θ2 ∈ (α− γ1, α). By making δ0 > 0 smaller if necessary, we may assume

�∗ = {(r cos(θ), r sin(θ)) : 0< r < δ0, θ1 < θ < θ2}

is contained in �. Let ∂+�∗ = {(r cos(θ2), r sin(θ2)) : 0 ≤ r ≤ δ0} and define
γ+0 : ∂

+�∗→[0, π] so that cos(γ+0 (x, y))= T f (x, y)·(cos(θ2+
1
2π), sin(θ2+

1
2π))

and notice that Theorem 2.1(iii) implies

(32) γ+0 (x, y)→ γ1+ θ2−α as (x, y) ∈ ∂+�∗ goes to (0, 0).



94 KIRK E. LANCASTER

Let ∂−�∗ = {(r cos(θ1), r sin(θ1)) : 0 ≤ r ≤ δ0} and define γ−0 : ∂
−�∗ → [0, π]

so that cos(γ−0 (x, y)) = T f (x, y) · (cos(θ1 −
1
2π), sin(θ1 −

1
2π)) and notice that

Theorem 2.1(ii) implies

(33) γ−0 (x, y)→ α+ γ2+ θ1 as (x, y) ∈ ∂−�∗ goes to (0, 0).

Set
5= {(cos(β + 1

2π), sin(β + 1
2π), 0) : π −α− γ2 ≤ β ≤ α− γ1}

and, for s ∈ (0, δ0], let �s = {(x, y) ∈�∗ : x2
+ y2 < s2

}; notice that Theorem 2.1
implies

(34) ∩s>0 En(�s)=5.

Since α≤ 1
2π and γ2−γ1 >π−2α, we have 0< 3

2π−α−γ2 <
1
2π+α−γ1 <π .

We now wish to examine the stereographic projection of the Gauss map near
(0, 0, f (0, 0)) and represent it as the sum of a holomorphic function and a contin-
uous function (that is, (44)).

From (32), (33) and (34) and the fact that γ1, γ2 ∈ (0, π), we see that there exists
σ ∈ (0, δ0] small enough that

(35) En(�σ )⊂{ω(θ, φ) : 14(3π−2α−2γ2)<θ <
1
4(3π+2α−2γ1),

1
2π <φ<

3
4π},

where ω(θ, φ)= (sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)), and there exists λ> 0 such
that λ< γ±0 (x) < π−λ for x ∈ ∂�∗ \{O} with |x | ≤ σ . Notice that f ∈C0(�σ )∩

C2(�σ \ {O}) and that f satisfies N f = H(x, f ) on �σ , T f · ν = cos(γ+0 ) on
∂+�σ =�σ ∩ ∂

+�∗ and T f · ν = cos(γ−0 ) on ∂−�σ =�σ ∩ ∂−�∗. Define

S0 = {(x, y, f (x, y)) : (x, y) ∈�σ } and 00 = {(x, y, f (x, y)) : (x, y) ∈ ∂�σ }.

If 0±0 = {(x, y, f (x, y)) : (x, y)∈ ∂±�σ , x2
+ y2 <σ 2

} and 0σ0 =00 \(0
+

0 ∪0
−

0 ),
then 00 = 0

+

0 ∪0
−

0 ∪0
σ
0 .

We will use the unit disk E = {(u, v) : u2
+ v2 < 1} as a parameter domain.

From step 1 of the proof of [Lancaster and Siegel 1996a, Theorem 1] and from
[Kenmotsu 1979] (also [Kenmotsu 2003]), we obtain the following facts.

There is a parametric description of the surface S0

X (u, v)= (x(u, v), y(u, v), z(u, v)) ∈ C2(E : R3)∩W 1,2(E : R3)

with the following properties:

(i) X is a homeomorphism of E onto S0.

(ii) X maps ∂E strictly monotonically onto 00.

(iii) X is conformal on E , that is, Xu · Xv = 0 and |Xu| = |Xv| on E .
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(iv) Let H̃(u, v) = H(X (u, v)) denote the prescribed mean curvature of S0 at
X (u, v). Then 4X := Xuu + Xvv = H̃ Xu × Xv.

(v) X ∈ C0(E) and X (1, 0)= (0, 0, z0), where z0 = f (0, 0).

(vi) Write G(u, v) = (x(u, v), y(u, v)). Then G(cos t, sin t) moves clockwise
about ∂�σ as t increases in 0 ≤ t ≤ 2π , and G is an orientation-reversing
homeomorphism from E onto �σ .

(vii) [Kenmotsu 1979, Lemma 1 and Corollary] Let πS : S2
→C denote the stereo-

graphic projection from the north pole and define g(u+ iv)=πS(En(G(u, v)))
for (u, v) ∈ E . Then

(36) |gζ̄ | =
1
2 |H̃ |(1+ |g|

2)|Xu|,

where ζ = u+ iv,

∂
∂ζ
=

1
2

(
∂
∂u
− i ∂

∂v

)
and ∂

∂ζ̄
=

1
2

(
∂
∂u
+ i ∂

∂v

)
.

For convenience with complex variables, set E1 = {ζ ∈ C : |ζ |< 1}.

Now Theorem 2.1 implies

g(1+)= lim
θ↓0

g(eiθ )= cos(α− γ1+
1
2π)+ i sin(α− γ1+

1
2π)

and
g(1−)= lim

θ↑0
g(eiθ )= cos( 3

2π −α− γ2)+ i sin( 3
2π −α− γ2).

Define ñ(u, v)= En(x(u, v), y(u, v)) for (u, v) ∈ E . Notice that if

ñ(u, v)= (ñ1(u, v), ñ2(u, v), ñ3(u, v)),

then, from the choice of σ ,

(37) − cot
( 1

4π +
1
2(α− γ1)

)
<

ñ1(u, v)
ñ2(u, v)

< cot
( 3

4π −
1
2(α− γ2)

)
and

(38) min{ − csc
(1

4(3π −2α−2γ2)
)
,− csc

( 1
4(3π +2α−2γ1)

)
}<

ñ3(u, v)
ñ2(u, v)

< 0.

Now

ñ(u, v)=
Xu × Xv
|Xu × Xv|

=
1
|Xu|

2 (yuzv − yvzu, xvzu − xuzv, xu yv − xv yu);

hence

(39)
|xu yv − xv yu|

|xvzu − xuzv|
=
|ñ3|

|ñ2|
< A and

|yuzv − yvzu|

|xvzu − xuzv|
=
|ñ1|

|ñ2|
< B,



96 KIRK E. LANCASTER

where

A =max
{
csc
( 1

4(3π − 2α− 2γ2)
)
, csc

( 1
4(3π + 2α− 2γ1)

)}
,

B =max
{
cot
( 1

4π +
1
2(α− γ1)

)
, cot

(3
4π −

1
2(α− γ2)

)}
.

Now (∂ f/∂y)(x(u, v), y(u, v))=−ñ2(u, v)/ñ3(u, v) and so (38) implies

(40)
∂ f
∂y
≥min

{
sin
( 1

4(3π − 2α− 2γ2)
)
, sin

(1
4(3π + 2α− 2γ1)

)}
> 0

and so S0 = {(x, y, f (x, y)) : (x, y) ∈�σ } = X (E) is the graph y = φ(z, x) over
the (z, x)-plane of a C2 function over the projection U of S0 on the (z, x)-plane.
Notice that φ ∈ C0(U ) and ∂U is the projection of 00 on the (z, x)-plane.

If ∂0U = {(z, x) : (x, y, z) ∈ 0+0 ∪0
−

0 } and ∂1U = {(z, x) : (x, y, z) ∈ 0σ0 }, then
∂U = ∂0U ∪∂1U . Now Theorem 2.1 implies |∇ f (x, y)|→∞ as (x, y)∈�∗ goes
to O . Also

(41) T f (r cos(θ2), r sin(θ2)) · (cos(θ2), sin(θ2))→ cos(α+ 1
2π − γ1− θ2) > 0,

since 1
2π − γ1 < α+

1
2π − γ1− θ2 <

1
2π , and

T f (r cos(θ1), r sin(θ1)) · (cos(θ1), sin(θ1))→ cos( 3
2π −α− γ2− θ1) < 0,

since 1
2π <

3
2π−α−γ2−θ1<

3
2π−γ2. Thus the limits of the directional derivatives

of f in the directions of ∂+�σ and ∂−�σ are

lim
r↓0
∇ f (r cos(θ2), r sin(θ2)) · (cos(θ2), sin(θ2))=+∞,(42)

lim
r↓0
∇ f (r cos(θ1), r sin(θ1)) · (cos(θ1), sin(θ1))=−∞.(43)

Hence 0+0 is tangent to {(0, 0, z) : z ≥ z0} and 0−0 is tangent to {(0, 0, z) : z ≤ z0}

at (0, 0, z0). In addition, (∂φ/∂z)(z0, 0)= 0. Thus 0+0 ∪0
−

0 is a C1 curve and ∂U
is the union of the C1 curve ∂0U and the C2 curve ∂1U . Since

|∇ f (σ cos(θ2), σ sin(θ2))|<∞,

fy(σ cos(θ2), σ sin(θ2))>0 (by (40)) and the curves y= tan(θ2)x and x2
+y2
=σ 2

are orthogonal at (σ cos(θ2), σ sin(θ2)), we see that 0+0 and 0σ0 do not meet tan-
gentially at (σ cos(θ2), σ sin(θ2), f (σ cos(θ2), σ sin(θ2))) and ∂+0 U and ∂1U do
not meet tangentially at (σ cos(θ2), σ sin(θ2)). Similarly 0−0 and 0σ0 do not meet
tangentially at (σ cos(θ1), σ sin(θ1), f (σ cos(θ1), σ sin(θ1))) and ∂−0 U and ∂1U do
not meet tangentially at (σ cos(θ1), σ sin(θ1)). Therefore U is a simply connected
Lipschitz domain and ∂U is a quasicircle (see [Gehring 2005, Theorem 6.3]).

Let us define F ∈C2(E :R2)∩W 1,2(E :R2) by F(u, v)= (z(u, v), x(u, v)). Note
that F is a homeomorphism from E onto U . Recall that |DF |2= x2

u+x2
v+ z2

u+ z2
v
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and the determinant of DF at (u, v) is

J ((u, v), F)= xvzu − xuzv = |Xu|
2ñ2 > 0.

Since we are using conformal, or isothermal, coordinates, we obtain

|DF(u, v)|2 ≤ 2|Xu|
2
= 2|Xu × Xv|

= 2
√
(yuzv − yvzu)2+ (xvzu − xuzv)2+ (xu yv − xv yu)2

≤ 2
√
(B2+ 1+ A2)(xvzu − xuzv)2 = 2K J ((u, v), F),

where K =
√

B2+ 1+ A2. Thus F is a K ′-quasiconformal map from E to U ,
where K ′ = (K −

√
K 2− 1)−1

=
√

A2+ B2+ 1+
√

A2+ B2; see for example
[Finn and Serrin 1958]. Then [Gehring 2005, Theorem 6.4] implies that there is
a K ′-quasiconformal extension L : R2

→ R2 of F−1
: U → E and hence there

is a K ′-quasiconformal extension F̃ : R2
→ R2 of F , given by F̃ = L−1. Using

Gehring’s lemma [1973] or [Iwaniec and Martin 2001, Theorem 14.4.1], we see
that F̃ ∈ W 1,p(B((1, 0), δ)) for some p > 2. Since F̃ = F on E ∩ B((1, 0), 2δ)
and F ∈W 1,∞(E \B((1, 0), ε)) for each ε > 0, we see that xu, xv, zu, zv ∈ L p(E).
Since ñ is normal to X (E), we have Xu · ñ = 0 and Xv · ñ = 0, which imply

yu =
ñ1

ñ2
xu +

ñ3

ñ2
zu and yv =

ñ1

ñ2
xv +

ñ3

ñ2
zv

and therefore |yu|≤ B|xu|+A|zu| and |yv|≤ B|xv|+A|zv|. This implies X belongs
to W 1,p(E : R3).

The corollary on [Kenmotsu 1979, page 92] yields

|gζ̄ | =
1
2 |H̃ |(1+ |g|

2)|Xu| ≤ |H |∞|Xu|

and so gζ̄ ∈ L p(E1 : R
2). Let us set µ= (p− 2)/p. Then from [Monakhov 1983,

Theorems 5 and 6, page 205], we see that

(44) g(ζ )= ψ(ζ )+ h(ζ ),

where ψ is a holomorphic function and h ∈ L∞(E1) is a uniformly Hölder contin-
uous function on E1 with Hölder exponent µ. Since g and h are bounded, so is ψ .
Since h is continuous at 1 ∈ ∂E1 and ψ(ζ )= g(ζ )−h(ζ ), the Phragmén–Lindelof
theorem (for example, [Bear and Hile 1983]) and Theorem 2.1 imply

lim
r→0+

ψ(1+ r cos(θ)+ ir sin(θ))= ψ(1−)(θ/π − 1/2)+ψ(1+)(3/2− θ/π)

for π/2< θ < 3π/2, where ψ(1+)= g(1+)− h(1) and ψ(1−)= g(1−)− h(1),
and so

(45) lim
r→0+

g(1+ r cos(θ)+ ir sin(θ))= g(1−)(θ/π −1/2)+ g(1+)(3/2− θ/π)
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πS(02)

ξA

ξC

πS(01)

Figure 3. Differing limits of g(u+ iv) as u+ iv→ 1.

for π/2< θ < 3π/2. Notice then that along any ray {1+r cos(θ)+ ir sin(θ)} with
π/2 < θ < 3π/2, in |ζ | < 1, g converges to a point strictly inside the open unit
disk as 1 is approached; see Figure 3. This contradicts Theorem 2.1, which implies
|g(u+ iv)| → 1 as u+ iv→ 1. Thus our assumption that f is continuous at O is
invalid and the proof of Theorem 1.1 is complete. �

Remark 3.1. In [Lancaster and Siegel 1996a, Theorem 1], the hypotheses include,
“If α < π/2 and there exist constants γ±, γ±, 0 < γ± ≤ π/2, π/2 ≤ γ± < π ,
satisfying

γ++ γ− > π − 2α and γ++ γ− < 2α+π

so that γ± ≤ γ±(s)≤ γ± for all s in 0< s < s0 for some s0.”
While the theorem is true as stated, the assumptions γ± ≤ π/2 and π/2 ≤ γ±

were added as an afterthought (by this author) and were unnecessary to the ar-
gument; [Lancaster and Siegel 1996a, Theorems 1 and 2] remain correct if one
merely assumes γ± ≤ γ±. It is useful to note this fact because these assumptions
artificially restrict the applicability of these theorems. (In fact, the remainder of
that article correctly ignores this restriction.)

Appendix

We wish to discuss variational solutions of (1) and (2). We assume a solution
f ∈ C2(�)∩C1,ρ∗(� \ {O}) is given and we define H∗ :�×R→ R by

(46) H∗(x)= H(x, f (x)) for x ∈�.

For the moment, we let � be any connected, open subset of R2 that has locally
Lipschitz boundary and let γ ∈ L∞(∂�) with 0 ≤ γ(x, y) ≤ π for (x, y) ∈ ∂�;
for convenience of notation, we assume � is bounded. The usual definition of a
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BV(�) (variational) solution of (1) and (2) is a function u ∈BV(�) that minimizes
the functional

E(u)=
∫
�

√
1+ | Du |2 d H2+

∫
�

∫ u

0
H∗( · , t) dt d H2−

∫
∂�

cos(γ)u d H1

over BV(�). In some cases (for example, � is unbounded), individual terms in
the functional may be infinite; Finn [1986, Definition 7.1] offers a more general
definition of variational solution in his book. Another type of variational solution
of (1) and (2) is that of a generalized solution, which we describe next.

We denote by F the (formal) functional given by

F(U )=
∫
�×R

|DφU | +

∫
�×R

H∗φU dt d H2−

∫
∂�×R

cos(γ)φU d H2.

For each T ∈ (0,∞) and K ⊂⊂ R2, we define the functional

(47) FT,K (U )=
∫

�(T,K )

|DφU | +

∫
�(T,K )

H∗φU dt d H2−

∫
δ�(T,K )

cos(γ)φU d H2

when U ⊂ �×R is a Caccioppoli set (that is, a Borel set with locally finite peri-
meter), where�(T, K )= (�∩K )×(−T, T ) and δ�(T, K )= (∂�∩K )×(−T, T ).

Definition 3.1. A Caccioppoli set U ⊂�×R is said to be a local solution for F if
and only if for each T > 0 and K ⊂⊂R2, we have FT,K (U )≤FT,K (V ) whenever
V ⊂ �×R is a Caccioppoli set such that the support of φU − φV is contained in
�(T, K ).

As noted in [Finn 1986, Section 7.3], a function u ∈ BV(�) minimizes E if and
only if its subgraph U = {(x, y, t) ∈�×R : t < u(x, y)} is a local solution for F

[Miranda 1977].

Definition 3.2. A function u : �→ [−∞,∞] is called a generalized solution of
(1) and (2) if and only if its subgraph U is a local solution for F.

Definition 3.3. A sequence (u j ) in BV(�) is said to converge locally in � to u∞
if and only if φU j converges to φU∞ in L1

loc(�×R) as j→∞, where U j and U∞
are the subgraphs of u j and u∞, respectively.

Definition 3.4. For each 3 ⊂ R2 and ε > 0, set 3ε = 3 \ B(O, ε) and 6ε =
∂3\ B(O, ε). We will say the triple (λ,3, O) is admissible if and only if 3 is an
open set in R2, O ∈ ∂3, the map λ : ∂3\{O}→ (0, π) is in C0,ρ∗(∂3\{O}) and,
for some ε0 > 0 and all ε ∈ (0, ε0], there exist a = a(ε) ∈ (0, 1), τ = τ(ε) > 0,
N = N (ε), N1 = N1(ε) ≤ N (ε), a finite open cover {3εj : j = 2, . . . , N } of �ε

with O /∈
⋃N

j=23
ε
j and rigid motions F j : R2

→ R2 for 2 ≤ j ≤ N1, such that
3εj ∩∂3 6=∅ if 1≤ j ≤ N1 and3εj ∩∂3=∅ if N1< j ≤ N , the set 6εj = ∂3∩3

ε
j

is open and connected in the relative topology of 6ε , F j (6
ε
j ) can be represented
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over some interval a j < x < b j with a j < b j by a Lipschitz function y = ψ j (x)
with Lipschitz constant L j , the set T j ={(x, y+ψ j (x)) : a j < x <b j , −τ < y<0}
lies in F j (�) and |cos(γ)|

√

1+ L2
j ≤ a(ε) on 6εj for j = 2, . . . , N1. Compare this

with [Finn 1986, Section 6.3].

Lemma 3.1. Suppose γ ∈ C0,ρ∗(∂� \ {O}) satisfies (4), |γ1 − γ2| > π − 2α (so
that (γ1, γ2) ∈ D+2 ∪ D−2 ) and (γ,�, O) is admissible. Then there exist ζ > 0,
µ=µ(a(ζ ),�) and ϒ =ϒ(a(ζ ),�) with µ ∈ [a(ζ ), 1) such that for each T > 0,
λ > 0 and f ∈ BV(�× (−T, T )) with f ≥ 0 almost everywhere on �× (−T, T ),
we have

(48)
∣∣∣∫
6×(−T,T )

cos(γ) f ∗d H2

∣∣∣≤ µ ∫
Aλ×(−T,T )

|D f | +ϒ
∫

Aλ×(−T,T )
f,

where Aλ ⊂ � is the strip of width λ adjacent to 6 = ∂� and we denote by
f ∗ ∈ L1(∂�× (−T, T )) the trace of f on ∂�× (−T, T ).

Proof. Fix T > 0 and λ > 0. Let f ∈ BV(�× (−T, T )) such that f ≥ 0 almost
everywhere in �× (−T, T ); then f ∗ ≥ 0 almost everywhere on ∂�. We see from
[Giusti 1984, Remark 2.12] that there exists a sequence

{ fk} ⊂ C∞(�× (−T, T ))∩BV(�× (−T, T ))

such that

lim
k→∞

∫
�×(−T,T )

| fk − f | dx = 0,(49)

lim
k→∞

∫
�×(−T,T )

|D fk | dx =
∫
�×(−T,T )

|D f |(50)

and

(51) f ∗k = f ∗ on ∂(�× (−T, T )) for each k ∈ N,

where f ∗k and f ∗ denote the traces of fk and f on ∂(�× (−T, T )), respectively.
An examination of the construction of the fk in [Giusti 1984, Theorem 1.17] shows
that fk ≥ 0 on �× (−T, T ) for k = 1, 2, 3, . . . , since f ≥ 0 almost everywhere on
�× (−T, T ). (In fact, each fk is actually a function fε for a suitably small ε > 0
in the construction in the proof of that theorem.)

Since
∫
|D f | is a Radon measure on �× (−T, T ),

(52)
∫
∂Aσ×(−T,T )

|D f | = 0 for almost all σ ∈ (0, λ] and all T > 0;

by replacing λ by a σ ∈ (0, λ] that satisfies (52), we may assume

(53)
∫
∂Aλ×(−T,T )

|D f | = 0
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always holds.
We shall focus on functions h ∈C1(�×(−T, T ))∩BV(�×(−T, T ))with h≥0

in �× (−T, T )), obtain (48) for such functions, and then use the approximation
above to establish (48) for f .

Case 1 ((γ1, γ2) ∈ D+2 and γ2 ≤ π/2). This case is defined by γ2− γ1 > π − 2α,
and so γ1 < π/2 and 2α > π/2. Fix ε ∈ (0, γ1). We wish to select σ ∈ (0, π/2)
such that σ < γ1− ε, 0<π −2α−σ < γ2− ε. Now these conditions require that
σ ∈ (0, γ1 − ε)∩ (π − 2α − γ2 + ε, π − 2α); this intersection is nonempty since
γ1− ε− (π − 2α− γ2+ ε) > 2γ1− 2ε > 0 and so γ1− ε > π − 2α− γ2+ ε.

Let ζ > 0 be small enough that

(a) |γ(x)− γ1|< ε/2 whenever x ∈ ∂+� \ {O} with |x | ≤ 2ζ , and

(b) |γ(x)− γ2|< ε/2 whenever x ∈ ∂−� \ {O} with |x | ≤ 2ζ .

Recall that τ+(x)= γ(x)−π/2 for x ∈ ∂+�∩ Bδ∗(O) and τ−(x)= γ(x)+π/2
for x ∈ ∂−�∩ Bδ∗(O); hence |τ+(x)−α|< ε/2 whenever x ∈ ∂+� with |x | ≤ 2ζ
and |τ−(x)+α|< ε/2 whenever x ∈ ∂−� with |x | ≤ 2ζ .

Let τ = ζ and R1 : R
2
→ R2 be the rotation about the origin through the angle

−α− σ . Then R1(∂
+�) and R1(∂

−�) are the graphs y = ψ+1 (x) and y = ψ−1 (x)
of Lipschitz functions with Lipschitz constants

L+1 ≤ tan(σ + ε/2) and L−1 ≤ tan(π − 2α− σ + ε/2),

respectively; notice that dom(ψ+1 )= [0, x+0 ) and dom(ψ−1 )= (x
−

0 , 0], where

|(x+0 , ψ
+

1 (x
+

0 ))| = 2ζ and |(x−0 , ψ
−

1 (x
−

0 ))| = 2ζ.

Set L1 = max{L+1 , L−1 } and let δ > 0 satisfy δ2
+ (L1δ + τ)

2
= 4ζ 2 (so that

δ = ζ((3L2
1+ 4)1/2− 1)/(L2

1+ 1) ).
For 0< x ≤ δ, we have σ + ε/2< γ1− ε/2< γ(x) and so

cos(γ(x))
√

1+ (L+1 )
2 < cos(γ1− ε/2) sec(σ + ε/2) <

cos(γ1− ε/2)
cos(γ1− ε/2)

= 1.

For −δ ≤ x < 0, we have π − 2α− σ + ε/2< γ2− ε/2< γ(x) and so

cos(γ(x))
√

1+ (L−1 )
2< cos(γ2−ε/2) sec(π−2α−σ+ε/2)<

cos(γ2− ε/2)
cos(γ2− ε/2)

= 1.

Set S1 = (−δ, δ)× (−L1δ− τ, 0),

µ1 =
cos(γ1− ε/2)
cos(σ + ε/2)

and µ2 =
cos(γ2− ε/2)

cos(π − 2α− σ + ε/2)
.

Then µ1 < 1, µ2 < 1 and

(54)
√

1+ (L+1 )
2 cos(γ ◦ R−1

1 (x))≤ µ1 for x ∈ R1(∂
+�)∩ S1,
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and

(55)
√

1+ (L−1 )
2 cos(γ ◦ R−1

1 (x))≤ µ2 for x ∈ R1(∂
−�)∩ S1,

We will now establish

(56)
∫
6×(−T,T )

cos(γ)h∗d H2 ≤ µ

∫
Aλ×(−T,T )

|Dh| +ϒ
∫

Aλ×(−T,T )
h,

when h ∈C1(�× (−T, T ))∩BV(�× (−T, T )) with h ≥ 0 in �× (−T, T )). To a
great extent, we will follow the proof of [Finn 1986, Lemma 6.1]. In Definition 3.4,
set ε equal to δ, N = N (δ), N1 = N1(δ), τ = τ(δ) and obtain a finite, open cover
{3δj : j = 2, . . . , N } of �δ in R2 with the properties described in the definition.
Set �δj = 3δj ∩ � for j = 2, . . . , N and set �δ1 = R−1

1 (S1) ∩ �. Notice that
{�δj : j = 1, . . . , N } is an open (in the relative topology of �) cover of �. Let
{ϕ j : j = 1, . . . , N } be a partition of unity of� subordinate to {�δj : j = 1, . . . , N }.
Notice since O /∈

⋃N
j=23

δ
j that ϕ1 ≡ 1 in some neighborhood of O .

Using the techniques in the proof of [Finn 1986, Lemma 6.1], one sees that∣∣∣∫
6×(−T,T )

ϕ j cos(γ)h∗d H2

∣∣∣≤ a(δ)
∫

Aλ×(−T,T )
ϕ j |Dh| +ϒ

∫
A

j
λ×(−T,T )

h,

where A
j
λ = Aλ ∩ F−1

j (T j ) for each j = 2, . . . , N1 and k ∈ N. Notice also that
these techniques yield∣∣∣∫

∂+�×(−T,T )
ϕ1h∗d H2

∣∣∣≤√1+ (L+1 )
2
∫

A+λ ×(−T,T )
ϕ1|Dh| +ϒ

∫
A+λ ×(−T,T )

h

and∣∣∣∫
∂−�×(−T,T )

ϕ1h∗d H2

∣∣∣≤√1+ (L−1 )
2
∫

A−λ ×(−T,T )
ϕ1|Dh| +ϒ

∫
A−λ ×(−T,T )

h,

where

A+λ =�∩ R−1
1 ({(x, y) : 0< x < δ,ψ+1 (x)− λ < y <ψ+1 (x)}),

A−λ =�∩ R−1
1 ({(x, y) : −δ < x < 0, ψ−1 (x)− λ < y <ψ−1 (x)}).

Then∫
6×(−T,T )

ϕ1 cos(γ)h∗d H2 ≤ µ1

∫
A+λ ×(−T,T )

ϕ1|Dh| +ϒ
∫

A+λ ×(−T,T )
h

+µ2

∫
A−λ ×(−T,T )

ϕ1|Dh| +ϒ
∫

A−λ ×(−T,T )
h,
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and so, if we set µ0 =max{µ1, µ2}< 1,

(57)
∫
6×(−T,T )

ϕ1 cos(γ)h∗d H2 ≤ µ0

∫
Aλ×(−T,T )

ϕ1|Dh| +ϒ
∫

A1
λ×(−T,T )

h,

where A1
λ =Aλ∩ B2ζ (O). Therefore, if we set µ=max{a(δ), µ0}< 1, we obtain∫

6×(−T,T )
cos(γ)h∗d H2 =

N1∑
j=1

∫
6×(−T,T )

ϕ j cos(γ)h∗d H2

≤

N1∑
j=1

(
µ

∫
Aλ×(−T,T )

ϕ j |Dh| +ϒ
∫

A
j
λ×(−T,T )

h
)

≤ µ

∫
Aλ×(−T,T )

|Dh| +ϒ1

∫
Aλ×(−T,T )

h

and thus we obtain (56).
Now set h = fk and obtain

∫
6 cos(γ) f ∗k ds ≤µ

∫
Aδ
|D fk |+ϒ1

∫
Aδ
| fk | for each

k ∈ N. From (50), (53) and [Giusti 1984, Proposition 1.13], we see that

lim
k→∞

∫
Aλ×(−T,T )

|D fk | dx =
∫

Aλ×(−T,T )
|D f |

and therefore using this together with (49) and (51) yields∫
6

cos(γ) f ∗ d H 2
=

∫
6

cos(γ) f ∗k d H 2
≤ µ

∫
Aδ

|D fk | +ϒ1

∫
Aδ

| fk |

≤ µ

∫
Aδ

|D fk | +ϒ1

∫
Aδ

| f | +ϒ1

∫
Aδ

| f − fk |.

If we take the limit as k→∞, we obtain

(58)
∫
6

cos(γ) f ∗ d H 2
≤ µ

∫
Aδ

|D f | +ϒ1

∫
Aδ

| f |.

We wish to prove (58) with f replaced by − f . Fix ε ∈ (0,min{γ1, π/2− γ1}).
Let ζ ∈ (0, δ∗/2) be small enough that

(a) |γ(x)− γ1|< ε/2 whenever x ∈ ∂+� \ {O} with |x | ≤ 2ζ , and

(b) |γ(x)− γ2|< ε/2 whenever x ∈ ∂−� \ {O} with |x | ≤ 2ζ .

Notice that if x ∈ ∂+�\ {O}∩ B2ζ (O), then π−γ(x) > π−γ1− ε > π/2 and so

(59) cos(π − γ) < 0 on (∂+� \ {O})∩ B2ζ (O).

Also, if x ∈ ∂−� \ {O} ∩ B2ζ (O), then

|τ−(x)+α|< ε/2 and π − γ(x) > π − γ2− ε/2> π/2− ε/2.
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Let τ = ζ and let R2 :R
2
→R2 be the rotation about the origin through the angle

α− π . Then R2(∂
−�)∩ B2ζ (O) is the graph y = ψ−2 (x) of a Lipschitz function

with Lipschitz constant L−2 ≤ tan(ε/2); notice that dom(ψ−1 ) = (x
−

0 , 0], where
|(x−0 , ψ

−

1 (x
−

0 ))| = 2ζ . Set L2 = L−2 and let δ > 0 satisfy δ2
+ (L2δ + τ)

2
= 4ζ 2

(so that δ = ζ((3L2
2+4)1/2−1)/(L2

2+1) ). For −δ ≤ x < 0, we have π −γ(x)≥
π/2− ε/2 and so

cos(π − γ(x))
√

1+ (L−2 )
2 < cos(π/2− ε/2) sec(ε/2) <

cos(π/4+ γ1/2)
cos(π/4− γ1/2)

< 1.

We will now establish

(60) −

∫
6×(−T,T )

cos(γ)h∗ d H2 ≤ µ

∫
Aλ×(−T,T )

|Dh| +ϒ1

∫
Aλ×(−T,T )

h

when h ∈C1(�×(−T, T ))∩BV(�×(−T, T )) with h≥ 0 in�×(−T, T )), where
µ=max{a(δ), µ3}< 1 and µ3 = cos(π/2− ε/2)/cos(ε/2). Let us write (60) as∫

6×(−T,T )
cos(π − γ)h∗d H2 ≤ µ

∫
Aλ×(−T,T )

|Dh| +ϒ1

∫
Aλ×(−T,T )

h.

Using the techniques in the proof of [Finn 1986, Lemma 6.1], one sees that∣∣∣∫
6×(−T,T )

ϕ j cos(π − γ)h∗d H2

∣∣∣≤ a(δ)
∫

Aλ×(−T,T )
ϕ j |Dh| +ϒ

∫
A

j
λ×(−T,T )

h,

where A
j
λ = Aλ ∩ F−1

j (T j ) for each j = 2, . . . , N1 and k ∈ N. Notice also that
these techniques yield∣∣∣∫

∂−�×(−T,T )
ϕ1h∗d H2

∣∣∣≤√1+ (L−1 )
2
∫

A−λ ×(−T,T )
ϕ1|Dh| +ϒ

∫
A−λ ×(−T,T )

h,

where A−λ =�∩ R−1
2

(
{(x, y) : −δ < x < 0, ψ−2 (x)− λ < y <ψ−2 (x)}

)
. Then

(61)
∫
6×(−T,T )

ϕ1 cos(π−γ)h∗d H2 ≤µ3

∫
A−λ ×(−T,T )

ϕ1|Dh|+ϒ
∫

A−λ ×(−T,T )
h.

Therefore, if we set µ=max{a(δ), µ0}< 1, we obtain∫
6×(−T,T )

cos(π − γ)h∗d H2 =

N1∑
j=1

∫
6×(−T,T )

ϕ j cos(γ)h∗d H2

≤

N1∑
j=1

[
µ

∫
Aλ×(−T,T )

ϕ j |Dh| +ϒ
∫

A
j
λ×(−T,T )

h
]

≤ µ

∫
Aλ×(−T,T )

|Dh| +ϒ1

∫
Aλ×(−T,T )

h,
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and thus we obtain (60). If we reason as before when we used (56) to obtain (58),
we see that (60) and the approximation of f by the ( fk) implies

(62) −

∫
6

cos(γ) f ∗ d H 2
≤ µ

∫
Aδ

|D f | +ϒ1

∫
Aδ

| f |.

Since (58) and (62) are together equivalent to (48), we see that the lemma is proven
when (γ1, γ2) ∈ D+2 and γ2 ≤ π/2.

Case 2 ((γ1, γ2)∈ D+2 and γ1≥π/2). In this case, γ2>π/2. Let us set γ̃=π−γ,
γ̃1 = π − γ1 and γ̃2 = π − γ2. Notice that γ̃1 − γ̃2 = γ2 − γ1 > π − 2α and so
(γ̃1, γ̃2) ∈ D−2 . Then (γ̃2, γ̃1) ∈ D+2 with γ̃1 ≤ π/2. By reflecting � and γ about
the x-axis, we see from our previous argument with γ2 ≤ π/2 that (48) holds.

Case 3 ((γ1, γ2) ∈ D+2 , γ1 < π/2 and γ2 > π/2). We use the same argument
used to establish (48) when γ2 ≤ π/2 — that is, only one of the sides, ∂+� or
∂−�, contributes to each integral since an inequality like (59) holds on the other
side, and, by rotating through a suitable angle, we can make the intersection of
the contributing side with a sufficiently small ball centered at O the graph of a
function over the x-axis with arbitrarily small Lipschitz constant. Then we see
that (48) holds in this case.

Case 4 ((γ1, γ2)∈ D−2 ). In this case γ1−γ2>π−2α. Then (γ2, γ1)∈ D+2 and, by
reflection about the x-axis, we see our previous arguments show that (48) holds. �

Remark 3.2. Suppose � j → �∞ in that � j = {x ∈ R2
: ε j x ∈ �} when ε j → 0

as j → ∞ and �∞ = {(r cos(θ), r sin(θ)) : r > 0, −α < θ < α}. Assuming
we define other quantities appropriately (for example, γ j ∈ C0(∂� j ) defined by
γ j (x) = γ(ε j x) for x ∈ ∂� j ), then an examination of the proofs of [Finn 1986,
Lemmas 6.1 and 7.6] shows that the constants ζ , a(ζ ), ϒ and µ can be assumed
to be independent of j in Lemma 3.1.

Remark 3.3. Notice, in particular, that if U is a Caccioppoli set in �×R, then,
with f = φU and f = φU ′ , (48) implies

(63)
∣∣∣∫
6×(−T,T )

cos(γ)φ∗U d H2

∣∣∣≤ µ ∫
6λ×(−T,T )

|DφU | +ϒ

∫
6λ×(−T,T )

φU

and

(64)
∣∣∣∫
6×(−T,T )

cos(π−γ)φ∗U ′d H2

∣∣∣≤µ ∫
6λ×(−T,T )

|DφU ′ |+ϒ

∫
6λ×(−T,T )

φU ′,

where U ′ = (�×R) \U for T > 0.

Emmer’s lemma (for example, [Emmer 1973]), in this case Lemma 3.1, is the
key ingredient needed to obtain lower semicontinuity of the functional in question.
Slight modifications of arguments in [Finn 1986, Section 7.4] and [Tam 1986b,



106 KIRK E. LANCASTER

Lemma 1.2] show that E and FT,K for T > 0 and K ⊂⊂ R2 are lower semi-
continuous. The proof of [Tam 1986a, Lemma 2.3] (also [Tam 1984, Lemma 2.3]),
adapted to the situation here, yields this:

Lemma 3.2. Let � and γ be as in Theorem 1.1, and note that (γ,�, O) is admis-
sible. Let (ε j ) be a sequence of positive reals such that lim j→∞ ε j = 0. For each
j ∈N, set H∗j (x)= ε j H∗(ε j x) for x ∈� j and γ j (x)= ε jγ(ε j x) for x ∈ ∂� j . For
each j ∈ N, suppose f j is a generalized solution for

E j (u)=
∫
� j

√
1+ | Du |2 d H2+

∫
� j

H∗j u d H2−

∫
∂� j

cos(γ)u d H1.

Then ( f j ) has a subsequence ( f ji ) that converges locally to a generalized solution
f∞ for

E∞(u)=
∫
�∞

√
1+ | Du |2 d H2−

∫
∂+�∞

cos(γ1)u d H1−

∫
∂−�∞

cos(γ2)u d H1.
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