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We describe a reduction process that allows us to define Hamiltonian struc-
tures on the manifold of differential invariants of parametrized curves for
any homogeneous manifold of the form G/H , with G semisimple. We also
prove that equations that are Hamiltonian with respect to the first of these
reduced brackets automatically have a geometric realization as an invariant
flow of curves in G/H . This result applies to some well-known completely
integrable systems. We study in detail the Hamiltonian structures associ-
ated to the sphere SO(n+ 1)/SO(n).

1. Introduction

Completely integrable systems are PDEs for which one can find an infinite family
of preserved functionals in involution. Most of these systems are bi-Hamiltonian,
that is, they are Hamiltonian with respect to two different but compatible Hamil-
tonian structures (compatible means that their sum is also a Hamiltonian structure).
The Hamiltonian structures are used to generate a recursion operator, an operator
that when reiteratively applied to one initial preserved functional generates the
entire family — or hierarchy — see [Magri 1978]. In recent years a large number
of publications have shown that many completely integrable systems appear linked
to the geometric background of curves and surfaces; see for example [Anco 2006;
Doliwa and Santini 1994; Ferapontov 1995; Gay-Balmaz and Ratiu 2007; Chou
and Qu 2002; 2003; Langer and Perline 1991; 2000; Sanders and Wang 2003;
Terng and Thorbergsson 2001; Terng and Uhlenbeck 2006; 2000; Yasui and Sasaki
1998; Marı́ 2008a; 2006; 2008b; 2007; 2005; 2009; Marı́ et al. 2002] and refer-
ences within. Some of this work relates the integrable systems to invariant flows of
(in general parametrized) curves in different types of manifolds through geometric
realizations, that is, evolutions of curves inducing the integrable system on its cur-
vatures, or differential invariants in general. Perhaps the best known example of
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such a geometric realization is that of the nonlinear Schrödinger equation (NLS) by
the vortex filament flow (VF). Hasimoto [1972] showed that VF, viewed as a flow
of spacial Euclidean curves, induces the NLS on its curvature and torsion via what
it became known as the Hasimoto transformation. The Hasimoto transformation
was proved to be a Poisson map between two equivalent bi-Poisson manifolds, that
of the standard curvature and torsion and the manifold of natural curvatures; see
[Langer and Perline 1991; Marı́ et al. 2002].

The author of this paper has linked the bi-Hamiltonian structures of many of
these integrable systems to a process that allows us to reduce well-known compat-
ible Poisson brackets on the manifold of loops in the dual of a Lie algebra, which
we will call Lg∗, to the manifold of differential invariants. This reduction pro-
cess was described in [Marı́ 2008a] for homogeneous manifolds of the form G/H
where g, the Lie algebra associated to G, is |1|-graded. These include RPn+1, the
conformal Möbius sphere, the Grassmannian, the Lagrangian Grassmannian and
others. The reduction process was also described in [Marı́ 2006] for the case of
affine geometries, that is, homogeneous manifolds of the form G n Rn/G with
G semisimple. In both cases a well-known Poisson structure (we will refer to it
as our first bracket) on Lg∗ can be reduced to the space of differential invariants
to produce some of the best known Hamiltonian structures used in the integration
of PDEs. This structure is also linked to geometric realizations in the sense that
under minimal conditions one can find geometric realizations for any Hamiltonian
evolution, and hence for bi-Hamiltonian integrable systems. The reduction of a
second compatible bracket is not guaranteed, and neither is the existence of an
associated integrable system. Indeed it was shown in [Marı́ 2005] that in the La-
grangian 2-Grassmannian manifold (or Grassmannian of Lagrangian planes in R4),
the second bracket in Lsp(2)∗ never reduces. No completely integrable systems
induced by Lagrangian flows on the differential invariants have been found. On
the other hand, the reduction of the second bracket, whenever possible, points at
the existence of an associated completely integrable system, or at least it is so in
all known examples. Coming from a different direction, Terng, with Thorbergsson
in [2001] and with Uhlenbeck in [2000; 2006], started by constructing classical
completely integrable systems that are Hamiltonian with respect to the reduction
of the second bracket, the bracket defined on coadjoint orbits, and after finding the
existence of these systems they link them to our first bracket. These two different
approaches have not been clearly bridged yet.

Even in the cases where the second bracket does not reduce, one can at times
find integrable systems as level sets of Hamiltonian evolutions: the second bracket
might not reduce to the complete manifold of differential invariants, but it might
reduce to a submanifold of it defined by some chosen invariants. The geometric
realization might exist if initial conditions are restricted to the types of curves
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for which the undesired invariants are constant. For example, in the case of the
Lagrangian n-Grassmannian the second Poisson bracket does not reduce in gen-
eral, but it does always reduce to the submanifold defined by the eigenvalues of
the so-called Lagrangian Schwarzian derivatives, whenever the other invariants
vanish. In fact, it has been conjectured (and studies are supportive of this) that
the type of Poisson structures/integrable systems and the character of the chosen
invariants are closely related. For example, one can usually reduce the second
bracket to a submanifold of differential invariants of projective type (as was done
in [Marı́ 2008a; 2008b; 2007]) to obtain Poisson structures and integrable systems
of KdV type (for example, the KdV equation or systems of decoupled KdV in
[2008a; 2008b; 2007], complexly coupled KdV equations in [2008b], and Adler–
Gel’fand–Dikii evolutions in [2008a]). Similarly, one can reduce to a submanifold
of curvatures of natural-type to obtain modified KdV vector equations and NLS
systems, as in [Anco 2006; Marı́ et al. 2002; Sanders and Wang 2003; Terng and
Thorbergsson 2001; Terng and Uhlenbeck 2006].

A last relevant feature of these brackets is the following. Some of the Poisson
structures obtained when reducing our first bracket are not truly structures associ-
ated to parametrized curves, but trivial extensions of Poisson brackets associated
to unparametrized curves and extended trivially to the differential invariant of arc
length type, as defined in [Marı́ 2009]. Except for the case G = GL(n,R), all
classical affine geometries G n Rn/G have first reductions for which Hamiltonian
evolutions will always preserve the invariant of arc length type [Marı́ 2009]. On
the other hand, all known examples for semisimple parabolic cases (G/P , with
P parabolic) have reductions of the first bracket that do not preserve parameters
of arc length type. Indeed, geometric realizations of equations of KdV type do
not preserve any invariant of arc length type. Thus, having first reductions on
parametrized or unparametrized curves seems to be linked to the type of geometry
that the manifold has.

In this paper we describe the reduction process for the general case of a homoge-
neous manifold G/H with G semisimple. Semisimplicity can be trivially assumed
for the definition of the bracket; otherwise the bracket will only be defined on the
semisimple component of the algebra. The reduction process here is, in fact, a
simplification of the process in [Marı́ 2008a]. We prove in Theorem 4.3 that any
system that is Hamiltonian with respect to the first reduced bracket possesses a
geometric realization by an invariant flow on G/H . Our running example is that
of SO(2, 2)/P for an appropriate choice of parabolic subgroup P . This manifold
is geometrically equivalent to RP1

×RP1 and we show that both brackets reduce
to produce a decoupled system of KdV bi-Hamiltonian structures. The manifold
SO(3, 1)/P (the conformal plane) is known [Marı́ 2005] to produce a system of
two complexly coupled KdV equations. Thus, we show that the exchange
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0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

→


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


in the bilinear form defining the group effectively decouples the KdV system.

Finally, the Hamiltonian structures of the sphere SO(n + 1)/SO(n) is studied
in Section 5. In [Terng and Thorbergsson 2001; Anco 2006], the authors found a
geometric realization on this sphere for a vector system of modified KdV equations.
The authors do not study the generation of the mKdV bi-Hamiltonian structures,
or their possible definition by reduction (Anco provides a recursion operator that
is said to be encoded by the geometry, but he provides no explanation on how the
encoding takes place). The case of SO(n+1)/SO(n) is interesting because, being
a semisimple case (albeit not a parabolic one), one would think that the arc length
does not need to be preserved; said differently, the first reduced Poisson structure
should be expected to be a structure on parametrized curves. On the other hand,
the mKdV systems found by Anco and Terng and Thorbergsson associated to this
geometric background (and found also in the Euclidean case, an affine manifold)
are arc length preserving. In Section 5, we show that the first reduced bracket does
not preserve arc length, so that the bracket is defined on parametrized curves, in
accordance with the manifold being homogeneous and semisimple. But here it
is the second bracket that always preserves arc length and, hence, forces any bi-
Hamiltonian system to be arc length preserving, in accordance with vector mKdV
being the associated integrable system. The system of vector mKdVs is shown to
be a bi-Hamiltonian system with respect to both reductions.

The reduction method we use is strongly rooted in the use of group-based mov-
ing frames. The method is relatively new so we include a description in our first
section, together with other background definitions.

2. Background definitions

2a. Moving frames, differential invariants, Serret–Frenet equations and geo-
metric realizations. The classical concept of moving frame was developed by Élie
Cartan [1935; 1937]. A classical moving frame along a curve in a manifold M is a
curve in the frame bundle of the manifold over the curve, invariant under the action
of a transformation group under consideration. This method is a very powerful tool,
but its explicit application relied on intuitive choices that were not clear in a general
setting. Ideas in Cartan’s work and later work of Griffiths [1974], Green [1978] and
others laid the foundation for the concept of a group-based moving frame, that is,
an equivariant map between the jet space of curves in the manifold and the group
of transformations. Recent work by Fels and Olver [1999] finally gave the precise
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definition of the group-based moving frame and extended its application beyond
its original geometric picture. In this section we will describe Fels and Olver’s
moving frame and its role in our study. From now on we will assume M = G/H
with G semisimple and acting on M via left multiplication on representatives of a
class. We will also assume that curves in M are parametrized, and that therefore
the group G does not act on the parameter.

Definition 2.1. Let J k(R,M) be the space of k-jets of curves, that is, the set of
equivalence classes of curves in M up to k-th order of contact. If we denote by u(x)
a curve in M and by ur the r -th derivative of u with respect to the parameter x , that
is, ur =dr u/dxr , then the jet space has local coordinates that can be represented by
u(k) = (x, u, u1, u2, . . . , uk). The group G acts naturally on parametrized curves;
therefore it acts naturally on the jet space via the formula

g · u(k) = (x, g · u, (g · u)1, (g · u)2, . . . ),

where by (g · u)k we mean the formula obtained when one differentiates g · u and
then writes the result in terms of g, u, u1, and so on. This is usually called the
prolonged action of G on J k(R,M).

Definition 2.2. A function I : J k(R,M)→ R is called a k-th order differential
invariant if it is invariant with respect to the prolonged action of G.

Definition 2.3. A map ρ : J k(R,M)→G is called a left (respectively right) moving
frame if it is equivariant with respect to the prolonged action of G on J k(R,M)
and the left (respectively right) action of G on itself.

The group-based moving frame appears in a familiar method for calculating
the curvature of a curve u(s) in the Euclidean plane. In this method one uses a
translation to take u(s) to the origin and then a rotation to make one of the axes
tangent to the curve. The curvature can classically be found as the coefficient
of the second order term in the expansion of the curve around u(s). The crucial
observation made by Fels and Olver is that the element of the group carrying out
the translation and rotation depends on u and its derivatives and so defines a map
from the jet space to the group. This map is a right moving frame, and it carries all
the geometric information of the curve. In fact, Fels and Olver developed a similar
normalization process to find right moving frames.

Theorem 2.4 [Fels and Olver 1999]. Let · denote the prolonged action of the
group on u(k) and assume we have normalization equations of the form g ·u(k)= ck ,
where at least some of the entries of ck are constants (they are called normalization
constants). Assume we have enough normalization equations to determine g as a
function of u, u1, . . . . Then g = ρ is a right invariant moving frame.
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Next is the description of the equivalent to the classical Serret–Frenet equations.
We are denoting by L∗g (respectively R∗g), the map induced on T G by Lg, the left
multiplication by g (respectively Rg, the right multiplication). From now on, we
will also assume the (local) connection on M is flat, although some modifications
can be introduced to assume constant curvature.

Definition 2.5. Consider K dx to be the horizontal component of the pullback of
the left- (respectively right)-invariant Maurer–Cartan form of the group G via a
left (respectively right) moving frame ρ. That is,

K = L∗ρ−1ρx ∈ g (respectively K = R∗ρ−1ρx)

We call K the left (respectively right) Serret–Frenet equations for the moving
frame ρ.

Notice that, if ρ is a left moving frame, then ρ−1 is a right moving frame and
their Serret–Frenet equations are the negatives of each other. A complete set of
generating differential invariants can always be found among the coordinates of
group-based Serret–Frenet equations, a crucial difference with the classical picture.
The next theorem is a direct consequence of the results in [Fels and Olver 1999].
A more general result can be found in [Hubert 2007].

Theorem 2.6. Let ρ be a (left or right) moving frame along a curve u. Let us fix a
basis for g. Then, the coordinates of the (left or right) Serret–Frenet equations for
ρ contain a basis for the space of differential invariants of the curve. That is, any
other differential invariant for the curve is a function of the coordinates of K and
their derivatives with respect to x.

If we can find a moving frame using a set of normalization equations as in
Theorem 2.4, we can also find algebraically the explicit form of the Serret–Frenet
equations of the frame, following a parallel set of recurrence equations. Let K · u
represent the infinitesimal action of the algebra g, likewise with K · u(k), which
represents the infinitesimal prolonged action. The following theorem is a rewriting
of results appearing in [Fels and Olver 1999].

Theorem 2.7. Let K = L∗
ρ−1ρx be the left Serret–Frenet equation associated to the

left moving frame ρ. Let ρ be determined by normalization equations of the form
ρ−1
· uk = ck . Then, K satisfies the equations

K · uk |I = ck+1− (ck)x ,

where K ·uk |I denotes what is usually called the invariantization of K ·uk , that is,
the expression K · uk with all ur substituted by cr .

Definition 2.8 (geometric realization of an evolution of invariants). Let k denote
a vector whose entries form an independent and generating system of differential
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invariants for curves. That is, k is a vector whose entries are differential invariants
for the curve; the entries of k and their derivatives are functionally independent (no
entry can be written as a function of the other entries and their derivatives); and
any other differential invariant is a function of the entries of k and their derivatives.

Let

(1) kt = F(k, kx , kxx , . . . )

be an evolution of k. We say that

(2) ut = Q(u, ux , uxx , uxxx , . . . )

is a geometric realization of (1) on G/H whenever u(t, x)∈G/H , (2) is invariant
under the action on G (that is, G takes solutions to solutions) and the evolution
induced on k by (2) is (1). Equivalently, we say that (1) is the invariantization
of (2).

2b. Poisson brackets on Lg∗. Consider the group of loops LG=C∞(S1,G) and
its Lie algebra Lg = C∞(S1, g). Let B̂ : g × g → R be an ad-invariant non-
degenerate bilinear form of the algebra. We can use B̂ to identify g∗ with g so that
X∗ = B̂(X, · ) ∈ g∗. For example, if g ⊂ gl(n,R), then B̂ can be the trace of the
matrix product. With this bilinear form, the dual to Ei j (the matrix having 1 in
place (i, j) and 0 elsewhere) is given by E j i . The bilinear form

(3) B(X, Y )=
∫

S1
B̂(X, Y )dx

will give us the analogous form defined on Lg, and we can identify Lg∗ (the regular
part of (Lg)∗) with Lg using B.

One can define two natural Poisson brackets on Lg∗; for more information see
[Pressley and Segal 1989]. If H,G :Lg∗→R are two functionals defined on Lg∗,
then δH/δL denotes the variational derivative of H at L and it can be identified,
using (3), with an element of Lg so that

(4) d
dε

∣∣∣
ε=0

H(L + εV )=
∫

S1
B̂
(
δH
δL
, V
)

dx .

Likewise with G. If L ∈ Lg∗, we define

(5) {H,G}(L)=
∫

S1

〈(
δH
δL

)
x
+ ad∗

(
δH
δL

)
(L), δG

δL

〉
dx

where 〈 · , · 〉 is the natural coupling between g∗ and g and where we identify
(δH/δL)x with its dual counterpart. If we identify L with its dual, then we have
ad∗(δH/δL)(L)=− ad(δH/δL)(L).
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One also has a compatible family of second brackets, namely

(6) {H,G}(L)=
∫

S1

〈(
ad∗
(
δH
δL

)
(L0),

δG
δL

〉
dx,

where L0 ∈ g∗ is any constant element.
In the next section we will show how (5) can be always reduced to the space of

differential invariants of curves. The compatible bracket (6) can only be reduced
sometimes. Recall that the appearance of compatible pairs of Poisson brackets
often indicates the existence of completely integrable systems.

3. Geometric Poisson brackets on the space
of differential invariants of curves

Since H ⊂ G is a subgroup, the algebra g has a splitting of the form

(7) g= h⊕m,

where m is a vector subspace complement to the subalgebra h, but not a subalgebra
in general. From now on we will also assume that our curves on homogeneous
manifolds have a group monodromy, that is, there exists m ∈ G such that

u(t + T )= m · u(t),

where T is the period. Under these assumptions, the Serret–Frenet equations will
be periodic and will belong to Lg∗ (under proper identification). Alternatively, one
could assume that u is asymptotic at ±∞, so that the invariants vanish at infinity,
and describe a similar situation.

Theorem 3.1. Let u be a generic curve on the homogeneous manifold G/H. Let ρ
be a left moving frame with ρ ·o= u. Locally, we can find moving frames for curves
û in a neighborhood of u (with respect to the C∞ topology) such that ρ · o = û.
Let K be the submanifold of Lg given by the Serret–Frenet equations associated to
these left moving frames, in the sense of the previous section. Then, when identified
with its dual, K defines a section of the quotient Lg∗/LH , where the subgroup LH
acts on Lg∗ via the standard gauge action

a(g)(L)= L∗g−1 gx +Ad∗(g)(L)

and where again the element L∗g−1 gx is identified with its dual.

Proof. This theorem is proved using the definition of moving frame. Assume
m ∈ Lg∗ and identify the element with an element in the algebra. Let η be a
(local) solution of the equation L∗η−1ηx = m. We call u = η · o and we denote by
ρ a left moving frame associated to u, with ρ · o = u. The frame ρ has the same
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monodromy as u, and u has the same monodromy as η. Hence, ρ and η have the
same monodromy.

With these choices we have ρ = ηη−1ρ = ηg and g ·o= η−1ρ ·o= η−1
·u = o.

Since H is the isotropy group of o (which represents the class of H in G/H ), we
conclude that g(x)∈H for any x . Furthermore, the monodromy of both ρ and η are
the same, and therefore g∈LH . The action of LG on the space of solutions η→ηg
induces the gauge action described in the theorem on the elements of Lg∗ defining
the equations satisfied by η. If identified with Lg, Ad∗(g)(L) = Ad(g−1)(L) and
the action on Lg induced by the gauge action is L∗g−1 gx +Ad(g−1)L . �

Example 3.2. Our running example will be the case G = SO(2, 2) for H = P
given by a particular parabolic choice. Assume SO(2, 2) is the isotropy group of
the bilinear form defined by the matrix

J =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,
that is, o(2, 2) is the set of matrices that are skew-symmetric with respect to the
secondary diagonal. Locally, g ∈ SO(2, 2) can be factored as

g = g1(v)g0(α,2)g−1(y)

=


1 v1 v2

−v2v1

0 1 0 −v2

0 0 1 −v1

0 0 0 1


α 0 0

0 2 0
0 0 α−1




1 0 0 0
y1 1 0 0
y2 0 1 0
−y2 y1

−y2
−y1 1

 ,
with α ∈R and 2 ∈ SO(1, 1). This factorization corresponds to the algebra grada-
tion o(2, 2)= g1⊕ g0⊕ g−1 as in the diagram

0 +1 +1 +1
−1 0 0 +1
−1 0 0 +1
−1 −1 −1 0

 .
Let us choose the parabolic subgroup H= P=G1·G0, that is, the subgroup defined
by elements g such that y1

= y2
= 0. Notice that SO(3, 1) has the exact same

description, with one difference, namely 2 ∈ SO(2) (here −v1v2
= −

1
2‖v‖J —

see below — while for SO(3, 1) we would have −1
2‖v‖ = −

1
2v

T v instead).
With this representation, the action of SO(2, 2) on SO(2, 2)/H is determined

by the relation gg−1(u) = g(g · u)h for some h ∈ H . We will use the section
ς :SO(2, 2)/H→SO(2, 2) given by ς(u)= g−1(u) to locally identify SO(2, 2)/H
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with G−1. The subgroups Gi are the exponentials of the Lie subalgebras gi . One
can readily find an explicit formula for the action using this notation:

(8) g · u =
α−12(u+ y)+ 1

2α
−2
‖u+ y‖2Jv

∗

1+α−1vT2(u+ y)+ 1
4α
−2‖v‖2J‖u+ y‖2J

where ‖x‖J = x̂T J x̂ for x̂ = (0, x, 0) and where, if v =
(
v1

v2

)
, then v∗ =

(
v2

v1

)
. One

can check that this action decouples into two projective actions. If 2 ∈ SO(1, 1)
with2=diag(a, a−1), the two projective actions are given by (y1, aα−1, v1) acting
projectively on u1 and (y2, aα−1, v2) acting projectively on u2. This is because
the isomorphism o(2, 2) ∼= sl(2,R)⊕ sl(2,R) induces a splitting of SO(2, 2) into
SL(2,R)× SL(2,R) and also an equivalence of O(2, 2)/P with RP1

×RP1. (A
choice of 2 on the second connected component of O(1, 1) will simply produce
an involution exchanging u1 and u2.)

If g is as in (8), the zero normalization equation is g ·u= 0, which can be solved
with the choice y=−u. If u= u(x), the first normalization equation is g ·u1= c1,
obtained by differentiating the action (8) with respect to x and substituting y=−u.
It is given by

α−12u1 = c1.

Since 2= diag(a, a−1) ∈ O(1, 1), we need to choose nonvanishing normalization
values for each of the entries of c3. We choose c1 =

(
1
1

)
, rather than the usual

c1 = e1 favored in normalizations — in this case e1 would be a singular choice.
This choice forces the values

α = ‖ux‖J 2−1/2 and 2−1
(1

1

)
=

√
2ux

‖ux‖J
.

This condition completely determines 2= diag(α(u1
x)
−1, α−1u1

x).
The second normalization equation is obtained differentiating (8) twice and sub-

stituting previously found values. It is given by

α−22uxx − v = c2 = 0,

which is readily resolved choosing v = α−22uxx . This last equation completely
determines the right moving frame. Following [Fels and Olver 1999], we have a
set of independent and generating invariants given by the entries of c3; we have
two invariants of third order. The interested reader can differentiate once more
and find the third normalization equations and the explicit formula for c3. It is
given by c3 =

( k1
k2

)
with ki = S(ui ), where S( f ) = f −1

x ( fxxx −
3
2( fxx/ fx)

2) is
the Schwarzian derivative of f . The Schwarzian derivative is the generator of
projective differential invariants in RP1.
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Let’s call ρ the left moving frame, that is, the inverse of the frame we just found:

ρ =

1 −(u∗)T − 1
2‖u‖

2
J

0 I u
0 0 1

α−1 0 0
0 2−1 0
0 0 α

1 −vT
−

1
2‖v‖J

0 I v∗

0 0 1

 .
In parallel with the normalization equations, we can use recurrence formulas of
Theorem 2.7 to determine the matrix K = ρ−1ρx . If K = K1+ K0+ K−1 are the
gradated components of K and K0 = Kα+K2 are the two components of K0, the
recurrence formulas are given by

K · u|I = K−1 = c1− c′0 = c1 =
( 1

1

)
,

K · u1|I = K2c1− Kαc1 = c2− c′1 = 0.

The last equation implies K2 = 0 and Kα = 0. The two equations describe K as
being of the form

(9) K =


0 k1 k2 0
1 0 0 −k2

1 0 0 −k1

0 −1 −1 0

 .
The general theory tells us that the entries of K generate all other differential
invariants for u, and hence k1 and k2 must be generators. If one writes the re-
currence equations of Theorem 2.7 for the second prolongation, we also see that
K1 coincides with c3. This matrix is very similar to the one obtained in the case
G = O(3, 1) for which G/H is the conformal plane; see [Marı́ 2008b]. The only
difference is that in the conformal case, c1 = e1 is a regular value and K−1 = e1

was chosen instead. This small difference will create a very significant one for the
reduced Poisson brackets and their associated integrable systems.

Our next theorem shows that (5) can be reduced to K, and its proof gives an
algebraic method to calculate the reduced bracket explicitly (and also the reduction
of (6) whenever possible).

Theorem 3.3. The Poisson bracket defined on Lg∗ by (5) is reducible to the sub-
manifold K. We call this the first reduced Poisson bracket associated to curves
on G/H.

Proof. Observe that K is given locally by the quotient Lg∗/LH , where LH acts
in Lg∗ via the gauge action. The symplectic leaves of the bracket (5) are formed
by the orbits of the gauge action itself. For more information on these brackets,
see [Pressley and Segal 1989]. Assume we have two functionals R and G such that
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δR/δL, δG/δL ∈ Lg vanish on the tangent to the LH -leaves. That means

(10)
(
δR
δL

)
x
− ad

(
δR
δL

)
(K ) ∈ h0

and likewise for G (we are identifying Lg with Lg∗). Then, the bracket (5) of these
two functionals will also vanish on the tangent to the leaves (equivalently, it will
be constant on the leaves); one only needs to apply Jacobi’s identity for (5) to see
this. Hence, the bracket will represent a well-defined functional on the quotient K.

Following the same reasoning as in [Marsden and Ratiu 1986], let r, g :K→ R

be two functionals, and let R and G be two extensions that are constant on the
leaves of LH . The bracket

(11) {r, g}(K )=
∫

S1

〈(
δR
δL

)
x
− ad

(
δR
δL

)
(K ), δG

δL

〉
dx

describes a well-defined functional on K. It is a Poisson bracket on K in which
Jacobi’s identity is given directly by the Jacobi identity of (5). For a complete
description of this and other Poisson reductions for finite-dimensional manifolds,
see [Marsden and Ratiu 1986]. Our infinite-dimensional case is a straightforward
generalization of the results there. �

Although this bracket seems to be complicated to compute, in all known cases
the calculation follows a purely algebraic process that can be done by hand in low
dimensions. The essence of the algebraic process is the use of (10).

Example 3.4. We now go back to the case G = SO(2, 2). In this case h= g0⊕g1

and so h0
= g1. If K is given as in (9), then an extension R of a functional

r : K→ R to Lo(2, 2)∗ will coincide with r in the direction of k1 and k2. The
variational derivative of R is defined as in (4), and so

(12) δR
δL
(K )=


β a b 0

δr/δk1 c 0 −b
δr/δk2 0 −c −a

0 −δr/δk2 −δr/δk1 −β

 .
If we substitute these values in condition (10), we get along K that
β ′+ k1δr/δk1+ k2δr/δk2− a− b a′+ ck1−βk1 b′− ck2−βk2 0

(δr/δk1)x +β − c c′+ a+ k2δr/δk2− k1δr/δk1− b 0 ∗

(δr/δk2)x +β + c 0 ∗ ∗

0 ∗ ∗ ∗



=


0 ∗ ∗ 0
0 0 0 ∗
0 0 0 ∗
0 0 0 0

 .
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From here we obtain

β =−
1
2

(
δr
δk1
+
δr
δk2

)′
, c = 1

2

(
δr
δk1
−
δr
δk2

)′
a =−1

2

(
δr
δk1

)′′
+ k1

δr
δk1

, b =−1
2

(
δr
δk2

)′′
+ k2

δr
δk2

The reduced Poisson bracket is defined by (11), where R and G are appropriate
extensions with variational derivatives as above. After straightforward calculations,
these can be written as

{r, g}(k)=
∫

S1

δg
δk1

(
−

1
2 D3
+ Dk1+ k1 D

) δr
δk1
+
δg
δk2

(
−

1
2 D3
+ Dk1+ k1 D

) δr
δk2
;

therefore the first reduced bracket is defined by two decoupled second Poisson
structures for KdV equations, one in each k1 and k2. We can also check whether
or not, for some choice of L0, the bracket (6) reduces to K by evaluating (6) in our
extensions. If we choose L0 = E12 − E21 + E13 − E31 (that is, the element dual
to K−1), the result is

{r, g}0(k)=
∫

S1

〈
δG
δL
(K ),

[
L0,

δR
δL
(K )

]〉
dx =−2

∫
S1

δg
δk1

D δr
δk1
+
δg
δk2

D δr
δk2

.

Thus, the second reduced bracket is given by two decoupled first Poisson structures
for KdV equations.

This result fits well with the equivalence SO(2, 2)/H ∼= RP1
× RP1. Indeed,

the two reduced Poisson brackets associated to the geometry of flows in RP1 are
known to be the two KdV Hamiltonian structures. On the other hand, O(3, 1)/P
is the conformal plane and the two reduced Poisson brackets were given by the
two Hamiltonian structures for a complexly coupled system of KdV equations
[Marı́ 2005]. Thus the change O(3, 1) → O(2, 2) decouples the Hamiltonian
structures.

4. Geometric realizations of Hamiltonian evolutions

Let 8g : G/H → G/H be defined by the action of g ∈ G on the quotient, that
is, 8g(x) = 8g([y]) = [gy] = g · x . Let ς : G/H → G be a section of the
homogeneous quotient such that ς(o) = e. The section is compatible with the
action of G on G/H , that is,

(13) gς(x)= ς(8g(x))h for some h ∈ H .

This relation in fact determines the action of the group on G/H uniquely, as we
saw in our running example. As before, we consider the splitting of the Lie algebra
g= h⊕m, where m is not in general a Lie subalgebra. Since ς is s section, dς(o)
is an isomorphism between m and To M .
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The following theorem was proved in [Marı́ 2006] and describes the most gen-
eral form of invariant evolutions in terms of left moving frames.

Theorem 4.1. Let u(t, x) ∈ G/H be a flow, that is, the solution of an invariant
evolution of the form

ut = F(u, ux , uxx , uxxx , . . . ).

Assume the evolution is invariant under the action of G, that is, G takes solutions
to solutions. Let ρ(t, x) be a family of left moving frames along u(t, x) such that
ρ ·o= u. Then, there exists an invariant family of tangent vectors r(t, x), that is, a
family depending on the differential invariants of u and their derivatives, such that

ut = d8ρ(o)r.

An interpretation of this theorem is as follows. If we choose coordinates and
d8ρ(o) is considered as an element on GL(n,R), then its columns d8ρ(o) =
(T1, . . . , Tn) form a classical moving frame, that is, an invariant curve in the frame
bundle. If in those coordinates r = (r1, . . . , rn)

T , then ut = r1T1 + · · · + rnTn

for some ri functions of the differential invariants and their derivatives. Many
readers might be more familiar with this writing of an invariant evolution, and it is
equivalent to ours.

Before we describe the relation between the evolutions of u and geometric
Hamiltonian evolutions, it is convenient to prove this:

Lemma 4.2. Let u(t, x) be a one-parameter family of curves in G/H. Assume
u(t, x) evolves following an evolution invariant under the action of G. Assume the
evolution is written as

(14) ut = d8ρ(o)r,

where ρ is a left moving frame that can be locally factored as ς(u)ρH with ρH ∈ H ,
and where r is some invariant tangent vector.

Let N = L∗ρ−1ρt be the left invariant vector field defining the evolution of ρ
under (14). Let N = Nm+Nh be the splitting of N in its m and h component. Then
Nm = dς(o)r .

Note ρH · o= o since ρH ∈ H . Using (13) we have

ς(u)ς(o)= ς(u)= ς(ς(u) · o)h,

which is uniquely determined for some value of h ∈ H . The choices h = e and
ς(u) · o= u satisfy the equation, so we can conclude that ς(u) · o= u.

Proof. Assume ρ = ς(u)ρH . If we calculate N , we have

N = Ad(ρ−1
H )L∗ς(u)−1dς(u)ut + L∗ρ−1

H
dρH (u)ut .
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Since L∗ρ−1
H

dρH (u)ut ∈ h we need to look only for the m component of

Ad(ρ−1
H )L∗ς(u)−1dς(u)ut .

On the other hand, differentiating (13) gives

L∗gdς(u)ut = dς(8g(u))d8g(u)ut h(u, g)+ ς(8g(u)dh(u)ut .

Evaluating this at g = ρ−1, we get

L∗ρ−1dς(u)ut = R∗h(u,ρ−1)dς(o)d8ρ−1(u)ut + dh(u, ρ−1)ut .

Also from (13),

ρ−1ς(u)= ρ−1
H = ς(ρ

−1
· u)h(u, ρ−1)= ς(o)h(u, ρ−1)= h(u, ρ−1),

and (d8ρ−1(u))−1
= d8ρ(ρ−1

· u)= d8ρ(o). Therefore

R∗ρH
L∗ρ−1dς(u)ut = R∗ρH

R∗h(u,ρ−1)dς(o)(d8ρ(o))
−1ut = dς(o)r

whenever u evolves as in (14). This is precisely Nm. �

In what follows we will assume the manifold to be flat, so its Cartan connection
is given by the Maurer–Cartan form. If, for example, the manifold has constant
curvature, some modifications can be introduced to adapt the result, much as was
done in [Terng and Thorbergsson 2001; Anco 2006; Marı́ et al. 2002].

Theorem 4.3. Assume that K is described by an affine subspace of Lg∗. Assume
that (14) is an invariant evolution of curves on G/H and there is a Hamiltonian
functional h : K→ R such that, if H : Lg∗ → R is an extension of h satisfying
condition (10), then

δH
δL
(k)m = dς(o)r,

where
δH
δL
(k)= δH

δL
(k)m+

δH
δL
(k)h

are the components defined by the splitting of the algebra. Then K induces by (14)
an evolution Hamiltonian with respect to the first reduced Poisson bracket (11),
with Hamiltonian functional h. In particular, any Hamiltonian evolution in k with
respect to the first reduced Poisson bracket (11) and Hamiltonian functional h(k)
has a geometric realization given by

ut = d8ρ(o)dς(o)−1 δH
δL
(k)m

where H is any extension of h satisfying (10).



178 GLORIA MARÍ BEFFA

Proof. Assume that an evolution of u as in (14) induces a Hamiltonian evolution
on K, with Hamiltonian functional h : K→ R. If K is an affine subspace of Lg∗,
then Kt is a linear subspace of Lg∗. Assume r : K→ R is any other Hamiltonian
functional, and let R be an extension satisfying (10). Then∫

S1

〈
Kt ,

δR
δL
(K )

〉
dx = {h, r}(K ).

On one hand, if H is an extension of h satisfying (10), then

(15) {h, r}(K )=
∫

S1

〈(
δH
δL
(K )

)
x
+ ad∗

(
δH
δL
(K )

)
(K ), δR

δL
(K )

〉
.

On the other hand, if N = L∗ρ−1ρt , then applying the structure equation for the
Maurer–Cartan form to the commuting vector fields d/dx and d/dt along ρ results
in the compatibility condition Kt = Nx + ad(K )(N ). Therefore, we obtain that〈

Kt ,
δR
δL
(K )

〉
=

〈(
δH
δL
(K )

)
x
+ ad∗

(
δH
δL
(K )

)
(K ), δR

δL
(K )

〉
=

〈
Nx + ad∗(N )(K ), δR

δL
(K )

〉
,

where we are again identifying K with its dual, so that ad(K )(N ) = ad∗(N )(K ).
Finally, from (10), the only component involved in (15) is δR/δLm. Likewise for
δH/δL by skew-symmetry. Therefore, if δH/δLm= Nm, the evolution induced on
k will be Hamiltonian with Hamiltonian functional h. Using the lemma, we arrive
to the conclusion of the theorem. �

In general, N and δH/δL are different. Only their components tangent to the
manifold need to coincide.

Example 4.4. Using the data we have on SO(2, 2)/H , one can easily calculate the
formula for a general invariant evolution to be

ut = d8ρ(o)r = α2
(r1

r2

)
=

(
u1

x 0
0 u2

x

)(r1

r2

)
which results on the decoupling ui

t=ui
xri for i=1, 2, where the ri are any functions

depending on k1, k2 and their derivatives. The evolutions are not decoupled unless
the ri are decoupled. From the data we obtained in (12) we have

δH
δL
(K )m =



0 0 0 0
δh
δk1

1 0 0

δh
δk2

0 1 0

0 −
δh
δk2
−
δh
δk1

0

 and dς(o)r =


0 0 0 0

b f r1 1 0 0
r2 0 1 0
0 −r2 −r1 0

 ,
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so that the condition for a geometric realization to exist is δh/δki = ri for i = 1, 2.
In particular, a pair of decoupled KdV equations is obtained when

h(k1, k2)=
1
2

∫
S1
(k2

1 + k2
2)dx

for which ri = ki produces a geometric realization. In the conformal case for which
G =O(3, 1), these same choices produced a geometric realization for a complexly
coupled system of KdV equations. That is, changing from SO(3, 1) to SO(2, 2)
effectively decouples the system of coupled KdV equations.

5. The sphere SO(n+ 1)/SO(n)

In this case G = SO(n + 1) and H = SO(n) is not a parabolic subgroup. We
consider the splitting o(n + 1) = m⊕ h of the Lie algebra into subspaces (unlike
the previous example, only h is a Lie subalgebra here) with

(16)
(

0 y
yT 0

)
∈m and

(
A 0
0 0

)
∈ h,

where y∈Rn and A∈o(n). Associated to this splitting we have a local factorization
in the group into factors belonging to H = SO(n) and exp(m). This factorization
is given by

(17) g =
(
2 0
0 1

)(
I + cosy yyT siny y
− siny yT cos‖y‖

)
where cosy =

cos‖y‖− 1
‖y‖2

, siny =
sin‖y‖
‖y‖

, ‖y‖2 = yT y.

The factorization exists locally.
Let ς : M→ G be the section defined by the exponential, that is,

ς(u)=
(

I + cosu uuT sinu u
− sinu uT cos‖u‖

)
.

Clearly dς(o) :To M→m is an isomorphism given by dς(o)y=
( 0 y

yT 0

)
. The action

of SO(n+1) on the sphere — let’s denote it by g ·u — is determined by the relation
gς(u)= ς(g ·u)h for some h ∈ SO(n) that is also determined by this relation. Let
g be as in (17). Straightforward calculations show that if η = g · u, then

sinη η = sinu 2u+ (cosy sinu yT u+ siny cos‖u‖)2y(18)

cos‖η‖ = cos‖y‖ cos‖u‖− sinu siny yT u.(19)

5a. Left moving frames, Serret–Frenet equations and geometric Hamiltonian
structures for generic curves on the sphere.
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Moving frames. With the factorization above in mind we can use normalization
procedures to calculate a right moving frame along a generic curve u. Indeed, if g
is as in (17), then the first normalization equation is g · u = o, which is resolved
by choosing y =−u. Notice that, if ς is our section, ς(u)−1

= ς(−u), and SO(n)
preserves the origin o.

The first normalization equation is given in terms of the prolonged action of
the group. The action is an action on parametrized curves. Therefore, its explicit
expression is found, as before, by differentiating g ·u with respect to the parameter.
If we do that and substitute y =−u, the first normalization equation is then

sinu 2u1+ (1− sinu)
‖u‖1
‖u‖

2u = se1

where s = (sin2
u‖ux‖

2
+ (1− sin2

u)‖u‖
2
x)

1/2 is the spherical arc length invariant.
The vector e1 is an arbitrary choice; any other unit vector can be chosen instead.
We will not, in general, consider unparametrized curves, so this invariant is not, a
priori, constant.

Subsequent normalization equations (up to order n) will determine 2−1ei for
i = 2, . . . , n and with it 2. The r -th normalization equation will be of the form
2 fr (u(r)) = cr for some function fr depending on u and its derivatives. The fact
that 2 ∈ o(n) implies that the vector cr is a function of r differential invariants
of order r . Among these r differential invariants, r − 1 of them will be functions
of lower order differential invariants and their derivatives. Hence, at each step we
get a new invariant of order r that is functionally independent from those of lower
order. Thus, we have n invariants or increasingly high order, the order increasing
by one at each step. According to the theory developed in [Fels and Olver 1999],
these would be generators of all differential invariants of the curve u. For the
purpose of this example, no more details are needed.

Serret–Frenet equations and natural moving frames. First of all, the m component
of ρ(ρ−1)x = K̂ is equal to dς(0)(e1), as we proved in our previous section when
studying the general case.

Indeed, after some straightforward calculations,

ρ(ρ−1)x =

(
2 0
0 1

)
s(u)(s(−u))x

(
2−1 0

0 1

)
+

(
2(2−1)x 0

0 0

)

=

(
2(2−1)x +2(cosu u1uT

− cosu uuT
1 )2

−1 sinu 2u1+ (1− sinu)
‖u‖1
‖u‖ 2u

− sinu uT
12

T
− (1− sinu)

‖u‖1
‖u‖ uT2T 0

)

=

(
K0 se1

−seT
1 0

)
= K̂ .
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Theorem 5.1. There exists a left moving frame ρ whose associated Serret–Frenet
equations are given by

(20) K =

 0 −υT s
υ 0 0
−s 0 0

 ,
where s is the arc length invariant and υ = (υi ) are the natural curvatures. The
moving frame will in general be nonlocal, and it is known as the natural moving
frame (see [Bishop 1975] for the original definition).

Proof. Let ρ be our previous moving frame. Any other left moving frame will be
of the form ρg, where g ∈LSO(n+1) is an invariant element of the group, that is,
a matrix in SO(n+1) depending on the differential invariants and their derivatives.
Since we do not want to change the m component of the equation, we will choose
g ∈ LH . If the natural frame (let us call it ρn) exists, then ρn = ρg for some
invariant g and K = (ρg)−1(ρg)x = g−1 K̂ g + g−1gx . If g =

(
θ 0
0 1

)
, this relation

becomes

K =
(
θT θx + θ

T K0θ sθT e1

−seT
1 θ 0

)
.

We want the m component to remain the same, and so θ should leave e1 invariant.
That is,

θ =

(
1 0
0 η

)
for η ∈ SO(n− 1).

Furthermore, we need

θT θx + θ
T K0θ =

(
0 υT

υ 0

)
, that is, ηTηx + η

T K1η = 0 for K0 =

(
0 ∗
∗ K1

)
.

In general, the solution of ηx = −K1η will be nonlocal. Also, the solution will
in general have a monodromy, and it does not need to be periodic. Hence, the
calculations that follow are, in that sense, formal. This situation was discussed in
[Marı́ 2006]. �

When choose a natural moving frame, rather than a classical Riemannian one,
the familiar reduced Hamiltonian structures and integrable systems emerge. Any
other choice of frame gives an equivalent system, but it will not look familiar to us
in general.

5a1. Geometric Hamiltonian structures. Finally, we will look into the reduced
Poisson bracket defined on the affine subspace K ⊂ Lo(n + 1)∗ consisting of
matrices of the form (20). For this example we will use as bilinear form the usual
〈M, N 〉 = 1

2 tr(M N ). As explained in the previous section, we start by considering
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a Hamiltonian functional h : K→ R and extend it to H : Lo(n+ 1)∗→ R so that
its variational derivative satisfies

(21)
(
δH
δL
(K )

)
x
+

[
K , δH

δL
(K )

]
∈ o(n)0.

If we write

(22)
δH

δL
(K )=


0 δh

δυ

T
−
δh
δs

−
δh
δυ

H0 v

δh
δs
−vT 0


for some H0(s, υ) ∈ o(n− 1) and v(s, υ) ∈ Rn , then condition (21) becomes

0
(
δh
δυ

T)
x
−υT H0− svT

−

(
δh
δs

)
x
−υT v

−

(
δh
δυ

)
x
− H0υ + sv (H0)x +υ

(
δh
δυ

)T
−
δh
δυ
υT vx −

δh
δs
υ + s δh

δυ(
δh
δs

)
x
+ vTυ −vT

x − s δh
δυ

T
+
δh
δs
υT 0

=
0 0 ∗

0 0 ∗
∗ ∗ 0

 .

This results in

v =
1
s

((
δh
δυ

)
x
+ H0υ

)
and H0 = D−1

(
δh
δυ
υT
−υ

(
δh
δυ

)T)
.

If h, g : K→ R are two such functionals and the notation is as above, then the
reduced bracket defined on K is given by

{h, g}R(s, υ)=
∫

S1

〈(
δH

δL
(K )

)
x
+

[
K , δH

δL
(K )

]
,
δG

δL
(K )

〉
dx

=

∫
S1

〈 0 0 −
(
δh
δs

)
x −υ

T v

0 0 vx −
δh
δs υ + s δh

δυ(
δh
δs

)
x + v

Tυ −vT
x − s δh

δυ

T
+

δh
δs υ

T 0

 ,
 0 δg

δυ

T
−
δg
δs

−
δg
δυ

G0 vg
δg
δs −vT

g 0


〉

dx

=−

∫
S1

δg
δs

((
δh
δs

)
x
+ vTυ

)
+ vT

g

(
vx +

δh
δs
υ − s

δh
δυ

)
dx .

Substituting the known values for v and vg we get an explicit expression of the
first reduced Hamiltonian structure on the sphere. Let

Q
(
δh
δυ

)
= H0υ = D−1

(
δh
δυ
υT
− υ

δh
δυ

T)
υ.

It is known (see [Anco 2006; Terng and Thorbergsson 2001] for example) that
D+Q defines a Poisson bracket. In terms of this operator, the reduced bracket is
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written as

(23) {h, g}(s,υ)=−
∫

S1

(
δg
δs

δg
δυ

)
P

(
δh/δs
δh/δυ

)
dx

where P is the matrix of differential operators given by

P=

(
D 1

s υ
T D+ 1

s υ
T Q

Dυ 1
s +Q 1

s υ −D 1
s D 1

s D− D 1
s D 1

s Q−Q 1
s D 1

s D−Q 1
s D 1

s Q− D+Q

)
.

This bracket does not preserve arc length. In that sense it is a true bracket on
parametrized curves. We will come back to this point later.

The companion bracket (6) also reduces to K for the value L0= E1,n+1−En+1,1.
Indeed

(24)
{h, g}0(s,υ)=

∫
S1

〈
δG
δL
,
[

L0,
δH
δL

]〉
dx

=

∫
S1
vT δg
δυ
− vT

g
δh
δυ
=

∫
S1

δg
δυ

T
P0
δh
δυ

dx,

where the Poisson operator P0 is given by

(25)
(

0 0
0 1

s D+ D 1
s + 2Q

)
.

This operator, in turn, leaves the arc length parameter invariant and hence is a
Poisson brackets defined on invariants of unparametrized curves. A discussion
about this difference follows in the next subsection. Our last theorem has now
been proved:

Theorem 5.2. The space K of differential invariants of the Riemannian sphere
SO(n + 1)/SO(n) is a bi-Poisson manifold with compatible geometric Poisson
brackets given by (23) and (24).

5b. Geometric realizations of Hamiltonian k-evolutions, a geometric realization
for a vector modified KdV evolution. In our final section we will describe the
general formula for an invariant evolution of curves u and determine which ones
are Hamiltonian with respect to (23).

Theorem 5.3. Let ut = F(u, ux , uxx , . . . ) be an invariant evolution of curves on
the sphere SO(n+ 1)/SO(n). Let 2 be given by our right moving frame under the
factorization in (17). Then

(26) ut =

(
sin−1

u

(
I − uuT

‖u‖2

)
+

uuT

‖u‖2

)
2−1r

for some invariant vector r depending on s, υ and their derivatives.
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Proof. First, the action of H on the manifold is linear (α,2) · u = α−12u. On
the other hand, ρH = (1,2−1) and so d8ρH (o)u = 2

−1u. The action of ς(u) is
slightly more complicated; we can calculate directly that

d8ς(u)(o)= sin−1
u

(
I − uuT

‖u‖2

)
+

uuT

‖u‖2

Following Theorem 4.1 we can straightforwardly calculate the most general form
for an invariant evolution to be given by

ut =

(
sin−1

u

(
I − uuT

‖u‖2
)
+

uuT

‖u‖2
)
2−1r

for some invariant vector r depending on υ, s and their derivatives. �

Theorem 5.4. If u(t, x) evolves following (26), then the differential invariants
(s, υ) evolve following the equations

st = (r1)x − υ
T r̂

υt =
1
s

(
r̂ xx + (r1υ)x − D−1 1

s
(υ r̂T

x − r̂ xυ
T )
)
, where r =

(
r1

r̂

)
.

Proof. We want to calculate N =ρ−1ρt whenever ρ(x, t) is the natural left moving
frame along the flow u(x, t). Lemma 4.2 tells us that N is of the form

N = ρ−1ρt =

(
N0 r
−r 0

)
.

Evaluating the Maurer–Cartan structure equations along d
dx and d

dt implies

Kt = Nx + [K , N ],

that is, with ϒ =
(

0 −υT

υ 0

)
,

(
ϒ se1

−seT
1 0

)
t
=

(
N0 r
−rT 0

)
x
+

(
[ϒ, N0] − s(e1rT

− reT
1 ) ϒ r − s N0e1

−seT
1 N0+ r Tϒ 0

)
.

The m component of the equation gives st e1 = r x +ϒ r − s N0e1 and implies

N0e1 =
1
s

(
0

r̂ + r1υ

)
where r = (ri ) and r̂ = (r2, r3, . . . , rn−1)

T , and

(27) st = (r1)x − υ
T r̂.
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The evolution ϒt = (N0)x + [ϒ, N0] − s(e1rT
− reT

1 ) in the o(n) block imposes
conditions on N0. Namely, if

N0 =

(
0 −r̂T

− r1υ
T

r̂ + r1υ N̂0

)
, then N̂0 = D−1 1

s
(υ r̂T

x − r̂ xυ
T ).

We also get directly the evolution of υ:

(28) υt =
1
s

(
r̂ xx + (r1υ)x − D−1 1

s
(υ r̂T

x − r̂ xυ
T )υ

)
. �

Finally, our last theorem is the direct translation of Theorem 4.3, having in mind
the description in (22).

Theorem 5.5. Let (26) be an invariant evolution such that

r =
(

r1

r̂

)
=

 −
δh
δs

1
s
(D+Q)

(
δh
δυ

)


for some Hamiltonian functional h(s, υ). Then (26) induces an evolution on (s, υ)
that is Hamiltonian with respect to (23), with Hamiltonian functional h.

As was pointed out in [Terng and Thorbergsson 2001] and [Anco 2006], the
choice of invariant vector r1=

1
2‖υ‖

2 and r̂=υx results in an arc length preserving
evolution (st = 0, we will assume s = 1) given by

υt = υxxx +
3
2‖υ‖

2υx

that is, the vector modified KdV equation.
The final question is whether or not the modified KdV equation is bi-Hamiltonian

with respect to the two compatible Poisson brackets we found. Our previous gen-
eral theorem 4.3 states that the condition for the evolution to be Hamiltonian is the
existence of a Hamiltonian h : K→ R and an extension H : Lg∗→ R such that
δH/δLm = dς(o)r . Using (22), this condition is equivalent to

−
δh
δs
= r1 =

1
2‖υ‖

2 and v =
(
δh
δυ

)
x
+Q

(
δh
δυ

)
= r̂ = υx .

Notice that the second relation is satisfied by δh/δυ = υ.
Consider the Hamiltonian functional

h(s, υ)=
∫

S1
−

1
2‖υ‖

2s+‖υ‖2.

Clearly,
δh
δs
=−

1
2‖υ‖

2 and δh
δυ
= (2− s)υ.

On the preserved level set s = 1, the Hamiltonian has the desired properties.
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Finally, the vector modified KdV equation is also Hamiltonian with respect to
our second reduced Poisson bracket. If we consider as Hamiltonian the operator
h0 : K→ R given by

h0(υ)=
1
2

∫
S1
−‖υx‖

2
+

1
4‖υ‖

4,

then

υt = υxxx +
3
2‖υ‖

2
= P0(υxx +

1
2‖υ‖

2υ)= P0
δh0

δυ
.

Therefore, the modified KdV vector equation is bi-Hamiltonian with respect to both
brackets as long as we assume the parameter to be the spherical arc length. This
condition is forced upon the equations if we want the equations to be Hamiltonian
with respect to the second reduced bracket (24). The second bracket, but not the
first, appeared already in [Terng and Thorbergsson 2001; Anco 2006].

The role of invariants of arc length type was studied in [Marı́ 2007] in the case of
affine geometries, which are manifolds of the form GnRn/G. Among the classical
Lie groups, all manifolds except G = GL(n) have a common feature: their first
geometric Poisson bracket (11) always preserves an invariant of arc length type —
they are brackets associated to unparametrized curves. Therefore, any Hamiltonian
evolution will have geometric realizations by evolutions that preserve arc length
type parameters. This is not a choice, but is imposed by the background geom-
etry. On the other hand, homogeneous manifolds of the form G/H in general
do not have this property. All known examples have a geometric Poisson bracket
defined as in (11) that does not preserve a parameter of arc length type as defined
in [Marı́ 2009]. On the other hand, the modified KdV equation is usually asso-
ciated to Riemannian manifolds in general, and to natural frames in particular;
it is always the invariantization of a curve evolution parametrized by arc length.
Thus, it seemed contradictory that it appears on manifolds of the form G/H , with
G semisimple; at the very least, it seemed counterintuitive. As we saw in our
example, the imposition of arc length preservation does not come from the first
geometric bracket, but from the second. The first bracket does not preserve arc
length, in agreement with all other examples of the type G/H , but the second
does, in agreement with modified KdV being an evolution associated to evolutions
that do so.
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