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Let g be a finite-dimensional complex simple Lie algebra and 3 be the finite-
dimensional hereditary algebra associated to g. Let U+r,s(g) (respectively
U≥0

r,s (g)) denote the two-parameter quantized enveloping algebra of the pos-
itive maximal nilpotent (respectively Borel) Lie subalgebra of g. We study
the two-parameter quantized enveloping algebras U+r,s(g) and U≥0

r,s (g) using
the approach of Ringel–Hall algebras. First of all, we show that U+r,s(g) is
isomorphic to a certain two-parameter twisted Ringel–Hall algebra Hr,s(3),
which generalizes a result of Reineke. Based on detailed computations in
Hr,s(3), we show that Hr,s(3) can be presented as an iterated skew poly-
nomial ring. As an result, we obtain a PBW-basis for Hr,s(3), which can
be further used to construct a PBW-basis for the two-parameter quantized
enveloping algebra Ur,s(g). We also show that all prime ideals of U+r,s(g)

are completely prime under some mild conditions on the parameters r, s.
Second, we study the two-parameter extended Ringel–Hall algebra Hr,s(3).
In particular, we define a Hopf algebra structure on Hr,s(3); and we prove
that U≥0

r,s (g) is isomorphic as a Hopf algebra to the two-parameter extended
Ringel–Hall algebra Hr,s(3).

Introduction

The interest in two-parameter quantum groups (or multiparameter quantum groups)
arose in the early 1990s. Various definitions (or constructions) of two-parameter
quantum groups (or multiparameter quantum groups) have appeared in the vast
literature [Artin et al. 1991; Chin and Musson 1996; Dobrev and Parashar 1993;
Doi and Takeuchi 1994; Jing 1992; Kulish 1990; Reshetikhin 1990; Sudbery 1990].
In particular, Takeuchi [1990] defined the two-parameter quantum groups associ-
ated to the general linear Lie algebras gln and the special linear Lie algebras sln .
These quantum groups are certain two-parameter deformations of the universal
enveloping algebras U (g) of the Lie algebras g. Motivated by the connections
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to the study of down-up algebras, Takeuchi’s two-parameter quantum groups have
been reinvestigated by Benkart and Witherspoon [2004b]. In contrast to Takeuchi’s
two-parameter quantum groups, the two-parameter quantum groups they defined
have the opposite coproduct.

Recently, more research efforts have been focused on finding similar construc-
tions of the two-parameter quantum groups associated to other finite-dimensional
complex simple Lie algebras g and Kac–Moody algebras, and studying their ring-
theoretic properties and representation theory [Bergeron et al. 2006; Benkart et al.
2006; Benkart and Witherspoon 2004a; Hu et al. 2008; Hu and Pei 2008]. For
the finite-dimensional simple Lie algebras g, Hu and Pei [2008] formulated a
uniform construction of the two-parameter quantum groups Ur,s(g) in terms of
Ringel form. All these constructions and their modifications can also be unified
by using the methods of Kharchenko [2002; 1999], in which a variety of quantum
enveloping algebras were constructed from certain quantification matrices. The
two-parameter quantum groups Ur,s(g) are similar to the one-parameter quantum
groups in many aspects: They are also Hopf algebras and admit both the triangular
decompositions and the Drinfeld double realizations. Indeed, they share a similar
representation and structure theory with their one-parameter analogue. However,
the two-parameter quantum groups possess a more complicated structure and less
symmetry, which makes them more difficult to study.

To effectively study the two-parameter quantum groups Ur,s(g), it is natural
to first study their important subalgebras such as U+r,s(g) and U≥0

r,s (g), which can
be regarded as the two-parameter quantized enveloping algebras of the nilpotent
subalgebras n+ and the Borel subalgebras b+ of g.

In this paper, we will study these algebras from the viewpoint of two-parameter
Ringel–Hall algebras. This approach has played a very important role in the study
of one-parameter quantum groups Uq(g) [Green 1995; Lusztig 1993; 1990; Ringel
1990b; 1996; 1993; 1990c; 1990a; Xiao 1997]. It is well known that the quantized
enveloping algebras Uq(g) can be realized as the reduced Drinfeld doubles of the
extended Ringel–Hall algebras H∗v (3) of a certain finite-dimensional hereditary
algebra associated to g. The one-parameter quantized enveloping algebra Uq(g) is
first defined via generators and relations. Thus a first priority in the study of Uq(g)

is to provide more information on the Hopf algebra structure of Uq(g) and construct
good bases for Uq(g) as an algebra. These can be successfully fulfilled by using the
Ringel–Hall algebra realization of Uq(g). Furthermore, this realization contributes
significantly to the construction of canonical bases for U+q (g) via the representation
theory of finite-dimensional hereditary algebras [Ringel 1996; Lusztig 1990]. For
more details about Ringel–Hall algebras and their applications to the study of one-
parameter quantum groups Uq(g), see [Green 1995; Ringel 1990b; 1996] and the
references therein.
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Let g be a finite-dimensional complex simple Lie algebra of type A, D, E and3
be the finite-dimensional hereditary algebra associated to g. Indeed, 3 is the path
algebra of the corresponding Dynkin quiver associated to g. Reineke [2001], for the
purpose of studying the monoid ring arising from generic extensions, defined a two-
parameter Ringel–Hall algebra Hr,s(3) of3. He proved that Hr,s(3) is isomorphic
to Takeuchi’s two-parameter quantization Ur,s(n

+), where Ur,s(n
+) = U+r,s(g) is

the two-parameter quantized enveloping algebra of the nilpotent subalgebra n+ of
the Lie algebra g.

In this paper, we will generalize Reineke’s definition to any finite-dimensional
complex simple Lie algebra g. In the case of nonsimply connected Lie alge-
bras, there are no quivers and path algebras available, so we will take 3 to be
the corresponding finite-dimensional hereditary tensor algebra associated to the
k-species [Dlab and Ringel 1975; 1976]. By Ringel’s results [1990c; 1990a], the
Hall polynomials exist for the extensions between modules in the category3-mod.
Reineke’s definition of two-parameter Ringel–Hall algebras depends solely on the
existence of Hall polynomials, and it can thus be applied to all finite-dimensional
complex Lie algebras. For any finite-dimensional simple Lie algebra g, we shall
prove that the two-parameter quantized enveloping algebra U+r,s(g) is isomorphic
to the two-parameter Ringel–Hall algebra Hr,s(3), where 3 is the corresponding
finite-dimensional hereditary algebra associated to g [Dlab and Ringel 1975; 1976].

Following Ringel [1996], we shall carry out some standard calculations inside
the algebra Hr,s(3). As a result, we are able to prove that Hr,s(3) can be presented
as an iterated skew polynomial ring. An immediate application is that the skew-
polynomial ring presentation of Hr,s(3) will yield a natural PBW-basis for U+r,s(g)
through the previous isomorphism. We further prove that all prime ideals of U+r,s(g)
are completely prime based on some mild conditions on the parameters r, s. This
result has also been proved in [Benkart et al. 2006] for the case of the Lie algebra
g= sln by using results in [Kharchenko 2002].

For the purpose of studying the two-parameter quantized enveloping algebra
U≥0

r,s (g), we will extend the two-parameter Ringel–Hall algebra Hr,s(3) by adding
the torus part to it. Furthermore, we will define a Hopf algebra structure on the
extended Ringel–Hall algebra Hr,s(3). In particular, we will prove that U≥0

r,s (g) is
isomorphic to the extended Ringel–Hall algebra Hr,s(3) as a Hopf algebra. The
result gives the possibility of realizing the two-parameter quantum groups Ur,s(g)

as the Drinfeld doubles of two-parameter extended Ringel–Hall algebras associated
to certain finite-dimensional hereditary algebras 3.

The paper is organized as follows. In Section 1, we recall the definition and some
basic results of two-parameter quantum groups. In Section 2, we recall Reineke’s
construction of two-parameter Ringel–Hall algebras and prove some basic results.
In Section 3, we define the extended two-parameter Ringel–Hall algebras and then
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propose a Hopf algebra structure for it. We establish the Hopf algebra isomorphism
between the two-parameter quantization U≥0

r,s (g) and the extended two-parameter
Ringel–Hall algebra.

1. Definition and basic properties of the two-parameter quantum groups
Ur,s(g)

Let g be a finite-dimensional complex simple Lie algebra. The two-parameter
quantum groups Ur,s(g) associated to g have been constructed in the literature
[Bergeron et al. 2006; Benkart and Witherspoon 2004b; Takeuchi 1990]. A simpler
uniform definition of Ur,s(g) in terms of Ringel form has recently been proposed
in [Hu and Pei 2008]; we now recall the definition of Ur,s(g) used there and state
some basic properties of them.

Let C = (ai j )i, j∈I be the Cartan matrix corresponding to the Lie algebra g. Let
{di | i ∈ I } be a set of relatively prime positive integers such that di ai j = d j a j i

for i, j ∈ I . Let Q(r, s) be the function field in two variables r, s over the field
Q of all rational numbers. We may also choose complex numbers r, s ∈ C so that
r2
6= s2. Let us write ri = rdi and si = sdi .
Let 〈 · , · 〉 be the corresponding bilinear form (so-called Ringel or Euler form)

defined on the root lattice Q∼=ZI associated to g. More precisely, the bilinear form
is defined as follows:

〈i, j〉 := 〈αi , α j 〉 =


di ai j if i < j,
di if i = j,
0 if i > j.

Definition 1.1 [Bergeron et al. 2006; Benkart and Witherspoon 2004b; Hu and
Pei 2008]. The two-parameter quantum groups Ur,s(g) are the Q(r, s)-algebras
generated by the generators ei , fi , w

±1
i , w′±1

i subject to the relations

w±1
i w±1

j = w
±1
j w

±1
i , w′±1

i w′±1
j = w

′±1
j w′±1

i ,

w±1
i w′±1

j = w
′±1
j w±1

i , w±1
i w∓1

i = 1= w′±1
i w′∓1

i ,

wi e j = r 〈 j,i〉s−〈i, j〉e jwi , w′i e j = r−〈i, j〉s〈 j,i〉e jw
′

i ,

wi f j = r−〈 j,i〉s〈i, j〉 f j ei , w′i f j = r 〈i, j〉s−〈 j,i〉 f jw
′

i ,

ei f j − f j ei = δi, j (wi −w
′

i )/(ri − si ),

1−ai j∑
k=0

(−1)k
(1−ai j

k

)
ri s−1

i

c(k)i j e1−ai j−k
i e j ek

i = 0 for i 6= j,

1−ai j∑
k=0

(−1)k
(1−ai j

k

)
ri s−1

i

c(k)i j f k
i f j f 1−ai j−k

i = 0 for i 6= j,
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where c(k)i j = (ri s−1
i )k(k−1)/2r k〈 j,i〉s−k〈i, j〉 for i 6= j , and for a symbol v, we set up

the notation

(n)v =
vn
−1

v−1
, (n)v! = (1)v(2)v · · · (n)v,(n

k

)
v
=

(n)v!
(k)v!(n− k)v!

for n ≥ k ≥ 0,

and (0)v! = 1.

Remark 1.1. In the sequel, if needed, we may change the base field from the
function field Q(r, s) to the complex number field C by choosing r, s ∈ C in so
that rmsn

= 1 implies n = m = 0, or we may restrict the base ring to the rational
number field Q or the local ring Q[r, s](r−1,s−1).

From [Bergeron et al. 2006; Benkart and Witherspoon 2004b; Hu and Pei 2008],
we know the algebra Ur,s(g) has a Hopf algebra structure with the corresponding
comultiplication, counit and antipode defined as follows:

1(w±1
i )= w±1

i ⊗w
±1
i , 1(w′±1

i )= w′±1
i ⊗w

′±1
i ,

1(ei )= ei ⊗ 1+wi ⊗ ei , 1( fi )= 1⊗ fi + fi ⊗w
′

i ,

ε(w±1
i )= ε(w′±1

i )= 1, ε(ei )= ε( fi )= 0,

S(w±1
i )= w∓1

i , S(w′±1
i )= w′∓1

i ,

S(ei )=−w
−1
i ei , S( fi )=− fiw

′−1
i .

Let U+r,s(g) and U−r,s(g) be the subalgebras of Ur,s(g) generated by ei for i ∈ I
and by fi for i ∈ I , respectively. Let U 0

r,s(g) be the subalgebra of Ur,s(g) generated
by w±1

i , w′±1
i for i ∈ I . The following result about the triangular decomposition

of Ur,s(g) was obtained in the papers above.

Proposition 1.1. Ur,s(g) has the standard triangular decomposition

Ur,s(g)∼=U−r,s(g)⊗U 0
r,s(g)⊗U+r,s(g).

Let us denote by ZI the free abelian group of rank |I | with a basis denoted by
z1, z2, . . . , z|I |. Given an element a ∈ ZI , say a =

∑
ai zi , we set |a| =

∑
ai . The

algebras U+r,s(g) and U−r,s(g) are ZI -graded algebras by assigning to the generator
ei and fi , respectively, the degree zi . Given a ∈ ZI , we denote by U±r,s(g)a the set
of homogeneous elements of degree a in U±r,s(g); thus we have the decomposition

U+r,s(g)=
⊕

a
U+r,s(g)a and U−r,s(g)=

⊕
a

U−r,s(g)a.

Let U≥0
r,s (g) (respectively U≤0

r,s (g)) be the subalgebra of Ur,s(g) generated by
ei , w

±1
i (respectively fi , w

′±1
i ), then we have the following result.
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Proposition 1.2 [Bergeron et al. 2006; Benkart and Witherspoon 2004b; Hu and
Pei 2008]. The algebra Ur,s(g) can be realized as a Drinfeld double of Hopf sub-
algebras U≥0

r,s (g) and U≤0
r,s (g) with respect to the pairing ( · , · ), that is,

Ur,s(g)∼= D(U≥0
r,s (g),U

≤0
r,s (g)).

To better understand Ur,s(g), it is natural to further study the subalgebras U+r,s(g)
and U≥0

r,s (g). We will address this problem in the forthcoming sections via the
approach of Ringel–Hall algebras.

2. Two-parameter Ringel–Hall algebras Hr,s(3)

In this section, we will first recall Reineke’s construction of the two-parameter
Ringel–Hall algebra Hr,s(3), where 3 denotes the finite-dimensional hereditary
algebra associated to a complex simple Lie algebra g of type A, D, E . Indeed,3 is
the path algebra of the corresponding Dynkin quiver associated to g. Then we will
define the corresponding two-parameter Ringel–Hall algebra Hr,s(3) of the finite-
dimensional hereditary algebra 3, which is the corresponding finite-dimensional
hereditary algebra associated to any finite-dimensional complex simple Lie alge-
bra g. We will take 3 as the tensor algebras of the associated k-species in the
nonsimply connected cases. Note that Reineke’s construction is still valid due to
the existence of Hall polynomials for 3-modules.

To further study the properties of Hr,s(3), we will carry out some calculations
similar to ones done in [Ringel 1996]. These will yield a skew polynomial ring
presentation of Hr,s(3), which immediately enables us to construct a PBW-basis
for Hr,s(3). This PBW-basis will be used to construct a PBW-basis for Ur,s(g).
Based on certain mild restrictions on the parameters r, s, using the stratification
theory of prime ideals developed in [Goodearl and Letzter 2000], we will further
prove that all prime ideals of Hr,s(3) are completely prime. Finally, we establish
the relationship between the algebra U+r,s(g) and the two-parameter Ringel–Hall
algebra Hr,s(3) by proving that they are isomorphic to each other as algebras.
Thus all the results obtained on Hr,s(3) can be transformed to U+r,s(g) via this
algebra isomorphism.

2.1. Preliminaries on k-species. In this subsection, for the reader’s convenience,
we shall recall some basic information about k-species. The study of k-species
is a very important research topic that has generated a vast literature. We shall
only briefly mention some results that relate the study of k-species to the study
of finite-dimensional hereditary algebras and Lie algebras, and cite some relevant
references. See [Dlab and Ringel 1975; 1976; Ringel 1976] and the references
therein for a detailed account of the structure and representation theory of k-species
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and their connections to other subjects. In particular, the following presentation of
the material is borrowed from the Dlab and Ringel references.

Gabriel [1972] observed that there is a one-to-one correspondence between the
set of indecomposable representations of these graphs (“quivers”) with a positive
definite quadratic form and the set of positive roots of this quadratic form. Later,
Bernšteı̆n, Gel’fand and Ponomarev [1973] showed that this result can be proved
directly, by using appropriate functors (the BGP reflection functors) to construct
all indecomposable representations from the simple ones in the same way that the
canonical generators of the Weyl group are used to produce all positive roots from
the simple roots. Dlab and Ringel [1975; 1976] extended this method. To deal
with all Dynkin diagrams (not necessarily those of type A, D or E), they fur-
ther considered valued graphs (and therefore “species”). For the valued graphs of
Dynkin type, they obtained the same one-to-one correspondence between the set of
indecomposable representations and the set of positive roots of the corresponding
quadratic form, thus generalizing Gabriel’s result for the type A, D or E diagrams.
In [1976], they also considered valued graphs with positive semidefinite quadratic
form (that is, extended Dynkin diagrams) and described all the indecomposable
representations up to homogeneous ones.

A valued graph 0 := (0, d) consists of a finite set 0 (of vertices) together with
a set d of nonnegative integers di j for all i, j ∈ 0 such that di i = 0 and there exist
positive integers {εi }i∈0 that satisfy

di jε j = d j iεi for all i, j ∈ 0.

A pair {i, j} of vertices of 0 is called an edge of the graph 0 if di j 6= 0. An
orientation of � of a valued graph (0, d) is given by assigning each edge {i, j}
of 0 an order (which is denoted by an arrow i → j ). We usually call (0, d, �)
a valued quiver. Given any orientation � and any vertex i ∈ 0, we can define a
new orientation si� of (0, d) by reversing the direction of the arrows along all
edges containing i . A vertex i ∈ 0 is called a sink (or source) with respect to
the orientation � if i ← j (or i → j) for all neighbor vertices j ∈ 0 of i . An
orientation is said to be admissible if there is an ordering i1, i2, . . . , in of 0 such
that each vertex it is a sink with respect to the orientation sit−1 · · · si2si1� for all
1≤ t ≤ n; such an ordering is called an admissible ordering for �.

For a given valued graph 0 = (0, d), one can associate a symmetrizable Cartan
matrix C = (ai j )i, j∈0 by setting the entries of C as follows:

ai i = 2 and ai j =−di j for i 6= j ∈ 0.

Conversely, for any symmetrizable Cartan matrix C , one can associate a valued
graph 0C as well. It is easy to see that the mapping from the valued graph (0, d)
to the Cartan matrix C defines a one-to-one correspondence between the set of
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valued graphs and the set of symmetrizable Cartan matrices. This correspondence
indicates a close relationship between the study of valued graphs and the study of
Lie algebras, as we shall further explain below.

Let k denote a finite field and let (0, d, �) be a valued graph together with
an admissible orientation �. Following [Gabriel 1973], by definition, a k-species
S = (M, �) := (Fi , i M j ) of type (0, d, �) (which is also called a realization
of the valued graph (0, d, �) in [Dlab and Ringel 1976]) consists of a family of
(Fi−F j )-bimodules i M j , where the fields Fi are finite field extensions of k in an
algebraic closure of k such that dimk Fi = εi and dim(i M j )F j = di j . Note that S is
called connected provided the corresponding graph is connected; an oriented cycle
of S is given by a sequence of vertices i1, i2, . . . , ik−1, ik = i1 such that i j → i j+1

for all 1 ≤ j ≤ k − 1. From now on, we shall always assume that (0, d, �) is
connected and contains no oriented cycles.

A representation (Vi , jφi ) of the k-species S is given by a set of vector spaces
(Vi )Fi and F j -linear mappings Vi ⊗ i M j → V j . Such a representation is called
finite-dimensional provided all the vector spaces Vi are finite-dimensional vector
spaces. A homomorphism α = (αi ) : (Vi , jφi )→ (V ′i , jφ

′

i ) is given by a set of
Fi -linear mappings αi : Vi→ V ′i such that α j jφi = jφ

′

i (αi⊗1). We shall denote by
rep S= L(M, �) the category of all finite-dimensional representations of (M, �).
It is an abelian category. A k-species S is said to be of finite representation type if
the category rep S has only finitely many indecomposable objects.

[Dlab and Ringel 1975, Theorem B]. A k-species is of finite representation type
if and only if its diagram is a finite union of Dynkin diagrams.

Given a k-species S, one denotes by Q0 the rational vector space of all vectors
x = (xi )i∈0 over the rational number field. There is a quadratic form defined on
Qn where n = |0| as follows: For any x ∈Qn , let

(x, x)=
∑

εi x2
i −

∑
mi j xi x j ,

where εi = dimk Fi and mi j = dimk(i M j ). Given any representation (Vi , jφi ) of
the k-species (M, �), one can define the dimension vector mapping

dim : L(M, �)→Q0

by setting dim(V ) = (xi ), where xi = dim(Vi )Fi for all i ∈ 0. Dlab and Ringel
[1975; 1976] proved that the k-species S is of finite representation type if and
only if the corresponding quadratic form is positive definite, that is, the underlying
graph is a Dynkin diagram. In particular, we shall quote the following two results:

[Dlab and Ringel 1976, Proposition 1.2]. (a) (0, d) is a Dynkin diagram if and
only if its quadratic form is positive definite.
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(b) (0, d) is an extended Dynkin diagram if and only if its quadratic form is pos-
itive semi-definite.

[Dlab and Ringel 1976, Proposition 2.6]. Let (M, �) be a realization of the val-
ued graph (0, d).

(a) If (0, d) is a Dynkin diagram, then the mapping dim provides a one-to-one
correspondence between all positive roots of (0, d) and all indecomposable
representations in L(M, �).

(b) If (0, d) is an extended Dynkin diagram, then the mapping dim provides a one-
to-one correspondence between all positive roots of (0, d) of nonzero defect
and all indecomposable representations in L(M, �) of nonzero defect.

The results on the representations of valued graphs can be translated into the rep-
resentation theory of finite-dimensional associative algebras over a field, or more
generally into that of certain classes of artinian rings [Dlab and Ringel 1976]. For
any given artinian ring R, one can define a valued graph, we will not discuss the
detailed construction here. Conversely, for any given k-species S on a given valued
graph (0, d), one can define its associated tensor algebra 3= T (S) by

3=
⊕
t≥0

3(t)

where

3(0) =
∏
i∈0

Fi , 3(1) =
∏
h∈�

i M j , and 3(n) =3(n−1)
⊗3(0) 3

(1) for t ≥ 2

with the componentwise addition and the multiplication induced by taking tensor
products. Note that for an admissible orientation � of (0, d), the tensor alge-
bra 3 of (0, d, �) is a finite-dimensional hereditary k-algebra. An algebra R is
said to be of finite representation type if there are only finitely many indecompos-
able finite-dimensional R-modules. Each finite-dimensional hereditary k-algebra
of finite representation type can be identified with the tensor algebra of some k-
species. It is well known [Dlab and Ringel 1975] that the category3-mod of finite-
dimensional 3-modules is equivalent to the category rep(S) of finite-dimensional
representations of the k-species S over the field k.

[Dlab and Ringel 1975, Theorem C]. A finite-dimensional k-algebra R is hered-
itary of finite representation type if and only if R is Morita equivalent to the tensor
algebra T (S), where S is a k-species of finite representation type.

In the rest of this paper, we will not distinguish between these two categories.
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2.2. Two-parameter Ringel–Hall algebra Hr,s(3). As above, let k be a finite
field. Let 3 denote a finite-dimensional associative hereditary algebra over k.
Denote by q = |k| the cardinality of the base field k, and let v be a number such
that v2

= q. We shall also assume that 3 is finitary, that is, the cardinality of the
extension group Ext1(S, S′) is finite for any two simple 3-modules S and S′.

It is well known that this finitary condition is satisfied by the algebra 3 as long
as 3 is a finitely generated k-algebra over a finite base field k. By P, we will
denote the set of all isomorphism classes of finite-dimensional 3-modules. We set
P1 = P− 0, where 0 denotes the subset of P consisting of the only isomorphism
class of the zero 3-module. For any α ∈P, we choose a module representative uα
for the isomorphism class α. We denote by aα the order of the automorphism group
Aut3(uα) of the 3-module uα. It is easy to see that the number aα is independent
of the choices of the representatives uα for any α ∈ P.

For any given three representatives uα, uβ, uγ of the elements α, β, γ ∈ P re-
spectively, we denote by gγαβ the number of submodules N of uγ satisfying the
conditions N ∼= uβ and uγ /N ∼= uα.

For any two given 3-modules M, N , let us set

〈M, N 〉 = dimk Hom(M, N )− dimk Ext1(M, N ).

Since the algebra 3 is hereditary, it is well known that 〈M, N 〉 depends only on
the dimension vectors dim(M) and dim(N ) of the 3-modules M and N . Thus for
any given two elements α, β ∈ P, we can define the notation

〈α, β〉 = 〈uα, uβ〉

where uα and uβ are any chosen representatives of α and β respectively. Note that
〈 · , · 〉 is a bilinear form that is not necessarily symmetric. However, using 〈 · , · 〉,
we can also define a symmetric bilinear form ( · , · ) by setting

(α, β)= 〈α, β〉+ 〈β, α〉.

In the rest of this paper, we will be mostly dealing with the form 〈 · , · 〉 instead.
Let 3-mod denote the category of all finite-dimensional 3-modules. Note that

there exists a fine symmetry between elements in the category 3-mod:

Theorem 2.1 [Green 1995, first formula]. Assume that3 is hereditary and finitary.
Let α, β, α′, β ′ ∈ P. Then

aαaβaα′aβ ′
∑
λ∈P

gλα,βgλα′β ′a
−1
λ =

∑
ρ,σ,σ ′,τ∈P

|Ext1(uρ, uτ )|
|Hom(uρ, uτ )|

gαρσ gα
′

ρσ ′g
β
σ ′τ gβ

′

στaρaσaσ ′aτ ′ .

Let g be a finite-dimensional complex simple Lie algebra of type A, D or E ;
and let 3 be the finite-dimensional hereditary algebra associated to g. As a two-
parameter twist of Ringel–Hall algebra, the two-parameter Ringel–Hall algebra
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Hr,s(3)was first defined by Reineke [2001] for the purpose of studying the monoid
ring of generic extensions. We will first recall some details of its construction.

Since g is a finite-dimensional complex simple Lie algebra of type A, D or E ,
we can associate a Dynkin quiver E1 to the Lie algebra g, so that the path algebra
3 := k E1 of the Dynkin quiver E1 is a finite-dimensional hereditary algebra of
finite representation type. Reineke [2001] introduced a two-parameter Ringel–
Hall algebra, which was used to realize Takeuchi’s two-parameter quantization
Ur,s(n

+), with n+ the maximal nilpotent Lie subalgebra of the Lie algebra g. To
avoid colliding notation, we will denote Reineke’s version of the two-parameter
Ringel–Hall algebra by Hr,s(3) instead of the original H(Q). Reineke proved that
the two-parameter Ringel–Hall algebra Hr,s(3) is indeed isomorphic to the two-
parameter quantization U+r,s(n

+).
It is natural to extend Reineke’s construction to finite-dimensional complex sim-

ple Lie algebras of other types. This can be done in terms of k-species due to the
existence of Hall polynomials [Ringel 1990a; 1990c]. We will first write down the
details of the formulation of the two-parameter Ringel–Hall algebra Hr,s(3) for
any complex simple Lie algebra g of other types. During the process, the algebra3
is taken as the tensor algebra of the k-species associated to the nonsimply connected
simple complex Lie algebra g. Then we will show that two-parameter Ringel–Hall
algebra Hr,s(3) is isomorphic to the two-parameter quantization U+r,s(g) for any
Lie algebra g, which generalizes Reineke’s result of [2001].

From now on, we will always assume that g is a finite-dimensional complex
simple algebra and let3 be the corresponding hereditary path algebra (or the tensor
algebra of the k-species for nonsimply connected cases). Note that there exist Hall
polynomials F L

M,N (x) associated to modules M , N and L in 3-mod such that for
these 3-modules, we have gL

M,N = F L
M,N (q), where q is the cardinality of the base

field k. For a detailed account of the existence and calculation of Hall polynomials
in 3-mod, see [Ringel 1996; 1993].

Recall that P is the set of isomorphism classes of finite-dimensional3-modules.
Let us denote by Hr,s(3) the free Q(r, s)-module generated by the elements of the
set {uα | α ∈P}. In addition, we define a multiplication on the free Q(r, s)-module
Hr,s(3) by

uαuβ =
∑
λ∈P

s−〈α,β〉Fuλ
uαuβ (rs−1)uλ for anyα, β ∈ P.

Then it is easy to see that we have the following result:

Proposition 2.1 (see also [Reineke 2001]). If 3 is the finite-dimensional corre-
sponding hereditary algebra associated to the Lie algebra g, then the algebra
Hr,s(3) is an associative Q(r, s)-algebra under the multiplication defined above.
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The proof is a straightforward verification and we will omit it.

2.3. Ring theoretical properties of Hr,s(3). Now we will investigate some ring-
theoretic properties of the two-parameter Ringel–Hall algebra Hr,s(3). We first
verify some basic identities for Hr,s(3) following along the lines in [Ringel 1996].
These calculations are the same as those done there, with some slight modifications.

First, we introduce a new Q(r, s)-basis for Hr,s(3). For any chosen element
α ∈ P, we have an element uα ∈ Hr,s(3). We denote by ε(α) the k-dimension of
the endomorphism ring of the module representative uα corresponding to α.

For any given module M of the algebra 3, we denote the isomorphism class of
M by [M] and by dim(M) the dimension vector of M , which is an element of the
Grothendieck group K0(3) of the category3-mod of all finite3-modules modulo
the exact sequences.

According to [Bernšteı̆n et al. 1973; Dlab and Ringel 1975; Gabriel 1972], there
is a one-to-one correspondence between the set of all positive roots for the Lie
algebra g and the set of indecomposable modules in 3-mod (see Section 2.1). Let
a ∈ 8+ be any positive root; we denote by M(a) the indecomposable module
corresponding to a. For any map α :8+→ N0, set

M(α)= M3(α)=
⊕
a∈8+

α(a)M(a).

Then it is easy to see there is a bijection between the set P of isomorphism
classes of finite-dimensional 3-modules and the set of all maps α :8+→N0. We
will not distinguish an element α ∈P from the corresponding map associated to α,
and we may denote both of them by α if no confusion arises.

For any α ∈ P, let us set dimα =
∑

a∈8+ α(a)a. Then we have

dim(M(α))= dimα.

For any given α ∈ P, we denote by dim(α) = dim(uα) the dimension of the
3-module uα as a k-vector space. Furthermore, let us set

〈uα〉 = sdim(uα)−ε(α)uα.

For convenience, we may sometimes simply denote uα by α for any α ∈P and
denote Fuλ

uαuβ (rs−1) by gλαβ if no confusion arises. In particular, we will carry out
all the computations in terms of α instead of uα in the rest of this subsection.

Obviously the set {〈α〉 | α ∈ P} is also a Q(r, s)-basis for the algebra Hr,s(3).
Note that 〈αi 〉 = αi for any element αi ∈ P corresponding to the simple root αi .
Thus the multiplication in Hr,s(3) can be rewritten in terms of this new basis as

〈α〉〈β〉 = s−ε(α)−ε(β)−〈dimα,dimβ〉
∑
λ∈P

sε(λ)gλαβ〈λ〉 for any α, β ∈ P.
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Furthermore, let us write

e(α, β)= dimk Hom3(M(α),M(β)) and ζ(α, β)= dimk Ext13(M(α),M(β)).

Then we have the following proposition, similar to the one in [Ringel 1996].

Proposition 2.2. Let α1, . . . , αt ∈P such that for i < j , we have both ε(α j , αi )=0
and ζ(αi , α j )= 0. Then 〈⊕t

i=1 αi
〉
= 〈α1〉 · · · 〈αt 〉.

Proof. Without of loss of generality, we may assume that t = 2. Let us set α1 = α

and α2 = β. Since ζ(α, β)= 0, we have

〈α, β〉 = e(α, β)− ζ(α, β)= e(α, β).

Since e(β, α)= 0, we also have

e(α⊕β)= e(α, α)+ e(α, β)+ e(β, β)+ e(β, α)

= e(α, α)+ e(β, β)+ e(α, β).

Thus

ε(α⊕β)−〈α, β〉− e(α, α)− e(β, β)

= e(α, α)+ e(β, β)+ e(α, β)− e(α, β)+ ζ(α, β)− e(α, α)− e(β, β)= 0.

Since ζ(α, β)= 0, that gγαβ 6= 0 implies that γ = α⊕ β. Since e(β, α)= 0, we
have gα⊕βαβ = 1. Therefore, we may finish the proof:

〈α〉〈β〉 = sdim(α)+dim(β)−ε(α)−ε(β)αβ

= sε(α⊕β)−〈α,β〉−ε(α)−ε(β)gα⊕βαβ 〈α⊕β〉

= 〈α⊕β〉. �

Theorem 2.2. Let α, β ∈ P such that e(β, α)= 0 and ζ(α, β)= 0. Then we have

〈β〉〈α〉 = r 〈α,β〉s−〈β,α〉〈α〉〈β〉+
∑

γ∈J (α,β)

cγ 〈γ 〉

where the coefficients cγ are in Z[r±1, s±1
] and J (α, β) is the set of all elements

λ ∈ P that are different from α⊕β and gλαβ 6= 0.

Proof. First, by Proposition 2.2, we have 〈α〉〈β〉 = 〈α⊕β〉.
Note that 〈β〉〈α〉 =

∑
γ c′γ γ . Thus we have the relationship c′γ = sdim(γ )−ε(γ )cγ

between the coefficients cγ and c′γ . By [Ringel 1996], we also have

gα⊕ββα = (rs−1)e(α,β).
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Note that ε(α⊕β)= ε(α)+ ε(β)+ e(α, β). Thus

c′α⊕β = sdim(β)−ε(β)+dim(α)−ε(α)s−〈β,α〉gα⊕ββα

= sdim(α⊕β)−ε(α)−ε(β)+ζ(β,α)(rs−1)e(α,β)

= sdim(α⊕β)−ε(α)−ε(β)+ζ(β,α)−e(α,β)r e(α,β)

= r e(α,β)sζ(β,α)sdim(α⊕β)−ε(α⊕β)
= r 〈α,β〉s−〈β,α〉sdim(α⊕β)−ε(α⊕β).

Finally, we have c′α⊕βα⊕β = r 〈α,β〉s−〈β,α〉〈α⊕β〉. �

According to the representation theory of finite-dimensional hereditary algebras
of finite representation type [Bernšteı̆n et al. 1973; Dlab and Ringel 1976], we
can give a total ordering on the set of positive roots of the Lie algebra g. Fol-
lowing Ringel [1996], we will order all positive roots in a way a1, a2, . . . , am so
that Hom(M(ai ),M(a j )) 6= 0 implies i ≤ j , where M(ai ) is the indecomposable
module corresponding to the positive root ai . Such an ordering will be called
E1-admissible.

Lemma 2.1 [Ringel 1996]. A total ordering a1, . . . , am of all the positive roots is
E1-admissible if and only if 〈ai , a j 〉 > 0 implies i ≤ j . Such an ordering has the
additional property that 〈ai , a j 〉< 0 implies i > j .

From now on, we will always fix such a E1-admissible ordering on the set of all
positive roots.

Proposition 2.3. For any α ∈ P, we have 〈α〉 = 〈α(a1)a1〉 · · · 〈α(am)am〉.

Proof. Since the ordering of the positive roots ai is admissible, e(a j , ai ) = 0
for any i < j . In addition, we also have ζ(ai , a j ) = 0. Note that, as a module,
α =

⊕m
i=1 α(ai )M(ai ); then the result follows from Proposition 2.2. �

Now let us consider the divided powers of 〈a〉 by setting

〈a〉(t) = 1
[t]!ε(a)

〈a〉t , where [t]!ε(a) =
t∏

i=1

r iε(a)
−siε(a)

r ε(a)−sε(a)
.

Lemma 2.2. Let a be a positive root and t ≥ 0 be an integer. Then 〈t a〉 = 〈a〉(t).

Proof. The proof is adapted from [Ringel 1996]. Let S be a reduced k-species,
where k is a finite field. Then the number of filtrations

t MS(a)= M0 ⊃ M1 · · · ⊃ Mt = 0

of the module t MS(a) with composition factors isomorphic to the module MS(a)
is given by evaluating the following polynomial in x at the number |k| = rs−1:

(xε(a)t − 1)(xε(a)(t−1)
− 1) · · · (xε(a)− 1))

(xε(a))− 1)t
.
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Since ζ(a, a)= 0, we have

at
= s−ε(a)(

t
2)[t]!ε(a)s−ε(a)(

t
2)ta = s−ε(a)t (t−1)

[t]!ε(a)ta.

Therefore,

〈a〉(t) = 1
[t]!ε(a)

〈a〉t = s−ε(a)t (t−1)
[t]!ε(a)st (dim(a)−ε(a))

[t]!ε(a)
at

= s−ε(a)t (t−1)+t (dim(a)−ε(a))ta

= st dim(a)−ε(a)t (t−1+1)t a = st dim(a)−ε(a)t2
= st dim(a)−ε(t a)t a = 〈ta〉. �

For each positive root ai , let us define the symbol X i = 〈ai 〉.

Proposition 2.4. Let α ∈ P. Then α can be regarded as a map α : 8+ → N0.
Setting α(i)= α(ai ), we have

〈α〉 = X (α(1))
1 · · · X (α(m))

m =

( m∏
i=1

1
[α(i)]!ε(ai )

)
Xα(1)

1 · · · Xα(m)
m .

Proof. By Proposition 2.3, we have 〈α〉 = 〈α(1)a1〉 · · · 〈α(m)am〉. By Lemma 2.2,
we also have 〈α(i)ai 〉 = X (α(i))

i . Thus the first equality holds. The second equality
can be proved by using the divided powers. �

Theorem 2.3. The monomials Xα(1)
1 · · · Xα(m)

m with α(1), . . . , α(m) ∈ N0 form a
Q(r, s)-basis of Hr,s(3), and for i < j , we have

X j X i = r 〈dim X i ,dim X j 〉s−〈dim X j ,dim X i 〉X i X j

+

∑
I (i, j)

c(ai+1, . . . , a j−1)X
ai+1
i+1 · · · X

a j−1
j−1

with coefficients c(ai+1, . . . , a j−1) in Q(r, s). Here the index set I (i, j) is the set
of sequences (ai+1, · · · a j−1) of natural numbers such that

∑ j−1
t=i+1 at at = ai + a j .

Proof. Given α(1), . . . , α(m)∈N0, define an element α∈P by setting α(ai )=α(i).
According to the previous proposition, we have 〈α〉 = X (α(1))

1 · · · X (α(m))
m . Thus

the monomials given in the theorem are exactly nonzero scalar multiples of the
elements in P. Therefore, these monomials form a Q(r, s)-basis of Hr,s(3).

Let i < j . We can apply Theorem 2.2 to the positive roots ai and a j . We need to
show that for any β ∈ J (i, j), the element β is a scalar multiple of some monomials
Xai+1

i+1 · · · X
a j
j with

∑ j−1
t=i+1 at at = ai + a j .

Let β ∈ J (i, j), and let β(t)=β(at). Since gβa j ai 6= 0, there is an exact sequence

0→ M(ai )→

m⊕
t=1

β(t)M(at)→ M(a j )→ 0.



228 XIN TANG

Let us write f = ( ft)t with ft : M(ai ) → β(t)M(at). The exact sequence
does not split; otherwise, β = ai ⊕ a j , which contradicts the assumption that
β ∈ J (i, j). Let us consider some t with β(t)>0. We claim that ft 6=0. Otherwise,
the cokernel of f would split off β(t) copies of M(at); and since the cokernel
of f is indecomposable, this would mean that the exact sequence splits. Since
Hom(ai , a j ) 6= 0, it follows that i ≤ t . In addition, we can exclude the case i = t ,
since in this case, ft and therefore f would be a split monomorphism. Altogether,
we have i < t . The dual argument applied to g shows that t < j . According to
Proposition 2.2, we know that 〈β〉 is a scalar multiple of Xai+1

i+1 · · · X
a j
j . The exact

sequence exhibited above shows that
∑ j−1

t=i+1 at at = ai + a j . �

Now we define some algebra automorphisms and skew derivations on Hr,s(3).
Namely, for any d ∈Zn , there is an algebra automorphism ld of Hr,s(3) defined by
ld(w)= r 〈dimw,d〉s−〈d,dimw〉w, where w is any homogeneous element of Hr,s(3).

Lemma 2.3 [Ringel 1996]. Let R be a ring and let l be an endomorphism of R.
For any r ∈ R, we define a map δr : R→ R by

δr (x)= r x − l(x)r for any x ∈ R.

Then the map δr is an l-derivation.

Proof from [Ringel 1996]. First, the map δr is additive. In addition, for any x, y∈ R,
we have

δr (xy)= r xy− l(xy)r = r xy− l(x)r y+ l(x)r y− l(x)l(y)r

= (r x − l(x)r)y+ l(x)(r y− l(y)r)

= δr (x)y+ l(x)δr (y).

Thus the map δr is an l-derivation of R. �

Definition 2.1. Let R be a domain with 1 6= 0, let σ1 : R → R be a ring homo-
morphism and let δ1 : R → R be a σ1-derivation, so that for all a, b ∈ R, we
have

• σ1(a+ b)= σ1(a)+ σ1(b),

• σ1(ab)= σ1(a)σ1(b),

• δ1(a+ b)= δ1(a)+ δ1(b),

• δ1(ab)= δ1(a)b+ σ1(a)δ1(b).

Then the skew polynomial ring R[X1, σ1, δ1] is the set of noncommutative poly-
nomials R[X1] with addition defined as commutative polynomials, and with mul-
tiplication defined distributively over addition and by the commutator rule

X1a = σ1(a)X1+ δ1(a),
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valid for all a ∈ R. We set R1= R[X1, σ1, δ1], and let σ2 be a ring homomorphism
of R1 and δ2 be a σ2-derivation of the ring R1. Then we can define another skew
polynomial ring R2 = R1[X2, σ2, δ2]. Similarly, we can iterate this process to
define Rn for any n ≥ 2. These rings Rn are called iterated skew polynomial rings.

Let H j denote the Q(r, s)-subalgebra of Hr,s(3) generated by the generators
X1, . . . , X j . Thus we have H0 =Q(r, s) and for any 0≤ j ≤ m, we have

H j = H j−1[X j , l j , δ j ]

with the automorphism l j and the l j -derivation δ j of H j−1. The automorphism l j

can be explicitly defined by

l j (X i )= r 〈dim X i ,dim X j 〉s−〈dim X j ,dim X i 〉X i for i < j .

The skew derivation δ j can be defined by

δ j (X i )= X j X i − l j (X i )X j =
∑
I (i, j)

c(ai+1, . . . , a j−1)X
ai+1
i+1 · · · X

a j−1
j1 .

Theorem 2.4. The automorphism l j and the skew derivation δ j satisfy the relation

l jδ j = r 〈a j ,a j 〉s−〈a j ,a j 〉δ j l j .

Proof. Suppose i < j . Then l j (X i )= r 〈ai ,a j 〉s−〈a j ,ai 〉X i . Thus, we have

δ j l j (X i )= r 〈ai ,a j 〉s−〈a j ,ai 〉δ j (X i ).

Let us write d = ai+a j . Note that δ j (X i ) is a linear combination of monomials
of the form

Xai+1
i+1 · · · X

a j−1
j−1 where

∑ j−1
t=i+1 at at = ai + a j = d.

Thus we know that δ j (X i ) belongs to Hr,s(3). Since we have

〈d, a j 〉 = 〈ai + a j , a j 〉 = 〈ai , a j 〉+ 〈a j , a j 〉,

〈a j , d〉 = 〈a j , ai + a j 〉 = 〈a j , ai 〉+ 〈a j , a j 〉,

it follows that

l jδ j (X i )= r 〈d,a j 〉s−〈d,a j 〉δ j (X i )

= r 〈ai ,a j 〉+〈a j ,a j 〉s−〈a j ,a j 〉−〈a j ,a j 〉δ j (X i )

= r 〈a j ,a j 〉s−〈a j ,a j 〉δ j l j (X i ). �

Theorem 2.5. The two-parameter Ringel–Hall algebra Hr,s(3) can be presented
as an iterated skew polynomial ring.

Proof. The proof follows from the previous theorem. �
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Let R be a ring. Recall that an ideal P ⊂ R is said to be prime if P 6= R and if
whenever the product AB of two ideals A and B of R is contained in P , at least one
of A and B is contained in P . An ideal P ⊂ R is called completely prime if P 6= R
and if whenever the product ab of two elements of R is contained in P , at least
one of the elements a and b is contained in P . In the case of commutative rings,
prime ideals are exactly completely prime ideals. In the case of noncommutative
rings, a completely prime ideal is a prime ideal, but a prime ideal is not necessarily
a completely prime ideal. Concerning prime ideals, we have the following result
for the algebra Hr,s(3).

Corollary 2.1. Suppose the multiplicative group generated by r and s is torsion-
free. Then any prime ideal of Hr,s(3) is completely prime.

Proof. The proof follows directly from a result on prime ideals of iterated skew
polynomial rings, due to Goodearl and Letzter [2000]. �

2.4. An algebra isomorphism from U+r,s(g) onto Hr,s(3). In this subsection, we
introduce an algebra isomorphism from the two-parameter quantized enveloping
algebra U+r,s(g) onto the two-parameter Ringel–Hall algebra Hr,s(3). Via this iso-
morphism, all results established in the previous subsection on Hr,s(3) will be
transferred to the two-parameter quantized enveloping algebra U+r,s(g). For the
convenience of this paper, we will awkwardly denote the nontwisted Hall algebra
multiplication by ◦ in the one-parameter nontwisted generic Ringel–Hall algebra
Hv(3) (which can be defined due to the existence of Hall polynomials). Recall
also that v2

= q.
First, we need an important lemma on a two-parameter version of the quantum

Serre relations, which was proved to hold in the case of one-parameter nontwisted
Ringel–Hall algebra Hv(3).

Lemma 2.4. Let αi ∈ P correspond to the simple module Si . Then we have the
identities

1−ai j∑
k=0

(−1)k
(1−ai j

k

)
ri s−1

i

c(k)i j u1−ai j−k
αi uα j u

k
αi
= 0 for i 6= j

in Hr,s(3), where c(k)i j = (ri s−1
i )k(k−1)/2r k〈 j,i〉s−k〈i, j〉 for i 6= j .

Proof. The idea of the proof is to reduce these identities to those that have been
proved in [Ringel 1990b] to hold for the one-parameter nontwisted generic Ringel–
Hall algebra Hv(3). Though this reduction is straightforward, we will provide the
details. For convenience, we shall set m = 1− ai j in the rest of this proof.
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First, we assume that i< j . Then we have 〈i, j〉=di ai j and 〈 j, i〉=0. Therefore,

m∑
k=0

(−1)k
(m

k

)
ri s−1

i

c(k)i j um−k
αi

uα j u
k
αi

=

m∑
k=0

(−1)k
(m

k

)
ri s−1

i

(ri s−1
i )k(k−1)/2r k〈 j,i〉s−k〈i, j〉um−k

αi
uα j u

k
αi

=

m∑
k=0

(−1)k
(m

k

)
ri s−1

i

(ri s−1
i )k(k−1)/2r k〈 j,i〉s−k〈i, j〉s−(m(m−1)/2〈i,i〉+(m−k)〈i, j〉+k〈 j,i〉)

u◦(m−k)
αi

◦ uα j ◦ u◦(k)αi

= s−(〈i,i〉m
2
−m/2+m〈i, j〉)

m∑
k=0

(−1)k
(m

k

)
ri s−1

i

(ri s−1
i )k(k−1)/2u◦(m−k)

αi
◦ uα j ◦ u◦(k)αi

.

Note that the following result was proved for the nontwisted generic Ringel–Hall
algebra Hv(3) in [Ringel 1990b]:

m∑
k=0

(−1)k
(m

k

)
q i
(q i )k(k−1)/2u◦(m−k)

αi
◦ uα j ◦ u◦(k)αi

= 0.

Due to the existence of Hall polynomials [Ringel 1990a; 1990c], we can set
rs−1
= q. Thus we have proved that the statement is true for i < j , as desired.

Now let us assume that i > j . Then 〈i, j〉 = 0 and 〈 j, i〉 = d j a j i = di ai j =

di (1−m). Furthermore, we have

(−1)m
m∑

k=0

(−1)k
(m

k

)
ri s−1

i

c(k)i j um−k
αi

uα j u
k
αi

=

m∑
k=0

(−1)k
(m

k

)
ri s−1

i

(ri s−1
i )(m−k)(m−k−1)/2r (m−k)〈 j,i〉s−(m−k)〈i, j〉uk

αi
uα j u

m−k
αi

=

m∑
k=0

(−1)k
(m

k

)
ri s−1

i

(ri s−1
i )(m−k)(m−k−1)/2r (m−k)〈 j,i〉

s−(
1
2 m(m−1)〈i,i〉+k〈i, j〉+(m−k)〈 j,i〉)u◦(k)αi

◦ uα j ◦ u◦(m−k)
αi

= r
1
2 (m−m2)〈i,i〉

m∑
k=0

(−1)k
(m

k

)
ri s−1

i

(ri s−1
i )k(k−1)/2u◦(k)αi

◦ uα j ◦ u◦(m−k)
αi

.

The following result was proved for the nontwisted generic Ringel–Hall algebra
Hv(3) in [Ringel 1990b]:

m∑
k=0

(−1)k
(m

k

)
q i
(r i )k(k−1)/2u◦(k)αi

◦ uα j ◦ u◦(m−k)
αi

= 0.
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Once again, thanks to the existence of Hall polynomials, we can set rs−1
= q

and thus the result follows as desired. �

The next result was first proved by Reineke for the case of a finite-dimensional
complex simple Lie algebra g of type A, D or E in [Reineke 2001], and we show
that the result holds for all finite-dimensional complex simple Lie algebras g. The
proof is more or less the same as the one used in [Reineke 2001].

Theorem 2.6 (see also [Reineke 2001]). With the multiplication defined above,
Hr,s(3) is an associative Q(r, s)-algebra. In particular, the map

η : ei → αi

extends to a Q(r, s)-algebra isomorphism

η :U+r,s(g)→ Hr,s(3).

Proof. First, note that the quantum Serre relations of U+r,s(g) are preserved by the
map η. Thus the map η indeed defines an algebra homomorphism from the two-
parameter quantized enveloping algebra U+r,s(g) into the two-parameter Ringel–
Hall algebra Hr,s(3). It only remains to show that the map η is a bijection.

We first show that the map η is surjective by verifying that the algebra Hr,s(3)

is generated by the elements ui that correspond to the simple modules Si of the
algebra 3. Let uα be any element in Hr,s(3). Then we have

uα =
( m∏

i=1

1
[α(i)]!ε(ai )

)
uα(a1)

a1
· · · uα(am)

am
.

Now it suffices to prove that uα is generated by ui for any α corresponding to
an indecomposable module. We prove this claim by using induction. Note that
ζ(α, α)= 0. Thus, we have

uα = ud1
1 · · · u

dn
n −

∑
β 6=α

dimβ=dimα

s〈β,β〉uβ .

However, one sees that the dimension of the module uβ is less than that of the
module uα. Thus by induction on the dimension, we can reduce to the case where
dim(uα)= 1. In this case, the only possibility is that uα = ui for some i . Thus we
have proved the statement that every uα is generated by ui , which further implies
that the map η is a surjective map. We also note that the map η is a graded map.

Finally, we show that the map η is injective. Let B :=Q[r, s](r−1),s−1) denote the
localization of the polynomial ring Q[r, s] at the maximal ideal (r − 1, s− 1). Then
we know that B=Q[r, s](r−1,s−1) is a local ring with residue field Q and fractional
field Q(r, s). Let U+B denote the free B-algebra generated by the generators ei
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subject to the quantum Serre relations holding in U+r,s(g). Also let U+
Q
(g) denote

the universal enveloping algebra of n+ defined over the base field Q. Then we have

U+r,s(g)=Q(r, s)⊗B U+B and U+
Q
(g)=Q⊗B U+B .

For any β ∈ Nn , we have the following result via Nakayama’s lemma:

dimQ U+
Q
(g)β = dimQ(Q⊗B U+B ))β

≥ dimQ(r,s)(Q(r, s)⊗B U+B )β = dimQ(r,s) U+r,s(g)β

≥ dimQ(r,s) Hr,s(3)β .

Using [Ringel 1993, Corollary 2] and the PBW-theorem, we also have

dimQ U+
Q
(g)β = dimQ(r,s) Hr,s(3)β .

Thus we have proved that the map η is injective. Therefore, the map η is an
algebra isomorphism from U+r,s(g) onto Hr,s(3), as desired. �

Based on the previous theorem, the following corollary is in order:

Corollary 2.2. The algebra U+r,s(g) has a Q(r, s)-basis parameterized by the iso-
morphism classes of finite-dimensional representations of the algebra 3.

Theorem 2.7. All prime ideals of U+r,s(g) are completely prime under the condition
that the multiplicative group generated by r and s is torsion-free.

Proof. This follows since Ur,s(g) is isomorphic to Hr,s(3) as an algebra and since
all prime ideals of Hr,s(3) are completely prime under the condition. �

3. The extended two-parameter Ringel–Hall algebras Hr,s(3)

In the one-parameter quantum group case, the torus part was added to the Ringel–
Hall algebra for the purpose of realizing the Borel subalgebra U≥0

q (g) of the one-
parameter quantum group Uq(g). In the two-parameter case, we can do the same.
Here, we spell out the details. In particular, we will first define the extended
Ringel–Hall algebra Hr,s(3) by adding the torus part. Then we propose a Hopf
algebra structure on this extended two-parameter Ringel–Hall algebra Hr,s(3).
As an application, we will prove that U≥0

r,s (g) is isomorphic to the extended two-
parameter Ringel–Hall algebra Hr,s(3) as a Hopf algebra. The approach used here
is very similar to those in [Ringel 1996; Green 1995; Xiao 1997]. In addition, an
analogous result is obtained for the algebra U≤0

r,s (g). By patching them together
via the triangular decomposition of Ur,s(g), we derive a PBW-basis of Ur,s(g).
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3.1. Extended Ringel–Hall algebras Hr,s(3). To realize the Borel subalgebras
U≥0

r,s (g) and U≤0
r,s (g) of the two-parameter quantum group Ur,s(g), we need to en-

large the Ringel–Hall algebras Hr,s(3) defined in the previous section. We are
going to enlarge Hr,s(3) by adding the torus part to it. Namely, we will define
Hr,s(3) to be the free Q(r, s)-module with the basis

{kαuλ | α ∈ Z[I ], λ ∈ P}.

In addition, we are going to define an algebra structure for Hr,s(3) by

uαuβ =
∑

λ∈P s−〈α,β〉Fuλ
uα,uβ (rs−1)uλ for any α, β ∈ P,

kαuβ = r 〈β,α〉s−〈α,β〉uβkα for any α ∈ Z[I ], β ∈ P,

kαkβ = kβkα for any α, β ∈ Z[I ].

Lemma 3.1. For any elements x, y, z ∈ Z[I ] and α, β, γ ∈ P, we have

[(kx uα)(kyuβ)](kx uα)= (kx uα)[(kyuβ)(kzuγ )].

In particular, the multiplication defined in Hr,s(3) is associative.

Proof. First, we have

(uαuβ)uγ =
(∑
λ∈P

s−〈α,β〉gλαβuλ
)

uγ =
∑
λ′∈P

s−〈α,β〉−〈α+β,γ 〉gλ
′

αβγ uλ′,

uα(uβuγ )= uα
(∑
λ∈P

s−〈β,γ 〉gλβγ uλ
)
=

∑
λ′∈P

s−〈α,β+γ 〉−〈β,γ 〉gλ
′

αβγ uλ′ .

So we have just proved that (uαuβ)uγ = uα(uβuγ ). In addition, we have the
results

[(kx uα)(kyuβ)](kzuγ )= r−〈α,y〉−〈α+β,z〉s〈y,α〉+〈z,α+β〉kx+y+x uαuβuγ ,

(kx uα)[(kyuβ)(kzuγ )] = r−〈α,y+z〉−〈β,z〉s〈y+z,α〉+〈z,β〉kx+y+zuαuβuγ .

Also, we have (kx uα)[(kyuβ)(kzuγ )] = [(kx uα)(kyuβ)](kzuγ ), which further
implies that the multiplication is associative. �

Proposition 3.1. With the above defined multiplication, Hr,s(3) is an associative
Q(r, s)-algebra.

Proof. This follows directly from the previous lemma. �

Theorem 3.1. The map η extends to a Q(r, s)-algebra isomorphism from U≥0
r,s (g)

onto Hr,s(3) via the map η(wi )= ki and η(ei )= uαi .

Proof. The proof is straightforward. �

Corollary 3.1. The set B+ = {wαη−1(uλ) | α ∈ Z[I ], λ ∈ P} is a Q(r, s)-basis of
U≥0

r,s (g).
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3.2. A Hopf algebra structure on Hr,s(3). Now we are going to introduce a Hopf
algebra structure on the extended two-parameter Ringel–Hall algebra Hr,s(3).

Theorem 3.2. The algebra Hr,s(3) is a Hopf algebra with the Hopf algebra struc-
ture defined as follows.

(1) Multiplication:

uαuβ =
∑

λ∈P s−〈α,β〉gλαβuλ for any α, β ∈B,

kαuβ = r 〈β,α〉s−〈α,β〉uβkα for any α ∈ Z[I ], β ∈ P,

kαkβ = kβkα for any α, β ∈ Z[I ].

(2) Comultiplication:

1(uλ)=
∑

α,β∈P r 〈α,β〉(aαaβ/aλ)gλαβuαkβ ⊗ uβ for any λ ∈ P,

1(kα)= kα ⊗ kα for any α ∈ Z[I ].

(3) Counit: ε(uλ)= 0 for all λ 6= 0 and ε(kα)= 1 for any α ∈ P.

(4) Antipode:

σ(uλ)= δλ,0+
∑
m≥1

(−1)m

×

∑
π∈P,λ1,λ2,...,λm∈P1

(rs−1)
∑

i< j 〈λi ,λ j 〉
aλ1 · · · aλm

aλ
gλλ1···λm

gπλ1···λm
k−λuπ

for any element λ ∈ P and σ(kα)= k−α for any α ∈ Z[I ].

The proof of this theorem consists of two lemmas.

Lemma 3.2. The comultiplication 1 is an algebra endomorphism of Hr,s(3).

Proof. First, 1(kx ky) = 1(kx+y) = kx+y ⊗ kx+y . Thus, 1(kx ky) = 1(kx)1(ky).
To prove that 1 is an algebra homomorphism of Hr,s(3), it suffices to show that
1(uαuβ)=1(uα)1(uβ). Since

uα′uβ ′ =
∑
λ∈P

s−〈α
′,β ′〉gλα′β ′uλ,

we have

1(uα′uβ ′)=1
(∑
λ∈P

s−〈α,β〉gλα′β ′uλ
)

=

∑
λ∈P

s−〈α
′,β ′〉gλα′β ′1(uλ)

=

∑
λ,α,β∈P

s−〈α
′,β ′〉r 〈α,β〉gλα′β ′g

λ
αβ

aαaβ
aλ

uαkβ ⊗ uβ
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and

1(uα′)1(uβ ′)=
( ∑
ρ,σ∈P

r 〈ρ,σ 〉
aρaσ
aα′

gα
′

ρσuρkσ ⊗ uσ
)

×

( ∑
ρ′,σ ′∈P

r 〈ρ
′,σ ′〉 aρ′aaσ ′

aβ ′
gβ
′

ρ′σ ′uρ′kσ ′ ⊗ uσ ′
)

=

∑
ρ,σ,ρ′,σ ′∈P

r 〈ρ,σ 〉+〈ρ
′,σ ′〉 aρaσaρ′aσ ′

aα′aβ ′
× gα

′

ρσ gβ
′

ρ′σ ′uρkσuρ′kσ ′ ⊗ uσuσ ′

=

∑
ρ,σ,ρ′,σ ′∈P

r 〈ρ,σ 〉+〈ρ
′,σ ′〉+〈ρ′,σ 〉s−〈σ,ρ

′
〉−〈σ,σ ′〉−〈ρ,ρ′〉 aρaσaρ′aσ

aα′aβ ′

× gα
′

ρσ gβ
′

ρ′σ ′g
α
ρρ′g

β
σσ ′uαkβ ⊗ uβ .

Note that dim(uα)+ dim(uβ)= dim(uλ). Thus, we have

dim(uα)+ dim(uβ)= dim(uλ)= dim(uα′)+ dim(uβ ′)

and

dim(uρ)+ dim(uσ )= dim(uα′), dim(uρ′)+ dim(uσ ′)= dim(uβ ′);

dim(uρ)+ dim(uρ′)= dim(uα), dim(uσ )+ dim(uσ ′)= dim(uβ).

In addition, we have kβ = kσ kσ ′ . Thus we have

〈α, β〉 = 〈ρ, σ 〉+ 〈ρ, σ ′〉+ 〈ρ ′, σ 〉+ 〈σ, σ ′〉,

〈α′, β ′〉 = 〈ρ, ρ ′〉+ 〈ρ, σ ′〉+ 〈σ, ρ ′〉+ 〈σ, σ ′〉.

Therefore, we only need to show that∑
λ∈P

gλαβgλα′β ′
aαaβaα′aβ ′

aλ
=

∑
ρ,σ,ρ′,σ ′∈P

(rs−1)−〈ρ,σ
′
〉gσρρ′g

β
σσ ′g

α′

ρσ gβ
′

ρ′σ ′aρaσaρ′aσ ′,

but this is true according to Green’s formula. �

Lemma 3.3. For any λ ∈ P, we have

µ(σ ⊗ 1)1(uλ)= δλ0 and µ(1⊗ σ)1(uλ)= δλ0.

Proof. First of all, we have

1(uλ)=
∑

λ′,λm+1∈P

aλ′aλm+1

aλ
gλλ′λm+1

uλ′kλm+1 ⊗ uλm+1 .

Thus we further have

µ(σ ⊗ 1)1(uλ)=
∑

λ′,λm+1∈P

r 〈λ
′,λm+1〉

aλ′aλm+1

aλ
gλλ′λm+1

k−λm+1σ(uλ′)uλm+1 .
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To prove the first identity, it suffices to prove that

σ(uλ)= δλ0−
∑

λ′∈P,λm+1∈P1

r 〈λ
′,λm+1〉

aλ′aλm+1

aλ
gλλ′λm+1

k−λm+1σ(uλ′)uλm+1 .

Since we have

σ(uλ′)= δλ′0−
∑
m≥1

(−1)m
∑

π ′∈P,λ1,...,λm∈P1

(rs−1)
∑

i< j 〈λi ,λ j 〉
aλ1 · · · aλm

aλ′

× gλ
′

λ1···λm
gπ
′

λ1···λm
k−λ′uπ ′,

we will have the result

σ(uλ)= δλ0− k−λuλ−
∑

λ′,λm+1∈P1

r 〈λ
′,λm+1〉

aλ′aλm+1

aλ
gλλ′λm+1

k−λm+1

×

∑
m≥1

(−1)m
∑
π ′∈P,

λ1,...,λm∈P1

(rs−1)
∑

i< j 〈λi ,λ j 〉
aλ1 · · · aλm

aλ′

gλ
′

λ1···λm
gπ
′

λ1...,λm
× k−λ′uπ ′uλm+1

= δλ0− k−λuλ−
∑
m≥1

(−1)m
∑
π ′∈P

λ′,λ1,...,λm∈P1

(rs−1)
∑

k< j 〈λi ,λ j 〉r 〈λ
′,λm+1〉

×
aλ1···aλm

aλm+1

λ
gλ
′

λ1···λm
gπ
′

λ′λkλm+1k−λ′
∑
π∈P

s〈π
′,λm+1〉gππ ′λm+1

uπ

= δλ0−
∑
m≥1

(−1)m
∑
π∈P

λ1,...,λm∈P1

aλ1 · · · aλm aλm+1

aλ
gλλ1···λmλm+1

k−λuπ .

Since gλα1···αi
6= 0 implies dim uλ = dim uα1 + · · · dim uλi , we may assume that

dim(uλ′)= dim(uλ1)+ · · ·+ dim(uλm ),

dim(uπ ′)= dim(uλ1)+ · · ·+ dim(uλm ),

dim(uλ′)+ dim(uλm+1)= dim(uλ),

dim(uπ ′)+ dim(uλm+1)= dim(uπ ).

Therefore, we have the result

σ(uλ)= δλ0− k−λuλ+
∑
m≥2

(−1)m

∑
π∈P

λ1,...,λm∈P1

(rs−1)
∑

i< j 〈λi ,λ j 〉
aλ1 · · · aλm

aλ
gλλ1···λm

gπλ1···λm
k−λuπ

= δλ0+
∑
m≥1

(−1)m
∑
π∈P

λ1,...,λm∈P1

(rs−1)
∑

i< j 〈λi ,λ j 〉
aλ1 · · · aλm

aλ
× gλλ1···λm

gπλ1···λm
k−λuπ .

So we have proved the statement by the definition of σ . Similarly, we can verify
that µ(1⊗ σ)1(uλ)= δλ0. �
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Remark 3.1. The proofs of the two lemmas above are slightly modified versions
of those in [Xiao 1997].

3.3. A Hopf algebra isomorphism from U≥0
r,s (g) onto Hr,s(3). Here we prove

that the Borel subalgebras U≥0
r,s (g) and U≤0

r,s (g) of the two-parameter quantum
group Ur,s(g) can be realized as the extended two-parameter Ringel–Hall algebras
Hr,s(3) and Hs−1,r−1(3) as Hopf algebras. As a result, we shall derive a PBW-
basis for the algebra Ur,s(g).

Theorem 3.3. We have

U≥0
r,s (g)

∼= Hr,s(3) and U≤0
r,s (g)

∼= Hs−1,r−1(3)

as Hopf algebras.

Proof. Let us define a map φ : U≥0
r,s (g)→ Hr,s(3) by setting φ(Ei ) = uSi and

φ(wi ) = ki . Then it is easy to verify that φ is a bijection and respects the Hopf
algebra structures. Thus it is a Hopf algebra isomorphism. Similarly, we can prove
that U≤0

r,s (g) is isomorphic to Hs−1,r−1(3) as a Hopf algebra. �

Let B− be the basis constructed for U≤0
r,s (g) via the algebra Hs−1,r−1(3); then

we have the following:

Corollary 3.2. The set B+∪B− is a Q(r, s)-basis for the two-parameter quantum
groups Ur,s(g).
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