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We investigate holomorphic Segre-preserving maps sending the complexi-
fication M of a generic real analytic submanifold M ⊆ CN of finite type at
some point p into the complexification M′ of a generic real analytic sub-
manifold M ′ ⊆ CN ′ that is finitely nondegenerate at some point p′. We
prove that for a fixed M and M ′, the germs at ( p, p) of Segre submersive
holomorphic Segre-preserving maps sending (M, ( p, p)) into (M′, ( p′, p′))
rationally depend upon their K -jets at ( p, p), for some fixed K depending
only on M and M ′, and these maps are uniquely determined by their K -
jets. If, in addition, M and M ′ are algebraic, we prove that any such map
must be algebraic. It follows that the set of germs at ( p, p) of holomorphic
Segre-preserving automorphisms of the complexification M of a generic real
analytic submanifold M that is finitely nondegenerate and of finite type at
p is an algebraic complex Lie group. We explore the relationship between
this automorphism group and the group of automorphisms of M at p.

1. Introduction

Let M ⊆CN be a real analytic submanifold of codimension d, defined locally near
p ∈ M by the real-valued real analytic function ρ(Z , Z). The complexification M

of M is a holomorphic submanifold of C2N given locally for (Z , ζ )∈CN
×CN near

(p, p) by M = {(Z , ζ ) : ρ(Z , ζ ) = 0}. Assume M is generic (see Section 2), and
let M ′⊆CN ′ be a generic real analytic submanifold of codimension d ′, let p′ ∈M ′,
and let M′ denote its complexification. Let U ⊆CN be an open neighborhood of p,
and define ∗U := {Z : Z ∈U }. Consider a holomorphic map H : (U×∗U, (p, p))→
(C2N ′, (p′, p′)) of the form

(1-1) H(Z , ζ )= (H(Z), H̃(ζ )),

where H : U → CN ′ and H̃ : ∗U → CN ′ . Assume that H (M∩ (U × ∗U )) ⊆ M′.
These maps will be the chief object of study in this paper. We will call such a map
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a holomorphic Segre-preserving map (HSPM) since it preserves Segre varieties in
a sense that will be made precise in Section 2. With the notation ϕ(z) := ϕ(z),
we observe that if H̃ = H , then H is a holomorphic map defined on U sending
(M ∩U, p) into (M ′, p′). Such maps have been extensively studied. However,
HSPMs are relatively new; see [Zhang 2007; Angle 2008a; 2008b] for related
recent work. Under certain restrictions, the collection of germs of HSPMs sending
(M, (p, p)) into (M′, (p′, p′)) is, in a manner to be detailed in subsequent sections,
“bigger” than the collection of germs of holomorphic mappings sending (M, p)
into (M ′, p′). We shall see several examples of this in Section 5.

For p0 ∈ Cm , let Tp0(C
m) denote the holomorphic tangent space of Cm at p0.

Let T0
(p,p)M⊆ T(p,p)(C

2N ) denote the set of all vectors of the form

N∑
j=1

a j
∂
∂Z j
+

N∑
j=1

b j
∂
∂ζ j

such that
N∑

j=1

a j
∂
∂Z j

and
N∑

j=1

b j
∂

∂Z j

are tangent to M at p. A vector of the form
∑N

j=1a j (∂/∂Z j ) tangent to M at p is
known as a holomorphic tangent vector, and a vector of the form

∑N
j=1b j (∂/∂Z j )

tangent to M at p is known as an antiholomorphic tangent vector. For any germ
at (p, p) of an HSPM H sending (M, (p, p)) into (M′, (p′, p′)), we have

D(p,p)H(T
0
(p,p)M)⊆ T0

(p′,p′)M
′,

where we define

D(p,p)H : T(p,p)(C
2N )→ T(p′,p′)(C

2N ′) by (D(p,p)H(L))(ϕ)= L(ϕ ◦H)

for any germ at (p′, p′) of a holomorphic function ϕ : C2N ′
→ C. We say that H

is Segre submersive at (p, p) if

D(p,p)H(T
0
(p,p)M)= T0

(p′,p′)M
′.

This definition is independent of choice of coordinates for M and M ′.
Given M and M ′ satisfying certain geometric conditions, our main result is

Theorem 1.1, which states that the germs at (p, p) of HSPMs that are Segre sub-
mersive at (p, p) and send (M, (p, p)) into (M′, (p′, p′)) rationally depend upon
their K -jets, for some fixed K depending only on M and M ′. This result was
motivated by, and is a generalization of, results due to Baouendi, Ebenfelt, and
Rothschild [1999a] and Baouendi, Rothschild, and Zaitsev [2001]. We also men-
tion a recent paper of Lamel and Mir [2007] for related results. Before stating
Theorem 1.1, we present some more notation. Let J K (CN ,CN ′)(p,p′) denote the
set of K -jets at p of germs of holomorphic maps from (CN , p) into (CN ′, p′). (In
this paper, we assume that J K (CN ,CN ′)(p,p′) includes only derivatives of positive
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order.) Let j K
p represent the corresponding K -jet map defined on the set of germs

at p of holomorphic mappings given by

j K
p φ =

(
∂ |α|φ
∂Zα

(p)
)

1≤|α|≤K
.

Theorem 1.1. Let M ⊆ CN be real analytic, generic, and of finite type at p. Let
M ′ ⊆ CN ′ be real analytic, generic, and finitely nondegenerate at p′. Assume that
M is of codimension d, that M ′ is of codimension d ′, and that N − d ≥ N ′ − d ′.
Then there exist positive integers

K ≥ 1 and 1≤ r ≤
(

N − d
N ′− d ′

)2

,

depending only on M and M ′, and CN ′-valued holomorphic functions 81, . . . , 8r

defined on an open subset of CN
× J K (CN ,CN ′)(p,p′)× J K (CN ,CN ′)(p,p′) of the

form

(1-2) 8l(Z ,3, 0)=
∑
γ

P l
γ (3, 0)

Ql
1(3)

sl
γ Ql

2(0)
t l
γ
(Z − p)γ ,

where sl
γ and t l

γ are nonnegative integers, P l
γ are CN ′-valued polynomials, and Ql

1
and Ql

2 are C-valued polynomials with real coefficients, such that the following
holds. Let H(Z , ζ ) = (H(Z), H̃(ζ )) be a germ at (p, p) of an HSPM sending
(M, (p, p)) into (M′, (p′, p′)) such that H is Segre submersive at (p, p). Then
there exists l, with 1≤ l ≤ r , such that

H(Z)=8l(Z , j K
p (H), j K

p (H̃)),(1-3)

H̃(ζ )=8l(ζ, j K
p (H̃), j K

p (H)),(1-4)

for (Z , ζ ) sufficiently close to (p, p). Furthermore, for any

(30, 00) ∈ J K (CN ,CN ′)(p,p′)× J K (CN ,CN ′)(p,p′)

such that Ql
1(30) 6= 0 and Ql

2(00) 6= 0, the map 8l is holomorphic in a neighbor-
hood of (p,30, 00).

The appearance of 8l in (1-4) is interesting and will be instrumental in the
proof of Corollary 1.4. See Section 2 for precise definitions of finite type and finite
nondegeneracy.
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Define

Aut(M, p) :=
{

H : (CN , p)→ (CN , p)
∣∣H is a germ at p of a holomorphic map,

H is invertible at p, and H(M)⊆ M
}
,

AutC(M, (p, p)) :=
{
H : (C2N , (p, p))→ (C2N , (p, p))

∣∣H is a germ at (p, p)

of an HSPM,H is invertible at (p, p), and H(M)⊆M
}
.

We call Aut(M, p) the group of automorphisms of M at p, and AutC(M, (p, p))
the group of holomorphic Segre-preserving automorphisms of M at (p, p). Let
J K

p (C
N ) := J K (CN ,CN )(p,p) be a simplification of notation, define G K

p (C
N ) to

be the set of all elements of J K
p (C

N ) that correspond to invertible mappings at p,
and define a jet map ηK

(p,p) on the set of germs at (p, p) of HSPMs such that for
H= (H, H̃), ηK

(p,p)(H) := ( j K
p H, j K

p H̃). Noting that M = M ′ implies that r = 1
in Theorem 1.1, we have the following corollary.

Corollary 1.2. Let M ⊆ CN be a generic real analytic submanifold of finite type
at p and finitely nondegenerate at p. Then there exists an integer K depending
only on M such that ηK

(p,p) restricted to AutC(M, (p, p)) is a homeomorphism onto
a closed, holomorphic algebraic submanifold (Lie group) of G K

p (C
N )×G K

p (C
N ).

Remark 1.3. One consequence of Corollary 1.2 is that j K
p restricted to Aut(M, p)

is a homeomorphism onto a closed, real algebraic submanifold (Lie group) of
G K

p (C
N ). This fact has already been proven in previous work. For M a hyper-

surface, Baouendi, Ebenfelt, and Rothschild [1997] showed that j K
p (Aut(M, p))

is a closed, real analytic submanifold (Lie group) of G K
p (C

N ). However, they did
not show that it is also real algebraic. In [1999a], they proved this fact for M a
submanifold of any codimension.

Since j K
p (Aut(M, p)) is a real algebraic submanifold, it is natural to consider

its complexification as a holomorphic submanifold of G K
p (C

N )× G K
p (C

N ). We
will denote this complexification C{ j K

p (Aut(M, p))}. What is the relationship
between C{ j K

p (Aut(M, p))} and ηK
(p,p)(AutC(M, (p, p)))? The following corol-

lary of Theorem 1.1 says that the former is always contained in the latter, and
they are necessarily of the same dimension. In Section 5 we will give examples
demonstrating both equality and strict containment.

Corollary 1.4. Let M and K be as in Corollary 1.2. Let B⊆ G K
p (C

N )×G K
p (C

N )

denote the connected component of C{ j K
p (Aut(M, p))} containing (Id, Id′), where

Id (respectively, Id′) is the point in G K
p (C

N ) (respectively, G K
p (C

N )) correspond-
ing to the identity map on CN . Let C⊆G K

p (C
N )×G K

p (C
N ) denote the connected

component of ηK
(p,p)(AutC(M, (p, p))) that contains (Id, Id′). Then

(i) C{ j K
p (Aut(M, p))} ⊆ ηK

(p,p)(AutC(M, (p, p))),
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(ii) B= C, and

(iii) ηK
(p,p)(AutC(M, (p, p))) and C{ j K

p (Aut(M, p))} are made up of finitely many
disjoint cosets of B.

The following application of Theorem 1.1 states that Segre submersive HSPMs
sending (M, (p, p)) into (M′, (p′, p′)) are uniquely determined by a finite number
of derivatives.

Theorem 1.5. Let M and M ′ be as defined in Theorem 1.1. Then there exists
an integer K , depending only on M and M ′, such that the following holds. Let
H1(Z , ζ ) = (H1(Z), H̃ 1(ζ )) and H2(Z , ζ ) = (H2(Z), H̃ 2(ζ )) be germs at (p, p)
of HSPMs sending (M, (p, p)) into (M′, (p′, p′)) such that H1 and H2 are Segre
submersive at (p, p). If

j K
p (H1)= j K

p (H2) and j K
p (H̃ 1)= j K

p (H̃ 2),

then H1(Z , ζ )≡H2(Z , ζ ).

One of the strengths of Theorem 1.1 lies in the fact that the form of 8l leads
to Corollaries 1.2 and 1.4. These maps, however, depend upon the jets of both H
and H̃ . In Theorem 1.6, we see that it is in fact possible to find functions that
express H entirely in terms of the L-jets of H (or of H̃ ) for some L .

Theorem 1.6. Let M and M ′ be as in Theorem 1.1. Then there exist positive
integers r and L , depending only on M and M ′, and C2N ′-valued holomorphic
functions 81

1, . . . , 8
1
r defined on an open subset of C2N

× J L(CN ,CN ′)(p,p′) and
82

1, . . . , 8
2
r defined on an open subset of C2N

× J L(CN ,CN ′)(p,p′) such that the
following holds. Let H(Z , ζ ) = (H(Z), H̃(ζ )) be a germ at (p, p) of an HSPM
sending (M, (p, p)) into (M′, (p′, p′)) such that H is Segre submersive at (p, p).
Then there exist 1≤ l1, l2 ≤ r such that

H(Z , ζ )=81
l1
(Z , ζ, j L

p (H)),

H(Z , ζ )=82
l2
(Z , ζ, j L

p (H̃))

for (Z , ζ ) sufficiently close to (p, p).

The following example shows that Theorem 1.6 does not necessarily hold if M ′

is finitely degenerate at p′.

Example 1.7. Let M =M ′⊆C2 be given by M = {Imw= |z|4} and its complexi-
fication by M= {w−τ = 2i z2χ2

}, where (z, w) and (χ, τ ) are coordinates on C2.
We note that M is of finite type but finitely degenerate at 0. Let H(z, w)= (z, w).
We can find two distinct maps H̃ 1(χ, τ ) and H̃ 2(χ, τ ) such that H1 = (H, H̃ 1)

and H2 = (H, H̃ 2) both send (M, 0) into (M′, 0) and are Segre submersive at 0.
Indeed, let H̃ 1(χ, τ )= (χ, τ ) and let H̃ 2(χ, τ )= (−χ, τ).
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Finally, we present a result on algebraicity. Recall that a real analytic mapping is
said to be real analytic algebraic if all of its components are real analytic algebraic,
and a real analytic submanifold is said to be real algebraic if it can be given by
real analytic algebraic defining functions; similarly a holomorphic map is said to
be holomorphic algebraic if all of its components are holomorphic algebraic, and
a holomorphic submanifold is said to be holomorphic algebraic if it can be given
by holomorphic algebraic defining functions.

Theorem 1.8. Let M and M ′ be as in Theorem 1.1, and assume that M and M ′

are real algebraic. Then any germ at (p′, p′) of an HSPM sending (M, (p, p)) into
(M′, (p′, p′)) that is Segre submersive at (p, p) is holomorphic algebraic.

The layout of this paper is as follows. In Section 2, we present some additional
background material. Section 3 contains the reformulations and proofs of three of
the main results as given in Section 1, while Section 4 is dedicated to proving the
main results of Section 1. Section 5 consists of several examples of HSPMs and
automorphism groups. In particular, examples demonstrating both equality and
nonequality of C{ j K

p (Aut(M, p))} and ηK
(p,p)(AutC(M, (p, p))) are provided. See

[Angle 2008b] for additional examples.

2. Additional background

Let M ⊆ CN be a real analytic submanifold of codimension d . Recall that this
means that given any p ∈M , there exists a real vector-valued real analytic function
ρ= (ρ1, . . . , ρd) defined in a neighborhood of p, satisfying dρ1∧· · ·∧dρd 6=0 at p,
such that M is given locally near p by the vanishing of ρ. We refer to ρ as the local
defining function for M near p. If, in addition, near any p ∈M , there exists a local
defining function ρ satisfying the stronger condition ∂Zρ1 ∧ · · · ∧ ∂Zρd 6= 0 at p,
then we say that M is generic. If M is generic, it can be shown (see for example
[Baouendi et al. 1999b]) that there exists a holomorphic change of coordinates
Z = (z, w) ∈ CN−d

×Cd vanishing at p and an open neighborhood � of 0 such
that in these coordinates M is locally given by {(z, w)∈� :w=Q(z, z, w)}, where
Q(z, χ, τ )= (Q1(z, χ, τ ), . . . , Qd(z, χ, τ )) is a Cd -valued holomorphic function
defined near 0 in CN−d

×CN−d
×Cd and satisfying Q(0, χ, τ )≡ Q(z, 0, τ )≡ τ .

Such coordinates are called normal coordinates.
A vector field of the form

∑N
j=1 a j (Z , Z)(∂/∂Z j ) tangent to M near p, where

the a j are smooth functions on M , is called a CR vector field. We say that M is
of finite type at p (in the sense of [Kohn 1972] and [Bloom and Graham 1977])
if the CR vector fields, their complex conjugates, and all repeated commutators
of these vector fields span the complexified tangent space of M at p. Letting
(ρ j )Z := (∂ρ j/∂Z1, . . . , ∂ρ j/∂Z N ) and Lα := Lα1

1 · · · L
αm
m , where α= (α1, . . . , αm)

and L1, . . . , Lm is a basis for the CR vector fields of M near p, we say that M is
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finitely nondegenerate at p if there exists a nonnegative integer K such that

(2-1) span{Lα(ρ j )Z (p) : |α| ≤ K , 1≤ j ≤ d} = CN .

We say that M is k-nondegenerate at p if k is the smallest K for which (2-1)
holds. It is not difficult to show that if M is given in normal coordinates by w =
Q(z, z, w), then M is k-nondegenerate at 0 if and only if the matrix whose rows
are (Q j

zlχα
(0, 0, 0))1≤l≤N−d for |α| ≤ K and 1≤ j ≤ d has rank N − d for K ≥ k

and rank less than N − d for K < k.
Let M ⊆ CN be the generic real analytic submanifold {Z ∈ � : ρ(Z , Z) = 0},

where � is a nonempty open subset of CN , ρ(Z , ζ ) is holomorphic on �× ∗�,
and ∂Zρ(Z , ζ ) 6= 0 for all (Z , ζ ) ∈ �× ∗�. The complexification of M is then
given by M = {(Z , ζ ) ∈ �× ∗� : ρ(Z , ζ ) = 0}. Given any (Z , ζ ) ∈ �× ∗�, we
define the Segre varieties of M by

6Z := {ζ ∈
∗� : ρ(Z , ζ )= 0} and 6̂ζ := {Z ∈� : ρ(Z , ζ )= 0}.

Segre varieties are named for the Italian geometer Beniamino Segre who introduced
them [1931]. We note here that M is sometimes referred to as the Segre family
associated with M ; see [Chern 1975; Faran 1980], for example.

Now let M ′ ⊆ Cn+1 be the generic real analytic submanifold given by M ′ =
{(Z ′ ∈�′ :ρ ′(Z ′, Z ′)=0}, where�′ is a nonempty open subset of Cn+1, ρ ′(Z ′, ζ ′)
is holomorphic on �′ × ∗�′, and ∂Z ′ρ

′(Z ′, ζ ′) 6= 0 for all (Z ′, ζ ′) ∈ �′ × ∗�′.
Denote the complexification of M ′ by M′ and its Segre varieties by 6′Z ′ and 6̂′ζ ′ .
Let p ∈ M and p′ ∈ M ′, and let ψ : � × ∗� → C2n+2 be a holomorphic map
sending (M, (p, p)) into (M′, (p′, p′)). Furthermore, we will assume that for any
(Z , ζ ) ∈M, there exists (Z ′, ζ ′) ∈M′ such that

ψ({Z}×6Z )⊆ {Z ′}×6′Z ′,(2-2)

ψ(6̂ζ ×{ζ })⊆ 6̂
′

ζ ′ ×{ζ
′
}.(2-3)

Proposition 2.1. The map ψ , when restricted to M, is an HSPM of the form (1-1).

Faran [1980] proved this for hypersurfaces, but it also holds in higher codimension.

Proof. We show it is true in a neighborhood of (Z , ζ ) = (Z0, ζ0) ∈ M. Write
ψ(Z , ζ ) = (φ1(Z , ζ ), φ2(Z , ζ )), where φ1 and φ2 are CN ′-valued holomorphic
functions, and write ζ0 = (ζ

′

0, ζ
′′

0 ) ∈ CN−d
× Cd . As M is generic, the implicit

function theorem implies that (after a possible rearrangement of coordinates) there
exists a Cd -valued holomorphic function θ , satisfying θ(Z0, ζ

′

0) = ζ
′′

0 , such that
(Z , ζ ′0, θ(Z , ζ

′

0)) ∈M for any Z sufficiently close to Z0. For any Z near Z0, define
H(Z) := φ1(Z , ζ ′0, θ(Z , ζ

′

0)). We claim that H(Z) = φ1(Z , ζ ) on M. This is
because (2-2) implies that φ1(p0, ζ ) is constant for all ζ ∈ 6p0 for any p0. A
similar argument applies to φ2. �
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3. Reformulations

In this section, we will assume unless said otherwise that M⊆Cm+d and M ′⊆Cn+e

are real analytic generic submanifolds of codimensions d and e, respectively. We
will additionally assume that there are open neighborhoods 0 ∈ U ⊆ Cm+d and
0 ∈U ′ ⊆ Cn+e such that M is given by

M = {(z, w) ∈U : w = Q(z, z, w)},

where Z = (z, w) are normal coordinates, and M ′ is given by

M ′ = {(z′, w′) ∈U ′ : w′ = Q′(z′, z′, w′)},

where Z ′ = (z′, w′) are normal coordinates. We also assume that ρ(z, w, χ, τ ) :=
w − Q(z, χ, τ ) is holomorphic on U × ∗U and ∂Zρ(z, w, χ, τ ) is nonvanishing
on U × ∗U . Similarly, we assume that ρ ′(z′, w′, χ ′, τ ′) := w′ − Q′(z′, χ ′, τ ′) is
holomorphic on U ′×∗U ′ and ∂Z ′ρ

′(z′, w′, χ ′, τ ′) is nonvanishing on U ′×∗U ′. So
the complexifications M and M′ of M and M ′ are respectively given by

M= {(z, w, χ, τ ) ∈U × ∗U : w = Q(z, χ, τ )}

and
M′ = {(z′, w′, χ ′, τ ′) ∈U ′× ∗U ′ : w′ = Q′(z′, χ ′, τ ′)},

where ζ = (χ, τ )∈Cm
×Cd and ζ ′= (χ ′, τ ′)∈Cn

×Ce. Unless otherwise specified,
we will assume any (germ of an) HSPM H sends (M, 0) into (M′, 0) and is given
in the form

(3-1) H(Z , ζ )= (H(Z), H̃(ζ ))= ( f (Z), g(Z), f̃ (ζ ), g̃(ζ )),

where f = ( f 1, . . . , f n) and f̃ = ( f̃ 1, . . . , f̃ n) are Cn-valued holomorphic func-
tions, g = (g1, . . . , ge) and g̃ = (g̃1, . . . , g̃e) are Ce-valued holomorphic func-
tions, and we write z = (z1, . . . , zm), w = (w1, . . . , wd), z′ = (z′1, . . . , z′n), and
w′ = (w′1, . . . , w

′
e), and similarly for χ , τ , χ ′, and τ ′.

Reformulation of Theorem 1.1. We begin with a technical definition.

Definition 3.1. Let M ⊆ Cm+d be of codimension d and M ′ ⊆ Cn+e be of codi-
mension e, and assume m≥ n. Let H be an HSPM. Let µ= (µ1, . . . , µn) for some
1≤µ1 < · · ·<µn ≤m and ν = (ν1, . . . , νn) for some 1≤ ν1 < · · ·< νn ≤m, and
assume that

det
(
∂ f k

∂zµl

(0)
)

1≤k,l≤n
6= 0 and det

(
∂ f̃ k

∂χνl

(0)
)

1≤k,l≤n
6= 0.

Then we say that the map H satisfies condition Dµν .
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Any given H may satisfy condition Dµν for several different µ and ν, as the
following example illustrates.

Example 3.2. Let M ⊆ C4 and M ′ ⊆ C3 be given by

M = {Imw = |z1|
2
+ 2 Re(z3z1− z3z2)− |z2|

2
},

M ′ = {Imw′ = |z′1|
2
+ |z′2|

2
}.

Note that M is of finite type at 0, and M ′ is finitely nondegenerate at 0. Let H be
given by H(z, w, χ, τ )= (z1+z3, z1−z2, w, χ1−χ2, χ2+χ3, τ ). Then H satisfies
condition Dµν for any permissible µ and ν. That is, µ can be any one of (1, 2),
(1, 3), or (2, 3), as can ν.

Our main theorem, from which Theorem 1.1 follows, is Theorem 3.3. Before
we present it, we introduce some notation. Given an HSPM H, we can write

j K
0 H = (( f j

zl
(0))1≤l≤m,1≤ j≤n, ( j K

0 )
′H),

where ( j K
0 )
′H represents the remaining derivatives of H at 0. Given any 3 in

J K
0 (C

m+d , Cn+e)(0,0), we will then write

(3-2) 3= ((3 j,l)1≤l≤m,1≤ j≤n,3
′),

where ( j K
0 H) j,l is exactly f j

zl (0). We define a similar decomposition for j K
0 H̃ .

Theorem 3.3. Let M ⊆ Cm+d be of codimension d and of finite type at 0. Let
M ′⊆Cn+e be of codimension e and k-nondegenerate at 0. Then there exists a pos-
itive integer K depending only on M and M ′ such that for each α = (α1, . . . , αn)

with 1≤α1< · · ·<αn≤m and each β= (β1, . . . , βn) with 1≤ β1 < · · ·< βn ≤ m,
there exists a Cn+e-valued holomorphic function defined on an open subset of
Cm+d

× J K (Cm+d ,Cn+e)(0,0)× J K (Cm+d ,Cn+e)(0,0) of the form

(3-3) 8α,β(Z ,3, 0)=
∑
γ

Rα,βγ (3, 0)

(det(3r,α j )1≤r, j≤n)sαβγ (det(0r,β j )1≤r, j≤n)tαβγ
Zγ ,

where Rα,βγ are Cn+e-valued polynomials and sαβγ and tαβγ are nonnegative inte-
gers, such that if H(Z , ζ ) = (H(Z), H̃(ζ )) is a germ at 0 of an HSPM satisfying
condition Dµν , then

H(Z)=8µ,ν(Z , j K
0 (H), j K

0 (H̃)),(3-4)

H̃(ζ )=8ν,µ(ζ, j K
0 (H̃), j K

0 (H)),(3-5)

for (Z , ζ ) sufficiently close to 0. Furthermore, for any (30, 00) such that

det(3r,α j
0 )1≤r, j≤n 6= 0 and det(0r,β j

0 )1≤r, j≤n 6= 0,

the function 8α,β is holomorphic in a neighborhood of (0,30, 00).



292 R. BLAIR ANGLE

Remark 3.4. It is implicit in the hypotheses of Theorem 3.3 that m ≥ n. However,
if we assume that m < n, even if the matrices ( fz(0)) := ( f j

zl (0))1≤l≤m,1≤ j≤n and
( f̃χ (0)) := ( f̃ j

χl (0))1≤l≤m,1≤ j≤n have maximal rank, the theorem will not hold. Let
M ⊆C4 be defined by M ={Imw1=|z1|

2, Imw2=|z2|
2
}. Let M ′⊆C4 be defined

by M ′ = {Imw′ = |z′1|
2
+ |z′2|

2
+ |z′3|

2
}. Then M is of finite type at 0, and M ′ is

1-nondegenerate at 0. For any positive integer r , define

Hr (z, w, χ, τ )

=
(
z1, z2, w1, w1+w2, χ1−2iχ1τ1−2iχ1τ

r
1 , χ2, τ

r
1+τ1, τ1+τ2−2iτ 2

1 −2iτ r+1
1

)
.

Observe that Hr is an HSPM sending (M, 0) into (M′, 0) and is a biholomorphism
near 0.

The proof of Theorem 3.3 will be based on arguments from [Baouendi et al.
1999a; 2001]. Before proving the theorem, we first introduce a few lemmas.

Lemma 3.5. Let H(Z , ζ ) = (H(Z), H̃(ζ )) be an HSPM that sends (M, 0) into
(M′, 0). Then H′(Z , ζ )= (H̃(Z), H(ζ )) is an HSPM sending (M, 0) into (M′, 0).

Proof. Let ρ= (ρ1, . . . , ρd) be a defining function for M , and let ρ ′= (ρ ′1, . . . , ρ
′
e)

be a defining function for M ′. For j = 1, . . . , e and k = 1, . . . , d, there exist
holomorphic functions a j

k such that

ρ ′j (H(Z), H̃(ζ ))=
d∑

k=1

a j
k (Z , ζ )ρk(Z , ζ ) implies(3-6)

ρ ′j (H̃(ζ ), H(Z))=
d∑

k=1

a j
k (Z , ζ )ρk(Z , ζ ) implies(3-7)

ρ ′j (H̃(Z), H(ζ ))=
d∑

k=1

a j
k (ζ, Z)ρk(ζ, Z)=

d∑
k=1

a j
k (ζ, Z)ρk(Z , ζ ).(3-8)

Equations (3-7) and (3-8) follow from the reality of the ρ j . �

The following notation will be used in Lemmas 3.6, 3.7, and 3.10. Let M , M ′,
and H be as in Theorem 3.3. We will write j K

Z H = (( j K
Z )
′′H, (gzα (Z))|α|≤K ),

where the remaining derivatives of H at Z are represented by ( j K
Z )
′′H . Given any

3 ∈ J K
Z (C

m+d ,Cn+e)(Z ,H(Z)), we will also write

(3-9) 3= (31,32),

where ( j K
Z H)2 is exactly (gzα (Z))|α|≤K . We do a similar decomposition for j K

ζ H̃ .

Lemma 3.6. Let M and M ′ be as in Theorem 3.3. Then for any β = (β1, . . . , βn)

and α = (α1, . . . , αn), with 1 ≤ α1 < · · · < αn ≤ m, there exists a Ce-valued
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holomorphic function φαβ defined on an open subset of CKβ × Cm+d
× Cm+d , for

some integer Kβ , of the form

(3-10) φαβ (3, Z , ζ )=
∑
γ,δ,κ

Pα,βγ,δ,κ(31)

(det(3 j,αl )1≤ j,l≤n)tαβγ δκ
Zγ ζ δ3κ2,

where tαβγ δκ are nonnegative integers, Pα,βγ,δ,κ are Ce-valued polynomials, and φαβ
identically vanishes whenever ζ = 0 and 32 = 0, such that if H is a germ at 0 of
an HSPM satisfying condition Dµν , then for (Z , ζ ) ∈M sufficiently close to 0,

Q′z′β ( f (Z), f̃ (ζ ), g̃(ζ ))= φµβ ( j |β|Z (H), Z , ζ ),(3-11)

Q′χ ′β ( f̃ (ζ ), f (Z), g(Z))= φνβ( j |β|ζ (H̃), ζ, Z).(3-12)

Also φαβ is holomorphic near (30, 0, 0) for any30 such that det(3 j,αl
0 )1≤ j,l≤n 6= 0.

Proof. For j = 1, . . . ,m,

(3-13) L j =
∂
∂z j
+

d∑
r=1

Qr
z j
(z, χ, τ ) ∂

∂wr

are vector fields tangent to M. Let ẑ := (zµ1, . . . , zµn ). Applying Lµ1, . . . , Lµn to

(3-14) g(z, w)= Q′
(

f (z, w), H̃(χ, τ )
)

we get (in matrix notation)

(3-15) gẑ(z, w)+ Q ẑ(z, χ, τ )gw(z, w)

= ( f ẑ(z, w)+ Q ẑ(z, χ, τ ) fw(z, w))Q′z′( f (z, w), H̃(χ, τ ))

for all (z, w, χ, τ ) ∈ M. By assumption, ( f ẑ(0)) is invertible, so we have near
(z, w, χ, τ )= (0, 0, 0, 0),

(3-16) Q′z′( f (z, w), H̃(χ, τ ))

= ( f ẑ(z, w)+ Q ẑ(z, χ, τ ) fw(z, w))−1(gẑ(z, w)+ Q ẑ(z, χ, τ )gw(z, w)).

We claim that the right hand side of (3-16) can be written in the form

(3-17)
∑
γ,δ

pµγ,δ( j1
Z (H))

(det( f ẑ(Z)))sµγ δ
Zγ ζ δ,

where each pµγ,δ is an n × e polynomial matrix and each sµγ δ is a nonnegative
integer. This comes from writing the right hand side as

(3-18) ( f ẑ + Q ẑ fw)−1(gẑ + Q ẑgw)= (I + f −1
ẑ fwQ ẑ)

−1( f −1
ẑ )(gẑ + Q ẑgw)
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The last factor on the right of (3-18) can clearly be written in the form (3-17),
as it is independent of det( f ẑ(Z)). The second can be written in the form (3-17)
since for any invertible matrix A, we can write A−1 as (1/ det A)(adj A). The
first can also be written in the form (3-17). Indeed, since f −1

ẑ (0) fw(0)Q ẑ(0)= 0,
then for (z, χ, τ ) sufficiently close to 0, we have (I + B)−1

=
∑
∞

j=0(−1) j B j ,
where we define B := f −1

ẑ fwQ ẑ . We then use the aforementioned formula for the
inverse of a matrix, and the claim is proved. Defining j1

Z H = (( j1
Z )
′H, ( j1

Z )
′′H),

where ( j1
Z )
′′H = (gz j (Z)) and ( j1

Z )
′H represents the remaining derivatives at Z , it

immediately follows that (3-17) can be written in the form

(3-19)
∑
γ,δ,κ

pµγ,δ,κ(( j1
Z )
′H)

(det( f ẑ(Z)))sµγ δκ
Zγ ζ δ(( j1

Z )
′′H)κ .

We get (3-11) from (3-16) and (3-19) by inductively applying the L j and using
the chain rule. To complete the proof of the lemma, we use Lemma 3.5 to see that
(H̃ , H) sends M into M′ and satisfies condition Dνµ. So as we have seen in this
proof,

(3-20) Q′z′β ( f̃ (Z), f (ζ ), g(ζ ))= φνβ( j |β|Z (H̃), Z , ζ ).

Taking the complex conjugate of this entire equation gives (3-12).
The fact that φαβ ≡ 0 whenever ζ = 0 and 32 = 0 follows from (3-16), the

definition of the L j given in (3-13), and the fact that Qzβ (z, 0, 0)≡ 0 for any β. �

Lemma 3.7. Let M and M ′ be as in Theorem 3.3. For each β = (β1, . . . , βn+e)

and α = (α1, . . . , αn) with 1 ≤ α1 < · · · < αn ≤ m, there exists a Cn+e-valued
function 9α

β , holomorphic on an open subset of Cm+d
× Cm+d

× CKβ for some
integer Kβ , of the form

(3-21) 9α
β (Z , ζ,3)=

∑
γ,δ,κ

Pα,βγ,δ,κ(31)

(det(3r,αl )1≤l,r≤n)tαβγ δκ
Zγ ζ δ3κ2,

where Pα,βγ,δ,κ(31) are Cn+e-valued polynomials and tαβγ δκ are nonnegative inte-
gers, such that if H is a germ at 0 of an HSPM satisfying condition Dµν , then for
(Z , ζ ) ∈M sufficiently close to 0,

∂βH(Z)=9ν
β(Z , ζ, j k+|β|

ζ (H̃)),(3-22)

∂β H̃(ζ )=9µ
β (ζ, Z , j k+|β|

Z (H)).(3-23)

Also,9α
β is holomorphic near (0, 0,30) for any30 such that det(3r,αl

0 )1≤l,r≤n 6=0.

Proof. As M ′ is k-nondegenerate at 0, assume the vectors Q′ j1zχα1 (0), . . . , Q′ jnzχαn (0)
span Cn , where each jk ∈ {1, . . . , e}, each |α j |≤ k, and Q′= (Q′1, . . . , Q′e). From
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Lemma 3.6, we have for each (Z , ζ ) ∈M

(3-24)

Q′ j1
χ ′α1 ( f̃ (ζ ), f (Z), g(Z))= (φνα1

) j1( j |α1|
ζ (H̃), ζ, Z)

...

Q′ jnχ ′αn ( f̃ (ζ ), f (Z), g(Z))= (φναn
) jn ( j |αn |

ζ (H̃), ζ, Z),

where φβα = ((φ
β
α )

1, . . . , (φ
β
α )

e). Using this system of equations, coupled with the
fact that normal coordinates for M ′ imply that Q′(χ ′, 0, w′)≡ Q′(0, z′, w′)≡ w′,
we can apply the implicit function theorem to find a map Bν : Cn

×Cn
→ Cn+e,

holomorphic near 0, such that

(3-25) H(Z)= Bν
(

f̃ (ζ ), ((φναl
) jl ( j |αl |

ζ H̃ , ζ, Z))1≤l≤n
)
.

If we Taylor expand, we can write the right hand side of (3-25) as

(3-26)
∑
α,β,γ

Aναβγ (3̃1)Zαζ β3̃
γ
2 ,

where we remind the reader that 3̃2 corresponds to (g̃χα (ζ )), and 3̃1 corresponds
to the remaining derivatives of H̃ at ζ . We claim that each Aναβγ is rational. This
follows from the fact that f̃ (0)= 0, the form of φαβ as given in (3-10), and the fact
that φαβ ≡ 0 whenever ζ = 0 and 32 = 0 (refer to the statement of Lemma 3.6).

Furthermore, each Aναβγ (3̃1) is of the form given in the right hand side of (3-21).
This can be seen by Taylor expanding Bν as given in (3-25) and plugging in (3-10).
Define

(3-27) 9ν
0 (Z , ζ, 3̃) :=

∑
α,β,γ

Aναβγ (3̃1)Zαζ β3̃
γ
2 .

This proves (3-22) for |β| = 0. For |β| > 0, as every point in M is of the form
(z, w, χ, Q(χ, z, w)), we have

(3-28) H(z, w)≡9ν
0
(
z, w, χ, Q(χ, z, w), j k

(χ,Q(χ,z,w))
(H̃)

)
.

We inductively differentiate (3-28), applying the chain rule, and (3-22) follows.
To get (3-23), we know from Lemma 3.5 that (H̃ , H) sends M into M′ and

satisfies condition Dνµ. So

(3-29) ∂β H̃(Z)=9µ
β

(
Z , ζ, j k+|β|

ζ (H)
)
.

Taking the complex conjugate of both sides of this equation, the lemma follows. �

Now we define the r-th Segre mappings of M at 0. These mappings were first
introduced by Baouendi, Ebenfelt, and Rothschild [1996] and will prove extremely
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useful in completing the proof of Theorem 3.3. Given a positive integer r , let
t0, . . . , tr−1

∈ Cm and define vr
: Crm

→ Cm+d by

(3-30) vr (t0, . . . , tr−1) := (t0, ur (t0, . . . , tr−1)),

where ur
: Crm

→ Cd is given inductively by

(3-31) u1(t0)= 0, ur (t0, . . . , tr−1)= Q(t0, t1, ur−1(t1, . . . , tr−1)) for r ≥ 2.

Definition 3.8. Let V and W be finite-dimensional complex vector spaces. Let
R0(V ×W, V ) denote the ring of germs of holomorphic functions f at V × {0}
in V ×W which can be written in the form f (3, 0)=

∑
α pα(3)0α, where each

pα(3) is a polynomial function on V .

The following lemma is proved in [Baouendi et al. 2001]:

Lemma 3.9. Let V0, V1, Ṽ0, Ṽ1 be finite-dimensional complex vector spaces with
fixed bases and x0, x1, x̃0, x̃1 be the linear coordinates with respect to these bases.
Let p ∈ C[x0] and p̃ ∈ C[x̃0] be nontrivial polynomial functions on V0 and Ṽ0

respectively, and let

φ = (φ0, φ1) : C× V0× V1→ Ṽ0× Ṽ1

be a germ of a holomorphic map with components in R0(C×V0×V1,C×V0), such
that φ(C× V0× {0}) ⊆ Ṽ0× {0}, and satisfying p̃(φ0(1/p(x0), x0, 0)) 6≡ 0. Then
given any h̃ ∈R0(C× Ṽ0× Ṽ1,C× Ṽ0), there exists h ∈R0(C× V0× V1,C× V0)

such that

(3-32) h̃
(

1
p̃(φ0(1/p(x0), x0, x1))

, φ

(
1

p(x0)
, x0, x1

))
≡ h

(
1

q(x0)
, x0, x1

)
,

with q(x0) := p(x0)
t p̃(φ0(1/p(x0), x0, 0)) for some positive integer t . Also, h

vanishes on C× V0×{0} if h̃ vanishes on C× Ṽ0×{0}.

Lemma 3.9 will be key in establishing the following lemma.

Lemma 3.10. Let M and M ′ be as in Theorem 3.3. Given any β = (β1, . . . , βn)

and α = (α1, . . . , αn), with 1 ≤ β1 < · · · < βn ≤ m and 1 ≤ α1 < · · · < αn ≤ m,
and any positive integer s, there exists a Cn+e-valued function4α,βs (x,3, 0) holo-
morphic on an open subset of Csm

× J sk(Cm+d ,Cn+e)(0,0)× J sk(Cm+d ,Cn+e)(0,0)
of the form

(3-33) 4α,βs (x,3, 0)=
∑
γ

Pαβs
γ (3, 0)

Qαβs
γ (3, 0)

xγ ,

where each Pαβs
γ is a Cn+e-valued polynomial, and

Qαβs
γ (3, 0) := (det(3r,αl

)
1≤r,l≤n)

uαβγ s (det(0r,βl )1≤r,l≤n)
vαβγ s
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for some nonnegative integers uαβγ s and vαβγ s , such that if H is a germ at 0 of an
HSPM satisfying condition Dµν , then

H(vs(t0, . . . , t s−1))=4µ,νs (t0, . . . , t s−1, j sk
0 H, j sk

0 H̃),(3-34)

H̃(vs(t0, . . . , t s−1))=4
ν,µ
s (t0, . . . , t s−1, j sk

0 H̃ , j sk
0 H),(3-35)

for t0, . . . , t s−1 sufficiently close to 0. Furthermore, for any (30, 00) such that
det(3r,αl

0 )1≤r,l≤n 6= 0 and det(0r,βl
0 )1≤r,l≤n 6= 0, the function 4α,βs is holomorphic

on a neighborhood of (0,30, 00).

Proof. We inductively prove something stronger. First, we simplify notation
slightly. Define

pα(31(Z)) := det(3r,αl (Z))1≤r,l≤n,

p̃β(3̃1(ζ )) := det(3̃r,βl (ζ ))1≤r,l≤n,

where 31 is as defined in (3-9) (and 3̃1 is defined similarly). We will show that
for any γ and s, there exist nonnegative integers as

αβ , bs
αβ and holomorphic maps

2
α,β,γ
s with components in

R0
(
C× J ks+|γ |(Cm+d ,Cn+e)(0,0)× J ks+|γ |(Cm+d ,Cn+e)(0,0)×Cms,

C× J ks+|γ |(Cm+d ,Cn+e)(0,0)× J ks+|γ |(Cm+d ,Cn+e)(0,0)
)

such that

(3-36) ∂γ H(vs(t0, . . . , t s−1))

=2µ,ν,γs

(
1

pµ(31(0))a
s
µν p̃ν(3̃1(0))b

s
µν
, j ks+|γ |

0 H, j ks+|γ |
0 H̃ , t0, . . . , t s−1

)
and

(3-37) ∂γ H̃(vs(t0, . . . , t s−1))

=2
ν,µ,γ
s

(
1

pν(3̃1(0))a
s
νµ p̃µ(31(0))b

s
νµ
, j ks+|γ |

0 H̃ , j ks+|γ |
0 H, t0, . . . , t s−1

)
.

First, we reformulate Lemma 3.7 with new notation. Let j l
Z H = (( j l

Z )
′H, ( j l

Z )
′′H),

where ( j l
Z )
′′H = (gzα (Z))|α|≤l , and ( j l

Z )
′H represents the remaining derivatives

at Z . (A similar decomposition applies to H̃ ). According to Lemma 3.7, there
exist maps θαγ with components in R0(C×Cl ′γ ×C2m+2d

×Cl ′′γ ,C×Cl ′γ ), for some
integers l ′γ and l ′′γ , such that for (Z , ζ ) ∈M,

∂γ H(Z)= θνγ
(

1
p̃ν(( j k+|γ |

ζ )′ H̃)
, ( j k+|γ |

ζ )′ H̃ , Z , ζ, ( j k+|γ |
ζ )′′ H̃

)
,(3-38)

∂γ H̃(ζ )= θµγ
(

1
pµ(( j k+|γ |

Z )′H)
, ( j k+|γ |

Z )′H, ζ, Z , ( j k+|γ |
Z )′′H

)
.(3-39)
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It is easy to show that (3-36) and (3-37) hold for s=1 by letting (Z , ζ )= ((z, 0), 0)
in (3-38) and (Z , ζ )= (0, (χ, 0)) in (3-39). So now assume (3-36) and (3-37) hold
for s replaced by s− 1, for some s > 1. We will show they hold for s.

For any s, it is clear from the definition of the Segre mappings that

(3-40)
(
vs(t0, . . . , t s−1), vs−1(t1, . . . , t s−1)

)
∈M.

Using this fact in (3-38), we see that

∂γ H(vs(t0, . . . , t s−1))

= θνγ

(
1

p̃ν( j k+|γ |
vs−1(t1,...,t s−1)

)′ H̃
) , ( j k+|γ |

vs−1(t1,...,t s−1)

)′ H̃ ,
vs(t0, . . . , t s−1), vs−1(t1, . . . , t s−1),

(
j k+|γ |
vs−1(t1,...,t s−1)

)′′ H̃).
But by our induction hypothesis,

j k+|γ |
vs−1(t1,...,t s−1)

H̃

=

(
2
ν,µ,1
s−1

(
1

p̃ν(3̃1(0))a
s−1
νµ pµ(31(0))b

s−1
νµ
, j ks+|1|−k

0 H,

j ks+|1|−k
0 H̃ , t1, . . . , t s−1

))
|1|≤k+|γ |

.

For convenience, we write the tuple on the right hand side of the above as (A, B)
where B corresponds to (g̃χα (vs−1(t1, . . . , t s−1)))|α|≤k+|γ |, and A corresponds to
the remainder. We plug the last equation into the previous to get

∂γ H(vs(t0, . . . , t s−1))= θνγ

(
1

p̃ν(A)
, A, vs(t0, . . . , t s−1), vs−1(t1, . . . , t s−1), B

)
.

Thus, (3-36) follows from Lemma 3.9.
To finish the proof, we need only show (3-37). Here we apply Lemma 3.5,

which tells us that (H̃ , H) sends M into M′ and satisfies condition Dνµ. So by
(3-36), we see that

∂γ H̃(vs(t0, . . . , t s−1))

=2ν,µ,γs

(
1

pν(3̃1(0))a
s
νµ p̃µ(31(0))b

s
νµ
, j ks+|γ |

0 H̃ , j ks+|γ |
0 H , t0, . . . , t s−1

)
.

As pν and p̃µ are polynomials with real coefficients, we take the complex conjugate
of both sides of the above to see that (3-37) holds true. �

We are almost ready to complete the proof of Theorem 3.3. First, however, we
present three lemmas. Lemma 3.11 can be found (using slightly different language)
in [Baouendi et al. 1999a] and is thus presented here without proof. Lemma 3.12
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is a generalization of a lemma found in [Baouendi et al. 2001]. Lemma 3.13 can
be found in [Baouendi et al. 2001] and is presented here without proof.

Lemma 3.11. Let M be as in Theorem 3.3. Then there exists an integer r such that
the matrix

(3-41)
(

∂v2r

∂(t0, tr+1, tr+2, . . . , t2r−1)
(0, x1, . . . , xr−1, xr , xr−1, . . . , x1)

)
has rank m+ d for all (x1, . . . , xr ) ∈U \V , where U ⊆ Crm is an open neighbor-
hood of the origin, and V is a proper holomorphic subvariety of U. In addition,

(3-42) v2r (0, x1, . . . , xr−1, xr , xr−1, . . . , x1)≡ 0.

(Here, v2r is as defined in (3-30).)

Lemma 3.12. Let V : (Cr1 ×Cr2, 0)→ (CN , 0), r2 ≥ N , be a holomorphic map
defined near 0 satisfying V (x, ξ)|ξ=0 ≡ 0, with (x, ξ) ∈ Cr1 ×Cr2 , and assume the
matrix ((∂V/∂ξ)(x, 0)) has an N × N minor that is not identically 0. Then there
exist holomorphic maps (defined near 0)

(3-43) δ : (Cr1, 0)→ C and φ : (Cr1 ×CN , 0)→ (Cr2, 0)

with δ(x) 6≡ 0, such that

(3-44) V
(

x, φ
(

x, Z
δ(x)

))
≡ Z

for all (x, Z)∈Cr1×CN such that δ(x) 6= 0 and both x and Z/δ(x) are sufficiently
small. Furthermore, if V is holomorphic algebraic, then given any sufficiently
small x0 satisfying δ(x0) 6= 0, the map ϕx0(Z) := φ(x0, Z/δ(x0)) is holomorphic
algebraic for all Z in a neighborhood of 0.

Proof. Write ξ = (ξ ′, ξ ′′), where

ξ ′ = (ξ1, . . . , ξN ) ∈ CN and ξ ′′ = (ξN+1, . . . , ξr2) ∈ Cr2−N .

Assume, without loss of generality, that det((∂V/∂ξ ′)(x, 0)) 6≡ 0. We wish to
solve the equation Z = V (x, ξ ′, 0) for ξ ′. Since V (x, 0) ≡ 0, we can write
Z = V (x, ξ ′, 0) = a(x, ξ ′)ξ ′, where a(x, ξ ′) is an N × N matrix of holomorphic
functions defined near 0. By expanding a(x, ξ ′), we can write

(3-45) Z = V (x, ξ ′, 0)= a(x, 0)ξ ′+ ((ξ ′)T R j (x, ξ ′)ξ ′)1≤ j≤N ,

where each R j (x, ξ ′) is an N×N matrix of holomorphic functions defined near 0.
Define d(x) := det((∂V/∂ξ ′)(x, 0)). Using the fact that (adj(A))A = det(A)I



300 R. BLAIR ANGLE

for any square matrix A, we multiply the far left and far right sides of (3-45) by
b(x) := adj(a(x, 0)), noting that a(x, 0)= (∂V/∂ξ ′)(x, 0), to get

(3-46) b(x)Z − d(x)ξ ′− b(x)((ξ ′)T R j (x, ξ ′)ξ ′)1≤ j≤N = 0.

Divide both sides of (3-46) by d(x)2 and substitute ξ̃ ′= ξ ′/d(x) and Z̃ = Z/d(x)2

to get
b(x)Z̃ − ξ̃ ′− b(x)((ξ̃ ′)T R j (x, d(x)ξ̃ ′)ξ̃ ′)1≤ j≤N = 0.

By the implicit function theorem, there is a unique holomorphic solution ξ̃ ′ =
θ(x, Z̃) defined near 0 such that θ(0) = 0. Thus, the first part of the theorem
follows by letting δ(x) := d(x)2 and

φ(x, y) := (d(x)θ(x, y), 0) for (x, y) ∈ Cr1 ×CN .

If V is algebraic, the last part of the theorem follows from the algebraic implicit
function theorem; see [Baouendi et al. 1999b] for example. �

Lemma 3.13. Let V0 and V1 be finite-dimensional vector spaces with fixed linear
coordinates x0 and x1, respectively. Let P(x0, x1, λ) ∈ R0(V0 × V1 ×C, V0) with
P(x0, 0, 0)≡ 0. For a given integer l ≥ 0, consider the Laurent series expansion

(3-47) P
(

x0,
x1
λl , λ

)
=

∑
ν∈Z

cν(x0, x1)λ
ν .

Then c0(x0, 0)≡ 0, and cν ∈R0(V0× V1, V0) for every ν ∈ Z.

Proof of Theorem 3.3. Let r be as in Lemma 3.11. Take x= (x1, . . . , xr )∈Crm and
y=(y0, . . . , yr−1)∈Crm . Let L(x, y) :=(y0, x1, . . . , xr , xr−1

+yr−1, . . . , x1
+y1)

and V (x, y) := v2r (L(x, y)). In Lemma 3.12, we take r1 = r2 = rm. From (3-42),
we see that V (x, 0)≡ 0. Also, from Lemma 3.11, we see that the other hypothesis
of Lemma 3.12 holds. Thus we apply Lemma 3.12. Let δ and φ be as given in the
lemma. We plug these into (3-34) to see that

(3-48) H(Z)≡4µ,ν2r

(
L
(

x, φ
(

x, Z
δ(x)

))
, j2rk

0 H, j2rk
0 H̃

)
.

We rewrite the right hand side of (3-48) as

(3-49) H(Z)≡ 4̂µ,ν2r

(
j2rk
0 H, j2rk

0 H̃ , Z
δ(x)

, x
)
,

noting that the components of

4̂
µ,ν
2r : J 2rk(Cm+d ,Cn+e)(0,0)× J 2rk(Cm+d ,Cn+e)(0,0)×Cm+d

×Crm
→ Cn+e

are holomorphic on an open neighborhood of

J 2rk(Cm+d ,Cn+e)(0,0)× J 2rk(Cm+d ,Cn+e)(0,0)×Cm+d
×Crm .
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Now choose x0 ∈ Crm such that δ̂(t) := δ(t x0) 6≡ 0, for t ∈ C. Since H(Z) is
independent of x , we can replace x = t x0 in (3-49). There exists a smallest integer
l such that (dl/dt l)δ̂(0) 6= 0. To make our calculations easier, consider a holomor-
phic change of variable λ = h(t) near the origin in C, where h is determined by
δ(t x0)= λ

l . So we now have

(3-50)
̂̂4µ,ν2r

(
j2rk
0 H, j2rk

0 H̃ , Z
λl , λ

)
:= 4̂

µ,ν
2r

(
j2rk
0 H, j2rk

0 H̃ , Z
λl , x0h−1(λ)

)
≡ H(Z).

Observe that the components of ̂̂4µ,ν2r are in

R0
(
J 2rk(Cm+d ,Cn+e)(0,0)× J 2rk(Cm+d ,Cn+e)(0,0)×Cm+d

×C,

J 2rk(Cm+d ,Cn+e)(0,0)× J 2rk(Cm+d ,Cn+e)(0,0)
)
.

To conclude the proof, we expand the left hand side of (3-50) as a Laurent series
in λ. Since H(Z) is independent of λ, we can let H(Z) be the constant term of the
Laurent series. By Lemma 3.13 and the form of 4µ,ν2r given in (3-33), we see that
this is exactly of the form (3-3).

Applying Lemma 3.5, we see that (H̃ , H) sends M into M′ and satisfies condi-
tion Dνµ. From (3-4), we have

(3-51) H̃(Z)=8ν,µ
(

Z , j K
0 (H̃), j K

0 (H)
)
.

Take the complex conjugate of this entire equation, and (3-5) follows. �

Reformulation of Theorem 1.6.

Theorem 3.14. Let M and M ′ be as in Theorem 3.3. Then there exists a positive
integer L , depending only on M and M ′, such that for each α = (α1, . . . , αn) with
1 ≤ α1 < · · · < αn ≤ m and each β = (β1, . . . , βn) with 1 ≤ β1 < · · · < βn ≤ m,
there exist C2n+2e-valued holomorphic functions8α,β1 and8α,β2 defined on an open
subset of Cm+d

×Cm+d
× J L(Cm+d ,Cn+e)(0,0) such that if H is a germ at 0 of an

HSPM satisfying condition Dµν , then

H(Z , ζ )= (H(Z), H̃(ζ ))=8µ,ν1 (Z , ζ, j L
0 H),(3-52)

H(Z , ζ )= (H(Z), H̃(ζ ))=8µ,ν2 (Z , ζ, j L
0 H̃),(3-53)

for (Z , ζ ) sufficiently close to 0.

Proof. We will prove (3-52); the proof of (3-53) follows similarly. We will show
inductively that there exist Cn+e-valued holomorphic functions Bα,β,γs defined on
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an open subset of J ks+|γ |(Cm+d ,Cn+e)(0,0)×Cms , such that

∂γ H(vs(t0, . . . , t s−1))= Bµ,ν,γs ( j ks+|γ |
0 G, t0, . . . , t s−1),(3-54)

∂γ H̃(vs(t0, . . . , t s−1))= Bν,µ,γs ( j ks+|γ |
0 G′, t0, . . . , t s−1),(3-55)

where G= H and G′ = H̃ if s is even, and G= H̃ and G′ = H if s is odd.
For s = 1, we see that (3-54) and (3-55) hold true by letting (Z , ζ )= ((z, 0), 0)

in (3-22) and (Z , ζ ) = (0, (χ, 0)) in (3-23). For some s > 1, assume (3-54) and
(3-55) hold for s− 1. Assume, without loss of generality, that s is even (a similar
proof works for s odd). Since (vs(t0, . . . , vs−1), vs−1(t1, . . . , t s−1)) ∈M, we see
from (3-22) that

(3-56) ∂βH(vs(t0, . . . , t s−1))

≡9ν
β

(
vs(t0, . . . , t s−1), vs−1(t1, . . . , t s−1), j k+|β|

vs−1(t1,...,t s−1)
H̃
)
.

Using (3-55), we see then that

(3-57) ∂βH(vs(t0, . . . , t s−1))

≡9ν
β

(
vs(t0, . . . , t s−1), vs−1(t1, . . . , t s−1),

(Bν,µ,γs−1 ( j k(s−1)+|γ |
0 H, t1, . . . , t s−1))|γ |≤k+|β|

)
.

Now define Bµ,ν,βs (3, t0, . . . , t s−1) to be the right hand side of (3-57), with the
jets of H replaced by the appropriate corresponding coordinates of 3.

Using Lemma 3.5, we see that (H̃ , H) satisfies condition Dνµ and sends M

into M′. So, we have from (3-54)

(3-58) ∂γ H̃(vs(t0, . . . , t s−1))= Bν,µ,γs ( j ks+|γ |
0 H̃ , t0, . . . , t s−1).

Taking the complex conjugate of both sides gives us (3-55).
Let r be as given in Lemma 3.11. We know from (3-54) and (3-55) that

H(v2r (t0, . . . , t2r−1))= Bµ,ν,02r ( j2kr
0 H, t0, . . . , t2r−1),(3-59)

H̃(v2r+1(t0, . . . , t2r ))= Bν,µ,02r+1 ( j2kr+k
0 H, t0, . . . , t2r ).(3-60)

Since vl+1(t0, . . . , t l−1, 0)=vl(t0, . . . , t l−1) for any positive integer l, we see from
Lemma 3.11 that the matrix

(3-61)
(

∂v2r+1

∂(t0, tr+1, tr+2, . . . , t2r−1)
(0, x1, . . . , xr−1, xr , xr−1, . . . , x1, 0)

)
has rank m + d for all (x1, . . . , xr ) ∈ U \ V , for U ⊆ Crm an open neighborhood
of the origin and V a proper holomorphic subvariety of U , and we also see that

(3-62) v2r+1(0, x1, . . . , xr−1, xr , xr−1, . . . , x1, 0)≡ 0.
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We can now use (3-59) and (3-60) to obtain (3-52) and (3-53) by following exactly
the proof of Theorem 3.3. �

Reformulation of Theorem 1.8.

Theorem 3.15. Let M and M ′ be as in Theorem 3.3, and assume that M and M ′

are real algebraic. If H is a germ at 0 of an HSPM satisfying condition Dµν for
some µ and ν, then H is holomorphic algebraic.

Proof. An inspection of the proof of Lemma 3.6 shows that the φαβ as given in (3-10)
are holomorphic algebraic (as M is real algebraic). When solving the system of
equations in (3-24), apply the algebraic implicit function theorem to see that Bν

as given in (3-25) is holomorphic algebraic (as M ′ is real algebraic). Thus, an
inspection of the proof of Lemma 3.7 shows that the 9α

β as given in (3-21) are
holomorphic algebraic. An examination of the proof of Lemma 3.10 then reveals
that the 4α,βs as given in (3-33) are holomorphic algebraic. Finally, in the proof of
Theorem 3.3, choose x0 sufficiently small and satisfying δ(x0) 6= 0, and substitute
x= x0 in (3-48). By Lemma 3.12, we see then that H(Z) is holomorphic algebraic.
Similarly, H̃(ζ ) is holomorphic algebraic. �

4. Proofs of main results

In Section 1, we presented results 1.1, 1.2, 1.4, and 1.5, all of which follow natu-
rally from Theorem 3.3. We also presented Theorem 1.6, which is a direct result
of Theorem 3.14, and Theorem 1.8, which is a direct result of Theorem 3.15. In
this section, we provide their proofs. First we make the following observations.

Observation 4.1. If M ⊆CN and M ′⊆CN ′ are generic submanifolds of codimen-
sions d and d ′, respectively, given in normal coordinates by w = Q(z, χ, τ ) and
w′ = Q′(z′, χ ′, τ ′), respectively, then a germ at 0 of an HSPM H = ( f, g, f̃ , g̃)
sending (M, 0) into (M′, 0) is Segre submersive at 0 if and only if the matrices
( fz(0)) and ( f̃χ (0)) have rank N ′ − d ′. This follows from the fact that a basis
for the antiholomorphic vectors tangent to M (respectively, M ′) at 0 is given by
{∂/∂z j : 1 ≤ j ≤ N − d} (respectively, {∂/∂z′j : 1 ≤ j ≤ N ′ − d ′}), while a
basis for the holomorphic vectors tangent to M (respectively, M ′) at 0 is given by
{∂/∂z j : 1 ≤ j ≤ N − d} (respectively, {∂/∂z′j : 1 ≤ j ≤ N ′ − d ′}), coupled with
the fact that gz j (0)= g̃χ j (0)= 0 for j = 1, . . . , N − d .

Observation 4.2. For p ∈ CN , let φ : (CN , 0)→ (CN , p) be a biholomorphism
near 0, and for p′ ∈CN ′ , let φ′ : (CN ′, 0)→ (CN ′, p′) be a biholomorphism near 0.
Then for any nonnegative l, there exist vector-valued polynomial functions Fl and
Gl such that if h : (CN , 0)→ (CN ′, 0) is any holomorphic map, and h̃ : (CN , p)→
(CN ′, p′) is given by h̃ := φ′ ◦ h ◦φ−1, then j l

ph̃ = Fl( j l
0h) and j l

0h = Gl( j l
ph̃).
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Proof of Theorem 1.1. This theorem follows from Theorem 3.3, Observation 4.1,
and Observation 4.2. The boundaries on r given in Theorem 1.1 follow from the
fact that there are

(m
n

)
possibilities for µ and

(m
n

)
possibilities for ν in Theorem 3.3.

Therefore, there are
(m

n

)(m
n

)
possible choices for 8α,β in (3-3). �

Proof of Corollary 1.2. Without loss of generality, assume p = 0. Since M = M ′,
we have r = 1 in Theorem 1.1. Define 8 := 81 as given in (1-2). It then follows
from Theorem 1.1 that ηK

0 is continuous and injective on AutC(M, 0). To show
that ηK

0 is a homeomorphism from AutC(M, 0) onto ηK
0 (AutC(M, 0)), we need

to show the continuity of (ηK
0 )
−1. Let 3 j , 3̃ j ,30, 3̃0 belong to Gk

0(C
N ) and

assume (3 j , 3̃ j ) ∈ η
K
0 (AutC(M, 0)) converges to (30, 3̃0) ∈ η

K
0 (AutC(M, 0)).

Then Theorem 1.1 tells us that

(ηK
0 )
−1(3 j , 3̃ j )= (8(Z ,3 j , 3̃ j ),8(ζ, 3̃ j ,3 j )),

(ηK
0 )
−1(30, 3̃0)= (8(Z ,30, 3̃0),8(ζ, 3̃0,30)).

It follows that (ηK
0 )
−1(3 j , 3̃ j ) converges to (ηK

0 )
−1(30, 3̃0).

We now show ηK
0 (AutC(M, 0)) is a closed, holomorphic algebraic submanifold

of G K
0 (C

N )×G K
0 (C

N ). Let ρ(Z , Z) be a defining function for M near 0. Write
ζ = (ζ1, ζ2) ∈ CN−d

× Cd , where d is the codimension of M . After a possible
rearrangement of coordinates, since M is generic, there exists a holomorphic map
θ : CN

× CN−d
→ Cd satisfying θ(0) = 0 such that for all Z and ζ1 sufficiently

close to 0, we have (Z , ζ1, θ(Z , ζ1)) ∈M. Given (30, 3̃0) ∈ G K
0 (C

N )×G K
0 (C

N ),
(30, 3̃0) ∈ η

K
0 (AutC(M, 0)) if and only if the following three conditions hold:

30 = (Sγ (30, 3̃0))|γ |≤K ,(4-1)

3̃0 = (Sγ (3̃0,30))|γ |≤K ,(4-2)

ρ(8(Z ,30, 3̃0),8(ζ1, θ(Z , ζ1), 3̃0,30))= 0,(4-3)

where Sγ are the rational coefficients in the Taylor expansion given in (1-2). Equa-
tions (4-1) and (4-2) can be expressed as a finite set of polynomial equations in
30 and 3̃0 as each Sγ is rational. We claim that (4-3) can be expressed as an
infinite set of polynomial equations in 30 and 3̃0. Indeed, we can write the Taylor
expansion as

ρ
(
8(Z ,30, 3̃0),8(ζ1, θ(Z , ζ1), 3̃0,30)

)
=

∑
α,β

Rαβ(30, 3̃0)Zαζ
β
1 .

Observe that each Rαβ is rational. This can be seen by noting that 8(0, 0, 3̃)≡ 0
and θ(0)=0, and by noting the form of8 given in Theorem 1.1. The claim follows
since the set of polynomial equations comes from setting the numerators of Rαβ
equal to 0 for all α and β.
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Thus, we see that ηK
0 (AutC(M, 0)) is a closed, holomorphic algebraic subvariety

of the space G K
0 (C

N ) × G K
0 (C

N ) since it is given by the vanishing of a set of
polynomial equations. To see it is actually a submanifold, note first that it is a
subgroup of G K

0 (C
N )× G K

0 (C
N ) since multiplication can be defined as follows.

Given any (31, 3̃1), (32, 3̃2) ∈ η
K
0 (AutC(M, 0)), let H1 and H2, respectively,

be the corresponding automorphisms in AutC(M, 0). Now compose H1 and H2,
and apply ηK

0 to this composition. Under this multiplication, ηK
0 (AutC(M, 0)) is a

closed subgroup of the Lie group G K
0 (C

N )×G K
0 (C

N ), and is thus a Lie subgroup;
see [Varadarajan 1974], for example. �

Proof of Corollary 1.4.

Lemma 4.3. Let A = (ai j ) be a d × d invertible matrix, where each ai j ∈ C.
Let b1, . . . , bd ∈ C. Let B1 be the matrix obtained by replacing row m of A with
(am1+ b1, . . . , amd + bd) and B2 be the matrix obtained by replacing row m of A
with (am1− b1, . . . , amd − bd). Then at least one of B1 or B2 is invertible.

Proof. Without loss of generality, assume m= 1. Let An := (−1)n+1 det Mn , where
Mn is the (d−1)×(d−1)matrix obtained by deleting the first row and n-th column
of A. Assume that det B1 = det B2 = 0. Then expanding along the first row of B1

gives

(4-4) (a11+ b1)A1+ · · ·+ (a1d + bd)Ad = 0,

and expanding along the first row of B2 gives

(4-5) (a11− b1)A1+ · · ·+ (a1d − bd)Ad = 0.

Adding (4-4) and (4-5) gives 2a11 A1 + . . .+ 2a1d Ad = 0. However, this implies
that det A = 0, a contradiction. �

We now prove Corollary 1.4. Without loss of generality, assume p = 0. Let
r(3,3)= (r1(3,3), . . . , rs(3,3)) be a defining function for j K

0 (Aut(M, 0)) as
a real algebraic submanifold of G K

0 (C
N ), where 3 ∈ G K

0 (C
N ); see Remark 1.3.

The complexification C{ j K
0 (Aut(M, 0))} of this submanifold is thus a complex

submanifold of G K
0 (C

N ) × G K
0 (C

N ) given by the vanishing of r(3, 3̃), where
3̃ ∈ G K

0 (C
N ). Let ρ(Z , Z) be a defining function for M near 0. Since M = M ′, it

is clear from the statement of Theorem 3.3 that we can choose r=1 in Theorem 1.1.
Do so, and define 8 := 81 as given in (1-2). From Theorem 1.1, we see that for
any 3 ∈ G K

0 (C
N ),

ρ(8(Z ,3,3),8(Z ,3,3))= A(Z ,3, Z ,3)r(3,3)+ B(Z ,3, Z ,3)ρ(Z , Z),
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where A is a real analytic d × s matrix, and B is a real analytic d × d matrix.
Complexify to get

ρ(8(Z ,3, 3̃),8(ζ, 3̃,3))= A(Z ,3, ζ, 3̃)r(3, 3̃)+ B(Z ,3, ζ, 3̃)ρ(Z , ζ ).

Notice that this gives us exactly what we want. This equation says that if (3, 3̃)
is in C{ j K

0 (Aut(M, 0))}, then (8(Z ,3, 3̃),8(ζ, 3̃,3)) is in AutC(M, 0). Now
we need only show that

(4-6) ηK
0 (8(Z ,3, 3̃),8(ζ, 3̃,3))= (3, 3̃).

We have the equations

(∂αZ8(0,3,3))|α|≤K =3+C(3,3)r(3,3),

(∂αZ8(0,3,3))|α|≤K =3+C(3,3)r(3,3),

for C a real analytic matrix. Complexify these to get

(∂αZ8(0,3, 3̃))|α|≤K =3+C(3, 3̃)r(3, 3̃),

(∂αζ 8(0, 3̃,3))|α|≤K = 3̃+C(3̃,3)r(3, 3̃),

and the first part of Corollary 1.4 is proved.
Since we are assuming p = 0, we take Id = Id′ in Corollary 1.4. To prove the

second part of Corollary 1.4, first we show that ηK
0 (AutC(M, 0)) is a complexi-

fied submanifold near (Id, Id). In other words, ηK
0 (AutC(M, 0)) = CR, where R

is a real submanifold of G K
0 (C

N ) (here CR denotes the complexification of R).
We know from Corollary 1.2 that ηK

0 (AutC(M, 0)) is a complex submanifold of
G K

0 (C
N )× G K

0 (C
N ). Near (Id, Id), let ŝ1(3, 3̃), . . . , ŝt(3, 3̃) be defining func-

tions for ηK
0 (AutC(M, 0)). We will assume without loss of generality that these

functions are defined on a ball B of sufficiently small radius centered at (Id, Id);
this way if (0,3) is a point in B, then so is (3, 0) and (3, 0). Now we set
s j (3, 3̃) to one of the following:

s j (3, 3̃) := ŝ j (3, 3̃)+ ŝ j (3̃,3),

s j (3, 3̃) := i ŝ j (3, 3̃)− i ŝ j (3̃,3),

We choose between these options as follows. Start with j = 1. From Lemma 4.3,
we can replace ŝ1 with one of the above s1, and in at least one case the differentials
of s1, ŝ2, . . . , ŝt will be linearly independent near (Id, Id). Choose s1 so that this
is the case. Now do the same thing for j = 2, then j = 3, and so forth. Let
R be the submanifold defined by s1(3, 3̃) = · · · = st(3, 3̃) = 0. If (3, 3̃) is
in ηK

0 (AutC(M, 0)), then from Lemma 3.5, we have (3̃,3) ∈ ηK
0 (AutC(M, 0)).

Thus, ŝ j (3̃,3) = 0, which implies ŝ j (3̃,3) = 0. In other words, near (Id, Id),
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ηK
0 (AutC(M, 0))⊆R. But these two submanifolds have equal dimensions. So we

see that, in fact, ηK
0 (AutC(M, 0))=R near (Id, Id).

Now we need only show that R=CR for some real submanifold R⊆G K
0 (C

N ),
and we will have proved our claim. Let

(4-7) R := {3 : s1(3,3)= · · · = st(3,3)= 0}.

Clearly R is a nonempty set as it contains the point 3 = Id. Since each s j is a
real function and the differentials of s1, . . . , st are linearly independent, R is a real
submanifold.

From Theorem 1.1, we see that if (H, H̃) ∈ AutC(M, 0) and j K
0 (H̃)= j K

0 ( H),
we must have H̃ = H . Thus, near (Id, Id),

(4-8)
C{ j K

0 (Aut(M, 0))} ∩ {3̃=3} = ηK
0 (AutC(M, 0))∩ {3̃=3}

= CR ∩ {3̃=3},

implying that j K
0 (Aut(M, 0)) = R. Thus their complexifications must be equal

as well. That is, C{ j K
0 (Aut(M, 0))} = ηK

0 (AutC(M, 0)) near (Id, Id). But both of
these are algebraic holomorphic submanifolds. So if they are equal near (Id, Id),
then using the notation given in the statement of this corollary, we must have B=C.

The third part of the corollary comes from the fact that ηK
0 (AutC(M, 0)) is a

Lie subgroup. Thus, each of its connected components is a coset of B. Since
C{ j K

0 (Aut(M, 0))} ⊆ ηK
0 (AutC(M, 0)) and they are both algebraic holomorphic

submanifolds, each component of C{ j K
0 (Aut(M, 0))} is exactly equal to one of the

components of ηK
0 (AutC(M, 0)). Algebraicity implies that there are finitely many

such components. �

Proof of Theorem 1.5. Assume first that M and M ′ are given in normal coordinates
and that p= 0 and p′= 0. The equalities of the K -jets imply, in particular, that H1

and H2 both satisfy condition Dµν for some µ and ν. Theorem 1.5 now follows
from Theorem 3.3 and Observations 4.1 and 4.2. �

Proof of Theorem 1.6. This follows from Theorem 3.14 and Observations 4.1
and 4.2. We leave the details to the reader. �

Proof of Theorem 1.8. As M and M ′ are real algebraic, they have real analytic
algebraic defining functions. When M and M ′ are expressed in normal coordinates,
the new defining functions can also be chosen to be real analytic algebraic. This
follows by using the algebraic implicit function theorem in the derivation of the
new defining functions; see [Baouendi et al. 1999b] for precise details on deriving
normal coordinates and the algebraic implicit function theorem. Also, if Z̃ = ϕ(Z)
is a holomorphic algebraic change of coordinates, then ϕ−1 is a holomorphic alge-
braic function; this is also a direct consequence of the algebraic implicit function
theorem. Theorem 1.8 now follows from Theorem 3.15 and Observation 4.1. �
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5. Examples: HSPMs and automorphism groups

For n > 1, there exist M,M ′ ⊆ Cn+1 defined near 0 such that there exist no holo-
morphic maps H satisfying

(5-1) H is invertible near 0, H(M)⊆ M ′, H(0)= 0,

yet there exist HSPMs satisfying

(5-2) H is invertible near 0, H(M)⊆M′, H(0)= 0.

Example 5.1. For n > 1, let (z1, . . . , zn, w) and (z′1, . . . , z′n, w
′) be coordinates

on Cn+1 and define

M =
{

Imw =

n∑
j=1

ε j |z j |
2
}

and M ′ =
{

Imw′ =

n∑
j=1

σ j |z′j |
2
}
,

where ε j , σ j ∈ {−1, 1}. Both M and M ′ are of finite type and finitely nondegen-
erate at 0. If |

∑
j ε j | 6= |

∑
j σ j |, then there are no holomorphic maps satisfying

criteria (5-1). (Indeed, M and M ′ have different Levi signatures at 0.) However,
for a, c j ∈ C \ {0}, the family of maps given by

H(z, w, χ, τ )

=

(
ε1c1z1, . . . , εn−1cn−1zn−1, εncnzn, aw, aσ1

c1
χ1, . . . ,

aσn−1
cn−1

χn−1,
aσn
cn
χn, aτ

)
satisfy criteria (5-2).

This can also occur in C2 as the next example illustrates.

Example 5.2. Let M,M ′ ⊆ C2 be given by

M = {Imw = |z|2+ 2 Re(z4z2(1+ iRe w))},

M ′ = {Imw′ = |z′|2+ 2 Re(z′4z′2(1− iRe w′))}.

Notice that M and M ′ are of finite type and finitely nondegenerate at 0. It can be
shown [Chern and Moser 1974] that there are no maps H satisfying criteria (5-1).
(Indeed, as M and M ′ are in Chern–Moser normal form, the fact that the co-
efficients i and −i are unequal implies that there does not exist a holomorphic
map H satisfying criteria (5-1).) However, it is easy to check that the HSPM
H(z, w, χ, τ )= (i z,−w, iχ,−τ) satisfies (5-2).

Now we will look at some examples of automorphism groups. In Example 5.3,
we find that C{ j K

0 (Aut(M, 0))} and ηK
0 (AutC(M, 0)) are equal.

Example 5.3. Let M be the Lewy hypersurface of C2. It is given by

M = {Imw = |z|2}.
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We note that M is finitely nondegenerate and of finite type at 0. It can be shown
(see [Angle 2008b] for the calculations) that every holomorphic Segre-preserving
automorphism of M at 0 is of the form

(5-3) H(z, w, χ, τ )=
(

α(z+βw)

1− (γ + iββ̃)w− 2i β̃z
,

αα̃w

1−(γ+iββ̃)w−2i β̃z
,

α̃(χ + β̃τ )

1− (γ − iββ̃)τ + 2iβχ
,

αα̃τ

1−(γ−iββ̃)τ+2iβχ

)
,

where γ, β, β̃ ∈ C and α, α̃ ∈ C \ {0}. Also, every automorphism of M at 0 is of
the form

(5-4) H(z, w)=
(

α(z+βw)

1− (γ + i |β|2)w− 2iβz
,

|α|2w

1− (γ + i |β|2)w− 2iβz

)
,

where α ∈ C \ {0}, β ∈ C, and γ ∈ R. The automorphisms in (5-4) follow directly
from the automorphisms in (5-3), but those in (5-4) have actually been known for
some time [Chern and Moser 1974].

We use (5-3) and (5-4) to show that C{ j K
0 (Aut(M, 0))} = ηK

0 (AutC(M, 0)): Let

(3 f
z , . . . , 3

f
ww,3

g
z , . . . , 3

g
ww,3

f̃
χ , . . . , 3

f̃
ττ ,3

g̃
χ , . . . , 3

g̃
ττ )

be coordinates on G2
0(C

2)×G2
0(C

2), where

3
f
zrws corresponds to

∂r+s f
∂zr∂ws , 3

g
zrws corresponds to

∂r+s g
∂zr∂ws ,

3
f̃
χr τ s corresponds to

∂r+s f̃
∂χr∂τ s , 3

g̃
χr τ s corresponds to

∂r+s g̃
∂χr∂τ s .

Then (5-4) implies that C{ j2
0 (Aut(M, 0))} is given by

(5-5)

{
3g
w =3

g̃
τ =3

f
z 3

f̃
χ , 3g

ww =3
g̃
ττ + 2i3 f

w3
f̃
τ ,

3g
zw = 2i3 f

z 3
f̃
τ , 3g̃

χτ =−2i3 f̃
χ3

f
w,

3 f
zw =

3
g
ww

3
f̃
χ

, 3 f
zz = 2i

3
f
z 3

f̃
τ

3
f̃
χ

, 3 f
ww =

3
g
ww3

f
w

3
f
z 3

f̃
χ

,

3 f̃
χτ =

3
g̃
ττ

3
f
z
, 3 f̃

χχ =−2i
3

f̃
χ3

f
w

3
f
z
, 3 f̃

ττ =
3

g̃
ττ3

f̃
τ

3
f̃
χ3

f
z

,

3g
z =3

g
zz =3

g̃
χ =3

g̃
χχ = 0

}
.

It follows from (5-3) that η2
0(AutC(M, 0)) is also given by (5-5).
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More interesting, however, are submanifolds for which C{ j K
0 (Aut(M, 0))} is

not equal to ηK
0 (AutC(M, 0)).

Example 5.4. Let M ⊆ C2 be given by

M = {Imw = |z|2+ (Re z2)|z|2}.

Note that M is finitely nondegenerate and of finite type at 0. Baouendi et al. [1997]
showed that there are only two automorphisms of M at 0, namely H1(z, w)= (z, w)
and H2(z, w) = (−z, w). Thus, C{ j K

0 (Aut(M, 0))} also has only two elements.
However, the group of holomorphic Segre-preserving automorphisms of M at 0
(which according to Corollary 1.4 consists of a finite number of elements) contains
at least four maps,

H1(z, w, χ, τ )= (z, w, χ, τ ), H2(z, w, χ, τ )= (−z, w,−χ, τ),

H3(z, w, χ, τ )= (−z,−w,χ,−τ), H4(z, w, χ, τ )= (z,−w,−χ,−τ).

The next two examples will compare ηK
0 (AutC(M, 0)) and C{ j K

0 (Aut(M, 0))}
for the family F given by

F=
{

M = {Imw = c1|z|2m
+ c2|z|2n

}
∣∣ 1< m < n, |c1|

2
+ |c2|

2
6= 0

}
.

We exclude the Levi flat case, M = {Imw= 0}, since there is no finite jet determi-
nation for this M . Notice that each submanifold in F is of finite type and finitely
degenerate at 0.

Example 5.5. Assume c1 6= 0 and c2 = 0. Calculations in [Angle 2008b] show
that any holomorphic Segre-preserving automorphism of M at 0 is given by

(5-6)
H(z, w, χ, τ )= ( f (z, w), g(z, w), f̃ (χ, τ ), g̃(χ, τ ))

=

(
az

m
√

1+αw
,

am ãmw
1+αw

,
ãχ

m
√

1+ατ
,

am ãmτ
1+ατ

)
,

where a, ã ∈ C \ {0}, α ∈ C, and f and f̃ are expressed in terms of any branch of
the m-th root.

It immediately follows that any automorphism of M at 0 is of the form

(5-7) H(z, w)=
(

az
m
√

1+αw
,
|a|2mw
1+αw

)
,

where a ∈ C \ {0}, α ∈ R, and f is expressed in terms of any branch of the m-th
root.
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In this case, η2
0(AutC(M, 0)) = C{ j2

0 (Aut(M, 0))}. Indeed, from (5-7), we see
that C{ j2

0 (Aut(M, 0))} is given by

(5-8)
{
3g
w =3

g̃
τ = (3

f
z )

m(3 f̃
χ )

m, 3g
ww = 2m(3 f

z )
m−1(3 f̃

χ )
m3 f

zw,

3g̃
ττ = 2m(3 f̃

χ )
m−1(3 f

z )
m3 f̃

χτ ,

3 f
w =3

f
ww =3

f
zz =3

g
z =3

g
zw =3

g
zz

=3 f̃
τ =3

f̃
ττ =3

f̃
χχ =3

g̃
χ =3

g̃
χτ =3

g̃
χχ = 0

}
.

It follows from (5-6) that η2
0(AutC(M, 0)) is also given by (5-8).

Example 5.6. Assume c1, c2 6= 0. Calculations in [Angle 2008b] show that any
holomorphic Segre-preserving automorphism of M at 0 is of one of the n−m forms

(5-9) Hc(z, w, χ, τ )= (az, cmw, (c/a)χ, cmτ),

where a ∈C\{0} and c∈ {e2iπr/(n−m)
: r =0, . . . , n−m−1} (that is, c is a primitive

(n−m)-th root of unity).
It immediately follows that any automorphism of M at 0 is of the form

(5-10) H(z, w)= (eiθ z, w), where θ ∈ R.

Thus, we see from (5-10) that C{ j1
0 (Aut(M, 0))} is given by

{3g
w =3

g̃
τ = 1, 3 f

z 3
f̃
χ = 1, 3 f

w =3
f̃
τ =3

g
z =3

g̃
χ = 0}

and thus has positive dimension. For n=m+1, (5-9) implies C{ j1
0 (Aut(M, 0))}=

η1
0(AutC(M, 0)). For n > m + 1, however, C{ j1

0 (Aut(M, 0))} & η1
0(AutC(M, 0)).

Indeed, we see from (5-9) that η1
0(AutC(M, 0)) is equal to the disjoint union of

exactly n−m distinct cosets of C{ j1
0 (Aut(M, 0))}.
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