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In this note we give a simple, model-independent construction of Chern
classes as natural transformations from differential complex K -theory to
differential integral cohomology. We verify the expected behavior of these
Chern classes with respect to sums and suspension.

1. Statements

Complex K -theory and integral cohomology HZ are generalized cohomology the-
ories that have unique differential1 extensions (K̂ , R, I, a,

∫
) and (ĤZ, R, I, a,

∫
)

with integration. These extensions are multiplicative in a unique way. We refer to
[Bunke and Schick 2010] for a description of the axioms for differential extensions
of cohomology theories and a proof of these statements.

The i-th Chern class is a natural transformation of set-valued functors

ci : K 0
→ HZ2i

on the category of topological spaces. The product HZev
:=
∏

i≥0 HZ2i is a functor
with values in commutative graded rings. We consider the subfunctor

HZ
ev,∗
1 := 1+

∏
i≥1 HZ2i

⊆
∏

i≥0 HZ2i

that takes values in the subgroup of units. The total Chern class

c := 1+ c1+ c2+ · · · : K 0
→ HZ

ev,∗
1

is a natural transformation of group-valued functors.
Let �∗cl( . . . , K ∗) ⊆ �∗( . . . , K ∗) denote the graded ring valued functors on

smooth manifolds of smooth differential forms with coefficients in K ∗ and its sub-
functor of closed forms. We use the powers of the Bott element in K 2 to identify
the functors

�0( . . . , K ∗)∼=�ev( . . . ) and �−1( . . . , K ∗)∼=�odd( . . . ).

MSC2000: 19L10.
Keywords: differential K -theory, Chern classes.

1In previous work, we used the term “smooth cohomology” instead of “differential cohomology”.
We were convinced by D. Freed that the latter is the better name.
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We therefore have natural transformations

a :�odd
→ K̂ 0 and R : K̂ 0

→�ev
cl ,

where a only preserves the additive structure, and R is multiplicative.
We consider the symmetric formal power series

c̃h :=
∑
i≥1

(exi − 1) ∈Q[[x1, x2, . . . ]]

in infinitely many variables. We write chi for the homogeneous component of
degree i . Then there are polynomials Ci ∈Q[s1, s2, . . . ] of degree i (where si has
degree i) such that Ci (ch1, . . . , chi )=σi is the i-th elementary symmetric function
in the xi . The polynomial Ci induces a natural transformation Ci :�

ev
→�2i that

maps the even form ω = ω0+ω2+ω4+ · · · , where ω2k ∈�
2k(M), to

Ci (ω) := Ci (ω2, . . . , ω2i ) ∈�
2i (M).

The following theorem states that the Chern classes have unique lifts to the differ-
ential extensions and that these lifts are compatible with the group structures.

Theorem 1.1. (i) For every i ≥ 1, there exists a unique natural transformation

ĉi : K̂ 0
→ ĤZ

2i

of set-valued functors on smooth manifolds such that the following diagram
commutes:

(1)

�ev Ci // �2i

K̂ 0

R

OO

I
��

ĉi // ĤZ
2i

R

OO

I
��

K 0 ci // HZi

(ii) The total class ĉ= 1+ ĉ1+· · · : K̂ 0
→ ĤZ

ev,∗
1 preserves the group structure.

Berthomieu [2008] has already constructed lifts of the Chern classes. Our goal
is to give a much simpler, model-independent treatment. Further new, but not
very deep, points of the theorem above are the assertions about uniqueness and
the second statement. Our method of proof is different from Berthomieu’s and is
in fact a specialization of a general principle used in [Bunke and Schick 2010]
and [Bunke 2009a] for the construction of lifts of natural transformations between
cohomology functors to their differential refinements.
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In the next two paragraphs we connect the differential Chern classes on differen-
tial K -theory with previous constructions of differential Chern classes in specific
geometric situations.

If V := (V, hV ,∇V ) is a hermitian vector bundle with connection over a mani-
fold M , then we have the classes

ĉCS
i (V ) ∈ ĤZ

2i
(M)

constructed in [Cheeger and Simons 1985]. In the model of differential K -theory
[Bunke and Schick 2009], the geometric bundle is a cycle for a differential K -
theory class [V ] ∈ K̂ 0(M). We have ĉi ([V ])= ĉCS

i (V ).
An even geometric family E over M (see [Bunke 2009b] for this notion) gives

rise to a Bismut superconnection A(E) on an infinite-dimensional Hilbert space
bundle H(E) over M . This superconnection

A(E)= D(E)+∇H(E)
+ higher terms

extends the family of Dirac operators D(E). If the kernel of D(E) is a vector
bundle, then it has an induced metric hker(D(E)) and connection ∇ker(D(E)) obtained
from ∇H(E) by projection. We thus get an induced geometric bundle

H(E)= (ker(D(E)), hker(D(E)),∇ker(D(E)))

and can define the class ĉCS
i (H(E))∈ ĤZ

2i
(M). One goal of [Bunke 2009b], which

was not quite achieved there, was to extend this construction to the general case
where we do not have a kernel bundle. By assuming that index(D(E)) ∈ K 0(M)
belongs to the i-th step of the Atiyah–Hirzebruch filtration (that is, that it van-
ishes after pull-back to any (i−1)-dimensional complex), we constructed in that
book’s 4.1.19 a class ĉi (E) ∈ ĤZ

2i
(M)2 such that I (ĉi (E)) = ci (index(D(E))).

On the other hand, the geometric family E represents a differential K -theory class
[E, 0] ∈ K̂ 0(M) in the model [Bunke and Schick 2009], and we have I ([E, 0]) =
index(D(E)). The class ĉi ([E, 0])∈ ĤZ

2i
(M) satisfies I (ĉi (E))=ci (index(D(E)))

also and thus gives a second differential refinement of the i-th Chern class of the
index of D(E). But in general the class ĉi (E) differs from ĉi ([E, 0]). This can
already be seen on the level of curvatures. Namely, we have

R(ĉi (E))= R([E, 0])[2i] and R(ĉi ([E, 0]))= Ci (R([E, 0])),

where ω[2i] denotes the degree-2i component of the form ω. In a sense, this note
gives the right answer to the problem considered in [Bunke 2009b].

2In [Bunke 2009b] we indexed the Chern classes by their degree, while here we adopt the usual
convention.
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Finally we discuss odd Chern classes. In topology, the odd Chern classes codd
i :

K−1
→ HZi are related with the even Chern classes by suspension:

K̃ 0(6M+)
c(i+1)/2 //

∼=

��

H̃Z
i+1
(6M+)

∼=

��
K−1(M)

codd
i // HZi (M).

In the smooth context, the suspension isomorphism is replaced by the integration∫
along S1

×M→ M . We have the following odd counterpart of Theorem 1.1.

Theorem 1.2. For odd i ∈ N, there are unique natural transformations

ĉodd
i : K̂

−1
→ ĤZ

i

such that
K̂ 0(S1

×M)
ĉ(i+1)/2 //

∫
��

ĤZ
i+1
(S1
×M)

∫
��

K̂−1(M)
ĉodd

i // ĤZ
i
(M)

commutes. The transformation satisfies I ◦ ĉodd
i = codd

i ◦ I .

Let π :W → B be a proper K -oriented map between manifolds. Then we have
an Umkehr map π! :K ∗(W )→K ∗−n(B), where n=dim(W )−dim(B). An integral
index theorem is an assertion about the Chern classes c∗(π!(x)), or codd

∗
(π!(x)) for

x ∈ K ∗(W ), for example, an expression of these classes in terms of the classes
c∗(x) or codd

∗
(x), respectively. A prototypical example is given in [Madsen 2009].

The construction of differential lifts of Chern classes makes it possible to ask for
geometric refinements of these kinds of results. An example of such a theorem
related to the Pfaffian bundle is discussed in [Bunke 2009c].

2. Proofs

Let K0 ' Z × BU be a representative of the homotopy type of the classifying
space of the functor K 0. By [Bunke and Schick 2010, Proposition 2.1], we may
choose a sequence of manifolds (Kk)k≥0 together with maps xk : Kk → K0 and
κk : Kk→ Kk+1 such that

(i) Kk is homotopy equivalent to a k-dimensional CW -complex,

(ii) κk : Kk→ Kk+1 is an embedding of a closed submanifold,

(iii) xk : Kk→ K0 is k-connected, and

(iv) xk+1 ◦ κk = xk .
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Let u ∈ K 0(K0) be the universal class represented by the identity map K0→ K0.
By [Bunke and Schick 2010, Proposition 2.6] we can further choose a sequence
ûk ∈ K̂ 0(Kk) such that I (ûk)= x∗k u and κ∗k ûk+1 = ûk for all k ≥ 0. Then by [ibid.,
Lemma 3.8] and 2 j−1< k, we have H 2 j−1(Kk,R)=0. We consider the canonical
natural transformation ιR : HZ∗→ HR∗ and the de Rham map Rham :�∗cl→ HR∗.
Since the latter is multiplicative, we have

ιR(ci (I (ûk)))= Ci (ch(I (ûk)))= Ci (Rham(R(ûk)))= Rham(Ci (R(ûk))).

If we choose k ≥ 2i , then the diagram

ĤZ
2i
(Kk)

I //

R
��

HZ2i (Kk)

ιR

��
�2i

cl (Kk)
Rham // HR2i (Kk)

is cartesian. Hence for k ≥ 2i , there exists a unique class ẑi,k ∈ ĤZ
2i
(Kk) such

that
I (ẑi,k)= ci (I (ûk)) and R(ẑi )= Ci (R(ûk)).

Also, we have κ∗k ẑi,k+1 = ẑi,k . For k < 2i , we define zi,k := (κ
∗

k ◦ · · · ◦ κ
∗

2i−1)zi,2i .
We now define the natural transformation ĉi . We start with the observation that

if ĉi exists, then it satisfies ĉi (ûk)= ẑi,k .
Let ŵ ∈ K̂ 0(M). By [ibid., Proposition 2.6] we have K 0(M)∼= colimk[M,Kk],

and the underlying class I (ŵ)∈ K 0(M) can be written as I (ŵ)= f ∗x∗k u for some
k and f : M→ Kk . We choose a form ρ ∈�odd(M) such that ŵ = f ∗ûk + a(ρ).

We consider a form ρ̃ ∈�odd([0, 1]×M) that restricts to ρ on {1}×M and to 0
on {0}×M . We get a class ˜̂w = pr∗M ŵ+ a(ρ̃) ∈ K̂ 0([0, 1]×M). Note that

˜̂w|{0}×M = f ∗ûk and ˜̂w|{1}×M = ŵ.

If ĉi exists, then by naturality and the homotopy formula [ibid., (1)], we have

ĉi ( ˜̂w|{0}×M)= f ∗ ẑi,k, ĉi ( ˜̂w|{1}×M)− ĉi ( ˜̂w|{0}×M)= a(
∫
[0,1]×M/M

R(ĉi ( ˜̂w))).

Furthermore, by the commutativity of the upper square in (1), we must require

R(ĉi ( ˜̂w))= Ci (R( ˜̂w)).

Therefore we are forced to define

(2) ĉi (ŵ) := f ∗ ẑi,k + a
(∫
[0,1]×M/M

Ci (R( ˜̂w))
)
.

We see that if ĉi exists, it is automatically unique.
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Lemma 2.1. The definition of ĉi (ŵ) by (2) is independent of the choices of ρ̃, ρ
and f : M→ Kk .

Proof. Let us start with a second choice ρ̃ ′ and write ˜̂w′ := pr∗M ŵ+ a(ρ̃ ′). Then
we can connect ρ̃ with ρ̃ ′ by a family of such forms, for example, the linear path.
This path can be considered as a form ρ̄ on [0, 1] × [0, 1] × M . By construction
ρ̄|[0,1]×{ j}×M is constant and has no component in the direction of the first variable
for j = 0, 1. This implies that

(3) R( ˜̂w′)|[0,1]×{ j}×M = 0.

We set ¯̂w := pr∗M ŵ+a(ρ̄)∈ K̂ 0([0, 1]×[0, 1]×M). By Stokes’ theorem we have

d
∫
[0,1]×[0,1]×M/M

Ci (R(( ¯̂w)))=
∫
[0,1]×M/M

Ci (R( ˜̂w′))−
∫
[0,1]×M/M

Ci (R( ˜̂w))

(these are the contributions of the faces { j}×[0, 1]×M) since the integral over the
other two faces [0, 1]× { j}×M vanishes by (3). Since a annihilates exact forms,
this implies that

a
(∫
[0,1]×M/M

Ci (R( ˜̂w))
)
= a

(∫
[0,1]×M/M

Ci (R( ˜̂w′))
)
.

Assume now that we have chosen a different ρ ′. Then a(ρ ′−ρ)= 0 so that by
the exactness axiom [Bunke and Schick 2010, (2)] there exists a class v̂ ∈ K̂ 1(M)
with R(v̂)= ρ ′−ρ. Let ê ∈ K̂ 1(S1) be a lift of the generator of K 1(S1)∼= Z with
R(ê) = dt . We consider the form σ̃ ∈ �odd([0, 1] × M) with no dt component
given by

σ̃ |{t}×M :=

∫
[0,t]×M/M

R(ê× v̂),

where we identify S1 ∼= R/Z and view the interval [0, t] as a subset of S1. Then

σ̃ |{0}×M = 0, σ̃ |{1}×M = ρ
′
− ρ, dσ̃ = dt ∧ pr∗M R(v̂)= R(ê× v̂).

We now consider

˜̂v := pr∗M ŵ+ pr∗M a(ρ)+ a(σ̃ ) ∈ K̂ 0([0, 1]×M)

and calculate modulo the image of d∫
[0,1]×M/M

Ci (R( ˜̂v))≡
∫

S1×M/M
Ci (R(pr∗M(ŵ))+ pr∗M dρ+ R(ê× v̂))

≡

∫
S1×M/M

Ci (R(pr∗M(ŵ))+ R(ê× v̂))

≡

∫
S1×M/M

Ci (R(pr∗M(ŵ)+ ê× v̂)).
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It follows that

Rham
(∫
[0,1]×M/M

Ci (R( ˜̂v))
)
= Rham

(∫
S1×M/M

Ci (R(pr∗M(ŵ)+ ê× v̂))
)

=

∫
S1×M/M

Rham(Ci (R(pr∗M(ŵ)+ ê× v̂)))

=

∫
S1×M/M

ιR(ci (I (pr∗M(ŵ)+ ê× v̂))).

In other words, Rham(
∫
[0,1]×M/M Ci (R( ˜̂v))) is an integral class, and this implies

a
(∫
[0,1]×M/M

Ci (R( ˜̂v))
)
= 0

by [Bunke and Schick 2010, (2)].
If ρ̃ was the path connecting ρ with 0, then we construct the path ρ̃ ′ from ρ ′ to 0

by concatenating ρ̃ with σ̃ (we may change ρ̃ to ensure a smooth concatenation).
Then we get ˜̂w′ := pr∗M ŵ+ a(ρ̃ ′) ∈ K̂ 0([0, 1]×M) and

a
(∫
[0,1]×M/M

Ci (R( ˜̂w′))
)
= a

(∫
[0,1]×M/M

Ci (R( ˜̂w))
)
+ a

(∫
[0,1]×M/M

Ci (R( ˜̂v))
)

= a
(∫
[0,1]×M/M

Ci (R( ˜̂w))
)
.

Thus our construction of ci is independent of the choice of ρ.
Finally we verify that ĉi (ŵ) is independent of the choice of f : M → Kk . If

we replace k by k + 1 and f by κk ◦ f , then we obviously get the same result.
For two choices f : M → Kk and f ′ : M → Kk′ , there exists k ′′ ≥ max{k, k ′}
such that κk′′

k ◦ f and κk′′
k′ ◦ f ′ are homotopic. Here κ j

i : Ki → K j denotes the
composition κ j

i := κ j−1 ◦ · · · ◦ κi for j > i . Therefore it remains to show that a
choice f ′ : M → Kk homotopic to f : M → Kk gives the same result for ĉi (ŵ).
Let H : [0, 1] × M → Kk be a homotopy from f to f ′. Then we use H in the
construction of ĉi (pr∗M ŵ)∈ ĤZ

2i
([0, 1]×M). If we let ĉ′i (ŵ) denote the result of

the construction based on the choice of f ′ we have by the homotopy formula

ĉ′i (ŵ)− ĉ′i (ŵ)= a
(∫

R(ĉi (pr∗M ŵ))
)
= a

(∫
pr∗M Ci (ŵ)

)
= 0. �

Lemma 2.2. The construction of ĉi defines a natural transformation ĉi : K̂→ ĤZ
2i

of set-valued functors on smooth manifolds.

Proof. Let g : N → M be a smooth map between manifolds. Let ŵ ∈ K̂ 0(M)
and assume that we have constructed ĉi (ŵ) using the choices of f : M → Kk ,
ρ ∈ �odd(M) and ρ̃ ∈ �odd([0, 1] × M). Then we construct ĉi (g∗ŵ) using the
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choices f ◦ g : N→Kk , g∗ρ ∈�odd(N ) and (id×g)∗ρ̃ ∈�odd([0, 1]× N ). With
these choices we get (id×g)∗ ˜̂w = g̃∗ŵ ∈ K̂ 0([0, 1]× N ) and

g∗ĉi (ŵ)= g∗ f ∗ ẑi,k + g∗a
(∫
[0,1]×M/M

Ci (R( ˜̂w))
)

= ( f ◦ g)∗ ẑi,k + a
(∫
[0,1]×M/M

Ci (R((id×g)∗ ˜̂w))
)

= ( f ◦ g)∗ ẑi,k + a
(∫
[0,1]×M/M

Ci (R(g̃∗ŵ))
)
= ĉi (g∗ŵ).

This finishes the proof of Theorem 1.1(i).
To show the part (ii), we consider the natural transformation

B̂ : K̂ 0
× K̂ 0

→ ĤZ
ev

given by

B̂(ŵ, v̂) := ĉ(ŵ)∪ ĉ(v̂)− ĉ(ŵ+ v̂) ∈ ĤZ
ev
(M) for ŵ, v̂ ∈ K̂ 0(M).

If we apply I , we get

I (B̂(ŵ, v̂))= I (ĉ(ŵ)∪ ĉ(v̂))− I (ĉ(ŵ+ v̂))

= I (ĉ(ŵ))∪ I (ĉ(v̂))− I (ĉ(ŵ+ v̂))

= c(I (ŵ))∪ c(I (v̂))− c(I (ŵ)+ I (v̂))= 0.

Let C = 1+C1+C2+ · · · ∈Q[[s0, s1, . . . ]]. Then we have the identity

C(s0+ s ′0, s1+ s ′1, . . . )= C(s0, s1, . . . )C(s ′0, s ′1, . . . ).

Indeed, if c̃h =
∑

i≥1(e
xi − 1), then C(ch1, . . . ) =

∏
i≥1(1+ xi ). If we introduce

another set of variables x ′i and set c̃h′ =
∑

i≥1(e
x ′i − 1), then

C(ch1+ ch′1, ch2+ ch′2, . . . )=
∏
i≥1

(1+ xi )(1+ x ′i )

= C(ch1, ch2, . . . )C(ch′1, ch′2, . . . ).

We now calculate

R(B̂(ŵ, v̂))= R(ĉ(ŵ)∪ ĉ(v̂))− R(ĉ(ŵ+ v̂))

= R(ĉ(ŵ))∪ R(ĉ(v̂))− R(ĉ(ŵ+ v̂))

= C(R(ŵ))∧C(R(v̂))−C(R(ŵ)+ R(v̂))= 0.

Thus B̂ factorizes over the subfunctor HRodd/HZodd
⊂ HR/Zodd

⊂ ĤZ
ev, where

the inclusion is induced by a. Let ρ∈�odd(M) and ρ̃ := t pr∗M ρ∈�
odd([0, 1]×M).



CHERN CLASSES ON DIFFERENTIAL K -THEORY 321

Then we have

B̂(ŵ+a(ρ), v̂)− B̂(ŵ, v̂)= B̂(pr∗M ŵ+a(ρ̃), v̂)|{1}×M− B̂(pr∗M ŵ+a(ρ̃), v̂)|{0}×M .

Because B̂ takes values in the homotopy invariant subfunctor HRodd/HZodd, we
conclude that B̂(ŵ+a(ρ), v̂)= B̂(ŵ, v̂). Similarly, we see that B̂(ŵ, v̂+a(ρ))=
B̂(ŵ, v̂). Hence B̂ has a factorization over a natural transformation

K 0
× K 0

→ HRodd/HZodd
⊂ HR/Zodd.

Such a natural transformation between homotopy invariant functors on manifolds
must be represented by a map of classifying spaces

K0× K0→ K (R/Z, odd),

where K (R/Z, odd) :=
∨

i≥0 K (R/Z, 2i + 1) is a wedge of Eilenberg–Mac Lane
spaces, that is, by a class in B ∈ H odd(K0×K0;R/Z). Since K0 and therefore K0×

K0 are even spaces, we know that Hodd(K0×K0;Z)=0. Then we have H odd(K0×

K0;R/Z)∼=Hom(Hodd(K0×K0;Z),R/Z)=0 by the universal coefficient formula.
We see that B = 0 and therefore B̂ = 0. This finishes the proof of Theorem 1.1(ii).

�

Proof of Theorem 1.2. We let ê ∈ K 1(S1) be, as above, the unique element with
R(ê) = dt , with I (ê) = e ∈ K 1(S1) the canonical generator, and with ê|∗ = 0 for
a basepoint ∗ ∈ S1. Then we define for odd i ∈ N and x̂ ∈ K̂−1(M)

ĉodd
i (x̂) :=

∫
ĉ(i+1)/2(ê× x̂).

Note that

I
(∫

ĉ(i+1)/2(ê× x̂)
)
=

∫
c(i+1)/2(e× I (x̂)).

We have a natural inclusion H̃Z
∗
(6M+) ⊂ HZ∗(S1

× M) since the subspace of
classes whose restriction to {∗}×M vanishes. Since e|∗ = 0, we see that e× I (x̂)
belongs to this subspace. The restriction of

∫
to this subspace coincides with the

suspension isomorphism H̃Z
∗+1
(6M+)

∼
→ HZ∗(M), we have

∫
(e× x)= x with

inverse x 7→ e× x . Therefore∫
c(i+1)/2(e× I (x̂))= codd

i (I (x̂)).

In this way we get a natural transformation that has the required property.
Since

∫
: K̂ 0(S1

×M)→ K̂−1(M) is surjective it is clear that ĉodd
i is unique. �
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