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DACIBERG GONÇALVES AND DESSISLAVA HRISTOVA KOCHLOUKOVA

Using Sigma theory we show that for large classes of groups G there is a
subgroup H of finite index in Aut(G) such that for ϕ ∈ H the Reidemeister
number R(ϕ) is infinite. This includes all finitely generated nonpolycyclic
groups G that fall into one of the following classes: nilpotent-by-abelian
groups of type FP∞; groups G/G′′ of finite Prüfer rank; groups G of type
FP2 without free nonabelian subgroups and with nonpolycyclic maximal
metabelian quotient; some direct products of groups; or the pure symmetric
automorphism group. Using a different argument we show that the result
also holds for 1-ended nonabelian nonsurface limit groups. In some cases,
such as with the generalized Thompson’s groups Fn,0 and their finite direct
products, H = Aut(G).

1. Introduction

We study the Reidemeister number R(ϕ) for elements ϕ of subgroups of finite index
in Aut(G) for large classes of groups G. The Reidemeister number R(ϕ) counts the
twisted conjugacy classes {gaϕ(g)−1

}g∈G for a ∈ G. The study of R(ϕ) began in
the Nielsen–Reidemeister fixed point theory. Following [Taback and Wong 2007],
we say a group G has the property R∞ if R(ϕ) is infinite for every automorphism ϕ

of G. Many classes of groups have the property R∞: nonelementary Gromov hy-
perbolic groups [Levitt and Lustig 2000; Fel’shtyn 2001], nonabelian generalized
Baumslag–Solitar groups [Levitt 2007], saturated weakly branch groups (including
the Grigorchuk group and the Gupta–Sidki group) [Fel’shtyn et al. 2008a], and the
Thompson’s group F [Bleak et al. 2008].

Fel’shtyn et al. [2008b] showed that for a finitely generated polyfree group G
with nonzero Euler characteristic, there is a subgroup H of finite index in Aut(G)
such that the Reidemeister number is infinite for every element of H .

In Sections 4a and 4c, we will show that to the groups in the list above that
have the R∞ property, we can add the generalized Thompson’s groups Fn,0 and
any finite direct product of such groups (with possibly different n).
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Furthermore we study large classes of groups G where it is possible to show
that there is a subgroup H of finite index in Aut(G) such that R(ϕ) is infinite for
every ϕ ∈ H . These are all finitely generated nonpolycyclic groups G such that

(1) G is nilpotent-by-abelian of type FP∞;

(2) G/G ′′ is of finite Prüfer rank but not polycyclic;

(3) G is of type FP2 with no free nonabelian subgroups and its maximal meta-
belian quotient is not polycyclic;

(4) G is some direct product of groups;

(5) G is the pure symmetric automorphism group;

(6) G is a Houghton group Hn .

The proofs of these results, found in Section 4, rely on the structure of the
invariant 61(G) for the groups G described above. In the preliminaries we detail
the properties of this invariant. It appeared first in the study of finitely presented
metabelian groups G [Bieri and Strebel 1980] and was later defined for any finitely
generated group G [Bieri et al. 1987]. The geometric invariant 61(G) is invariant
under the action of the automorphism group of G, which is fundamental for the
proofs. In many cases we do not know the full automorphism group Aut(G),
but using Sigma theory we can nevertheless obtain sufficient information on how
Aut(G) can act on the abelianization of G.

In the final section we show that to the list above we can add

(7) G is any 1-ended nonabelian nonsurface limit group.

Orientable surface groups of genus at least 2 and nonorientable surface groups
of genus at least 3 are Gromov hyperbolic [Gersten 1999, 3.17.5], and hence as
mentioned before have R∞. Nonorientable surface groups of genus 1 or 2 are not
limit groups since in the first case they have torsion and in the second they are
virtually abelian but not abelian.

Limits groups appeared in the solution of the Tarski problem by O. Kharlampov-
ich, A. Myasnikov, and independently by Z. Sela. The definition of limit groups
was suggested by Z. Sela, and it turned out that the class of limit groups coin-
cides with the class of finitely generated, fully residually free groups studied by G.
Baumslag, O. Kharlampovich, A. Myasnikov, and V. Remeslenikov. The class of
limit groups includes finitely generated free groups, finite rank free abelian groups,
and surface groups of Euler characteristic at most −2. Limit groups are CAT(0)
[Alibegović and Bestvina 2006]. Unfortunately we cannot use 61(G) to study
the Reidemeister numbers for a limit group G because the set 61(G) is empty
[Kochloukova 2010]. Instead we use the structure theorem of Aut(G) for 1-ended
limit groups G given in [Bumagin et al. 2007].
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2. Preliminaries

2a. Sigma invariants for finitely generated groups. Let R be an associative ring
with 1. All modules and actions in this paper are left ones. For an R-module M ,
we say that M has type FPm if there is a projective resolution

· · · → Pi → Pi−1→ · · · → P0→ M→ 0

such that all projective modules Pi are finitely generated for i ≤ m. A group G is
of type FPm if the trivial module Z is of type FPm as a ZG-module. Every group
is of type FP0, and G is of type FP1 if and only if G is finitely generated. If G is
finitely presented (that is, there is a K (G, 1) with a finite 2-skeleton), then G is of
type FP2. The converse does not hold [Bestvina and Brady 1997].

The homological invariants 6m(G,Z) were defined in their current form in
[Bieri and Renz 1988], but in the case that m = 1 and G is metabelian, they can
be traced back (under different notation) to [Bieri and Strebel 1980], where they
played a crucial part in classifying finitely presented metabelian groups.

For a general finitely generated group G, define the character sphere

S(G)= (HomZ(G,R) \ {0})/∼,

where R is considered a group via addition, and χ1 ∼ χ2 if there is a positive real
number r such that rχ1 = χ2. Write [χ ] for the class of χ in S(G), and define

6m(G,Z)= {[χ ] ∈ S(G) | Z is of type FPm as a ZGχ -module},

where Gχ is the monoid {g ∈ G | χ(g)≥ 0}. By definition,

6m(G,Z)c = S(G) \6m(G,Z).

It is known that 6m(G,Z) is always an open subset of S(G) and can be empty
(as in the case of a noncyclic free group). If 6m(G,Z) is not empty, then G is of
type FPm , but the converse does not hold (for example, when G is noncyclic free).
The following theorem shows that the invariants 6m(G,Z) are responsible for the
homological type of subgroups of G that contain the commutator.

Theorem 2.1 [Bieri and Renz 1988, Theorem B]. If N is a subgroup of G that
contains the commutator and G is of type FPm , then N is FPm if and only if
S(G, N ) := {[χ ] ∈ S(G) | χ(N )= 0} ⊆6m(G,Z).

There is a homotopical version 6m(G) of 6m(G,Z). In the dimension m =
1 the invariants coincide, that is, 61(G,Z) = 61(G), and in general 6m(G) ⊆
6m(G,Z), but the inclusion can be strict for m ≥ 2 [Meier et al. 1998]. As before,
the superscript c means complement in S(G).
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In general it is hard to calculate all the invariants (both homological and homo-
topical versions for arbitrary dimension m). In this paper we apply some structural
results about 61(G)c to the theory of twisted conjugacy classes.

2b. A Sigma invariant for a metabelian group. In this section we discuss the
original Bieri–Strebel invariant [1980]. This is the form that will be used in the
proof of Theorem 4.6.

Let Q be a finitely generated abelian group, and let A be a finitely generated left
ZQ-module. If not otherwise stated, all modules in this paper are left ones. Then

6A(Q)= {[χ ] ∈ S(Q) | A is finitely generated as a ZQχ -module}

and

6c
A(Q)= S(Q) \6A(Q).

Bieri and Strebel [1981, (1.5)] showed that 6c
A(Q) is additive, that is, if

0→ A1→ A→ A2→ 0

is a short exact sequence of finitely generated ZQ-modules, then

6c
A(Q)=6

c
A1
(Q)∪6c

A2
(Q).

It follows from the definitions that if χ is a real character of a finitely generated
metabelian group G such that A is an abelian normal subgroup of G with Q=G/A
abelian, and if χ(A) 6= 0, then [χ ] ∈ 61(G). If χ(A) = 0, then [χ ] ∈ 61(G)c if
and only if [χ ] ∈6c

A(Q) (here we consider χ as a character of Q since χ(A)= 0).
Let I be the annihilator of A in ZQ, that is, I = {λ ∈ ZQ | λA = 0}, and let

P1, . . . , Ps be the minimal associated primes of A as a ZQ-module. Then we have
by [Bieri and Strebel 1981, (1.12)]

6c
A(Q)=6

c
ZQ/I (Q)=

⋃
1≤i≤s

6c
ZQ/Pi

(Q).

2c. Twisted conjugacy classes. Let ϕ : G → G be a group endomorphism. The
set of equivalence classes {gaϕ(g)−1

}g∈G for a ∈ G is denoted by R[ϕ]. The
cardinality of R[ϕ] is denoted by R(ϕ) and called the Reidemeister number of ϕ.

Let H be a normal subgroup of a group G invariant under an endomorphism ϕ.
Denote by ϕ′ the restriction of ϕ on H and by ϕ the endomorphism induced by ϕ
on Q = G/H . Then by [Gonçalves 1998] and [Gonçalves and Wong 2003, (2.2)],
there is an exact sequence of sets

(2-1) R[ϕ′] →R[ϕ] →R[ϕ] → 0.
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By [Jiang 1983, page 33], if G/H is abelian, nontrivial, torsion-free, and the map
idQ −ϕ is not surjective (that is, ϕ is a linear operator with eigenvalue 1), then
R(ϕ) is infinite and consequently R(ϕ) is infinite.

3. General results

A point [χ ] of the character sphere S(G) is called a discrete point (or a rational
point) if [χ ] = [µ] for some character µ such that Im(µ)= Z. In this case we call
χ discrete or rational.

Lemma 3.1. Let G be a finitely generated group such that

61(G)c = {[χ1], . . . , [χm]}

is finite, nonempty, and contains only discrete points, and let ϕ be an automorphism
of G. Let N =

⋂
i Ker(χi ), let V = HomZ(G/N ,R), and let θ be the element of

EndZ(V ) induced by ϕ.
Then θ permutes the images χ i of χi in V , where every χi is chosen so that the

coordinates of χ i are integers with maximal common divisor 1.

Proof. Since 61(G)c is invariant under automorphisms, we have θ(χ i ) = riχπ(i),
where π is some element of the symmetric group Sm and the ri are positive real
numbers. By assumption, the coordinates of the entries of χ i (with respect to some
fixed basis of the free abelian group G/N ) are coprime integers. Then every ri is
a positive integer.

We aim to show that r1=· · ·=rm=1. Indeed for k=m!, we have θ k(χ i )=λiχ i
for some positive integer λi divisible by ri for every i . Now ϕ is invertible and N
is a characteristic subgroup of G, so θ is an automorphism of V , and so θ k is
invertible. Furthermore X = {χ i }1≤i≤m spans V . Then by picking up a subset Y of
X that is a basis of V , we see that the operator θ k is diagonalizable with eigenvalues
λi (note that a fixed χ i can always be included in some Y ). Then

∏
χ i∈Y λi = 1,

so λi = 1 for χ i ∈ Y . Then ri = 1 as required. �

Theorem 3.2. Let G be a finitely generated group such that

61(G)c = {[χ1], . . . , [χm]}

is finite, nonempty, and contains only discrete points. Let N =
⋂

i Ker(χi ), and let
V = HomZ(G/N ,R). Suppose that the image of {χ1, . . . , χm} in V is a basis of
V as an R-vector space. Then R(ϕ) is infinite for every ϕ ∈Aut(G), that is, G has
the property R∞.

Proof. By the previous lemma, we can fix representatives χi (remember we can
multiply any χi with a positive real number) so that the map θ ∈EndZ(V ), induced
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by ϕ, permutes the elements of {χ1, . . . , χm}, where {χ1, . . . , χm} is the image of
{χ1, . . . , χm} in V . Then

θ(χ1+ · · ·+χm)= χ1+ · · ·+χm and χ1+ · · ·+χm 6= 0

in V , that is, θ has eigenvalue 1. Then R(ϕ) is infinite by the preliminaries from
Section 2c; hence R(ϕ) is infinite. �

Theorem 3.3. Let G be a finitely generated group such that

61(G)c = {[χ1], . . . , [χm]}

is finite, nonempty, and contains only discrete points. Let N =
⋂

i Ker(χi ) and
V = HomZ(G/N ,R). Suppose that the image of {χ1, . . . , χm} in V lies in an
open half subspace. Then R(ϕ) is infinite for every ϕ ∈ Aut(G), that is, G has the
property R∞.

Proof. As in the proof of the previous theorem, we can fix representatives χi such
that w = χ1 + · · · + χm is fixed by θ , where χ i is the image of χi in V . Since
{χ1, . . . , χm} lies in an open half subspace of V , we deduce that w 6= 0. We
continue as in the proof of the previous theorem. �

Corollary 3.4. Let G be a finitely generated group such that

61(G)c = {[χ1], . . . , [χm]}

is finite, nonempty, and contains only discrete points. Then there is a subgroup of
finite index H of Aut(G) such that R(ϕ) is infinite for every ϕ ∈ H.

Proof. By Lemma 3.1 the image of Aut(G) in EndZ(V ) permutes the characters
χ1, χ2, . . . , χm , where the coordinates of χ i are integers with maximal common
divisor 1, and V = HomZ(G/N ,R) is defined as before. Let H be the kernel
of the action of Aut(G) on EndZ(V ). Then the elements of H fix every χ i ; in
particular the map induced by ϕ on the maximal torsion-free abelian quotient of G
has eigenvalue 1. We continue as in the proof of the previous theorem. �

Proposition 3.5. Let G be a finitely generated nilpotent group, and let ϕ ∈Aut(G)
be such that ϕ(g) is conjugate to g for some element g ∈ G of infinite order. Then
R(ϕ) is infinite.

Proof. We induct on the nilpotency length of G. The case when G is abelian is
obvious and well known.

Suppose that G is nonabelian. Let Z(G) be the center of G, so G = G/Z(G)
is of nilpotency length strictly smaller than the nilpotency length of G.

Let ϕ be the automorphism of G induced by ϕ. If there is an element of G
of infinite order that is sent by ϕ to a conjugate, then by induction R(ϕ) = ∞,
so R(ϕ) = ∞. We can assume that there isn’t an element of G of infinite order
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that is sent by ϕ to a conjugate. The conditions of [Gonçalves and Wong 2003,
Lemma 2.1] then hold, and hence it suffices to show that R(ϕ′) = ∞ to deduce
that R(ϕ)=∞, where ϕ′ is the restriction of ϕ to N .

Let g ∈G be an element of infinite order such that ϕ(g)∈ gG . By the preceding
paragraph, the image of g in G has finite order. If g 6∈ Z(G), some nontrivial power
of g is in Z(G), so we can assume that g ∈ Z(G). Then gG

= g and ϕ(g)= g.
Consider one twisted conjugated class

Xh = {ahϕ′(a)−1
}a∈Z(G) for some h ∈ Z(G).

Because there is an element of infinite order in Z(G) that is fixed by ϕ′, we see
that {aϕ′(a)−1

}a∈Z(G) is a subgroup of infinite index in Z(G); hence Xh is a coset
class of a subgroup of infinite index in Z(G). In particular this shows that we
have an infinite number of twisted conjugacy classes Xh when h ∈ Z(G), that is,
R(ϕ′)=∞. �

4. Applications

4a. On the generalized Thompson’s group and some soluble groups. For a group
G of piecewise linear transformations of the unit interval, we say that G is ir-
reducible if G does not fix a point of (0, 1). There are two distinguished real
characters ρ and λ of G defined by λ( f )= log2 f ′(0) and ρ( f )= log2 f ′(1).

Theorem 4.1. Let G be a finitely generated, irreducible group of piecewise linear
transformations of the unit interval; let ρ and λ defined above be nonzero rational
nonantipodal characters such that λ(Ker(ρ)) = Im(λ) and ρ(Ker(λ)) = Im(ρ).
Then R(ϕ) is infinite for every ϕ ∈ Aut(G), that is, G has the property R∞.

Proof. By [Bieri et al. 1987, Theorem 8.1], the invariant 61(G)c is equal to
{[ρ], [λ]}, and by hypothesis the conditions of Theorem 3.2 are satisfied. �

The generalized Thompson’s group Fn,0, where n ≥ 2 (we use the notation of
Brin and Guzmán [1998], which differs from the notation in [Brown 1987a]), is
defined with the infinite presentation

〈x0, x1, x2, . . . | x−1
j xi x j = x j+n−1 for 0≤ j < i〉;

the case n = 2 is the classical Thompson’s group F . The groups above were
first defined and shown to be of type FP∞ in [Brown 1987a]. Some other groups
of PL functions on the interval are known to be of type FP∞ [Stein 1992]. The
automorphism group of Fn,0 is understood completely only for n = 2 [Brin 1996],
and only some partial results are known for general n>2 [Brin and Guzmán 1998].
Although we do not know much about the full automorphism group of Fn,0, we
can still deduce the following result from Theorem 4.1. This answers a question
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asked in [Bleak et al. 2008], where it was shown that the classical Thompson’s
group F has the property R∞.

Corollary 4.2. The generalized Thompson’s group Fn,0 has the property R∞.

Proof. The generalized Thompson’s group Fn,0 has several presentations as a group
of PL functions of different intervals. In [Brin and Guzmán 1998, Lemma 2.3.1], a
description of Fn,0 is given as the group of PL functions f on the interval [0, n−1],
where the set Y f of break points is finite, the image of Y f under f is inside Z[1/n],
the slopes of all linear functions are integral powers of n, and the slopes of f at 0
and n − 1 can be arbitrary integral powers of n. Furthermore Fn,0 does not fix a
point on the open interval (0, n− 1). In that paper, the elements of Fn,0 act on the
right of the interval, but by setting f (x)= (x) f −1, we get an action on the left. By
obvious rescaling (that is, a linear map that gives a bijection between the interval
[0, n − 1] and [0, 1]), we get a description of Fn,0 as a subgroup of PL functions
acting on the left of the interval [0, 1], and then we can apply Theorem 4.1. �

All 6-invariants are calculated [Bieri et al. 2010] for the original Thompson’s
group F , but for the generalized ones these invariants are not known except in
dimension 1.

Theorem 4.3. Let G be a nonpolycyclic nilpotent-by-abelian group of type FP∞.
Then R(ϕ) is infinite for every ϕ ∈ Aut(G), that is, G has the property R∞.

Proof. Soluble groups of type FP∞ are nilpotent-by-abelian-by-finite, so assuming
that G is nilpotent-by-abelian is not a very strong restriction.

By the classification of soluble groups of type FP∞, G is constructible, that is,
built from the trivial group by finite and HNN extensions [Kropholler 1993].

Suppose that the commutator G ′ is not finitely generated; hence 61(G)c is not
empty by Theorem 2.1. By [Bieri and Strebel 1982], 61(G)c is a finite set of
discrete points {[χ1], . . . , [χm]} that lies in an open hemisphere of S(G). Then we
can apply Theorem 3.3.

Finally if the commutator G ′ is finitely generated, G is polycyclic since it is
nilpotent, a contradiction. �

A group G is said to be of finite Prüfer rank if there is a number d such that
every finitely generated subgroup is generated by at most d elements. In particular
if 1→ A→G→ Q→ 1 is a short exact sequence of groups with A and Q abelian,
and G finitely generated, then G has finite Prüfer rank if and only if the torsion
part of A is finite and A⊗Z Q is finite-dimensional as a Q-vector space. By the
link between valuation theory and 6c

A(Q) [Bieri and Groves 1984, Theorem 8.1],
by the existing bijection between 6c

A(Q) and 61(G)c explained in the penultimate
paragraph of Section 2b, and because G has finite Prüfer rank, 61(G)c is a finite
set {[χ1], . . . , [χm]}, where χ1, . . . , χm are discrete characters.
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Lemma 4.4. Let G be a finitely generated metabelian group of finite Prüfer rank
that is not polycyclic. Then there is a subgroup of finite index H of Aut(G) such
that R(ϕ) is infinite for every ϕ ∈ H.

Proof. Since G is not polycyclic, G ′ is not finitely generated, and so 61(G)c is not
empty by Theorem 2.1. On the other hand 61(G)c is a finite set of discrete points.
Then we can apply Corollary 3.4. �

Corollary 4.5. Let G be a finitely generated group such that G/G ′′ is of finite
Prüfer rank and G/G ′′ is not polycyclic. Then there is a subgroup of finite index
H of Aut(G) such that R(ϕ) is infinite for every ϕ ∈ H.

Proof. By the previous lemma there is a subgroup H0 of finite index in Aut(G/G ′′)
such that for every ϕ0 ∈ H0 the number R(ϕ0) is infinite. Then we can define H
as the full preimage of H0 in Aut(G). �

4b. More on groups with metabelian quotients of type FP2.

Theorem 4.6. Let G be a finitely generated metabelian group such that G is not
polycyclic and61(G)c is not a finite union of subspheres. Then there is a subgroup
of finite index H of Aut(G) such that R(ϕ) is infinite for every ϕ ∈ H.

Proof. As before since G is not polycyclic (in this case, this is equivalent to G ′ not
being finitely generated) 61(G)c is not empty by Theorem 2.1.

We view A = G ′ as a left ZQ-module via conjugation, where Q = G/G ′; we
denote this ZQ-action on A by ◦, that is, if q = g A and a ∈ A, then q ◦a = gag−1.

Let P1, . . . , Ps be all minimal associated primes of the ZQ-module A; see
[Bourbaki 1989]. Let I be the annihilator of ZQ in A, that is,

I = {λ ∈ ZQ | λ ◦ A = 0}.

Then P1, . . . , Ps are the minimal prime ideals above I . Let ϕ be the automorphism
of Q = G/G ′ induced by ϕ. We extend ϕ by linearity to a ring endomorphism ϕ̂

of ZQ so that the restriction on Z is identity, and note that for λ ∈ I we have
0A = ϕ(0A)= ϕ(λ ◦ A)= ϕ̂(λ) ◦ϕ(A)= ϕ̂(λ) ◦ A, so ϕ̂(I )= I . Then ϕ̂ permutes
the finite set of prime ideals P1, . . . , Ps . Thus by going down to a subgroup of finite
index in Aut(G), we can assume that ϕ̂(Pi )= Pi for every i , and so ϕ̂ induces an
automorphism ϕi of Ri = ZQ/Pi . By construction, ϕi is the identity on the image
of Z in Ri .

Let ϕ̃i be the extension of ϕi to the field of fractions Ki of Ri . Let

Qi = Q/Ti , where Ti = {q ∈ Q | q − 1 ∈ Pi }.

By [Roseblade 1978, Theorem D] or [Bieri and Groves 1986, corollary on p. 426],
the group of automorphisms of Ki that fixes the prime subfield ki and permutes the
elements of Qi induces a finite group on Bi/Ai , where Bi is a minimal subgroup of
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Qi such that ki (Bi )⊆ Ki is a purely transcendental extension with rank that equals
the rank of the torsion-free group Qi/Bi , and Ai is the subgroup of elements of
Qi that are algebraic over ki . The group of automorphisms of Ki induces a finite
group on Ai since the Galois group of a finite field extension is finite. Thus the
group of automorphisms of Ki that fixes the prime subfield ki and permutes the
elements of Qi induces a finite group on Bi .

Then by going down to a subgroup of finite index H in Aut(G), that is, ϕ ∈ H ,
we can assume that ϕi is trivial on Bi , that is, for Bi = Si/Ti with Si ≤ Q we
have ϕ(s) ∈ sTi for every s ∈ Si . Then if Bi is infinite, the map induced by ϕ on
G/G ′⊗Z Q has eigenvalue 1, and we can apply the observations from Section 2c.
Thus we can assume henceforth that the Bi are all finite.

We claim that if Bi is finite, then

6c
ZQ/Pi

(Q)= {[χ ] ∈ S(Q) | χ(Si )= 0} =: S(Q, Si ),

where Si is defined as above, that is, Si is the subgroup of Q such that Si/Ti = Bi .
Indeed by [Bieri and Groves 1984, Theorem 8.1], the class [χ ] is in 6c

ZQ/Pi
(Q) if

and only if there is a real valuation of ZQ/Pi whose restriction on Qi = Q/Ti is
induced by χ . Since Ki is a purely transcendental extension of ki (Bi ) with degree
exactly the rank of the torsion-free abelian group Qi/Bi for every real valuation w
of ki (Bi ) and any character χ : Qi → R such that χ and w coincide on Bi , there
is a valuation of Ki that extends both w and χ . Furthermore any real valuation of
k(Bi ) sends the finite group Bi to zero. Thus any real character of Qi extends to
a real valuation of Ki and so by restriction to a real valuation of ZQ/Pi . Since
Ti −1 maps to 0 in ZQ/Pi and any real valuation of ZQ/Pi sends 0 to infinity for
[χ ] ∈ 6c

ZQ/Pi
(Q), we always have χ(Ti ) = χ(1) = 0. Since Bi is finite for every

real character χ such that χ(Ti )= 0, we have χ(Si )= 0.
Then as mentioned in Section 2b,

61(G)c =6c
A(Q)=6

c
ZQ/I (Q)=

⋃
i 6

c
ZQ/Pi

(Q).

That is, 61(G)c is a finite union of subspheres S(Q, Si ), a contradiction. �

Corollary 4.7. Let G be a group of type FP2. Suppose it does not contain a free
subgroup of rank 2, and G/G ′′ is not polycyclic. Then there is a subgroup of finite
index H of Aut(G) such that R(ϕ) is infinite for every ϕ ∈ H.

Proof. By [Bieri and Strebel 1980, Theorem 5.5], the maximal metabelian quotient
G/G ′′ of G has type FP2, and 61(G/G ′′)c does not have antipodal points. By
Theorem 2.1, since G/G ′′ is not polycyclic, 61(G/G ′′)c is not empty. Since any
subsphere of S(G) has antipodal points, 61(G/G ′′)c does not contain a subsphere.
Then by Theorem 4.6 there is a subgroup H0 of finite index in Aut(G/G ′′) such
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that R(ϕ0) is infinite for every ϕ0 ∈ H0. Finally define H to be the full preimage
of H0 in Aut(G). �

4c. Direct products of groups. The direct product of groups is a particular case
of a more general construction: A graph product G of groups is constructed from
a graph 1 and vertex groups Gv associated with every vertex v in the set V of
vertices of1. Then G is the free product of all Gv factored by the normal subgroup
generated by [Gv,Gw], where v and w are any adjacent vertices in 1.

Theorem 4.8 [Meinert 1995, Theorem A]. Let G be a graph product with a finite
underlying graph 1 and finitely generated vertex groups {Gv}v∈V . Let χ : G→ R

be a nonzero homomorphism. Let 1′ be the full subgraph of 1 spanned by all
vertices V ′ = {v ∈ V | χ(Gv) 6= 0}. Then [χ ] ∈ 61(G) if and only if one of the
following conditions holds:

(1) If 1′ = {v0}, then [χ |Gv0
] ∈ 61(Gv0), and each vertex of V \ {v0} is adjacent

to v0.

(2) If 1′ has at least 2 vertices, then it is connected, and each vertex of V \ V ′ is
adjacent to some vertex of 1′.

If applied to a finite graph 1 in which every pair of vertices is linked by an
edge, then this theorem gives a simple formula for the 61 invariant of a direct
product of finitely many groups. There were some attempts to prove analogues
for higher-dimensional invariants 6m(G,Z) and 6m(G) for G a direct product of
groups (such analogues are called direct product conjectures). These conjectures
turn out to be false in both homological and homotopical versions [Meier et al.
1998; Schütz 2008], but hold if we consider invariants with coefficients in a field
[Bieri and Geoghegan 2010].

Corollary 4.9. Let H =G1×· · ·×Gm , and let 61(Gi )
c be finite (possibly empty)

and contain only rational points (if any) for all 1 ≤ i ≤ n. Suppose further that
61(Gi )

c is not empty for at least one i . Then there is a subgroup of finite index H0

of Aut(H) such that R(ϕ) is infinite for every ϕ ∈ H0.

Proof. By Theorem 4.8, 61(G)c is finite, nonempty, and contains only discrete
points. Thus we can apply Corollary 3.4. �

Corollary 4.10. Let H = G1 × · · · ×Gm , where Gi are generalized Thompson’s
groups (not necessarily isomorphic). Then H has the property R∞.

Proof. Let ρi and λi be the characters of H that are zero when restricted to G j

for j 6= i , and are the classical ρ and λ from Section 4 when restricted to Gi . By
Theorem 4.8, 61(H)c = {[λi ], [ρi ]}1≤i≤m . Then we can apply Theorem 3.2. �
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Examples. Here we exhibit groups G that have abelianization Z and nonempty
61(G)c. Let G be a knot group with commutator G ′ infinitely generated. For
every knot group, we have G/G ′ ' Z. By Theorem 2.1, since G ′ is infinitely
generated, 61(G) 6= S(G).

Let D be the double of G, that is, we make the free amalgamated product
G ∗Z2 G, where Z2 is the torus subgroup of G. Thus D is a 3-manifold group
and D/D′ ' Z. By the results of Thurston [1986] for 3-manifold groups and
their translation into algebraic language [Bieri et al. 1987, Corollary F], we have
61(D) = −61(D), and 61(D) is nonempty if and only if the 3-manifold fibers
over S1; in our case this means that D′ is finitely generated. This obviously does
not hold as G is a quotient of D, and G ′ is not finitely generated. Then 61(D) is
empty. Since D/D′ ' Z, we see that 61(D)c = S(D) has 2 elements.

4d. The pure symmetric automorphism group. In this section, G is the pure sym-
metric automorphism group of the free group F with basis {x1, . . . , xn}. It is
generated by {αi, j }1≤i 6= j≤n , where

αi, j (xi )= x−1
j xi x j and αi, j (xk)= xk for k 6= i.

By [McCool 1986], G is finitely presented with relations

[αi, j , αk,l] = 1 if i, j, k, l are different,

[αi, j , αk, j ] = 1 and [αi, jαk, j , αi,k] = 1 if i, j, k are different.

By [Brady et al. 2001], G is a duality group of dimension n−1. By the main result
of [Orlandi-Korner 2000], the class [χ ] is in 61(G)c if and only if exactly one of
the following holds:

(1) χ(αi, j ), χ(α j,i )∈R for some 1≤ i < j ≤ n and χ(αr,s)= 0 for the remaining
indices;

(2) χ(α j,i ) = −χ(αk,i ), χ(αi,k) = −χ(α j,k), and χ(αk, j ) = −χ(αi, j ) for some
1≤ i < j < k ≤ n and χ(αr,s)= 0 for the remaining indices.

We write Ai, j for the set of characters of first type and Bi, j,k for the set of second
type (in both cases including the trivial character). Note that Ai, j and Bi, j,k are
R-subspaces of HomZ(G,R) of dimensions 2 and 3, respectively.

Theorem 4.11. Let G be the pure symmetric automorphism group of a free group
of rank n. Then there is a subgroup H of finite index in Aut(G) such that R(ϕ) is
infinite for every ϕ ∈ H.

Proof. Since Aut(G) permutes

W =
( ⋃

1≤i< j≤n

Ai, j

)
∪

( ⋃
1≤i< j<k≤n

Bi, j,k

)
⊂ HomZ(G,R),
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and the only 3-dimensional spaces inside W are the Bi, j,k , we see that Aut(G)
permutes the spaces Bi, j,k and thus also the elements of M =

⋃
1≤i< j≤n Ai, j . Also,

the only 2-dimensional spaces inside M are the Ai, j , so Aut(G) permutes the spaces
Ai, j . By going down to a subgroup of finite index in Aut(G), we can consider only
automorphisms ϕ of G such that ϕ sends every Ai, j to Ai, j and every Bi, j,k to Bi, j,k .

Let {α∗i, j }i, j be the basis of Hom(G,R) dual to {αi, j }i, j and ϕ∗ be the automor-
phism of Hom(G,R) induced by ϕ. Note that

Bi, j,k = R(α∗i, j −α
∗

k, j )+R(α∗i,k −α
∗

j,k)+R(α∗k,i −α
∗

j,i )

and Bi, j,k is invariant under ϕ∗. Then

(4-1) ϕ∗(α∗i, j −α
∗

k, j ) ∈ Bi, j,k .

On the other hand, since Ai, j and Ak, j are invariant under ϕ∗, we have

(4-2) ϕ∗(α∗i, j ) ∈ Rα∗i, j +Rα∗j,i and ϕ∗(α∗k, j ) ∈ Rα∗k, j +Rα∗j,k;

hence

(4-3) ϕ∗(α∗i, j −α
∗

k, j ) ∈ Rα∗i, j +Rα∗j,i +Rα∗k, j +Rα∗j,k .

Combining (4-1) and (4-3), we get

ϕ∗(α∗i, j −α
∗

k, j )= aα∗i, j − aα∗k, j for some a ∈ R.

Then by (4-2),

ϕ∗(α∗i, j )= aα∗i, j and ϕ∗(α∗k, j )= aα∗k, j .

In particular, ϕ induces a diagonal linear map ϕ on the abelianization G/G ′, and
since ϕ is invertible, the product of eigenvalues is either 1 or −1, and all a are
integers. Then a is either 1 or −1, and either ϕ has eigenvalue 1 and we are done
by the remarks from Section 2c, or ϕ is − idG/G ′ . By going to a subgroup of
index 2, we can avoid the last case. �

4e. Houghton groups. Let N= {1, 2, . . . } be the set of the natural numbers, and
let M = {1, 2, . . . , n} × N for n ∈ N. The Houghton group Hn consists of all
permutations g of M such that there is an n-tuple (m1, . . . ,mn) ∈ Zn such that
g(i, r) = (i, r + mi ) for all i ∈ {1, . . . , n} and all but finitely many (i, r) ∈ M .
These groups were first introduced in [Houghton 1978]. There is an important
homomorphism f : Hn → Zn sending each permutation g to the corresponding
n-tuple (m1, . . . ,mn). We always have

∑
1≤i≤n mi = 0.

For n≥ 2, the group Hn is finitely generated. More generally K. Brown [1987a]
has shown that Hn is of type FPn−1 but not of type FPn . For n ≥ 2, the group Hn
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is generated by {t2, . . . , tn}, where

ti ( j, r)= ( j, r) for i 6= j, j 6= 1 ti (i, 1)= (1, 1),

ti (i, r)= (i, r − 1) for r > 1, ti (1, r)= (1, r + 1).

Also Hn/[Hn, Hn] ' Zn−1; see [Gehrke 1998]. The invariant 61(Hn)
c for n ≥ 2

was calculated in [Brown 1987b] as

61(Hn)
c
= {[α1], . . . , [αn]},

where αi = −πi f and πi : Z
n
→ Z is the projection to the i-th coordinate. Thus

61(Hn)
c is a finite set of rational points of S(Hn), so we can apply Corollary 3.4

and get the following result.

Corollary 4.12. Let n ≥ 2 be a natural number, and let G = Hn . Then there is a
subgroup H of finite index in Aut(G) such that R(ϕ) is infinite for every ϕ ∈ H.

5. Limit groups

In the previous section we saw that sometimes to understand the structure of61(G),
it suffices to study the twisted conjugacy classes, although we might not have a
complete classification of the whole automorphism group. In this section we study
twisted conjugacy classes for 1-ended limit groups G. Kochloukova [2010] proved
that 61(G) is empty for any limit group G, so we have to find a different approach
to study the Reidemeister number R(ϕ). As noted in the introduction, the class
of limit groups coincides with the class of finitely generated fully residually free
groups.

There are results about the automorphism group of 1-ended limit groups that give
a description of a subgroup of finite index of Aut(G) [Bumagin et al. 2007]. In the
general case (when the limit group G can be decomposed as a free product), it is
known that Out(G) has a subgroup of finite index that has a finite classifying space
[Guirardel and Levitt 2007, Theorem 6.5]. Here we do not need the full strength
of these results, but use the existence of a canonical abelian JSJ decomposition for
a 1-ended limit group G that is neither a surface group nor free abelian of finite
rank [Bumagin et al. 2007, Theorem 3.13]. This means that G is the fundamental
group of a finite graph of groups with finitely generated abelian edge stabilizers,
that is, the group associated to each edge is abelian and there is a canonical graph of
groups with these properties. There are limited possibilities for the vertex groups:
abelian groups of finite rank, HQ-groups (that is, surface groups), and rigid groups
[Bumagin et al. 2007].

The uniqueness of the canonical abelian JSJ decomposition shows that there is
a subgroup H0 of finite index in Aut(G) such that under an automorphism ϕ ∈ H0

a vertex group goes to a conjugate of a vertex group. Also, up to conjugation and
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generalized Dehn twists along edges (these twists are defined in [Bumagin et al.
2007, Definition 2.4] and have the property that on a fixed vertex group they act by
conjugation with an element of G), an automorphism ϕ∈H0 induces isomorphisms
on the vertex groups that permute the adjacent edge groups up to conjugation.

The proof of the following result requires the existence of a canonical JSJ de-
composition of G that has bipartite structure as defined in [Bumagin et al. 2007,
Theorem 3.13]. This requires that G is a 1-ended limit group that is neither a free
abelian nor a surface group.

Theorem 5.1. Let G be a 1-ended limit group that is neither a free abelian nor
a surface group. Then there is a subgroup of finite index H of Aut(G) such that
R(ϕ) is infinite for every ϕ ∈ H.

Proof. Consider the canonical abelian JSJ decomposition of G. Then there is
a subgroup of finite index H0 of Aut(G) such that for every ϕ ∈ H0 and every
t ∈ V (0)∪ E(0), we have ϕ(G t)= Ggt

t for some gt ∈ G. Note that H0 =Aut(G)
if the underlying graph of groups 0 of the JSJ decomposition of G does not have
nontrivial symmetries that permute vertices and edges with isomorphic vertex and
edge groups, respectively.

We are particularly interested in edge groups. Since the underlying graph is
bipartite, every nonabelian group is linked with an abelian one. Two nonabelian
groups or two abelian groups are not directly linked via an edge in the canonical
JSJ decomposition. Thus if the connected graph 0 has more than one vertex, there
is a nonabelian vertex group, and if 0 has just one vertex, the unique vertex group
cannot be abelian as G is nonabelian. The nonabelian groups are divided into two
classes: rigid and flexible.

By going down to a subgroup of finite index H1 in H0, we can assume that, up to
conjugation and generalized Dehn twists along edges, the elements of H1 that fix
any rigid vertex group (not pointwise but as a group) are the identity on this rigid
group [Kharlampovich and Myasnikov 2005, Theorem 15.1; Bumagin et al. 2007,
Corollary 4.10]. Furthermore the edge groups of flexible vertices (that is, H Q
vertices) are infinite cyclic [Bumagin et al. 2007, Definition 3.9], and Aut(Z)=Z2

is finite. Then by further going down to a subgroup H of finite index in H1, we can
consider only automorphisms of G that up to conjugation and generalized Dehn
twists along edges send an edge group of a flexible vertex group identically to
itself. Thus

(5-1) ϕ(g) ∈ gG for every ϕ ∈ H and every g 6= 1 of an edge group.

Let γi (G) be the i-th term of the lower central series of G, and let ti (G) be the
normal subgroup of G containing γi (G) such that G/ti (G) is the maximal torsion-
free quotient of G/γi (G). Kochloukova [2010] showed that

⋂
i≥1 ti (G) = 1, an
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easy corollary of the fact that G is fully residually free. In other words, for every
finite subset T of G there is a homomorphism from G to a free group that is
injective on T . Then for the nontrivial element g from (5-1) we can find some i
such that g 6∈ ti (G). Thus ϕ induces an automorphism ϕ on Q = G/ti (G) that
sends the image ḡ of g in Q to some conjugate of ḡ in Q. Then R(ϕ) is infinite
by Proposition 3.5; hence R(ϕ) is infinite. �
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