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We consider an annular region � ⊂ R2 and analyze the capillary surface
z = u(x, y) formed within an annular cylinder �×R. Assuming identical
contact angles γ along the inner and outer boundaries, we determine several
qualitative properties of the surface. In particular, we examine the behav-
ior of u in the limiting cases of � approaching a disk, a thin ring, and the
exterior of a disk.

1. Introduction

The equilibrium liquid-gas interface formed within a capillary tube has been stud-
ied extensively over the past two hundred years. The most widely used modern
reference is [Finn 1986]. We will consider the related annular geometry in the
presence of gravity first examined by Laplace in 1806; see [Laplace 1966, supple-
ments to book X]. Here two concentric circular cylinders define an annular cross
section � ⊂ R2. If the cylinders are immersed vertically in an infinite reservoir
of incompressible fluid, the surface Z = U (X, Y ) formed between the tubes will
satisfy the boundary value problem{

NU = κU in �,

ν̂ · T U = cos γ on ∂�,

where T U =∇U/
√

1+ |∇U |2, NU =∇·T U , ν̂ is the exterior unit normal on the
boundary ∂� and κ > 0 is the capillary constant. The contact angle γ ∈ [0, π] is
defined on the inner and outer boundaries and gives the angle at which the interface
meets the bounding wall. For this investigation, γ is assumed to be constant and
equal along each cylinder. Such a scenario arises when both tubes are made of the
same uniform material.
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The axisymmetric nature of such annular solutions allows us to analyze the
boundary value problem for an ordinary differential equation:

(1)


1
R

(
RUR√
1+U 2

R

)
R
= κU for R1 < R < R2,

UR(R+1 )=− cot γ,

UR(R−2 )= cot γ,

where U is the surface height, R is the radial variable and ( · )R denotes differen-
tiation with respect to R. System (1) is made dimensionless by introducing the
variables

u =U/R2 and r = R/R2,

which gives

(2)


Nu =

(r sinψ)r
r

= Bu for a < r < 1

sinψ(a)=− cos γ,

sinψ(1)= cos γ,

where B is a positive constant known as the Bond number, and we define ψ(r) as
the inclination angle of u(r):

sinψ(r)=
ur√

1+ u2
r

.

See Figure 1. The outer radius of the region is now fixed at r = 1, while the inner
boundary will occur at r = a for 0< a < 1. Additionally, we need only consider

(3) 0≤ γ < π/2

r = a r = 1

γ

u

ψ
γ

Figure 1. Radial cross section of annular capillary surface.
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since the other possibilities are accounted for as follows:

• If γ = π/2, then u = 0 is the unique solution.

• For a solution u with γ ∈ (π/2, π], let ū =−u. We therefore have Nū = Bū
with γ̄ = π − γ or γ̄ ∈ [0, π/2).

Under (3), the comparison principle [Concus and Finn 1974; Finn 1986] requires u
to be positive and bounded for any selection of parameters a and B. Additionally,
the volume of u above � can be determined by

(4)
∫ 1

a
ru(r) dr =

cos γ(1+ a)
B

.

Contributions to the annular problem have been made by Elcrat, Kim, and
Treinen [2004] and Siegel [2006]; however, this research is still in its fledgling
stage. In this paper, the comparison principle is used to provide several qualitative
results. We begin in Section 2 by illustrating some general properties of u, the
solution to (2); specifically, there exists a unique radius r =m at which u achieves
its minimum value, u(a) < u(1), m ∈ (a, (1+a)/2) and m is monotone increasing
with respect to a. Section 3 then explores the behaviour of solutions to the annular
problem (1) in the following limiting cases:

• For the dimensionless version of (2), we consider the two cases of a→ 0 and
a→ 1.

• Alternatively, the using the variables

u =U/R1 and r = R/R1

to make (1) dimensionless reformulates it as

(5)


Nu =

(r sinψ)r
r

= Bu for 1< r < b,

sinψ(1)=− cos γ,

sinψ(b)= cos γ

The behaviour of u is consequently examined as b→∞.

2. General properties

In this section, the comparison principle will be used to present a number of qual-
itative results. We start by confirming the uniqueness of the minimum surface
height, which is mentioned under more general conditions in [Elcrat et al. 2004].

Theorem 2.1. Let u be a solution to the boundary value problem (2). There exists
a unique radius r = m at which u achieves its minimum value.



356 JAMES GORDON AND DAVID SIEGEL

Proof. Since sinψ is continuous with

sinψ(a)=− cos γ < 0 and sinψ(1)= cos γ > 0,

there exists at least one point in (a, 1) where sinψ = 0, which corresponds to an
extremum of u. Define r = m as the first zero of sinψ . Using the first of (2), we
note

(sinψ)r = Bu− (sinψ)/r(6)

> 0 for sinψ ≤ 0(7)

and specifically, sinψ is increasing at r = m. Suppose there exists more than
one point where sinψ = 0 and let m′ be the next zero immediately following m.
Because sinψ is increasing at m, it must be nonincreasing as it touches the r -axis
at m′:

(sinψ)r |r=m′ ≤ 0.

However, this is in contradiction to (7), and m must be the unique extremum point
of u. Inequality (7) also implies this is a minimum. �

For the next theorem, we compare boundary heights.

Lemma 2.2. The function sinψ is monotone increasing on [a, 1].

Proof. Given that the zero of sinψ is unique, we consider sinψ on two subintervals.
We have sinψ≤0 on [a,m], and (6) ensures that (sinψ)r >0. On (m, 1], sinψ>0
and thus u is increasing. In this case, we multiply the first of (2) by r and integrate
from m to r to obtain

(8)

sinψ(r)= B
r

∫ r

m
su(s) ds

<
Bu(r)

r

(r2
−m2

2

)
<

Bru(r)
2

.

Therefore Bu− (sinψ)/r > 0. Equation (6) confirms that (sinψ)r > 0. �

Remark. Lemma 2.2 also implies that u is convex.

Theorem 2.3. u(a) < u(1).

Proof. The construction of this proof follows the ideas of [Serrin 1971]. Starting
with the annular region �, we place as in Figure 2 a line T that separates from
� a cap 0. Let 0′ be the reflection of 0 with respect to T , and observe that T is
positioned so that 0′ is internally tangent to ∂� at p. Finally, let n̂ be the exterior
unit normal on ∂0′. With the coordinate system (x, y) oriented so that the y-axis
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x

y

x̄

ȳ

p

S

�

T

00′

Figure 2. Configuration of reflected region 0′ superimposed onto �.

is aligned with T , we define a function ū on 0′ as

ū(x, y)= u(x̄, ȳ)= u(−x, y) for (x, y) ∈ 0′.

Let N be the N operator with respect to the coordinate system (x̄, ȳ). Clearly,
Nū = Bū. However, N is invariant under reflections; thus, Nū = Nū = Bū and ū
also satisfies the capillary equation in 0′. The boundary of 0′ is now decomposed
into two pieces, with6α being the portion along T and6β as the remaining curved
piece. We subsequently examine how u and ū compare on each boundary compo-
nent. It is immediately clear that u= ū on6α. On6β , note that n̂ ·T u= sinψ n̂ ·r̂ ,
where r̂ is the unit vector in the radial direction. Since sinψ is increasing, this
yields − cos γ ≤ n̂ ·T u ≤ cos γ. Of course, n̂ ·T ū= cos γ and hence n̂ ·T ū ≥ n̂ ·T u
on 6β . As a result, the comparison principle requires

(9) ū ≥ u in 0′,

which can be extended to the boundary point p by continuity:

(10) u(p)≤ ū(p) if and only if u(a)≤ u(1).

The possibility of u(p)= ū(p) is excluded by contradiction. In this case, our atten-
tion is restricted to the dashed line S of Figure 2 and both functions are described
in terms of the radial variable only. We next assume that u(a)= u(1), which allows
the meridional curvature km = (sinψ)r of the surface to be compared at r = a and
r = 1:

(sinψ)r |r=a = Bu(a)+ (cos γ)/a > Bu(1)− cos γ = (sinψ)r |r=1.
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Consequently, there exists a δ > 0 such that

min
r∈[a,a+δ]

{(sinψ)r }> max
r∈[1−δ,1]

{(sinψ)r }.

We can then integrate (sinψ)r over these regions, giving

sinψ(a+ r) >− sinψ(1− r) for all r ∈ (0, δ],

and since the function p/
√

1− p2 is increasing on (−1, 1), we have

sinψ(a+ r)√
1− sin2 ψ(a+ r)

>−
sinψ(1− r)√

1− sin2 ψ(1− r)
.

Thus,

(11)

u(a+ δ)= u(a)+
∫ a+δ

a
us(s) ds

= u(a)+
∫ a+δ

a

sinψ(s)√
1− sin2 ψ(s)

ds

> u(1)−
∫ 1

1−δ

sinψ(s)√
1− sin2 ψ(s)

ds = u(1− δ).

This that u(a + δ) > ū(a + δ), which is in contradiction to (9) and the inequality
of (10) must be strict. �

Theorem 2.4. The function u achieves its minimum on (a, (1+ a)/2).

Proof. We refer to Figure 2 and again consider u and ū along S. The proof will be
by contradiction; we assume that the minimum of u occurs at m ∈ ((1+a)/2, 1). If
m is defined as the location of the minimum of ū, we then have m ∈ (a, (1+a)/2).
However, the convexity of u implies that

u(m) < u(m) if and only if ū(m) < u(m)

with m∈0′, which is in contradiction to (9). Thus, m∈ (a, (1+a)/2]. Next, assume
m = (1+ a)/2. Given that (sinψ)rr = ur − (sinψ)r/r + (sinψ)/r2, Lemma 2.2
provides (sinψ)rr |r=m < 0 and continuity requires that there exists a δ > 0 such
that (sinψ)rr < 0 on [m− δ,m+ δ]. With (sinψ)r decreasing on the interval, this
gives − sinψ(m−r) > sinψ(m+r) for all r ∈ (0, δ]. Finally, an argument similar
to (11) yields u(m− δ) > u(m+ δ), and we conclude u(m− δ) > ū(m− δ). This
again contradicts (9); therefore the minimum of u occurs on (a, (1+ a)/2). �

Theorem 2.5. The minimum value m is monotone increasing with respect to a.

Proof. We proceed by contradiction. First, suppose there exist two inner radii
ā and â where m decreases with respect to a. This gives rise to the following
configuration as shown in Figure 3:
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ā â m̄m̂

ū

û

1
r

γ

γ γ

γ

α
β

Figure 3. Hypothetical configuration assuming m is decreasing
with respect to two values of a.

(i) ū is the unique solution over [ā, 1] whose minimum is at r = m.

(ii) û is the unique solution over [â, 1] whose minimum is at r = m̂.

(iii) ā < â.

(iv) m̂ < m.

Consider ū and û on the region [â, 1]. Here, the contact angle of ū at r = â will
be α > γ, and the comparison principle therefore implies

(12) ū < û in (â, 1).

Alternatively, we can examine the solutions over [m, 1], in which the contact angle
of û at r =m will be β >π/2. Here, the comparison principle would require ū> û
in (m, 1) which is in disagreement with (12). Consequently, m≤ m̂ for ā< â. Now
suppose that m is constant for two increasing values of a. Again, ū and û will be
configured as before, only with (iv) altered as

(iv)′ ū and û share the same minimum at r = m.

Figure 4 depicts this possibility. In like manner, we have

(13) ū < û in (â, 1).

However, on [m, 1], both ū and û have identical contact angles and uniqueness
requires ū ≡ û, which contradicts (13), and we conclude m < m̂ for ā < â. �

3. Solutions in limiting cases

Preliminary lemmas.

Lemma 3.1. The function (sinψ)/r is monotone increasing on [a, 1].
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ā â m
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β

Figure 4. Hypothetical configuration assuming m is constant with
respect to two values of a.

Proof. Equation (6) yields ((sinψ)/r)r = (2/r)(Bu/2− (sinψ)/r). As we did
in Lemma 2.2, we can examine ((sinψ)/r)r over two subintervals. On [a,m],
sinψ ≤ 0 and ((sinψ)/r)r > 0. On (m, 1], result (8) can be used to claim that
Bu/2− (sinψ)/r > 0 and thus ((sinψ)/r)r > 0 for r ∈ [a, 1]. �

Lemma 3.2. We have −(a cos γ)/r < sinψ < r cos γ on (a, 1).

Proof. For the lower bound, we observe that the first of (2) provides the differential
inequality (r sinψ)r = Bru > 0, and thus r sinψ is monotone increasing:

r sinψ(r) > a sinψ(a)=−a cos γ for r ∈ (a, 1].

For the upper bound, Lemma 3.1 may be used to show that

(sinψ(r))/r < sinψ(1)= cos γ for r ∈ [a, 1). �

Approaching a disk. We now consider solutions to (2) as a→ 0. As such, refer-
ence will be made to the interior solution uint, which solves

(14)


(r sinψ)r = Bruint for r ∈ (0, 1),

sinψ(0)= 0,

sinψ(1)= cos γ.

See [Finn 1986] for background. Siegel [2006] examined the problem (14), along
with the annular problem

(15)


(r sinψ)r = Bru for r ∈ (a, 1),

sinψ(a)= 0,

sinψ(1)= cos γ.
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ṽn

ṽn+1

vn

vn+1
uint

11
n+1

1
n0

r

γ

γ

Figure 5. Illustration of {vn} and {ṽn} compared to uint.

First, it will be shown that the solution of (15) approaches that of (14) as a→ 0.
Let {vn}n≥2 be the sequence of functions such that vn is the unique solution to (15)
on the interval [1/n, 1]. Thus {vn} is defined on an increasing domain; however, it
is desirable to consider also a sequence {ṽn}n≥2 of extended functions on [0, 1] by
continuing each vn to r = 0 as

ṽn(r)=
{
vn(1/n) for r ∈ [0, 1/n),
vn(r) for r ∈ [1/n, 1].

See Figure 5. Here, ṽn ∈ C1
[0, 1] for all n ≥ 2. From [Siegel 2006] it can be

shown that each function ṽn , along with the interior solution uint, is increasing and
bounded. Siegel also demonstrated that vn and uint will satisfy the same volume
condition: ∫ 1

1/n
svn(s) ds =

∫ 1

0
suint(s) ds =

cos γ
B

.

Therefore,

(16)
∫ 1

0
s(ṽn(s)− uint(s)) ds−

∫ 1/n

0
sṽn(s) ds = 0.

Additionally, the comparison principle provides

vn+1 ≤ vn if and only if ṽn+1 ≤ ṽn for n ≥ 2

as well as

0≤ uint ≤ vn if and only if 0≤ uint ≤ ṽn for n ≥ 2.

Consequently, we are assured that ṽn→ v pointwise on [0, 1] with

(17) v ≥ uint on [0, 1].
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Each integral in (16) thus defines a positive decreasing sequence with a defined
limit as n→∞:

(18) lim
n→∞

∫ 1

0
s(ṽn(s)− uint(s)) ds− lim

n→∞

∫ 1/n

0
sṽn(s) ds = 0.

The second limit in (18) can be bounded as

0≤ lim
n→∞

∫ 1/n

0
sṽn(s) ds ≤ ṽ2(1) · lim

n→∞

∫ 1/n

0
s ds = 0,

and we conclude limn→∞
∫ 1/n

0 sṽn(s) ds = 0. The first limit in (18) must now be
zero and Lebesgue’s dominated convergence theorem can be used to see that

(19) 0= lim
n→∞

∫ 1

0
s(ṽn(s)− uint(s)) ds.=

∫ 1

0
s(v(s)− uint(s)) ds

In conjuction with (17), this requires

(20) v = uint almost everywhere.

We further comment that v must be nondecreasing and inequalities that occur in
(20) are restricted to jump discontinuities in v. However, suppose such a disconti-
nuity of height δ > 0 occurs at a point c ∈ [0, 1). Here, there will exist a d > c such
that uint is continuous on [c, d] with v−uint ≥ δ/2. This is at odds with (19) being
0 and v ≡ uint on [0, 1). We can also demonstrate that equality holds at r = 1. For
n ≥ 2, we shift uint upward to the position of ūint so that ūint(1/n) = vn(1/n). In
other words,

ūint = uint+ vn(1/n)− uint(1/n).

The comparison principle requires

(21) uint(1)≤ vn(1)≤ ūint(1).

Since vn(1/n) = ṽn(0), we get limn→∞ vn(1/n) = limn→∞ ṽn(0) = uint(0). This
with (21) gives v(1)= uint(1) and v ≡ uint, as required.

Remark. Dini’s theorem can be applied at this point to strengthen the convergence
claim on {ṽn} from pointwise to uniform convergence.

Lemma 3.3. Define ua and uint as in Theorem 2.5 and consider m as a function
of a. If lima→0 m(a)= 0, then lima→0 ua(m)= uint(0).

Proof. For a given m(a), select the maximum n ∈N such that m(a)≤ 1/n, which
gives 1/(n+1)<m(a)≤1/n. With the sequence of functions {vn}, the comparison
principle produces the following arrangement, shown in Figure 6:

(22) vn+1(1/(n+ 1)) < ua(m)≤ vn(1/n)
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vn

ua
vint

11
n+1 m 1

n0
r

γ

γ

γ

Figure 6. Choosing n so that vn+1(1/(n+ 1)) < ua(m)≤ vn(1/n).

with limn→∞ vn+1(1/(n+1))= limn→∞ vn(1/n)= uint(0). For lima→0 m(a)= 0,
we have lima→0 n =∞ and (22) requires lima→0 ua(m)= uint(0). �

Theorem 3.4. For γ ∈ [0, π/2), consider the interior solution uint defined on [0, 1]
together with ua , the solution to (2) on [a, 1]. We have

lim
a→0

max
r∈[a,1]

|ua(r)− uint(r)| = 0.

Proof. On [a, 1], we compare the contact angles of ua and uint, noting that the
comparison principle requires

(23) uint ≤ ua on [a, 1].

See Figure 7. Additionally, uint may be shifted upward to the position of ūint such
that ūint(a) = ua(a). Here again, we use the comparison principle to see that

ūint

ua

uint

1a m0
r

γ

γ

γγ

Figure 7. Cross section of comparison surfaces for a→ 0.
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ua ≤ ūint on [a, 1]. Consequently,

(24) max
r∈[a,1]

|ua(r)− uint(r)| ≤ [ua(a)− ua(m)] + (ua(m)− uint(0)),

and both bracketed terms of (24) can be bounded. For the first term, we write

ua(a)− ua(m)=−
∫ m

a
us ds =−

∫ m

a

sinψ√
1− sin2 ψ

ds,

and using Lemma 3.2,

ua(a)− ua(m) < a
∫ m

a

1
√

r2−a2
ds < a log(1+

√
1− a2 )− a log a

→ 0 as a→ 0.

For the second term in (24), it is clear that ua satisifes the boundary value problem
(15) on [m, 1]. Considering m as a function of a, it is sufficient to show that
lima→0 m(a)= 0, as Lemma 3.3 would then require lima→0(ua(m)−uint(0))= 0,
thus proving the theorem. We proceed by contradiction and assume m does not
approach 0. As a result, there exists a σ > 0 such that

(25) m ≥ σ for all a ∈ (0, 1).

Suppose that a < σ . By multiplying the first of (2) by r and integrating from a
to m, we have∫ m

a
sua(s) ds =

a cos γ
B

implies lim
a→0

∫ m

a
sua(s) ds = 0.

Using (25) and that ua is decreasing on [a,m), the above integral could also be
bounded as

∫ m
a sua(s)ds ≥ ua(σ )

∫ σ
a s ds. By (23), ua(σ )≥ uint(σ ) so that

lim
a→0

∫ m

a
sua(s) ds ≥ uint(σ )

σ 2

2
> 0.

This is an impossible situation and m must approach 0 as a→ 0. As a result,

max
r∈[a,1]

|ua(r)− uint(r)| → 0 as a→ 0. �

Approaching a thin ring. We next examine solutions to (2) as a→ 1. For this, let
u0 = 2 cos γ/(B(1− a)), the constant function that satisfies the volume condition
(4). Also, define the function u1 by

u1(r)= u1(a)+
∫ r

a

sinψ1(s)√
1− sin2 ψ1(s)

ds,
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with

sinψ1(r)=
B
r

∫ r

a
su0 ds− a

r
cos γ =

cos γ
1− a

(
r − a

r

)
and

u1(a)=
2 cos γ

B(1− a)
−

1
1−a2

∫ 1

a
(1− s2)

sinψ1(s)√
1− sin2 ψ1(s)

.

Here, ψ1 denotes the inclination angle of u1. Since

(26) −(a/r) cos γ ≤ sinψ1 ≤ r cos γ,

it is easily checked that u1 is defined and continuous; the choice of u1(a) ensures
that u1 also satisfies the volume condition. Note that u1 is a Delaunay surface
(that is, a surface of revolution having constant mean curvature) satisfying the
differential equation

(27) Nu1 = Bu0 if and only if (r sinψ1(r))r = Bru0.

For γ 6= 0, it so happens that u1 will act as a limiting surface as a→ 1.

Theorem 3.5. Define ua as in Theorem 3.4 and consider the function u1 described
above. For γ 6= 0, we have |ua − u1| = O((1− a)3) as a→ 1.

Proof. We first bound |ua − u0|. Using that ua is convex and ua(a) < ua(1), we
have

|ua − u0| ≤max{ua(1)− u0, u0− ua(m)}< ua(1)− ua(m)

=

∫ 1

m

sinψa√
1− sin2 ψa

dr,

where ψa is the inclination angle of ua . Lemma 3.2 provides that

sinψ√
1− sin2 ψ

≤
r cos γ√

1− r2 cos2 γ

and consequently

|u− u0|<

∫ 1

m

r cos γ√
1− r2 cos2 γ

dr

=

√
1−m2 cos2 γ− sin γ

cos γ
:= C(γ,m) < C(γ, a).

Using the first of (2) and (27), we write

sinψa − sinψ1 =
B
r

∫ r

a
s(ua − u0) ds,
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or equivalently, sinψa − sinψ1 =−(B/r)
∫ 1

r s(ua − u0) ds. Taken together, these
yield

|sinψa − sinψ1| ≤
B
2r

C(γ, a)min{r2
− a2, 1− r2

},

and given that min{r2
− a2, 1− r2

} ≤ 2(r2
− a2)(1− r2)/(1− a2), we have

|sinψa − sinψ1| ≤
B
r

C(γ, a)
(r2
− a2)(1− r2)

1− a2 .

Continuing, we bound |ua − u1| by first noting that ua and u1 have the correct
volume; therefore they must intersect at least once in (a, 1), with

(28) |ua − u1| ≤

∫ 1

a
|(ua)r − (u1)r | dr.

To estimate the integrand of (28), we apply the mean value theorem to the function
f (p)= p/

√
1− p2, so that

|ur−(un+1)r |=
|sinψ − sinψn+1|

(1− ξ 2)
3/2 implies |ua−u1|≤

∫ 1

a

|sinψa − sinψ1|

(1− ξ 2)3/2
dr,

where ξ lies between sinψa and sinψ1. By Lemma 3.2 and (26), we have−cosγ <
ξ < cos γ, so that 1− ξ 2 > sin2 γ > 0 for γ 6= 0. We may bound |ua − u1| further:

|ua − u1|<

∫ 1

a

BC(γ, a)
r

(r2
− a2)(1− r2)

1− a2

sin3 γ
dr < B

a sin3 γ
C(γ, a)(1− a2)(1− a).

Finally, we rewrite C(γ, a) as

C(γ, a)=
cos γ(1− a2)√

1− a2 cos2 γ+ sin γ
<

cos γ(1− a2)

2 sin γ
,

and thus

|ua − u1|<
B cos γ

2a sin4 γ
(1− a2)2(1− a)= O((1− a)3) as a→ 1. �

For γ = 0, the term (1− ξ 2) can no longer be assigned a positive lower bound
and the argument above does not yield the asymptotic behaviour of ua as a→ 1.
Further work is needed to understand this special case.

Finally, we add to Theorem 3.5 by showing that the limiting surface u1 will in
turn approach the lower portion of a torus as a→ 1.

Theorem 3.6. Consider the function

t (r)=−

√(1−a
2

)2
sec2 γ−

(
r − 1+a

2

)2
+ b(a, γ, B),
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where

b(a, γ, B)=
2 cos γ

B(1− a)
+

1− a
8

sec2 γ(π − 2γ− sin 2γ)+
(1−a

2

)
tan γ.

On [a, 1], the function t (r) describes the lower portion of a torus that satisfies the
boundary conditions of (2) and the volume condition (4). For γ 6= 0, we have

|u1− t | = O((1− a)2) as a→ 1.

Proof. It can be shown that the inclination angle of t (r) is given as

sinω(r)=
cos γ
1− a

(2r − 1− a),

with |sinψ1− sinω| being maximized on [a, 1] at r =
√

a such that

|sinψ1− sinω| ≤
cos γ

(1+
√

a)2
(1− a).

We argue analagously to the previous theorem that

|u1− t | ≤
∫ 1

a

|sinψ1− sinω|
(1− ξ 2)3/2

dr,

where − cos γ ≤ sinω < ξ < sinψ1 ≤ cos γ. For γ 6= 0, |u1− t | is then bounded
as

|u1− t |<
∫ 1

a

cos γ
(1+
√

a)2
(1− a)

sin3 γ
= O((1− a)2) as a→ 1. �

When considered together, Theorems 3.5 and 3.6 allow us to conclude that for
γ 6= 0, the solution surface ua approaches the torus portion t (r) as O((1− a)2):

|ua − t | ≤ |ua − u1| + |u1− t | = O((1− a)2) as a→ 1.

Approaching the exterior of a disk. Finally, consider solutions to (5) where b→
∞. Here, we will make use of the exterior solution uext that solves

(r sinψ)r = Bruext for r ∈ (1,∞),

sinψ(1)=− cos γ,

lim
r→∞

u(r)= 0.

See [Siegel 1980] for background. As well, define a sequence of functions {wn}n≥2

such that wn is the solution to the boundary value problem
(r sinψ)r = Brwn for r ∈ (1, n),

sinψ(1)=− cos γ,

sinψ(n)= 0.
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We start by demonstrating that wn → uext as n →∞. It can be verified that
each function wn , as well as uext, is decreasing. Also, the comparison principle
requires that wn+1 ≤ wn and 0 < uext ≤ wn for n ≥ 2. Furthermore, uext can be
shifted vertically to the position of ūext such that

(29) ūext = uext+wn(n)− uext(n),

and the comparison principle gives uext≤wn≤ ūext on [1, n]. We consider the limit
of (29) as n→∞. Clearly limn→∞ uext(n)= 0 and we will prove by contradiction
that limn→∞wn(n) = 0. Assume there exists a δ > 0 such that wn(n) ≥ δ for all
n ≥ 2. This would imply

(30)
∫ n

1
swn ds > δ

∫ n

1
s ds→∞ as n→∞.

However, each wn obeys the volume condition
∫ n

1 swn ds= (cos γ)/B, which con-
tradicts (30) and necessarily limn→∞wn(n) = 0. Therefore, (29) provides that
limn→∞ ūext = uext and wn→ uext and n→∞.

The behaviour of u as b→∞ is divided into the following two theorems, with
each considering u on the stated subinterval of [1, b].

Theorem 3.7. For γ ∈ [0, π/2), consider the exterior solution uext defined on
[1,∞) together with ub, the solution to (5) on [1, b]. Let m be the location of
the minimum of ub. On [1,m], we have

lim
b→∞

max
r∈[1,m]

|ub(r)− uext(r)| = 0.

Furthermore, m = m(b) is monotone increasing and m(b)→∞ as b→∞.

Proof. We compare the three functions uext, ub and ûext on [1,m], where

ûext = uext+ ub(m)− uext(m),

with uext≤ ub≤ ûext on [1,m] by the comparison principle. Similar to Lemma 3.3,
we have

lim
b→∞

m(b)=∞ implies lim
b→∞

ub(m)= uext(m),

and it is sufficient to show that limb→∞m(b)=∞, since this would require

max
r∈[1,m]

|ub(r)− uext(r)| ≤ ûext− uext = ub(m)− uext(m)

→ 0 as b→∞.

An argument nearly identical to that proving Theorem 2.5 yields that m(b) is mono-
tone increasing. Furthermore, m increases without bound as b→∞, which can be
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shown by contradiction: Assume there exists an M ∈ N such that m(b)≤ M . The
volume condition on u can be used to show that

(31)
∫ b

M
su ds ≤

∫ b

m
su ds =

b cos γ
B

.

Additionally, select the function wM ∈ {wn} as a lower bound of u on [1,M], so
that wM(M) ≤ wM ≤ u on [1,M] by the comparison principle. With (31), this
produces

(32) wM(M)( 1
2(b

2
−M2)) <

∫ b

M
su ds ≤

b cos γ
B

.

For large enough b, however, (32) cannot hold, and m→∞ as b→∞. �

The examination of u on the remaining interval [m, b] will refer to the one-
dimensional solution z(x) that solves

(33)



( zx
√

1+ zx
2

)
x
= Bz for x ∈ (0,∞),

sinφ(0)=− cos γ,

lim
x→∞

z(x)= 0,

where φ(x) denotes the inclination angle of z(x). This problem was first considered
by Laplace [1966]; a modern treatment is offered by Siegel [1980]. Physically, z
represents the height of a capillary surface on one side of an infinite vertical plate.

Theorem 3.8. Let γ ∈ [0, π/2) and define ub and m as in the previous theorem.
Consider the one-dimensional solution z that satisfies (33). On [m, b], we have

lim
b→∞

max
s∈[0,b−m]

|ub(b− s)− z(s)| = 0.

Proof. We employ the functions z(s) and ub(b − s) for s ∈ [0, b − m]. This
amounts to comparing the annular solution with the capillary surface generated by
an infinte plate placed tangentially to the outer boundary of �. We also introduce
the function ẑ defined as ẑ(s)= z(s)+ub(m)− z(b−m). Our comparisons will be
largely based upon the results of Siegel [1980], where a similar geometry was used
to compare the surface z with the interior solution. In our case, the comparison
principle requires z ≤ ub ≤ ẑ and more specifically, z(s) ≤ ub(b− s) ≤ ẑ(s) for
s ∈ [0, b−m]. Thus

max
s∈[0,b−m]

|ub(b− s)− z(s)| ≤ ẑ− z = ub(m)− z(b−m).
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From Theorem 3.7, it is clear that ub(m)→ uext(m)→ 0 as b→∞. Additionally,
since m < (1+ b)/2, we have

b−m > (b− 1)/2→∞ as b→∞ and lim
b→∞

z(b−m)= 0.

Therefore, maxs∈[0,b−m]|ub(b− s)− z(s)| → 0 as b→∞. �
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