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Consider an annular region � ⊂ R2. We extend the iterative procedure of
Siegel to the case of symmetric capillary surfaces z= u(x, y) formed within
the annular cylinder �×R and having identical contact angles γ along the
inner and outer boundaries. We demonstrate convergence under conditions
that include γ = 0, and we recover the interleaving properties noted by
Siegel for a particular geometry.

1. Introduction

We continue our examination of annular capillary surfaces of the form described
in [Gordon and Siegel 2010]: Two concentric circular cylinders that define an
annular cross section � ⊂ R2 are immersed vertically in an infinite reservoir of
incompressible fluid. Under the influence of gravity, the surface Z = U (X, Y )
formed between the tubes will satisfy the boundary value problem

(1)

{
NU = κU in �,

ν̂ · T U = cos γ on ∂�,

where T U = ∇U/
√

1+ |∇U |2, NU = ∇ · T U , the exterior unit normal on the
boundary ∂� is ν̂, and κ > 0 is the capillary constant. The contact angle γ ∈ [0, π]
is defined on the inner and outer boundaries and is the angle at which the interface
meets the bounding wall. Again, γ is assumed to be constant and equal along each
boundary.

The axisymmetric nature of such annular solutions, along with the change to
dimensionless variables

u =U/R2 and r = R/R2
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Figure 1. Radial cross section of annular capillary surface.

allows us to convert (1) into a boundary value problem for an ordinary differential
equation:

(2)


Nu =

(r sinψ)r
r

= Bu for a < r < 1,

sinψ(a)=− cos γ,

sinψ(1)= cos γ

where B > 0 is a positive constant known as the Bond number, ( · )r denotes dif-
ferentiation with respect to the radial variable r , and we define the inclination
angle ψ(r) of u(r) as sinψ(r) = ur/

√
1+ u2

r . See Figure 1. Note also that the
outer boundary of � is now fixed at r = 1, while the inner boundary occurs at
r = a, where 0 < a < 1. For reasons described in [Gordon and Siegel 2010], we
need only consider 0 ≤ γ < π/2. Additionally, u is positive and bounded by the
comparison principle [Concus and Finn 1974; Finn 1986], and the volume lifted
can be determined from

(3)
∫ 1

a
ru(r) dr =

cos γ(1+ a)
B

.

In this paper, we apply the iterative procedure introduced by Siegel [2006] to
the boundary value problem considered here. Specifically, Section 2 provides con-
ditions under which the approximate functions generated converge to the solution
of (2). In [2006], Siegel demonstrated that the iterates display a highly organized
interplay, which he called interleaving properties. This allowed for bounds to be
placed on the surface height at the inner and outer radii. In Section 3, we prove
that, under certain conditions, the interleaving properties may be recovered for (2).
Section 4 summarizes a new and more complicated behavior that can also occur.
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2. Iterative procedure

The iterative scheme of [Siegel 2006] was employed successfully to approximate
annular surfaces with the inner contact angle fixed at π/2. We intend to extend
the procedure to the boundary value problem (2). An outline follows: Consider
a function u1 that satisfies the volume condition (3), and suppose there exists a
function u2 such that Nu2 = Bu1 or equivalently

(r sinψ2)r = Bru1,

where ψ2 is the inclination angle of u2. Requiring sinψ2(a) = − cos γ, we arrive
at an integral equation for ψ2:

sinψ2(r)=
B
r

∫ r

a
su1(s) ds− a

r
cos γ.

Since u1 satisfies the volume requirement, it is easily verified that u2 also has the
correct boundary condition at r = 1. Given that (u2)r = sinψ2/

√

1− sin2 ψ2, we
derive an expression for u2:

(4) u2(r)= u2(a)+
∫ r

a

sinψ2(s)√
1− sin2 ψ2(s)

ds,

with u2(a) selected so that u2 has the correct volume, that is,

(5) u2(a)=
2 cos γ

B(1− a)
−

1
1−a2

∫ 1

a
(1− s2)

sinψ2(s)√
1− sin2 ψ2(s)

ds.

The following theorem solidifies these ideas. Here, a complicating assumption of
sinψ2 ≤ r cos γ arises that did not occur in Siegel’s previous analysis.

Theorem 2.1. Let u1 be a continuous, positive function defined on [a, 1] that sat-
isfies the volume condition (3). Define

sinψ2(r)=
B
r

∫ r

a
su1(s) ds− a

r
cos γ

and assume sinψ2 ≤ r cos γ.

(i) We have −(a/r) cos γ ≤ sinψ2 on [a, 1].

(ii) There exists a function u2 defined and continuous on [a, 1] given as

u2(r)= u2(a)+
∫ r

a

sinψ2(s)√
1− sin2 ψ2(s)

ds

with

u2(a)=
2 cos γ

B(1− a)
−

1
1−a2

∫ 1

a
(1− s2)

sinψ2(s)√
1− sin2 ψ2(s)

ds.
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As a result, Nu2 = Bu1.

(iii) The function u2 satisfies both the volume condition and the boundary condi-
tions listed in (2).

(iv) There is a unique point r = m2 at which u2 achieves its minimum value.

(v) If
B < 2

(1−a)( 1
3

√
1−a2+a log(1+

√
1−a2)−a log a)

,

then u2 will also be positive.

Proof. (i) Using that u1 is positive, we note that (r sinψ2)r = Bru1 > 0 and
the function r sinψ2 is monotone increasing. The remainder of the proof mirrors
[Gordon and Siegel 2010, Lemma 3.2].

(ii) To show u2 is defined and continuous, it suffices to show that u2 is bounded.
Since the function p/

√
1− p2 is increasing on (−1, 1) with

−(a/r) cos γ ≤ sinψ2 ≤ r cos γ,

Equations (4) and (5) give

(6)

u2(r)=
2 cos γ

B(1− a)
−

1
1−a2

∫ 1

a
(1− s2)

sinψ2√
1− sin2 ψ2

ds

+

∫ r

a

sinψ2√
1− sin2 ψ2

ds

≥
2 cos γ

B(1− a)
−

1
1−a2

∫ 1

a
(1− s2)

s cos γ
√

1− s2 cos2 γ
ds

−

∫ r

a

a cos γ
√

s2
− a2 cos2 γ

ds

≥ cos γ
( 2

B(1−a)
−

1
3

√
1− a2− a log(1+

√
1− a2)+ a log a

)
.

Given that a log a ≥−1/e on (0, 1], we can bound u2 below:

u2(r) > cos γ(2/B− 1/3− log 2− 1/e) >−∞,

Similarly, u2 can be bounded above:

u2(r)≤
2 cos γ

B(1− a)
+

1
1−a2

∫ 1

a
(1− s2)

a cos γ√
s2− a2 cos2 γ

ds+
∫ r

a

s cos γ√
1− s2 cos2 γ

ds

< cos γ
( 2

B(1−a)
+ log 2+ 1

e
+ 1

)
<∞.

Finally, the introductory discussion confirms that Nu2 = Bu1.



ANNULAR CAPILLARY SURFACES WITH EQUAL CONTACT ANGLES 375

(iii) This is easily proven from the volume condition.

(iv) This argument follows the proof of [Gordon and Siegel 2010, Theorem 2.1].

(v) The lower bound given in (6) is required to be positive:

u2(r)≥ cos γ
(

2
B(1−a)

−
1
3

√
1− a2− a log(1+

√
1− a2)+ a log a

)
> 0.

Solving for B produces the desired result. �

Theorem 2.1 creates the framework needed to generate a sequence of iterates {un}

defined recursively as

(7) Nun+1 = Bun for n ≥ 0.

We take the initial function u0 to be the constant function that satisfies the volume
condition:

(8) u0 =
2 cos γ

B(1− a)
.

It can be shown that for suitable restrictions on B, the sequence {un} is one in
which

• (i) through (v) of Theorem 2.1 are satisfied for all n ≥ 1, and

• {un} converges to the solution of the boundary value problem (2).

The following theorem demonstrates these results.

Theorem 2.2 (iterate convergence). For

B <
2a(1− a2) cos γ

2(1+ a)(1− a)2C(γ,m)+ aπ cos γ
,

the sequence of iterates {un} generated via (7) and (8) will be continuous and
positive. Furthermore, Bπ/(2(1− a2)) < 1 and {un} converges to u, the solution
of (2), with

|u− un|< C(γ,m)
(

B π
2(1−a2)

)n
.

Here, C(γ,m)= (
√

1−m2 cos2 γ−sin γ)/ cos γ with 0<C(γ,m) <C(γ, a), and
r = m is the location of the minimum of u.

Proof. We first prove the case for n = 0 and proceed inductively. Since u0 and u
satisfy the volume condition, they must intersect at least once in (a, 1). Using that
u is convex and u(a) < u(1) [Gordon and Siegel 2010], |u− u0| is thus bounded
as

|u− u0| ≤max{u(1)− u0, u0− u(m)}< u(1)− u(m)=
∫ 1

m

sinψ√
1− sin2 ψ

dr.
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Additionally, [Gordon and Siegel 2010, Lemma 3.2] provides that

sinψ√
1− sin2 ψ

≤
r cos γ

√

1− r2 cos2 γ

and consequently

|u− u0|<

∫ 1

m

r cos γ√
1− r2 cos2 γ

dr =

√
1−m2 cos2 γ− sin γ

cos γ
:= C(γ,m).

The case n=0 is thus proved. Next, assume un is continuous, positive, and satisfies
the volume condition. Also, let |u− un|< βn := C(γ,m)(Bπ/(2(1− a2)))n . The
defining equations for {un} and u yield

sinψ − sinψn+1 =
B
r

∫ r

a
s(u− un) ds,

or equivalently, sinψ−sinψn+1=−(B/r)
∫ 1

r s(u−un) ds. When used in tandem,
these imply

|sinψ − sinψn+1| ≤
B
2r
βn min{r2

− a2, 1− r2
},

and since min{r2
− a2, 1− r2

} ≤ 2(r2
− a2)(1− r2)/(1− a2), this gives

(9) |sinψ − sinψn+1| ≤
βn B

r
(r2
− a2)(1− r2)

1− a2 .

We next bound sinψn+1. For n = 0, sinψ1 can be written exactly:

(10) sinψ1 =
cos γ
1− a

(
r − a

r

)
,

and it is easily checked that −(a/r) cos γ ≤ sinψ1 ≤ r cos γ. For n ≥ 1, we do
not have the luxury of an explicit function and we proceed as follows: To show
sinψn+1 ≤ r cos γ, consider the distance between sinψ1 and sinψn+1:

(11)
|sinψ1− sinψn+1| ≤ |sinψ − sinψ1| + |sinψ − sinψn+1|

≤
B
r

C(γ,m)
(r2
− a2)(1− r2)

1− a2

(
1+

(
B π

2(1−a2)

)n)
.

The last factor in (11) can be bounded by a geometric series:

1+
(

B π
2(1−a2)

)n
<

∞∑
k=0

(
B π

2(1−a2)

)k
,

and since

B <
2a(1− a2) cos γ

2(1+ a)(1− a)2C(γ,m)+ aπ cos γ
<

2(1− a2)

π
,
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the sum is convergent. We now have

(12) |sinψ1− sinψn+1| ≤
B
r

C(γ,m)
2(r2
− a2)(1− r2)

2(1− a2)− Bπ
.

The condition on B can be substituted into (12) to obtain

|sinψ1− sinψn+1| ≤
a cos γ
1− a

(1
r
− r

)
.

With this in hand, we are able to show that sinψn+1 ≤ r cos γ:

r cos γ− sinψn+1 ≥ (r cos γ− sinψ1)− |sinψ1− sinψn+1|

≥

(
r cos γ−

cos γ
1− a

(
r − a

r

))
−

(a cos γ
1− a

(1
r
− r

))
= 0,

and conditions (i)–(iv) of Theorem 2.1 apply to un+1. In addition, the bound on B
required here satisfies

B <
2a(1− a2) cos γ

2(1+ a)(1− a)2C(γ,m)+ aπ cos γ

<
2

(1−a)( 1
3

√
1−a2+a log(1+

√
1−a2)−a log a)

,

and consequently, un+1 also exhibits property (v) of Theorem 2.1. To summarize,
un+1 will be continuous, positive and will satisfy the volume condition.

Next, we bound |u − un+1|. Since both u and un+1 have the correct volume,
they must intersect at least once in (a, 1). This allows us to state that

(13) |u− un+1| ≤

∫ 1

a
|ur − (un+1)r | dr.

To estimate the integrand of (13), we use the mean value theorem on the function
f (p)= p/

√
1− p2, so that

f (sinψ)− f (sinψn+1)

sinψ − sinψn+1
= f ′(ξ),

where ξ lies between sinψ and sinψn+1. This can be rewritten as

(14) |ur − (un+1)r | =
|sinψ − sinψn+1|

(1− ξ 2)
3/2 .

The numerator of (14) has an upper bound given in (9). For the denominator,
[Gordon and Siegel 2010, Lemma 3.2] provides bounds on sinψ that are identical
to those derived above for sinψn+1:

−
a cos γ

r
≤ sinψ and sinψn+1 ≤ r cos γ,
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and ξ is bounded as

−
a
r
≤−

a cos γ
r

< ξ < r cos γ ≤ r,

with ξ 2 < max{a2/r2, r2
}. The denominator of (14) can thus be estimated using

1− ξ 2 > (1− a2/r2)(1− r2), and an upper bound on |u− un+1| is now possible:

|u− un+1| ≤

∫ 1

a

|sinψ − sinψn+1|

(1− ξ 2)3/2
dr

<
βn B

1− a2

∫ 1

a

r2
√

r2− a2
√

1− r2
dr =

βn B
1− a2

∫ 1

0

√
1− (1− a2)t2
√

1− t2
dt,

where the change of variables t =
√
(r2− 1)/(a2− 1) is used in the last equality.

This integral is always less than π/2. Hence,

|u− un+1|<
βn B

1− a2

π

2
= βn+1

and the inductive step is complete. �

3. Single intersection case: interleaving properties

The iterates of [Siegel 2006] were shown there to exhibit the following structure:

(a) ψ0 <ψ2 < · · ·<ψ < · · ·<ψ3 <ψ1 for r ∈ (a, 1).

(b) u1(a) < u3(a) < · · ·< u(a) < · · ·< u2(a) < u0.

(c) u0 < u2(1) < · · ·< u(1) < · · ·< u3(1) < u1(1).

These properties were defined collectively by Siegel as the interleaving proper-
ties of the iterates, with (b) and (c) providing under- and over-estimates for the
boundary values of u. Here, the behavior between iterates is more complex, being
sensitive to the values of the parameters a, γ and B. However, we are able to
recover these interleaving properties under certain conditions. It so happens that it
will be necessary to find selections of a, γ and B such that u, u0 and u2 will be
configured as noted in Figure 2. In other words, there exist unique points b0 and
c0 in (a, 1) such that

(15)
{

u < u0 if r ∈ [a, b0),

u > u0 if r ∈ (b0, 1],

and

(16)
{

u2 < u0 if r ∈ [a, c0),

u2 > u0 if r ∈ (c0, 1].

It turns out that if (15) and (16) occur, the interleaving properties are a consequence.
We examine the conditions necessary for each configuration below.
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a

b0

c0

u0

u2

u

1
r

Figure 2. The configuration required for interleaving properties.
Whereas u and u2 must be arranged as shown with respect to u0,
the relative configuration of u and u2 is not important.

Single intersection of u with u0. We will show that the configuration of (15) is
a result of u(a) < u0, and it is indeed possible to find conditions under which
this is true through a comparison with u1(a). We thus begin by investigating the
conditions necessary for u1(a) < u0. Consider the difference

(17) u0− u1(a)=
1

1−a2

∫ 1

a
(1− s2)

sinψ1√
1− sin2 ψ1

ds.

The integrand can be bounded from below by estimating sinψ1/
√

1− sin2 ψ1. For
a≤ r ≤

√
a, we use that sinψ1 is concave to see (r−

√
a) cos γ/(

√
a−a)≤ sinψ1,

which gives

sinψ1√
1− sin2 ψ1

≥

(r −
√

a)
cos γ
√

a− a√
1−

(
(r −
√

a)
cos γ
√

a− a

)2
,

and for
√

a ≤ r < 1, it is easily seen that sinψ1/
√

1− sin2 ψ1 ≥ sinψ1. Using
these bounds in (17), we have

u0− u1(a) >

√
(
√

a− a)2

cos2 γ
− (
√

a− a)2−
√

a− a
cos γ

+
cos γ(1− a2

+ 2a log a)
4(1− a)(1− a2)

,

and since a log a > (a− 1)+ 1
2(a− 1)2− 1

6(a− 1)3 on (0, 1), we can arrive at

u0− u1(a) > cos γ
[ 1−a

12(1+a)
− (
√

a− a)
]
.
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To ensure that u1(a) < u0, the expression in square brackets must be nonnegative,
and after some mechanics, this is shown to be true for a ∈ (0,32

] where

3 := 1
6(9+ 2

√
353)1/3− 11

6(9+2
√

353)1/3
.
= 0.09.

To compare u(a) with u0, we employ the same technique used in the proof of
Theorem 2.2, namely, find B so that u(a) lies close enough to u1(a) and necessarily
u(a) < u0.

Theorem 3.1. For any γ ∈ [0, π/2), select a ≤32 and

B ≤
2(1− a2) cos γ

π

( 1−a
12(1+a)

− (
√

a− a)
)
.

Under these conditions, there exists a unique b0 ∈ (a, 1) such that u(b0)= u0 with{
u < u0 if r ∈ [a, b0),

u > u0 if r ∈ (b0, 1].

Proof. As mentioned, we will require u1 as a comparison function and it must
be confirmed that u1 is defined and continuous. In fact, since sinψ1 ≤ r cos γ
(see (10)) and since

B ≤
2(1− a2) cos γ

π

( 1−a
12(1+a)

− (
√

a− a)
)

<
2

(1−a)( 1
3

√
1−a2+a log(1+

√
1−a2)−a log a)

,

u1 exhibits all properties of Theorem 2.1. To continue, we write

(18) u0− u(a)≥ (u0− u1(a))− |u(a)− u1(a)|.

The selection of a ensures the first term of (18) is positive. For the second term,
the proof of Theorem 2.2 for the specific case of u1 yields

|u− u1|< C(γ,m)B π
2(1−a2)

< B π
2(1−a2)

.

with C(γ,m) < 1. The difference of (18) can now be bounded as

(19) u0− u(a) > cos γ
( 1−a

12(1+a)
− (
√

a− a)
)
− B π

2(1−a2)
.

Substituting the condition on B produces the desired result,

(20) u(a) < u0.

With both u and u0 having the correct volume, at least one intersection occurs
between these functions. The convexity of u, in conjunction with (20), limits this
to a unique intersection occurring at a point b0 ∈ (a, 1). �
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Single intersection of u2 with u0. In like manner, we are able to find conditions
for u2(a) < u0 that will result in (16). Before turning to this, it should be verified
that under the hypotheses of the previous theorem, u2 is defined and continuous.

Lemma 3.2 [Siegel 2006]. Consider two functions v and w defined on [a, 1] with
inclination angles given by ψv and ψw respectively. If ψv < ψw on (a, 1) and∫ 1

a rv dr =
∫ 1

a rw dr , then there exists a unique b ∈ (a, 1) where v(b)= w(b) and{
w < v if r ∈ [a, b),
w > v if r ∈ (b, 1].

To show u2 is defined and continuous, we first write the difference function

r sinψ − r sinψ1 = B
∫ r

a
s(u− u0) ds,

which is zero at r = a and r = 1. Theorem 3.1 also ensures the function contains
a unique extremum at r = b0. Thus, r sinψ − r sinψ1 must be either positive or
negative on (a, 1). It follows from u(a) < u0 that

r sinψ − r sinψ1 < 0 implies ψ < ψ1 for r ∈ (a, 1),

and Lemma 3.2 requires that there exist a unique b1 ∈ (a, 1) where u1(b1)= u(b1)

and {
u1 < u if r ∈ [a, b1),

u1 > u if r ∈ (b1, 1].

With this in hand, we consider the difference r sinψ−r sinψ2= B
∫ r

a s(u−u1) ds
and reason accordingly that sinψ2< sinψ < r cos γ for r ∈ (a, 1). With B bounded
as in Theorem 3.1, u2 will exhibit all properties of Theorem 2.1.

Conditions can now be stated so that u2(a)<u0. In this case, B will be restricted
further than in Theorem 3.1.

Theorem 3.3. For any γ ∈ [0, π/2), select a ≤32 and

B ≤
(1− a2) cos γ

π

( 1−a
12(1+a)

− (
√

a− a)
)
.

Under these conditions, u2 satisfies the properties of Theorem 2.1 and there exists
a unique c0 ∈ (a, 1) such that u2(c0)= u0, with{

u2 < u0 if r ∈ [a, c0),

u2 > u0 if r ∈ (c0, 1].

Proof. Similarly, we write u0−u2(a)≥ (u0−u(a))−|u(a)−u2(a)|. The first term
can be bounded as in (19), and an argument identical to the proof of Theorem 2.2
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specifically for u2 estimates the second term. We thus have

u0− u2(a) > cos γ
( 1−a

12(1+a)
− (
√

a− a)
)
− B

π

2(1− a2)

(
1+ B π

2(1−a2)

)
,

and substituting for B gives u2(a) < u0. As before, the volume condition guaran-
tees an intersection between the two functions. Theorem 2.1(iv) implies that u2 is
monotone decreasing on [a,m2) and monotone increasing on (m2, 1]. Hence, the
intersection is unique and the arrangement between functions easily follows. �

Interleaving properties. We can now prove the interleaving properties for {un}.
Here, a and B are restricted so that the single intersection case is guaranteed to
occur.

Theorem 3.4. For any γ ∈ [0, π/2), select a ≤32 and

B ≤
(1− a2) cos γ

π

( 1−a
12(1+a)

− (
√

a− a)
)
.

Under these conditions, the sequence of iterates {un} defined by (7) and (8) satisfies
(i) through (v) of Theorem 2.1. The iterates exhibit the following properties:

(1) ψ2 <ψ4 < · · ·<ψ < · · ·<ψ3 <ψ1 for r ∈ (a, 1).

(2) u1(a) < u3(a) < · · ·< u(a) < · · ·< u4(a) < u2(a).

(3) u2(1) < u4(1) < · · ·< u(1) < · · ·< u3(1) < u1(1).

Proof. We first go through a cycle of recursive arguments and proceed to show that
the base case, which is known to be true, sets the cycle in motion. To start, assume
that for a certain k ≥ 0,

(a) u2k , u2k+1, and u2k+2 satisfy (i) through (v) of Theorem 2.1 (although u2k

does not have to satisfy the boundary conditions);

(b) ψ < ψ2k+1 with sinψ2k+1 < r cos γ for r ∈ (a, 1).

(c) there exists a unique c2k ∈ (a, 1) such that{
u2k+2 < u2k if r ∈ [a, c2k),

u2k+2 > u2k if r ∈ (c2k, 1].

From (b), Lemma 3.2 requires that there exists a unique b2k+1 ∈ (a, 1) with{
u > u2k+1 if r ∈ [a, b2k+1),

u < u2k+1 if r ∈ (b2k+1, 1].

Using the difference function

r sinψ − r sinψ2k+2 = B
∫ r

a
s(u− u2k+1) ds,
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we can show that sinψ2k+2 < sinψ < r cos γ for r ∈ (a, 1). This implies that
ψ2k+2 <ψ on (a, 1). Lemma 3.2 can be used again:{

u < u2k+2 if r ∈ [a, b2k+2),

u > u2k+2 if r ∈ (b2k+2, 1].

and a new difference function

r sinψ − r sinψ2k+3 = B
∫ r

a
s(u− u2k+2) ds

produces ψ < ψ2k+3 on (a, 1). It must now be verified that u2k+3 is defined. For
this, we use

r sinψ2k+1− r sinψ2k+3 = B
∫ r

a
s(u2k − u2k+2) ds

along with (b) and (c) to reason that sinψ2k+3 < sinψ2k+1 < r cos γ for r ∈ (a, 1).
With B restricted as hypothesized, u2k+3 now obeys Theorem 2.1, and Lemma 3.2
ensures {

u2k+3 > u2k+1 if r ∈ [a, c2k+1),

u2k+3 < u2k+1 if r ∈ (c2k+1, 1].
As a final step, we can similarly argue that u2k+4 satisfies Theorem 2.1 since

sinψ2k+2 < sinψ2k+4 < sinψ < r cos γ

with {
u2k+4 < u2k+2 if r ∈ [a, c2k+2),

u2k+4 > u2k+2 if r ∈ (c2k+2, 1].
The cycle is now complete as (a), (b) and (c) are proved for the next increment
of k. In addition, the discussion above provides the summary

(21) ψ2k+2 <ψ2k+4 <ψ < ψ2k+3 <ψ2k+1 for r ∈ (a, 1).

It remains to verify that (a), (b) and (c) are true for the base case k = 0. However,
these were shown as a result of Theorems 3.1 and 3.3, making (21) true for all
k ≥ 0:

(22) ψ2 <ψ4 < · · ·<ψ < · · ·<ψ3 <ψ1 for r ∈ (a, 1).

For parts (2) and (3), apply Lemma 3.2 to each adjacent pair of angles in (22)
to arrive at

u1(a) < u3(a) < · · ·< u(a) < · · ·< u4(a) < u2(a).

and
u2(1) < u4(1) < · · ·< u(1) < · · ·< u3(1) < u1(1). �
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Remark. Examining the proof of Theorem 3.4, we see that the interleaving prop-
erties will hold when instead of the restrictions on a and B we assume that the
iterates are defined, continuous and positive, ψ < ψ1, and u2 satisfies (16).

4. Double intersection case

In contrast to the iterates of Siegel (which consistently intersect once with u0 and
result in interleaving properties throughout), here it is also possible to find selec-
tions of a, γ and B where u and u2 intersect twice with u0. In this case, there exist
exactly two points b01 and b02 in (a, 1) such that u(b01)= u(b02)= u0 with

(23)


u > u0 if r ∈ [a, b01),

u < u0 if r ∈ (b01, b02),

u > u0 if r ∈ (b02, 1].

As well, there exist exactly two points c01 and c02 in (a, 1) such that u2(c01) =

u2(c02)= u0 and

(24)


u2 > u0 if r ∈ [a, c01),

u2 < u0 if r ∈ (c01, c02),

u2 > u0 if r ∈ (c02, 1].

Figure 3 demonstrates these configurations. The effect of (23) and (24) on subse-
quent iterates is far more varied and less understood. For the sake of brevity, we
summarize the conditions necessary for (23) and (24) to occur.

a c01

b01 b02

c02

u0

u2

u

1
r

Figure 3. Configuration considered for double intersection case.
Whereas u and u2 must be arranged as shown with respect to u0,
the relative configuration of u and u2 is not important.



ANNULAR CAPILLARY SURFACES WITH EQUAL CONTACT ANGLES 385

Theorem 4.1. For a given γ ∈ (arcsin(1/5), π/2), select a ≥ 3/(5 sin γ+ 2) and

B ≤
cos γ(1− a)2

6π

(
5a− 3−2a

sin γ

)
.

Under these conditions, there exist exactly two points b01, b02 ∈ (a, 1) such that
u(b01)= u(b02)= u0 with

u > u0 if r ∈ [a, b01),

u < u0 if r ∈ (b01, b02),

u > u0 if r ∈ (b02, 1].

Theorem 4.2. For a given γ ∈ (arcsin(1/5), π/2), select a ≥ 3/(5 sin γ+ 2) and

B ≤
cos γ(1− a)2

12π

(
5a− 3−2a

sin γ

)
.

Furthermore, assume sinψ2<r cos γ on (a, 1). Here, there exist exactly two points
c01, c02 ∈ (a, 1) such that u2(c01)= u2(c02)= u0 and

u2 > u0 if r ∈ [a, c01),

u2 < u0 if r ∈ (c01, c02),

u2 > u0 if r ∈ (c02, 1].

For the most part, the proofs of Theorems 4.1 and 4.2 are analogous to their single
intersection counterpart. Note, however, that under the hypotheses of Theorem 4.2,
we are unable to prove that sinψ2< r cos γ on (a, 1) and verify the existence of u2.
This assumption is consequently added to Theorem 4.2.

We briefly outline the resultant behaviors of the double intersection case. Here,
it is assumed that all iterates are defined and continuous. Given (23), the behavior
of u1 with respect to u can be examined by considering the difference function

(25) r sinψ − r sinψ1 = B
∫ r

a
s(u− u0) ds.

In addition to (25) being zero at r = a and r = 1, there exist extrema at r = b01
and r = b02. Since u(a) > u0, ψ and ψ1 must be arranged as

(26)
{
ψ > ψ1 if r ∈ (a, ξ0),

ψ < ψ1 if r ∈ (ξ0, 1),

where ξ0 ∈ (b01, b02). When (26) is considered in conjunction with the volume
condition, three configurations of u with u1 are possible as illustrated in the first
row of Figure 4. Using an analysis similar to the previous section’s, we find for
configurations A and C (where u and u1 intersect once) that subsequent iterates
will intersect only once with u. Specifically, for configuration A,

(27) u2n+1(a) < u(a) < u2n+2(a) and u2n+2(1)< u(1) < u2n+1(1)
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A
a 1

r

u1

u

B
a 1

r

u1
u

C
a 1

r

u1
u

D
a 1

r

u1

u3

E
a 1

r

u1
u3

F
a 1

r

u1
u3

Figure 4. In the first row, potential configurations of u1 with u3,
assuming (24) holds. In the second, potential configurations of u
with u1, assuming (23) holds.

or for configuration C,

u2n+2(a) < u(a) < u2n+1(a) and u2n+1(1)< u(1) < u2n+2(1)

with n ≥ 0. In configuration B (where u and u1 intersect twice) the behavior is
potentially more diverse. Indeed, three arrangements identical to A, B and C are
possible between u2 and u, and a similar study can be applied here as was done
for u versus u1.

Additionally, (24) can be used to comment on the behavior of u3 versus u1. The
difference function

r sinψ1− r sinψ3 = B
∫ r

a
s(u0− u2) ds

implies three arrangements of u1 with u3 are possible as in the second row of
Figure 4. Configuration D leads to the predictable behavior

(28)
{u2n+2(a)} and {u2n+1(1)} are decreasing for n ≥ 0,

{u2n+1(a)} and {u2n+2(1)} are increasing for n ≥ 0.
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and likewise configuration F gives

{u2n+1(a)} and {u2n+2(1)} are decreasing for n ≥ 0,

{u2n+2(a)} and {u2n+1(1)} are increasing for n ≥ 0.

Configuration E will itself split into three possible arrangements between u2

and u4 that are identical to D, E and F. As one might expect, any configuration of
the first row of Figure 4 could conceivably pair with any arrangement of the second
row, leading to a far more complex behavior than in the single intersection case.
Nevertheless, some pairings will again lead to interleaving iterates. This occurs,
for example, when configuration A is paired with configuration D and properties
(27) and (28) are matched. The same can be said of pairing configuration C with
configuration F. However, if these couples were cross-matched (that is, A–F or
C–D), the combined properties would result in diverging iterates. Further research
is needed to fully understand the properties of {un} over the complete parameter
space.
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