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We prove in dimension n > 2 that a K -quasiconformal harmonic mapping
u of the unit ball Bn onto itself is Euclidean bi-Lipschitz if u(0) = 0 and
K < 2n−1. This is an extension of a similar result of Tam and Wan for hy-
perbolic harmonic mappings with respect to a hyperbolic metric. The proof
uses Möbius transformations on the related space and a recent result of the
first author, which states that harmonic quasiconformal self-mappings of
the unit ball are Lipschitz continuous.

1. Introduction

A twice differentiable function u defined in an open subset � of the Euclidean
space Rn is said to be harmonic if it satisfies the differential equation

1u(x) := D11u(x)+ D22u(x)+ · · ·+ Dnnu(x)= 0.

Throughout the paper Bn denotes the unit ball in Rn , and Sn−1 denotes the unit
sphere. Also we suppose that n > 2 (the case n = 2 has already been treated by
many authors). Recall that for a vector x = (x1, . . . , xn) ∈Rn with the usual norm
|x | = (

∑n
i=1 x2

i )
1/2 and a matrix A ∈ Mn×n , the matrix norm of A is defined as

|A| = sup{|Ax | : |x | = 1}.

By 〈 · , · 〉 we denote the inner product in Rn . Given k ∈ N and a normed space X,
the norm of a k-linear mapping from the k-fold Cartesian product of Rn to X is
defined by

|P| = sup{|P(v1, . . . , vk)| : |v1| = · · · = |vk | = 1}.

For K ≥ q, a homeomorphism u : �→ �′ between two open subsets � and
�′ of Euclidean Rn will be called a K -quasiconformal or shortly a quasiconformal
mapping if the following two conditions are satisfied.

(i) The homeomorphism u is an absolutely continuous function in almost every
segment parallel to some of the coordinate axes, and the partial derivatives
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of u exist and are locally Ln integrable functions on �. For such a u, we
write u ∈ ACLn .

(ii) For almost every x in �,

|Du(x)|n/K ≤ Ju(x)≤ Kl(Du(x))n,

where l(Du(x)) := inf{|Du(x)ζ | : |ζ | = 1} and Ju(x) is the Jacobian deter-
minant of u [Rešetnjak 1968].

For a continuous function u, the condition (i) is equivalent to the fact that u
belongs to the Sobolev space W 1

n,loc(�).
Let P denote the Poisson kernel, that is,

P(x, η)=
1− |x |2

|x − η|n
for x ∈ Bn and η ∈ Sn−1.

Let f : Sn−1
→ Rn be a bounded integrable function on the unit sphere Sn−1.

The solution of the equation 1u = 0 in the unit ball Bn satisfying the boundary
condition u|Sn−1 = f ∈ L1(Sn−1) is given by

u(x)= P[ f ](x)=
∫

Sn−1
P(x, η) f (η)dσ(η) for |x |< 1.

Here dσ is the Lebesgue (n−1)-dimensional measure of the sphere Sn−1 satisfying
the condition P[1](x) ≡ 1. It is well known that if f is continuous in Sn−1, then
the mapping u = P[ f ] has a continuous extension ũ to the boundary, and ũ = f
on Sn−1.

We will consider those harmonic mappings, namely, the solutions of the PDE
1u = 0, that are also quasiconformal.

Martio [1968] was the first to consider harmonic quasiconformal mappings on
the complex plane. Recent papers [Kalaj 2004, 2008; Kalaj and Mateljević 2006;
Kalaj and Pavlović 2005, 2009; Manojlović 2009; Pavlović 2002] shed much light
on this topic.

Proposition 1.1 [Kalaj 2009]. Let u : Bn
→ � for n ≥ 3 be a twice differentiable

quasiconformal mapping of the unit ball onto the bounded domain � in Rn with a
C2 boundary satisfying the differential inequality

|1u| ≤ A|Du|2+ B for A, B ≥ 0.

Then Du (the first derivative of u) is bounded and u is Lipschitz continuous.

Because techniques of complex analysis are not available, the problem in the
space Rn with n ≥ 3 is much more complicated. For example, any harmonic
mapping in a simply connected domain in the plane can be expressed as the sum of
an analytic and an antianalytic function. The corresponding representation formula
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for harmonic mappings in the space is not true. On the other hand, Lewy’s theorem
and the theorem of Rado, Kneser and Choquet are essentially planar. According to
the latter theorem, the harmonic extension (via Poisson integral) of a homeomor-
phism of the unit circle is always a diffeomorphism of the unit disk. However, in
higher dimensions the situation is quite different: Martio [2009] and Melas [1993]
constructed a homeomorphism of the unit sphere Sn−1 for n ≥ 3 whose harmonic
extension fails to be diffeomorphic; see also [Laugesen 1996].

Let K ∈ [1, 2n−1). Our main result, Theorem 3.1, states that the norm of the
gradient of any K-quasiconformal harmonic self-mapping u of the unit ball with
u(0)= 0 is bounded from below by a positive constant cK that depends only on K .
In contrast to the planar case, not all conformal mappings in the space are harmonic;
only orthogonal transformations are, while other Möbius transformations are not, at
least with respect to the Euclidean metric. However, Möbius transformations will
play an important role in this paper. In this regard, Lemma 2.4 is of independent
interest. In Section 4 we will give some nontrivial examples of quasiconformal
self-mappings of the unit ball, and we will show that our result can be considered
as a partial extension of Fefferman’s theorem [1974] concerning biholomorphisms
between smooth domains in the space.

2. Preliminaries and auxiliary results

Quasiconformal maps are locally well behaved with respect to distance distortion.
If f :�→�′ is a K-quasiconformal mapping between domains �,�′ ⊂Rn , then
f is locally Hölder continuous with the exponent α = K 1/(1−n), that is,

(2-1) | f (x)− f (y)| ≤ M |x − y|α,

whenever x and y lie in a fixed compact subset E of �; see [Vuorinen 1988,
Theorem 10.11]. Here M is a constant depending only on K and E . Such an M
can in general tend to infinity as the distance from E to the boundary of � tends to
zero. However, if the boundary of � is regular enough, then an inequality similar
to (2-1) holds uniformly in � [Gehring and Martio 1985; Koskela et al. 2001].

See also [Finn and Serrin 1958] for related results about the class of (K , K ′)
planar quasiconformal mappings, which generalizes the class of standard quasi-
conformal mappings.

The following lemma is nothing but a slight reformulation of a corresponding
lemma in [Tam and Wan 1998]. For the sake of completeness, we give its proof
here and show that the constant is sharp.

Lemma 2.1. If u ∈ C1,1 is a K-quasiconformal mapping defined in a domain
�⊂ Rn for n ≥ 3, then Ju(x) > 0 for x ∈ � if K < 2n−1. The constant 2n−1

is sharp.
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Proof. Assume that Ju(a) = 0 for some a ∈ �. This yields Du(a) = 0. Without
loss of generality we can assume that a = 0 and u(0) = 0. Choose r > 0 with
r < dist(0, ∂�), and let E = Bn(0, r) := {x ∈ Rn

: |x | ≤ r}. Applying (2-1) to the
mapping f = u−1 defined in �′ = u(�), we obtain

| f (y)| ≤ ME |y|K
1/(1−n)

for y ∈ u(E),

where ME is a constant depending on E . This implies

(2-2) M−K 1/(n−1)

E |x |K
1/(n−1)

≤ |u(x)| for x ∈ E .

Now since u is twice differentiable, with Du(0) = 0 and u(0) = 0, it follows
from Taylor’s formula that there exists a positive constant N such that

(2-3) |u(x)| ≤ N |x |2 for x ∈ E .

Combining (2-2) and (2-3), we have

M−K 1/(n−1)

E /N ≤ |x |2−K 1/(n−1)
for x ∈ E .

This is only possible if 2− K 1/(n−1)
≤ 0.

Thus K ≥ 2n−1, which is a contradiction.
To prove sharpness, consider the mapping u(x)= |x |αx with α ≥ 1. Then

(2-4) Ju(x)= (1+α)|x |nα

and

(2-5) |Du(x)| = (α+ 1)|x |α.

By (2-4) and (2-5) it follows that

|Du(x)|n

Ju(x)
= (α+ 1)n−1.

Therefore, u is a twice differentiable (1+α)n−1-quasiconformal self-mapping of
the unit ball with Ju(0)= 0, meaning that the constant 2n−1 is the best possible. �

Lemma 2.2. Let u be a harmonic mapping of the unit ball onto itself such that
u(0)= 0. Then there exists a positive constant Cn such that

(2-6)
1− |x |2

1− |u(x)|2
≤ Cn for x ∈ Bn.

Proof. Let S+ denote the northern hemisphere and let S− be the southern hemi-
sphere. Let U = P[χS+] − P[χS−] be the Poisson integral of the function χS that
equals 1 on S+ and −1 on S−. Then by the Schwarz lemma [Axler et al. 1992],

〈u(x), u(x0)/|u(x0)|〉 ≤
∣∣U (|x |N )∣∣
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for a fixed x0, where N is the north pole.
It follows that |u(x0)|

2
≤
∣∣U (|x0|N )

∣∣2. Thus

1− |x |2

1− |u(x)|2
≤

1− |x |2

1−U (|x |N )2
=: g(r) for r = |x |.

We will need Hopf’s boundary point lemma:

Lemma 2.3 [Hopf 1952; Protter and Weinberger 1967]. Let v satisfy 1v ≥ 0 in
an open set D ⊂ Rn and suppose v ≤ M in D and v(P) = M for some P ∈ ∂D.
Assume that P lies on the boundary of a ball

Bn(a, r) := {x : |x − a|< r} ⊂ D.

If v is continuous on D ∪ P and if the outward directional derivative ∂v/∂n exists
at P , then v ≡ M or

∂v(P)/∂n > 0.

Applying this lemma to the function U (x) and taking h(r)=U (r N ), we obtain

h′(1)= ∂U (N )
∂n

> 0.

Thus

Cn := sup
|x |≤1

{
1− |x |2

1−U (|x |N )2

}
<∞,

and the proof of Lemma 2.2 is complete. �

Following the book of Ahlfors [1981], for a, x ∈ Bn we define

[x, a]2 = 1+ |x |2|a|2− 2〈x, a〉

and the inversion x∗ of x 6= 0 by x∗ = x/|x |2. Since

[x, a]2 = |x |2|x∗− a|2 = |a|2|x − a∗|2

=
∣∣|x |a− |x |x∗∣∣2 = ∣∣|a|x − |a|a∗∣∣2 = ∣∣|x |a− |x |x∗∣∣ · ∣∣|a|x − |a|a∗∣∣,

we have

(2-7) [x, a]2 ≥ (1− |a|)(1− |x |) and [x, a]2 ≥ (1− |x |)2.

Assume that p is a conformal mapping of the unit ball onto itself. Then it is
well known that p is a Möbius transformation of the unit ball onto itself. Under
the normalization p(0) = −a 6= 0 (or p(a) = 0), the mapping p is given (up to
some orthogonal transformation of the unit ball) by

(2-8) p(x)=
(1− |a|2)(x − a)− |x − a|2a

[x, a]2
.
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Lemma 2.4. If p is a Möbius transformation of the unit ball onto itself , with
p(0)= a, then for all k, l ∈ N0 with k > l, there exists a constant Ck,l such that

Ck,l ≥ k · (k− 1) · · · (l + 1),

k!|a|k−1(1− |a|2)
[x, a]k+1 ≤ |p(k)(x)| ≤

Ck,0|a|k−1(1− |a|2)
[x, a]k+1 for x ∈ Bn,(2-9) ∣∣p(k)(x)∣∣∣∣p(l)(x)∣∣ ≤ Ck,l

1
(1−|x |)k−l for x ∈ Bn and l > 0,(2-10)

∣∣p(k)(x)∣∣≤ Ck,0

(1− |p(0)|2)(k−1)/2

(
1− |p(x)|2

1− |x |2

)(k+1)/2

for x ∈ Bn.(2-11)

Proof. It follows from (2-8) that

p′(x)=
1− |a|2

[x, a]2
1(x, a),

where 1(x, a) = (I − 2Q(a))(I − 2Q(x − a∗)), and Q(y) is the matrix whose
elements have the form Q(y)i, j = yi y j/|y|2. For every y ∈ Bn , we have K (y) :=
I − 2Q(y) ∈ On , where On is the set of all orthogonal matrices. Thus 1(x, a) is
an orthogonal matrix as well, and consequently |1(x, a)| = 1. This means that

|p′(x)| =
1− |a|2

[x, a]2
.

According to (2-7),

(2-12) |p′(x)| ≤ 2
1−|x |

.

If we put

A =
1− |a|2

[x, a]2
and B = (I − 2Q(a))(I − 2Q(x − a∗)),

then we have p′ = AB. Therefore, for the (k+1)-st derivative of p, we have

(2-13) p(k+1)(x)=
k∑

j=0

(k
j

)
A( j)B(k− j),

and p(k+1) can be treated as a k-linear form between the k-fold product of Rn and
and Mn×n . We will use the notation

(2-14) Q(y)=
y⊗ y
|y|2

,

where ⊗ denotes the tensor product of vectors.
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Let us prove that for k ∈N0 there exists a (2k+2)-linear form from the (k+2)-
fold product of Rn to Mn×n such that

(2-15) Q(k)(y)(h1, h2, . . . hk)=
1

|y|2k+2 Pk(y, . . . , y, h1, . . . , hk).

We proceed by induction on k. It is evident from (2-14) that (2-15) is true for k=0.
Assume that (2-15) is true for some k, and prove it for k + 1. By (2-15), it

follows that

(2-16) Q(k+1)(y)(h1, h2, . . . hk, hk+1)

=
1

|y|2k+2

k+2∑
j=1

Pk(y, . . . , y,
j↓

hk+1, y, . . . , y, h1, . . . , hk)

− (k+ 2)
〈y, hk+1〉

|y|2k+4 Pk(y, . . . , y, h1, . . . , hk),

where the j pointing to hk+1 denotes that hk+1 is in the j-th position. Thus

(2-17) Q(k+1)(y)(h1, h2, . . . , hk, hk+1)=
Pk+1(y, . . . , y, h1, . . . , hk, hk+1)

|y|2(k+1)+2 ,

where

Pk+1(e1, . . . , ek+3, f1, . . . fk+1)

=

k+2∑
j=1

〈ek+3, e j 〉Pk(e1, . . . ,
j↓

fk+1, . . . , ek+2, f1, . . . , fk)

− 2(k+ 1)〈ek+3, fk+2〉Pk(e1, . . . , ek+2, f1, . . . , fk).

We first prove the left side of inequality (2-9).
From (2-17) and the induction hypothesis, for y 6= 0 we obtain

(2-18) Q(k+1)(y)
( y
|y|
, . . . ,

y
|y|

)
= 0.

Thus

(2-19) B(k)(x)
(

x−a∗

|x−a∗|
, . . . ,

x−a∗

|x−a∗|

)
= 0.

Let us prove the left side of (2-9). First, according to (2-13) and (2-19), we
obtain

(2-20)

|p(k+1)(x)| = sup
|h1|=···=|hk |=1

|p(k+1)(x)(h1, . . . , hk)|

≥

∣∣∣∣A(k)( x−a∗

|x−a∗|
, . . . ,

x−a∗

|x−a∗|

)∣∣∣∣.
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Since Pk is a (2k+2)-linear form,

|Pk(y, . . . , y, h1, . . . , hk)| ≤ |Pk
||y|k+2

k∏
j=1

|h j |.

Thus |Qk(y)| ≤ |Pk
|/|y|k , whence we have

|Qk(x − a∗)| ≤
|Pk
|

|x − a∗|k
=
|a|k |Pk

|

[x, a]k
.

Further, observe that B(x)= K (a)(I − 2Q(x − a∗)) for K (a) ∈ On . Hence

B(k)(x)=−2K (a)Q(k)(x − a∗),

and using the identity

1− |p(x)|2

1− |x |2
=

1− |a|2

[x, a]2
=

1− |a|2

|a|2|x − a∗|2
,

we obtain

(2-21) |Bk(x)| ≤
2|a|k |Pk

|

[x, a]k
<

2|a|k |Pk
|(1− |p|2)k/2

(1− |a|2)k/2(1− |x |2)k/2
.

To estimate the derivatives of A(x)= (1− |a|2)/[x, a]2, define

H(y)= 1
|y|2
=
|a|2

1− |a|2
A(x) for y = x − a∗.

Then

H ′(y)h1 =−2
〈y, h1〉

|y|4
.

Similarly, it can be proved that for every k≥ 1 there exists an R-valued (2k+2)-
linear form Gk+1 such that

H (k+1)(y)(h1, h2, . . . hk+1)=
1

|y|2k+4 Gk+1(y, . . . , y, h1, . . . , hk+1),

where

Gk+1(e1, . . . , ek+1, f1, . . . fk+1)

=

k∑
j=1

〈ek+1, e j 〉Gk(e1, . . . ,
j↓

fk+1, . . . , ek, f1, . . . , fk)

− 2(k+ 1)〈ek+1, fk+1〉Gk(e1, . . . , ek, f1, . . . , fk).

Therefore

(2-22) |H k(y)| ≤ |Gk
|/|y|k+2.
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On the other hand, by the identity k · (k+1)!−2(k+1)(k+1)! =−(k+2)! and
the induction hypothesis, we obtain

Gk
(

y, . . . , y,
y
|y|
, . . . ,

y
|y|

)
=±

(k+ 1)!
|y|k+2 for k ∈ N.

Thus
k!
|y|k+2 =

∣∣∣∣H k(y)
( y
|y|
, . . . ,

y
|y|

)∣∣∣∣≤ ∣∣H k(y)
∣∣.

In view of the fact
1− |p(x)|2

1− |x |2
=

1− |a|2

[x, a]2
,

we have

(2-23)
k!|a|k(1− |a|2)
[x, a]k+2 ≤

∣∣Ak(x)
∣∣≤ 2|Gk

||a|k(1− |p|2)1+k/2

(1− |a|2)(k−1)/2(1− |x |2)1+k/2 .

Now the left side of (2-9) follows from (2-18), (2-13), (2-20) and (2-23).
Combining (2-13), (2-21), (2-22) and (2-7) for k ≥ 1, we obtain

|p(k)(x)| ≤ Ck,0
|a|k(1− |a|2)
[x, a]k+1 < 2Ck,0

1
(1−|x |)k

,

where

Ck,0 = |Gk−1
| + 2

k−1∑
j=1

(k−1
j

)
|P j
||G(k−1− j)

|.

This proves (2-9). Inequalities (2-10) and (2-11) immediately follow from (2-9)
and (2-23), and the proof is complete. �

Remark 2.5. For fixed k, l ∈ N0, we denote by C∗k,l the infimum taken over all
constants Ck,l satisfying the previous lemma. In the complex plane C there holds
C∗k,l = k · (k−1) · · · (l+1), and therefore (2-9) reduces to the equality. According
to (2-12), this occurs in the higher dimensions as well for k = 1. We believe that
C∗k,l = k · (k− 1) · · · (l + 1) for arbitrary n, k and l.

3. The main result

Theorem 3.1. Let K < 2n−1 and let u be a K-quasiconformal harmonic mapping
of the unit ball onto itself satisfying the normalization u(0) = 0. Then there exists
a positive constant cK > 0 such that

|Du(x)| ≥ cK for each x ∈ Bn.
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The first step of the proof is similar to that in [Tam and Wan 1998]. However here
the problem is more complicated, because Möbius transformations are harmonic
with respect to the hyperbolic metric, but not with respect to the Euclidean metric.

Proof. We will prove by contradiction that the function |Du| is uniformly bounded
below away from 0. Suppose that there exists a sequence {xi } in Bn such that
Du(xi )→ 0 as i →∞. We will use Proposition 1.1 together with the following
lemma.

Lemma 3.2. Let u be a harmonic Lipschitz mapping of the unit ball onto itself.
Let {xi } be a sequence in Bn . For arbitrary i ∈ N, let pi and qi be two Möbius
transformations of Bn such that qi (0)= xi and pi (u(xi ))= 0. Take ui = pi ◦u ◦qi .
Then

|D(k)ui (x)| ≤ ck
n

1
(1−|x |2)k

for k ∈ N,

where ck
n is independent of x and i .

Proof. To simplify calculations in this proof, sometimes we will omit the arguments
of functions.

Since

(3-1) |p′i (u)| =
1− |pi (u)|2

1− |u|2

and

(3-2) |q ′i (x)| =
1− |qi (x)|2

1− |x |2
,

according to (2-6) it follows that

|Dui | ≤ |p′i ||Du||q ′i |

≤
1− |pi (u(qi (x)))|2

1− |u(qi (x))|2
1− |qi (x)|2

1− |x |2
|Du|

≤ Cn|Du|∞
1− |pi (u(qi (x)))|2

1− |x |2
.

Thus
|Dui | ≤ Cn|Du|∞

1
1−|x |2

.

For m ∈ N, we make use of the Cauchy estimates [Axler et al. 1992, pp. 33–35]:

(3-3) |Dm(u)(qi (x))| ≤ Am
|Du|∞

(1− |qi (x)|)m−1 .

To estimate the norm of Dkui for k > 1, we use induction. Obviously, it is com-
plicated to compute Dkui for large k. However, it is clear that it can be written as
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a sum of products:

(3-4) Dkui =
∑(

p(τ )i

∏
D jt uq(st1)

i · · · · · q(stlt )
i

)
,

where
∏

and
∑

denote the corresponding finite product and sum of linear oper-
ators. The indices t and τ range at most from 1 to k; the indices jt , st1, . . . , stlt

satisfy similar bounds.
Because of (3-3) we have

(3-5) |p(τ )i |
∏
|D jt u||q(st1)

i | · · · |q(stlt )
i |

≤ const|p(τ )i |
∏ |Du|∞

(1− |qi (x)|) jt−1 |q
(st1)
i | · · · |q(stlt )

i |.

Therefore, it is enough to prove that

(3-6) |p(τ )i |
∏ |Du|∞

(1− |qi (x)|) jt−1 |q
(st1)
i | . . . |q(stlt )

i | ≤ const 1
(1−|x |)k

.

For k = 1, inequality (3-6) is satisfied. Assume that (3-6) is true for some k, and
therefore (3-5) is true as well. We will prove (3-6) for k+ 1.

Since Dk+1ui = DDkui , the first factor in the corresponding formula (3-4) for
Dk+1ui , instead of p(τ )i D jt uq(st1)

i · · · q(stlt )
i , contains the term(

p(τ+1)
i Duq ′i D jt uq(st1)

i · · · q(stlt )
i + p(τ )i D jt+1uq ′i · q

(st1)
i · · · q(stlt )

i

+ p(τ )i D jt uq(st1+1)
i · · · q(stlt )

i + · · ·+ p(τ )i D jt uq(st1)
i . . . q(stlt+1)

i

)
,

and consequently the corresponding formulas (3-6) and (3-5), instead of

|p(τ )i |
|Du|∞

(1− |qi (x)|) jt−1 |q
(st1)
i | . . . |q(stlt )

i |,

contain(
|p(τ+1)

i ||Du||q ′i ||D
jt u||q(st1)

i | · · · |q(stlt )
i |

+ |p(τ )i |
|Du|∞

(1− |qi (x)|) jt
|q ′i | · |q

(st1)
i | · · · |q(stlt )

i |

+ |p(τ )i |
|Du|∞

(1− |qi (x)|) jt−1 |q
(st1+1)
i | . . . |q(stlt )

i | + · · ·

+ |p(τ )i |
|Du|∞

(1− |qi (x)|) jt−1 |q
(st1)
i | · · · |q(stlt+1)

i |

)
.

The other factors in (3-4) can be treated similarly.
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Applying (3-2), we get

(3-7)

|Du|∞
(1− |qi (x)|) jt

|q ′i | =
|Du|∞

(1− |qi (x)|) jt

1− |qi (x)|2

1− |x |2

≤
|Du|∞

(1− |qi (x)|) jt−1
2

1−|x |
.

Next, by applying (2-6) and (2-10), we obtain

(3-8)
∣∣p(τ+1)

i Duq ′i
∣∣≤ const|p(τ )i |

1− |u(qi (x))|
1− |qi (x)|

1− |x |
≤ const

|p(τ )i |

1− |x |
.

On the other hand, according to (2-10) we have

(3-9) |q( j+1)
i | ≤ const

|q( j)
i |

1− |x |
.

By induction, (3-6) is true for k. The last fact and the estimates (3-7), (3-8) and
(3-9) imply that (3-6) is also true for k+ 1. Consequently,

(3-10) |D(k)ui (x)| ≤ ck
n

1
(1−|x |2)k

for k ∈ N. �

We are now ready to finish the proof of Theorem 3.1. According to the notations
of the previous lemma, ui = pi ◦ u ◦ qi is a C∞ K-quasiconformal mapping of the
unit ball onto itself, satisfying the condition ui (0)= 0. By (2-6) we have

(3-11) |Dui (0)| =
1− |xi |

2

1− |u(xi )|2
|Du(xi )| → 0 as i→∞.

For example, by [Fehlmann and Vuorinen 1988], a subsequence of ui , also denoted
ui , converges uniformly to a K-quasiconformal map u0 on the closed unit ball Bn .
According to Lemma 3.2 together with Proposition 1.1, u0 is in C∞(Bn

; Bn) with
u0(0) = 0. The relation (3-11) implies D(u0)(0) = 0. This obviously contradicts
the statement of Lemma 2.1. Hence, the proof of Theorem 3.1 is complete. �

Remark 3.3. Let us estimate Dui = p′i Duq ′i more precisely. From

qi (x)=
(1− |xi |

2)(x + xi )+ |x + xi |
2xi

[x,−xi ]
2 ,

according to (3-1), it follows that

|q ′i (x)| =
1− |xi |

2

|xi |
2|x + x∗i |2

and
1− |qi (x)|2 = |q ′i (x)|(1− |x |

2).
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Similarly, since

pi (u)=
(1− |u(xi )|

2)(u− u(xi ))+ |u− u(xi )|
2u(xi )

[u, u(xi )]2
,

it follows that

|p′i (u)| =
1− |u(xi )|

2

|u(xi )|2|u(qi (x))− u(xi )
∗
|2
.

Thus

|Dui | ≤
1− |u(xi )|

2

|u(xi )|2|u(qi (x))− u(xi )
∗
|2
|Du|∞

1− |xi |
2

|xi |
2|x + x∗i |2

.

From
|xi |

2
|x + x∗i |

2
≥ (1− |xi |)

2,

1− |u(xi )| ≤ |Du|∞(1− |xi |),

|u(xi )|
2
|u(qi (x))− u(xi )

∗
|
2
≥ (1− |u(xi )|)

2,

and (2-6) we obtain

(3-12) |Dui | ≤ 4 min
{

|Du|2
∞

[u(qi (x)), u(xi )]2
,

Cn|Du|∞
[x,−xi ]

2

}
.

Assume that t = limi→∞ xi ∈ Sn−1. It follows from (3-12) that

|Du0| = lim
i→∞
|Dui |

is uniformly bounded in Bn
\ Bn(−t, ε) for ε > 0. Is |Du0| bounded uniformly

in Bn?

Theorem 3.4. Let K < 2n−1 and assume that u is a K-quasiconformal harmonic
mapping of the unit ball onto B2 itself satisfying the normalization u(0)= 0. Then
u is a bi-Lipschitz mapping.

Proof. According to Proposition 1.1 and Theorem 3.1, there exists a constant c≥ 1
such that

(3-13) c−1
≤ |Du(x)| ≤ c for x ∈ Bn.

By using (3-13) and the fact that u is quasiconformal, we obtain

|D(u−1)(u(x))| = 1
infh|Du(x)h|

=
1

l(Du(x))
≤

K 2/n

Du(x)
≤ cK 2/n.

Therefore

(3-14) |D(u−1)| ≤ c1.

From (3-13) and (3-14) it follows that u is bi-Lipschitz. �



402 DAVID KALAJ AND MIODRAG S. MATELJEVIĆ

4. Examples of quasiconformal harmonic mappings

We now give examples of nontrivial harmonic quasiconformal self-mappings of
the unit ball.

4.1. Holomorphic self-mappings of the unit ball. Let B2n
⊂ Cn and let f be a

holomorphic automorphism of the unit ball B2n onto itself. Then f is a quasi-
conformal harmonic mapping. To prove this fact, observe that ∂̄ f = 0 implies
∂∂̄ f = 0. Also f has a holomorphic extension up to the boundary. This means
that it is bi-Lipschitz. Therefore f is a quasiconformal harmonic mapping. It is
interesting to note that the composition of a harmonic and holomorphic mapping
is itself harmonic, because ∂ f ◦ h = fh∂h+ fh̄∂ h̄, and therefore

∂̄∂ f ◦ h = fhh ∂̄h∂h+ fh̄h ∂̄ h̄∂h+ fhh̄ ∂̄h∂ h̄+ fh̄h̄∂ h̄∂̄h.

According to Fefferman’s theorem [1974], every biholomorphism between two
smooth domains has a C∞ extension to the boundary, which means that these
mappings are bi-Lipschitz. Hence, the class of biholomorphic mappings between
smooth domains is contained in the class of harmonic quasiconformal mappings.
Thus our results can be considered as partial extensions of Fefferman’s theorem.

4.2. Perturbation of the identity. Let us show that small smooth perturbations of
the boundary value of a holomorphic automorphism φ ∈ C2(B2n) of the unit ball
onto itself induce harmonic quasiconformal mappings.

Since the composition of a harmonic mapping with a holomorphic automor-
phism is itself a harmonic mapping, it is enough to perturb the identity map, and
after that take the corresponding composition.

Define Iδ(x) = x + δ(x), where x ∈ Bn and δ(x) ∈ Bn , and take φδ = Iδ/|Jδ|,
where |Jδ|2 = 1+ 2〈x, δ(x)〉+ |δ(x)|2. Thus

|Iδ(x)|< 1 for x ∈ Bn and |Iδ(x)| = 1 for x ∈ Sn−1.

We also have

(4-1) |Jδ(x)|2 ≥ (1− |δ(x)|)2 for x ∈ Bn.

Here δ(x) is a twice differentiable mapping satisfying

|δ′(x)|< 1 for x ∈ Sn−1.

This condition guarantees the injectivity of φδ(x) in Sn−1. To continue, we use the
following result of Gilbarg and Hörmander [1980, Theorem 6.1 and Lemma 2.1].

Proposition 4.1. The Dirichlet problem 1u = f in � for u = u0 on ∂� ∈ C1 has
a unique solution u ∈ C1,α for every f ∈ C0,α and u0 ∈ C1,α, and we have

(4-2) ‖u‖1,α ≤ C(‖u0‖1,α,∂�+‖ f ‖0,α),
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where C is a constant.

To guarantee the injectivity of the harmonic extension 8δ(x) = P[φδ](x) of
φδ(x) in the unit ball, we estimate |Dφδ(x)− Id| and |D2φδ(x)|, and use (4-2) to
conclude that

(4-3) |D P[φδ](x)− P[Id]| ≤ C
(
|Dφδ(x)− Id| + |D2φδ(x)|

)
.

First,

Dφδ(x)h =
h+δ′(x)h
|Jδ|

−
Iδ(x)
|Jδ(x)|3

(
〈δ(x), h〉+ 〈δ′(x)h, x + δ(x)〉

)
.

Therefore, using (4-1) we infer that

|Dφδ(x)h− h| ≤
∣∣∣∣2|δ| + 2|δ′| + |δ||δ′|

1− |δ(x)|2
h
∣∣∣∣,

that is,

|Dφδ(x)− Id| ≤
2|δ| + 2|δ′| + |δ||δ′|

1− |δ(x)|2
.

Next we find

D2φδ(x)(h, k)

=
δ′′(x)(h, k)
|Jδ|

−
Iδ(x)
|Jδ(x)|3

(
〈δ′(x)k, h〉+ 〈δ′′(x)(h, k), x + δ(x)〉+ 〈δ′(x)(h), k+ δ′(x)k〉

)
−

k+ δ′(x)k
|Jδ(x)|3

(
〈δ(x), h〉+ 〈δ′(x)h, x + δ(x)〉

)
+ 3

Iδ(x)
|Jδ(x)|5

(
〈δ(x), h〉+ 〈δ′(x)h, x + δ(x)〉

)(
〈δ(x), k〉+ 〈δ′(x)k, x + δ(x)〉

)
.

Thus

|D2φδ(x)|

≤
3(|δ|+|δ′|+|δ||δ′|)2+(1+|δ′|)(|δ|+|δ′|+|δ||δ′|)+2|δ′|2+|δ′|+|δ′′|(2+|δ|)

(1−|δ(x)|2)2
.

Choosing δ such that

|D2φδ(x)|<
1

2C
and |Dφδ(x)− Id|< 1

2C
,

according to (4-3) we obtain

|D8δ(x)− Id|< C
2C
+

C
2C
= 1 for x ∈ Bn.
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Thus |8δ(x)−8δ(y)+y−x |< |x−y|, and therefore 0< |8δ(x)−8δ(y)|. This im-
plies that8δ is injective. Hence,8δ is a quasiconformal harmonic diffeomorphism
of the unit ball onto itself.

In particular, let Iε(x)= (x1+ε, x2, x3) and take jε = (1+2εx1+ε
2)1/2. Define

φε(x)= Iε(x)/ jε.

Now take 8ε = P[φε]. Then for sufficiently small ε, the extension 8ε is a dif-
feomorphism of the unit ball onto itself having a diffeomorphic extension to the
boundary. This means that 8ε is quasiconformal harmonic mapping.

Direct calculations yield

1
C
∣∣D8ε(x)− Id

∣∣= 1
C
∣∣P[φε − Id](x)

∣∣
≤ sup
|x |=1

(
|Dφε(x)− Id| + |D2φε(x)|

)
< sup
|x |=1

{((
−1+

εx1+ 1
j3
ε

)2
+ 2

(
−1+ 1

jε

)2
+
ε2x2

2

j6
ε

−
εx3

j3
ε

)1/2

+

(
2
(
−1+ 1

jε

)2
+

(
−1−

ε(ε+ x1)

j3
ε

+
1
jε

)2
+
ε2x2

2

j6
ε

+
ε2x2

3

j6
ε

)1/2}
.

Therefore
lim
ε→0
|D8ε(x)− Id| = 0

uniformly on Bn . It follows that there exists ε > 0 such that

sup
|x |≤1
|D8ε(x)− Id|< 1.

The inequality |8ε(x)−8ε(y)+ y−x |< |x− y| yields 0< |8ε(x)−8ε(y)|. This
implies that 8ε is injective.

4.3. A question. Lewy’s theorem fails in higher dimensions, as shown by Wood
[1991], who constructed the harmonic homeomorphism

u(x, y, z)= (x3
− 3xz2

+ yz, y− 3xz, z),

which is not a diffeomorphism. The Jacobian of u is Ju(x, y, z)= 3x2
−3z2. This

means that u is neither a diffeomorphism nor a quasiconformal mapping. Do there
exist quasiconformal harmonic mappings which are not diffeomorphisms? If they
exist, then of course K ≥ 2n−1, as shown above (and in [Tam and Wan 1998]).
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