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EXTENSION OF SL2(Q2)

HUNG YEAN LOKE AND GORDAN SAVIN

We define a notion of pseudospherical type for smooth representations of the
nontrivial two fold central extension of SL2(Q2). We describe completely
the irreducible representations that contain the pseudospherical type. We
relate our results to Kohnen’s plus and minus spaces of classical modular
forms of half integral weight.

1. Introduction

Let Q be the field of rational numbers. For every place v of Q, let Qv denote the
corresponding local field. Then Qv = R or Qp for a prime p. The group SL2(Qv)

has a nontrivial two-fold central extension

(1) 1→ µ2→ G(Qv)→ SL2(Qv)→ 1,

where µ2 = {±1}. Recall that an irreducible representation of G(Qv) is called
genuine if the central subgroup µ2 acts faithfully on it. Gelbart’s book [1976]
contains a basic theory of genuine representations of G(R) and G(Qp) for p 6= 2.
Our intent is to develop a theory in the case of G(Q2). The main difference between
G(Q2) and G(Qp) for p 6= 2 lies in the fact that the central extension splits over
SL2(Zp) when p 6= 2. In particular, we have a subgroup K p ⊆ G(Qp) isomorphic
to SL2(Zp) under the natural projection from G(Qp) to SL2(Qp) for every p 6= 2.
A genuine representation π of G(Qp) is called unramified if it contains a nonzero
K p-fixed vector.

Assume now that p = 2. Let K denote the full inverse image of SL2(Z2) in
G(Q2). In this case the central extension splits over a smaller subgroup. More
precisely, we have a subgroup K1(4)⊆ K isomorphic to the subgroup of SL2(Z2)

given by the congruence (
a b
c d

)
≡

(
1 ∗
0 1

)
(mod 4)
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In this paper we completely describe genuine irreducible representations of G(Q2)

containing nonzero K1(4)-fixed vectors. More precisely, in Section 3, we describe
a Hecke algebra H(γ) that captures the structure of all representations generated
by K1(4)-fixed vectors and with a fixed central character γ. In Section 4, we show
that H(γ) is isomorphic to the Iwahori–Matsumoto Hecke algebra for PGL2(Q2).
In this way we get a correspondence between (some) representations of G(Q2)

and representations of PGL2(Q2). We call this correspondence a local Shimura
correspondence.

In Section 5, we show that the compact group K has exactly two irreducible
genuine representations, with the fixed central character γ, containing nonzero
K1(4)-fixed vectors. These representations are denoted by V (2) and V (−1) and
have dimensions 2 and 4, respectively. We show that a representation π of G(Q2)

has V (2) as a K -type if and only if it corresponds to an unramified representation
of PGL2(Q2), by the local Shimura correspondence. Thus, it is natural to define
unramified representations of G(Q2) to be those that contain V (2) as a K -type,
and we call V (2) a pseudospherical type.

We should point out that the center of G(Q2) is a cyclic group of order 4. Thus,
we have two different genuine central characters γ and two classes of unramified
representations. This is analogous to the case of the real group G(R), where the
weights −1/2 and 1/2 are called pseudospherical types.

We apply our local results in a global setting in Section 8. Let A be the ring of
adeles, and let G(A) be the two-fold cover of SL2(A). Let r > 1 be an odd integer.
Let π =⊗πv be a genuine cuspidal automorphic representation such that

• π∞ is a holomorphic discrete series representation with the lowest weight r/2,

• πp is unramified for all p 6= 2, and

• π2 contains a nonzero K1(4)-fixed vector.

Every such π corresponds to a Hecke eigenspace in Sr/2(00(4)), the space of cus-
pidal modular forms of weight r/2. Roughly speaking, a function f =

⊗
fv in π

gives naturally a modular form in Sr/2(00(4)) if f∞ is a lowest weight vector in π∞,
f p is K p-fixed and f2 is K1(4)-fixed. Since the space of K1(4)-fixed vectors in π2 is
two-dimensional, unless π2 is a Steinberg representation, the cuspidal automorphic
representation π gives rise to a two-dimensional Hecke eigenspace in Sr/2(00(4)).
We can pick a line in this subspace by taking f2 to be in the K -type isomorphic to
V (2). In this way we get a representation-theoretic description of Kohnen’s plus
space S+r/2(00(4)) [1980]. We also obtain that “new forms” in Kohnen’s minus
space S−r/2(00(4)) correspond to automorphic representations π , where the local
component π2 is a Steinberg representation. Finally, we show that the global
Shimura correspondence is compatible with our local Shimura correspondence at
the place p = 2.
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Representations of G(Q2) have been studied in great detail by Waldspurger
[1980; 1981; 1991]. However, his approach does not involve the Hecke algebra
H(γ). Furthermore, a representation-theoretic description of Kohnen’s plus space
has already been given in [Baruch and Mao 2007]. That approach relies heavily
on the mentioned results of Waldspurger, where needed local results are hard to
extract.

2. Double cover of SL2(Qv)

We now describe the double cover G(Qv) in (1). A section s : SL2(Qv)→ G(Qv)

allows us to identify G(Qv) with the set SL2(Qv)×µ2, with group law

(g1, ε1)(g2, ε2)= (g1g2, ε1ε2σv(g1, g2)),

where σv(g1, g2) is a cocycle that depends on s. Following [Gelbart 1976], we
make the following choice of the cocycle σv. Let ( · , · )v be the Hilbert symbol
over Qv. For g =

(
a b
c d

)
∈ SL2(Qv), we define

x(g)=
{

c if c 6= 0,
d if c = 0

and s(g)=


(c, d)v if v is a finite prime, cd 6= 0

and ord(c) is odd,
1 otherwise.

Then σv(g1, g2)= (x(g1g2)x(g1), x(g1g2)x(g2))vs(g1)s(g2)s(g1g2).
An advantage of this particular section is that K p = s(SL2(Zp)) is a subgroup

in G(Qp) if p 6= 2. If p = 2, we define

K1(4)=
{((a b

c d

)
, 1
)
∈ SL2(Z2)×{±1} : a ∈ 1+ 4Z2, c ∈ 4Z2

}
.

By [Gelbart 1976, Proposition 2.14], K1(4) is a compact subgroup of G(Q2).
A smooth representation of G(Qv) is called genuine if µ2 acts nontrivially. If p

is an odd prime number, a smooth genuine representation of G(Qp) is called un-
ramified if it contains a vector fixed by K p. A vector fixed by K p is called a
spherical vector.

If p = 2, a smooth genuine representation is called tamely ramified if it con-
tains a vector fixed by K1(4). Unfortunately SL2(Z2) does not split in G(Q2), so
we cannot define spherical vectors in the same manner as those for odd primes.
The objective of this paper is to motivate and define spherical vectors of genuine
representations of G(Q2).

We set up some notation for later. For u ∈ Qv and t ∈ Q×v , we define these
elements in SL2(Qv):

x(u)=
(

1 u
0 1

)
, y(u)=

(
1 0
u 1

)
, w(t)=

(
0 t
−t−1 0

)
, h(t)=

(
t 0
0 t−1

)
.
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Let x(u)= s(x(u)), y(u)= s(y(u)), w(t)= s(w(t)) and h(t)= s(h(t)) in G(Qv).
Note that h(t)h(s) = h(ts)(t, s)v. Let N = {x(u) : u ∈ Qv}, N = {y(u) : u ∈ Qv}

and T be the subgroup of G generated by elements h(t).

3. Hecke algebra at p = 2

We fix p = 2 from Sections 3 through 6. We will denote G(Q2) by G and K1(4)
by K1. The objective of these sections is to classify genuine representations of G
containing a nonzero vector fixed by K1.

Let M be the center of G. It is a cyclic group of order 4 generated by h(−1).
(Note that h(−1)h(−1)= (−1,−1)2=−1∈µ2.) Thus, a genuine central character
γ is determined by its value on h(−1); this value is a fourth root of 1. Let K and
K0 be the open compact subgroups in G equal to the inverse images of SL2(Z2)

and {(a b
c d

)
∈ SL2(Z2) : c ∈ 4Z2

}
respectively. Let K (4) ⊂ K1 denote the principal congruence subgroup. It is the
image under the section s of the subgroup of SL2(Z2) consisting of matrices con-
gruent to 1 modulo 4. We have K ⊃ K0 ⊃ K1 ⊃ K (4) and K0 = M × K1. We
extend the central character γ to K0, so that it is trivial on K1. Given a smooth
representation (π, V ) of G, we let

V K0,γ := {v ∈ V : π(k0)v = γ(k0)v for all k0 ∈ K0}.

Let R(G, γ) denote the category of admissible smooth (necessarily genuine) rep-
resentations V of G such that V K0,γ generates V as a G-module.

Next we define the corresponding Hecke algebra. Let Cc(G) denote the set of
locally constant, compactly supported functions on G. Let

H(γ)= { f : Cc(G) : f (k0gk ′0)= γ(k0) f (g)γ(k ′0) for all k0, k ′0 ∈ K0}.

For f1, f2 ∈ H(γ), we define

f1 · f2(g0)=

∫
G

f1(g) f2(g−1g0)dg =
∫

G
f1(g0g) f2(g−1)dg,

where dg is the Haar measure on G such that the measure of K0 is 1. Then H(γ)
is a C-algebra. For f ∈ H(γ) and v ∈ V , we have

π( f )v =
∫

G
f (g)π(g)vdg ∈ V K0,γ.

In this way V K0,γ is a left H(γ)-module. Let R(H(γ)) denote the category of
finite-dimensional left H(γ)-modules. We have a functor A :R(G, γ)→R(H(γ))
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given by V 7→ V K0,γ . Since the group K0 has a triangular decomposition

K0 = (K0 ∩ N )(K0 ∩ T )(K0 ∩ N ),

the functor A is an equivalence of categories. This follows, in essence, from [Cas-
selman 1995, Corollary 3.3.6]; see also [Borel 1976] and [Bernšteı̆n and Zelevin-
skiı̆ 1976, Theorem 4.2].

Our immediate goal is to understand the structure of H(γ). The character γ of
the center M extends to a character γ of T that is trivial on K1∩T , and γ(h(2n))=1
for all n ∈ Z. Let us abbreviate γ(t) = γ(h(t)). We define ζ = (1+ γ(−1))/

√
2.

Note that ζ is a primitive 8-th root of 1. The character γ of T is invariant under
conjugation by w = w(1). We can now extend the character γ from T to the
normalizer NG(T ) by defining γ(w)= ζ .

We define some functions in H(γ). For g in NG(T ), we set Xg to be the function
supported on K0gK0 such that

Xg(k0gk ′0)= γ(k0)γ(g)γ(k ′0) for all k0, k ′0 ∈ K0.

Note that this definition depends only on the image of g in the affine Weyl group
Wa := NG(T )/(T ∩ K0).

Proposition 1. Functions Xg for g in Wa form a basis of H(γ).

Proof. We need first to determine the K0-double cosets in G. This can be easily
determined in SL2(Q2) using row-column reduction. In addition to h(2n) and
w(2−n) the double coset representatives are

y(2), h(2n)y(2), y(2)h(2−n), y(2)w(2−n), w(2−n)y(2), y(2)w(2−n)y(2),

where n≥ 1 in all cases. We claim that the Hecke algebra is not supported on these
cosets.

Lemma 2. The commutator of x(2) and y(2) modulo the principal congruence
subgroup K (4) is equal to −1 ∈ µ2.

Proof. This can be easily checked using the multiplication rule. It also follows
from applying [Stein 1973, Corollary 2.9] to the ring A = Z/4Z, �

Now we can easily finish the proof of proposition. Indeed if f is in H(γ), then

f (y(2))= f (y(2)x(2))=− f (x(2)y(2))=− f (y(2))

by the lemma above. This implies that f must vanish on y(2). Other cases are
dealt with in the same manner. �

Let ` : NG(T )→ Z be defined by `(g) = log2(n), where n is the number of
left (or right) K0-cosets in the double coset K0gK0. In other words, the volume of
K0gK0 is 2`(g). For example, w(2−1) normalizes K0, so `(w(2−1))= 1.
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Proposition 3. For every integer n, we have

`(h(2n))= 2|n| and `(w(2−n))= 2|1− n|.

More precisely, we have the following decompositions of double cosets:

(i) If n ≥ 0,

K0h(2n)K0 =
⋃

u∈Z/22nZ

x(u)h(2n)K0 =
⋃

u∈Z/22nZ

K0h(2n)y(4u).

(ii) If n ≥ 1,

K0h(2−n)K0 =
⋃

u∈Z/22nZ

y(4u)h(2−n)K0 =
⋃

u∈Z/22nZ

K0h(2−n)x(u).

(iii) If n ≥ 0,

K0w(2n)K0 =
⋃

u∈Z/22n+2Z

x(u)w(2n)K0 =
⋃

u∈Z/22n+2Z

K0w(2n)x(u).

(iv) If n ≥ 1,

K0w(2−n)K0 =
⋃

u∈Z/22n−2Z

y(4u)w(2−n)K0 =
⋃

u∈Z/22n−2Z

K0w(2−n)y(4u).

Proof. This follows easily from the decomposition K0= (K0∩N )(K0∩T )(K0∩N ).
Details are left to the reader. �

We record the following tautological lemma:

Lemma 4. Let g1 and g2 be two elements in NG(T ). If `(g1g2) = `(g1)+ `(g2)

then Xg1 · Xg2 = Xg1g2 .

Let Tn = Xh(2n) and Un = Xw(2−n).

Proposition 5. Let Tw =
√

1/2U0. We have the following identities, where m, n
are any integers unless further specified.

(i) (Tw + 1)(Tw − 2)= 0.

(ii) U1 ·U1 = 1.

(iii) If m, n ≥ 0 or m, n ≤ 0, then Tm · Tn = Tm+n .

(iv) U1 · Tn =Un+1 and Tn ·U1 =U1−n .

(v) U1 ·Un = Tn−1 and Un ·U1 = T1−n .

Proof. All statements except for (i) follow from Lemma 4. For (i), we need to show
T 2
w = Tw ·Tw = Tw+2. Since T 2

w is supported in K , this is equivalent to T 2
w(1)= 2
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and T 2
w(w(1)) = Tw(w(1)). Suppose f1, f2 ∈ H(γ), where f1 is supported on

K0r K0 =
⊔s

i=1 ri K0 (disjoint union). Then

f1 · f2(g)=
s∑

i=1

f1(ri ) f2(r−1
i g).

We can apply this observation to f1 = f2 = Tw. Proposition 3(iii) with n = 0 gives
a decomposition of K0w(1)K0 into single cosets. Hence

T 2
w(g)=

∑
u mod 4

Tw(x(u)w(1)) · Tw(w(−1)x(−u)g).

If g = 1, this gives T 2
w(1) = 4Tw(w(1)) · Tw(w(−1)). Since Tw(w(1)) = 2−1/2ζ

and Tw(w(−1))= 2−1/2ζ , we obtain that T 2
w(1)= 2. If g = w(1), then

T 2
w(w(1))= Tw(w(1))

∑
u mod 4

Tw(y(u)).

If u = 0 or 2, then y(u) is not in K0w(1)K0 and Tw(y(u)) = 0. If u = ±1, then
y(u)= x(u)w(−u)x(u), and we can rewrite

T 2
w(w(1))= Tw(w(1))[Tw(w(1))+ Tw(w(−1))] = Tw(w(1)). �

Here is the main result of this section.

Theorem 6. The Hecke algebra H(γ) is generated by Tw and U1 as an abstract
C-algebra modulo the relations

(a) (Tw − 2)(Tw + 1)= 0 and

(b) U 2
1 = 1.

Proof. Suppose H is the abstract algebra generated by U0=
√

2Tw and U1 modulo
the relations (a) and (b). We have a natural homomorphism B : H → H(γ) of C-
algebras. By Proposition 1, H(γ) is spanned by Tn and Un and by Proposition 5,
these elements are generated by U0 and U1. This shows that B is surjective. To
show that it is injective, suppose h ∈ H is in the kernel of B. Since U0 and
U1 satisfy quadratic relations, h =

∑
i ci ui , where ci ∈ C and ui ∈ H is of the

form U1U0U1U0 · · · or U0U1U0U1 · · · . Because U0U1 = T1, B(ui ) is either Tn ,
TnU1 = U1−n , U1Tn = Un+1, or U1TnU1 = T−n . These elements have disjoint
support as functions in H(γ). Therefore B(h) =

∑
i ci B(ui ) = 0 implies that

ci = 0 and h = 0. This proves that B is an injection and Theorem 6. �

We now give two consequences of Theorem 6:

Proposition 7. The element Z := T1/2+ (T1/2)−1 belongs to the center of H(γ).
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Proof. By Proposition 5, T1 and U1 generate H(γ). Clearly Z commutes with T1. It
suffices to show that Z commutes with U1. Since T1=U0U1, we can use quadratic
relations satisfied by U0 and U1 to write

(2) 2Z =U0U1+U1U0− 21/2U1.

Hence Z commutes with U1. �

Proposition 8. For n ≥ 0, Tn is an invertible element in the algebra H(γ).

Proof. The quadratic relations satisfied by U0 and U1 imply that U0 and U1 are
invertible, and so is T1, since T1 =U0U1. Hence Tn = T n

1 is invertible. �

Suppose (π, V ) is a representation in R(G, γ). Let V (N ) denote the span of
π(n)v−v for all v ∈ V and n ∈ N , and let VN = V/V (N ) be the Jacquet module.
Let

(VN )
K0∩T,γ

= {v ∈ VN : πVN (t)v = γ(t)v for all t ∈ K0 ∩ T }.

The invertibility of Tn implies the following; see [Borel 1976, Lemma 4.7].

Corollary 9. Suppose (π, V ) is a representation in R(G, γ). Then the canonical
map V K0,γ→ (VN )

K0∩T,γ is a bijection. In particular VN is nonzero, and V cannot
be a supercuspidal representation. �

4. Local Shimura correspondence

Let G ′ = PGL2(Q2). Let I be its Iwahori subgroup and H ′ be its Iwahori–Hecke
algebra. Let T ′w and U ′1 denote the characteristic functions of

I
(

0 1
1 0

)
I and I

(
0 1
p 0

)
I

respectively. Then H ′ is the abstract C-algebra generated by T ′w and U ′1 satisfying
the same relations as (a) and (b) of Theorem 6; see [Matsumoto 1977]. This gives
the next corollary.

Corollary 10. The Hecke algebras H(γ) and H ′ are isomorphic C-algebras.

Let R(H ′) denote the category of finite-dimensional representations of H ′. Let
R(G ′, I ) denote the category of admissible smooth representations V of G ′ such
that V I generates V as a G ′-module. By [Borel 1976; Bernšteı̆n and Zelevinskiı̆
1976], the functor V 7→V I is an equivalence of categories from R(G ′, I ) to R(H).
The isomorphism in Corollary 10 establishes an equivalence of categories between
R(H(γ)) and R(H ′). Hence the following four categories are equivalent:

R(G, γ)'R(H(γ))'R(H ′)'R(G ′, I ).

If V is a representation in R(G, γ), then we call the corresponding representation
in R(G ′, I ) the local Shimura lift of V . We denote it by Sh(V ).
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Proposition 11. Let V be a representation in R(G, γ). Then the following are
equivalent.

(i) The local Shimura lift Sh(V ) is a spherical representation of G ′.

(ii) The action of T ′w on Sh(V )I has an eigenvalue 2.

(iii) The action of Tw on V K0,γ has an eigenvalue 2.

Proof. The projection map to G ′(Z2)-fixed vectors in Sh(V ) is given by 1
3(T
′
w+1),

since T ′w+1 is the characteristic function of G ′(Z2) and the volume of G ′(Z2) is 3.
It follows that a G ′(Z2)-fixed vector is an eigenvector of T ′w with eigenvalue 2.
This proves the equivalence of (i) and (ii). The equivalence of (ii) and (iii) follows
from Corollary 10. �

This proposition motivates the following definition.

Definition. Let V be a smooth representation of G. An eigenvector of Tw in V K0,γ

with an eigenvalue 2 is called a γ-spherical vector. The representation is called a
γ-unramified or γ-spherical representation if it contains a γ-spherical vector.

5. Pseudospherical representation of K at p = 2

We retain the notations in Sections 3 and 4 where p = 2. In the previous section
we defined a representation V of G to be unramified if V K0,γ 6= 0 and Tw has an
eigenvalue 2 on V K0,γ . In this section, we will reinterpret this condition in terms
of representations of K , and see that K has only two irreducible representations E
such that E K0,γ 6= 0. For both representations, E K0,γ is one-dimensional and they
are distinguished by the action of Tw on E K0,γ . That eigenvalue can be either 2
or −1, so we use the eigenvalue to denote the representations by V (2) and V (−1).
Their dimensions are 2 and 4, respectively. Thus, a representation of G is unram-
ified if and only if it contains the two-dimensional K -type V (2), which we may
call a pseudospherical type.

If E K0,γ 6= 0, then, by Frobenius reciprocity, the K -type E is a summand of a
six-dimensional induced representation

IK (γ) := IndK
K0
γ = {φ : K → C : φ(k0k)= γ(k0)φ(k) for all k ∈ K , k0 ∈ K0}.

Here the group K acts on it by right translation, denoted πR . Let HK (γ) denote the
subalgebra of H(γ) consisting of functions supported on K . We have the action of
HK (γ) on IK (γ)

K0,γ , also denoted by πR . By Proposition 1, HK (γ) = C1⊕CTw
and it is a commutative subalgebra. The algebra HK (γ) is antiisomorphic to the
algebra HK (γ̄) via the map f 7→ f̂ , where f̂ (g)= f (g−1).

For f ∈ HK (γ̄) and φ ∈ IK (γ), we set

(πL( f )φ)(g)=
∫

K
f (k)φ(k−1g)dk for all g ∈ K .
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This action commutes with the right action πR of K on IK (γ) and

HK (γ̄)= EndK (IK (γ)).

Note that IK (γ)
K0,γ = H(γ̄). The actions πL and πR of H(γ̄) and H(γ) on

IK (γ)
K0,γ = H(γ̄) are related by πL( f̂ )= πR( f ).

We define the functions F−1 :=
1
3(2−Tw) and F2 :=

1
3(Tw+1) in HK (γ). Then

{F−1, F2} is a basis of idempotents of HK (γ).
For j =−1, 2, let V ( j)= πL(F̂ j )IK (γ). In other words V ( j) is the eigenspace

of πL(T̂w) on IK (γ) corresponding to the eigenvalue j . Note that F̂ j ∈ V ( j) and
πR(Tw)F̂ j = j F̂ j . In particular F̂2 is a γ-spherical vector.

Proposition 12. (i) We have IK (γ)= V (−1)⊕V (2), where each summand is an
irreducible representation of K .

(ii) We have dim V (−1)= 4 and dim V (2)= 2.

(iii) The K -submodule V (2) contains a γ-spherical vector F̂2. The space of γ-
spherical vectors is one-dimensional.

(iv) The K -submodule V (−1) does not have any γ-spherical vector.

Proof. Since dim End(IK (γ)) = 2, both V (−1) and V (2) are irreducible K -
modules. This proves (i).

To compute the dimensions of V (−1) and V (2) we need a lemma.

Lemma 13. The operator πL(T̂w) as an element in EndK (IK (γ)) has trace 0.

Proof. For g ∈ K , let φg be an element of IK (γ) such that φg is supported on K0g
and φg(k0g)= γ(k0). Let S be a set of representatives of K0\K . Then {φg : g ∈ S}
is a basis of IK (γ). To prove the lemma, it suffices to show that (πL(T̂w)φg)(g)=0.
Indeed, this shows that the matrix of πL(T̂w) in the basis φg has vanishing diagonal
entries. Note that πL(Tw)φg is supported on K0w(1)K0g. If (πL(T̂w)φg)(g) 6= 0,
then g ∈ K0w(1)K0g and 1 ∈ K0w(1)K0. This is a contradiction since K0 is not
equal to K0w(1)K0. �

We have dim V (2)+ dim V (−1) = dim IK (γ) = [K : K0] = 6. By the lemma,
2 dim V (2)−dim V (−1)= 0. This implies dim V (−1)= 4 and dim V (2)= 2 and
proves Proposition 12(ii). We have IK (γ)

K0,γ = HK (γ̄) and πR(F j )IK (γ) = CF̂ j

for j = −1, 2. The vector F̂2 is γ-spherical while F̂−1 is not. This proves parts
(iii) and (iv). �

Theorem 14. A smooth representation V of G with central character γ is γ-
unramified if and only if there is a nontrivial K -module homomorphism l from
V (2) to V . A vector in V proportional to l(F̂2) is a γ-spherical vector of V .
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Proof. A γ-spherical vector in V generates a representation of K in which every
irreducible K -submodule is isomorphic to an irreducible submodule of IK (γ). Now
the theorem follows from Proposition 12. �

6. Unramified principal series representations at p = 2

In this section, we continue to assume p = 2 and use notation of Sections 3 to 5.
We will show that γ-unramified representations appear as submodules of principal
series representations.

We recall the character γ of T in Section 3. Let (πs, I (γ, s)) be the normalized
induced principal series representation, where I (γ, s) is the set of smooth functions
φ : G→ C satisfying

φ(εx(u)h(t)g)= εγ(t)|t |s+1φ(g) for all ε ∈ µ2, u ∈Q2 and t ∈Q×2 .

The group G acts by left translation: (πs(g)φ)(g′)= φ(g′g).

Proposition 15. An irreducible γ-unramified representation V is isomorphic to a
submodule of some I (γ, s).

Proof. By Corollary 9, (VN )
K0∩T,γ is nonzero. Hence there is a nontrivial T -

homomorphism VN→ γνs+1 for some s ∈C. Here ν is the character ν(h(t))= |t |.
By Frobenius reciprocity, there is a nontrivial map V→ I (γ, s) that is an injection
because V is irreducible. �

We recall that K (4) is the principal congruence subgroup in K1. Restricting
functions φ in I (γ, s) to K gives a natural isomorphism l : IK (γ)→ I (γ, s)K (4) of
K -modules.

Theorem 16. The K -types V (2) and V (−1) are of multiplicity one in I (γ, s). The
space I (γ, s)K0,γ is 2-dimensional and is spanned by l(F̂2) and l(F̂−1).

Waldspurger [1981, Chapter VI] describes an explicit basis of I (γ, s)K0,γ and
calculates the action of the operator T1.

We will describe a scalar multiple φ j of l(F̂ j ) ∈ V j that is more convenient for
later calculations. Let d2 = 1 and d−1 =−2, and define φ j to be the unique vector
in I (γ, s) whose restriction to K is given by

φ j (k)=


d jγ(k) if k ∈ K0,

2−1/2ζγ(k0k ′0) if k = k0w(1)k ′0 ∈ K0w(1)K0,

0 otherwise.

We define an intertwining map M(s) : I (γ, s)→ I (γ,−s) by

(M(s)φ)(g)=
∫

Q2

φ(w(1)x(u)g)du,

where g ∈ G and du is the Haar measure on Q2 such that the measure of Z2 is 1.
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Proposition 17. We have

M(s)φ2 =
ζ
√

2

(
1− 1

2(2
−2s)

1− 2−2s

)
φ2 and M(s)φ−1 =−

ζ

2
√

2

(
1− 2(2−2s)

1− 2−2s

)
φ−1.

Proof. Since the vector φ j is unique up to a scalar in IK (γ), we have M(s)φ j = cφ j

for some c ∈ C. It remains to determine c = d−1
j M(s)φ j (1).

If u 6∈ Z2, we have w(1)x(u) = (−1, u)2 · x(−u−1)h(u−1)y(u−1). We write
u−1
= 2mv, where v ∈ Z×2 and m ≥ 1. Recall that γ(t)= γ(h(t)). Then

M(s)φ j (1)

=

∫
Z2

φ j (w(1)x(u))du+
∞∑

m=1

2m−1
∫

Z×2

(−1, 2mv)2φ j (h(2mv)y(2mv))d×v

= 2−1/2ζ +

∞∑
m=1

2−ms−1
∫

Z×2

(−1, v)2γ(2mv)φ j (y(2mv))d×v,

where d×v is the Haar measure of Z×2 with total measure 1. Now φ j (y(2mv))= 0
if m = 1 and it is equal to 1 if m ≥ 2. Since γ(2mv) = γ(2m)γ(v)(2m, v)2 and
γ(2m)= 1, we can rewrite

M(s)φ j (1)= 2−1/2ζ + d j

∞∑
m=2

2−ms−1
∫

Z×2

(2, v)m2 (−1, v)2γ(v)d×v

= 2−1/2ζ + d j

∞∑
m=2

2−ms−1 1
4

∑
v∈(Z/8Z)×

(2, v)m2 (−1, v)2γ(v).

The sum
∑

v∈(Z/8Z)× on the right is zero if m is odd, and equals
√

2ζ if m is even.
Finally adding up all the terms gives the constant c and the lemma. �

Let s0 = 1/2 or 1/2+ iπ/log 2. From Proposition 17, φ−1 lies in the kernel of
M(s0), so I (γ, s0) is reducible. Indeed I (γ, s0) has a unique irreducible quotient
that is an even Weil representation.

Definition. Let s0 = 1/2 or 1/2 + iπ/log 2. The kernel of M(s0) is called the
Steinberg representation of G(Q2). We shall denote this representation by St(ε),
where ε =±1 such that 2s0 = ε

√
2.

We claim that St(ε) is an irreducible representation of G(Q2). Indeed by [Loke
and Savin 2010, Section 6], we have

(3) I (γ, s)ss
N
∼= γ| · |s+1

⊕ γ| · |−s+1 for every s ∈ C,

where I (γ, s)ss
N is the semisimplification of I (γ, s)N as a T -module. Hence I (γ, s)

has at most length 2. The claim now follows because St(ε) is a proper submodule
of I (γ, s0). Also see [Savin 2004, Section 7].
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Corollary 18. The even Weil representation contains the irreducible K -module
V (2). It is a γ-unramified representation. The Steinberg representation contains
the irreducible K -module V (−1). �

Proposition 19. Let Z = T1/2 + (T1/2)−1 be the central element in the Hecke
algebra H(γ) as in Proposition 7. Then πs(Z) acts on I (γ, s)K0,γ as the scalar
2s
+ 2−s .

Proof. By Corollary 9, the natural projection of I (γ, s) onto I (γ, s)N gives an
isomorphism of I (γ, s)K0,γ and I (γ, s)N . From Proposition 3(i)’s decomposition
of K0h(2)K0 into single K0-cosets, it follows that the action of T1 on I (γ, s)K0,γ

corresponds to the action of 4 ·πs,N (h(2)) on I (γ, s)N . By (3), the eigenvalues of
T1/2 are 2s and 2−s . �

Corollary 20. An irreducible γ-unramified representation is uniquely determined
by the eigenvalue of the action of Z on its γ-spherical vector.

Proof. Suppose the irreducible γ-unramified representation is a subquotient of both
I (γ, s) and I (γ, s ′). Then by Proposition 19, 2s

+2−s
= 2s′
+2−s′ , which implies

2s
= 2s′ or 2s

= 2−s′ . By Proposition 17 both I (γ, s) and I (γ,−s) have the same
irreducible γ-unramified subquotient. �

Corollary 21. The Steinberg representation St(ε) corresponds to the one-dimen-
sional representation of H(γ) given by Tw =−1 and U1 =−ε.

Proof. We know that Tw=−1 on St(ε)K0,γ . It remains to compute the action of U1.
Since St(ε) is a subquotient of I (γ, s0), where 2s0=ε

√
2, the central element Z acts

on St(ε) by the scalar ε(21/2
+2−1/2). By (2) we have 21/2 Z = TwU1+U1Tw−U1.

Hence U1 =−ε as claimed. �

Let V be an irreducible γ-unramified representation. By Proposition 15, we may
assume that V is the unique γ-unramified subquotient of I (γ, s) for some s ∈C. By
Proposition 11, its local Shimura lift V ′=Sh(V ) is an unramified irreducible repre-
sentation of G ′ = PGL2(Q2). Let B ′ be the Borel subgroup of G ′. We may realize
V ′ as the unramified irreducible subquotient of the normalized induced principal
series representation (π ′s, I ′(t)) with trivial central character. Here I ′(t)= IndG ′

B ′ ω
t

(normalized induction), where ω is the character

ω

(
a1 0
0 a2

)
= |a1/a2|.

The next theorem is similar to [Waldspurger 1991, Proposition 4]. There the local
correspondence is defined by restricting the oscillator representation to the dual
pair G(Q2)× PGL2(Q2), while the local Shimura lift used here is defined by the
Hecke algebra isomorphism.
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Theorem 22. If V is the unique γ-unramified irreducible subquotient of I (γ, s),
then its local Shimura lift Sh(V ) is the unique unramified irreducible subquotient
of I ′(s).

Proof. Assume that Sh(V ) is a subquotient of I ′(t). By Proposition 19 the central
operator Z in H(γ) acts on I (γ, s)K0,γ by the scalar 2s

+ 2−s . The corresponding
operator Z ′ in the algebra H ′ acts on I ′(t) by 2t

+2−t . Thus, 2s
+2−s

= 2t
+2−t .

Solving the equation gives 2s
= 2t or 2s

= 2−t . Both I ′(t) and I ′(−t) have the
same irreducible subquotients, so we may set s = t . �

We deduce a corollary that is a part of [Waldspurger 1980, Propositions 1 and 2].

Corollary 23. The principal series representation I (γ, s) is reducible if and only
if s = 1/2 or 1/2+ iπ/log 2.

Proof. Let V be the γ-unramified irreducible subquotient of I (γ, s). Let W be
the unramified irreducible subquotient of I ′(s). Then V = I (γ, s) if and only if
dim V K0,γ = 2. By Theorem 22, dim V K0,γ = dim W I . Now dim W I

= 2 if and
only if I ′(s) is irreducible. Finally I ′(s) is irreducible if and only if s 6= 1/2 and
1/2+ iπ/log 2. �

7. Automorphic forms

In this section we review a connection between automorphic forms and classical
modular forms of half integral weight. This is mostly well known material that can
be found in [Gelbart 1976, Chapters 2 and 3] and in [Waldspurger 1981]. We then
transfer the action of the Hecke algebra H(γ) to the setting of classical modular
forms.

Let A=
∏
v Qv be the ring of adeles over Q. We recall K p, s(g) and the cocycle

σv defined in Section 2. Let G(A) = SL2(A)× {±1} as a set. For g1 = (g1,v),
g2 = (g2,v) ∈ SL2(A) and ε1, ε2 ∈ {±1}, the group law on G(A) is given by

(g1, ε1)(g2, ε2)= (g1g2, ε1ε2σ(g1, g2)),

where σ(g1, g2) =
∏
v σv(g1,v, g2,v). Then pr : G(A)→ SL2(A), (g, ε) 7→ g is a

twofold cover that splits over the subgroup SL2(Q). Since SL2(Q) is perfect, this
splitting is unique and given by

sQ : SL2(Q)→ G(A), g 7→ (g, sA(g)), where sA(g)=
∏
v s(gv).

We also need a description of a maximal compact subgroup in G(R). Let

k(θ)=
(

cos θ sin θ
− sin θ cos θ

)
∈ SL2(R) for −π < θ ≤ π .
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Then K∞ := {k(θ) : −π < θ ≤ π} is a maximal compact subgroup in SL2(R). Let
K∞ = {k(θ) : −2π < θ ≤ 2π}, where

k(θ)=
{
(k(θ), 1) if −π < θ ≤ π,
(k(θ),−1) if − 2π < θ ≤−π or π < θ ≤ 2π.

Then K∞ is a maximal compact subgroup of G(R) and pr(K∞)= K∞. If r is an
odd integer, then k(θ) 7→ eirθ/2 defines a genuine character of K∞

Let Ar/2(4) denote the set of functions ϕ in L2(SL2(Q)\G(A)) satisfying the
following properties:

(1) ϕ(gk1)= ϕ(g) for all k1 ∈ K1(4)
∏

p 6=2,∞ K p;

(2) ϕ(gk0)= γ(k0)ϕ(g) for all k0 ∈ K0 in G(Q2), where γ(−1)=−ir ;

(3) ϕ(gk(θ))= ei r
2 θϕ(g);

(4) ϕ is smooth as a function on G(R) and satisfies 4ϕ =− 1
4r( 1

4r − 1)ϕ, where
4 is the Casimir operator; and

(5) ϕ is cuspidal, that is,
∫

N (Q)\N (A) ϕ(x(u)g)du = 0 for all g ∈ G(A).

A basis of Ar/2(4) arises from cuspidal automorphic representations π =
⊗

v πv
of G(A) such that π∞ is a holomorphic discrete series representation with the
lowest weight r/2, πp is unramified for all p 6= 2, and π2 contains a K1(4)-
fixed vectors. In particular, πK0,γ

2 6= 0 for some central character γ. Note that γ is
determined by r . Indeed, since the local components of sQ(h(−1)) for v 6=∞, 2 are
contained in K p, we have ϕ(1)= ϕ(sQ(h(−1)))= γ(−1)eiπr/2ϕ(1), and therefore
γ(−1)=−ir .

Let H be the complex upper half plane. For elements g =
(

a b
c d

)
∈ SL2(R),

g = (g, ε) ∈ G(R) and z ∈H, we define

gz = gz =
az+ b
cz+ d

.

We define a holomorphic function on H by

J (g, z)= J ((g, ε), z) := ε (cz+ d)1/2.

Here we choose w1/2 so that −π/2< arg(w1/2)≤ π/2. We call J (g, z) a factor of
automorphy. By [Gelbart 1976, Lemma 3.3], it has J (gg′, z) = J (g, g′z)J (g′, z)
for any two g and g′ in G(R). Define a congruence subgroup 00(4) by

00(4) := G(R)∩
(

sQ(SL2(Q)) · K0(4) ·
∏
p 6=2

K p

)
.

Similarly, define 01(4) ⊆ 00(4) by replacing K0(4) with K1(4). Let Sr/2(00(4))
and Sr/2(01(4)) be the spaces of classical modular forms of weight r/2. By
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[Koblitz 1984, page 183], we have Sr/2(00(4)) = Sr/2(01(4)). We will denote
this space by Sr/2(4).

By [Gelbart 1976, Proposition 3.1], there is a bijection Q : Ar/2(4)→ Sr/2(4),
which we recall: If ϕ ∈ Ar/2(4), then

(Qϕ)(z)= ϕ(g∞)J (g∞, i)r , where z = g∞i ∈H.

Conversely, given f ∈ Sr/2(4), let g ∈ G(A). By [Gelbart 1976, Lemma 3.2],
g = gQg∞k for some gQ ∈ sQ(SL2(Q)), g∞ ∈ G(R) and k ∈ K1(4)

∏
p 6=2,∞ K p.

Then (Q−1 f )(g)= f (g∞(i))J (g∞, i)−r .
Using the bijection Q, we define another bijection between the spaces of oper-

ators by
q : EndC(Ar/2(4))→ EndC(Sr/2(4)), L 7→ QL Q−1.

Since the Hecke algebra H(γ) defined in Section 3 acts on Ar/2(4), it is of interest
to reinterpret this action in terms of classical modular forms.

Proposition 24. Let U1 and T1 be the operators in the local Hecke algebra H(γ),
where γ(−1)=−ir . Recall that ζ = (1− ir )/

√
2. For f (z) ∈ Sr/2(4), we have

(i) (q(U1) f )(z)= ζ (2z)−r/2 f (−1/(4z)) and

(ii) (q(T1) f )(z)= 2−r/2∑3
u=0 f ((z+ u)/4).

Proof. (i) Suppose ϕ = Q−1( f ) ∈ Ar/2(4). For every place v, let wv = w(2−1) be
the element in G(Qv) defined in Section 2. By Proposition 3(iv),

(U1ϕ)(g∞)=
∫

K0w2 K0

U1(k)ϕ(g∞k)dk =U1(w2)ϕ(g∞w2)= ζϕ(g∞w2).

Next, considerw(2−1) in SL2(Q). By [Gelbart 1976, (2.30)], sQ(w(2−1))=
∏
wv.

Since ϕ is left SL2(Q)-invariant, and right K p-invariant for p 6= 2,

ζϕ(g∞w2)= ζϕ(sQ(w(2−1))−1g∞w2)= ζϕ
((∏

v 6=2

w−1
v

)
g∞
)
= ζϕ(w−1

∞
g∞).

Applying Q to this equation gives (i). Part (ii) is proved analogously. �

8. Kohnen’s plus space

Hecke eigenforms in Sr/2(4) correspond to cuspidal automorphic representations
π such that π∞ is a discrete series representation of lowest weight r/2, πp is
unramified for all p 6= 2, and π2 has K1(4)-fixed vectors. In particular, πK0,γ

2 6= 0
for the central character γ(−1) = −ir . If π2 is a principal series representation,
then πK0,γ

2 is 2-dimensional and therefore the corresponding Hecke eigenspace in
Sr/2(4) is also 2-dimensional. Kohnen’s plus space is introduced to resolve this
ambiguity. In terms of the space of automorphic functions Ar/2(4), it is clear what
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to do. Decompose Ar/2(4) = A+r/2(4)⊕ A−r/2(4), where A+r/2(4) is the eigenspace
of the local Hecke operator Tw with eigenvalue 2, while A−r/2(4) is the eigenspace
with eigenvalue −1. Since the presence of the eigenvalue 2 for Tw acting on π2

eliminates a possibility that π2 is a Steinberg representation, we see that there is
a one-to-one correspondence between Hecke eigenforms in A+r/2(4) and cuspidal
automorphic representations π (as above) such that π2 is a γ-unramified repre-
sentation. The classical Kohnen plus space is (essentially) Q(A+r/2(4)), as will be
explained in a moment. Niwa [1977] defines two operators T4 and W4 on Sr/2(4)
by

(T4 f )(z)= 1
4

3∑
u=0

f ((z+ u)/4) and (W4 f )(z)= (−2i z)−r/2 f (−1/(4z)).

Note that W2
4 = 1. Let κ = (r − 1)/2. Niwa shows that the operator

W = (−1)(r
2
−1)/821−κW4T4

on Sr/2(4) satisfies1 the quadratic relation (W + 1)(W − 2) = 0. Kohnen defines
S+r/2(4) and S−r/2(4) to be the eigenspaces of W on Sr/2(4) of eigenvalues 2 and−1,
respectively [Kohnen 1980]. Proposition 24 says that

q(U1)= (−1)r
2
−1/8W4 and q(T1)= 23/2−κT4,

where the sign (−1)r
2
−1/8 is the quotient of

ζ = (1+ ir )/
√

2 and ir/2
= ((1+ i)/

√
2)r .

Since Tw =
√

2
−1

T1U1, it follows that q(Tw) and W are conjugates of each other
by W4. Thus Kohnen’s plus space is simply a conjugate of our space:

Q(A+r/2(4))=W4(S+r/2(4)).

Because W4 commutes with the classical Hecke operators Tp2 whenever p 6= 2,
Q(A+r/2(4)) and S+r/2(4) are isomorphic as C[T32, T52, . . . ]-modules.

There is another description of S+r/2(4) in terms of Fourier coefficients. It con-
sists of the cusp forms whose n-th Fourier coefficient vanishes whenever (−1)κn≡
2, 3 (mod 4). Kohnen defines a Hecke operator T+4 that preserves S+r/2(4) in the
following way: For f (z) =

∑
n anqn

∈ S+r/2(4), set (T+4 f )(z) =
∑

n bnqn where
the sum is taken over integers n > 0 and (−1)κn ≡ 0, 1 (mod 4), and

bn = a4n +

(
(−1)κn

2

)
2κ−1an + 2r−2an/4.

1In [Kohnen 1980], the operator is T4W4 acting on the right, that is, T4 acts first and W4 follows.
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Here an/4= 0 if n is not a multiple of 4. The large parentheses denote the Legendre
symbol.

We can now formulate and prove our main global results.

Theorem 25. There is a one-to-one correspondence between Hecke eigenforms f
in S+r/2(4) and irreducible cuspidal automorphic representations π =

⊗
v πv in

L2(SL2(Q)\G(A)) such that

(i) π∞ is the discrete series representation of G(R) with lowest weight r/2;

(ii) πp is unramified for all odd primes p;

(iii) π2 is γ-unramified, where γ(−1)=−ir ; and

(iv) if T+4 f = λ2 f , then a γ-spherical vector in π2 is an eigenvector for Z =
T1/2+ (T1/2)−1 with eigenvalue 21−r/2λ2.

Note that λ2 determines the eigenvalue of Z on a γ-spherical vector, which in turn
determines π2 uniquely by Corollary 20.

Proof. The first three statements are clear, since Q−1(W4 f ) is a Hecke eigenform
in A+r/2(4) that is contained in a cuspidal automorphic representation π with these
properties. It remains to show (iv).

Lemma 26. Let f be in S+r/2(4). Then T+4 f = 2r/2−1q(Z) f .

Proof. Recall that T1 is invertible by Proposition 8. Hence, it suffices to show that
22−r/2q(T1)T+4 = q(T 2

1 +4). If f (z)=
∑
∞

n=1 anqn
∈ Sr/2(4), then (q(T1) f )(z)=

22−r/2∑∞
n=0 a4nqn by Proposition 24. Thus, if f (z) ∈ S+r/2(4), then one computes

22−r/2(q(T1)T+4 f )(z)= (q(T 2
1 + 4) f )(z)=

∑
n

(24−r a16n + 4an)qn. �

Now we can finish the proof of Theorem 25. If T+4 f = λp f , then Lemma 26
implies that Q−1( f ) is an eigenform for Z with eigenvalue 21−r/2λ2. Since W4 =

(−1)(r
2
−1)/8q(U1) and Z commutes with U1, we see that Q−1(W4 f ) is also an

eigenform for Z with the same eigenvalue. �

If f is a Hecke eigenform in S+r/2(4), then by [Kohnen 1980, Theorem 1(ii)]
the corresponding Shimura lift f ′= Sh( f ) is a Hecke eigenform in Sr−1(SL2(Z)).
Recall that G ′ = PGL2. There is a bijection between Hecke eigenforms f ′ in
Sr−1(SL2(Z)) and irreducible cuspidal automorphic representations π ′ =

⊗
v π
′
v

in L2(G ′(Q)\G ′(A)) such that π ′
∞

is a discrete series representation with lowest
weight r − 1 and π ′p is unramified for all primes p; see [Gelbart 1975, Proposi-
tion 3.1]. Recall the local Shimura lift Sh(π2) in Proposition 11 of a γ-unramified
representation π2 of G(Q2). The following corollary gives a precise representation-
theoretic description of the Shimura correspondence at the place p = 2.
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Corollary 27. Let f be a Hecke eigenform in S+r/2(4). Let π =
⊗

v πv be the
cuspidal automorphic representation corresponding to f in Theorem 25. Let π ′ =⊗

v π
′
v be the cuspidal automorphic representations of L2(G ′(Q)\G ′(A)) corre-

sponding to the Hecke eigenform f ′ = Sh( f ) in Sr−1(SL2(Z)). Then Sh(π2)= π
′

2.

Proof. If T+4 f = λ2 f , then T2 f ′ = λ2 f ′ by [Kohnen 1980, Theorem 1(ii)], where
T2 is the classical Hecke operator action on Sr−1(SL2(Z)). By [Gelbart 1975,
Proposition 5.2.1], one checks that π ′2 is indeed isomorphic to Sh(π2). �

Let π be a cuspidal automorphic representation of G(A) as in Theorem 25
and π ′ be the corresponding cuspidal automorphic representation of G ′(A) as in
Corollary 27. By the Ramanujan conjecture, proved by Deligne, π ′2 = Sh(π2) is
a tempered irreducible unramified representation, so π ′2 = I ′(s) for some s ∈ iR.
This implies that π2 = I (γ, s) by Theorem 22 and Corollary 23. Thus πK0,γ

2 is
an irreducible H(γ)-module of dimension 2. It corresponds under Q to a two-
dimensional subspace of Sr/2(4) spanned by a line in S+r/2(4) and a line in S−r/2(4).

On the other hand, if π2 = St(ε) is a Steinberg representation of G(Q2) (see the
definition before Corollary 18), then π corresponds under Q to an Hecke eigenform
in S−r/2(4). More precisely:

Theorem 28. There is a one-to-one correspondence between Hecke eigenforms f
in S−r/2(4) such that W4 f = −ε(−1)(r

2
−1)/8 f for some ε = ±1 and irreducible

cuspidal automorphic representations π =
⊗

v πv in L2(SL2(Q)\G(A)) such that

(i) π∞ is the discrete series representation of G(R) with lowest weight r/2,

(ii) πp is unramified for all odd primes p, and

(iii) π2 is the Steinberg representation St(ε).

Proof. Recall by Corollary 21 that Tw and U1 act on the one-dimensional space
St(ε)K0,γ by −1 and −ε. The theorem now follows from Proposition 24 and the
definition of S−r/2(4). �
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