REPRESENTATIONS OF THE TWO-FOLD CENTRAL
EXTENSION OF SL;(Q2)

HUNG YEAN LOKE AND GORDAN SAVIN

Volume 247 No. 2 October 2010



PACIFIC JOURNAL OF MATHEMATICS
Vol. 247, No. 2, 2010

REPRESENTATIONS OF THE TWO-FOLD CENTRAL
EXTENSION OF SL;(Q,)

HUNG YEAN LOKE AND GORDAN SAVIN

We define a notion of pseudospherical type for smooth representations of the
nontrivial two fold central extension of SL,((,). We describe completely
the irreducible representations that contain the pseudospherical type. We
relate our results to Kohnen’s plus and minus spaces of classical modular
forms of half integral weight.

1. Introduction

Let Q be the field of rational numbers. For every place v of Q, let Q, denote the
corresponding local field. Then @, =R or Q,, for a prime p. The group SL,(Q,)
has a nontrivial two-fold central extension

(1 1= ps = G(Qy) > SLa(Qy) — 1,

where p, = {£1}. Recall that an irreducible representation of G(Q,) is called
genuine if the central subgroup u, acts faithfully on it. Gelbart’s book [1976]
contains a basic theory of genuine representations of G(R) and G(Q),) for p # 2.
Our intent is to develop a theory in the case of G(Q,). The main difference between
G(Q») and G(Q,) for p # 2 lies in the fact that the central extension splits over
SLy(Z,) when p # 2. In particular, we have a subgroup K, € G(Q,) isomorphic
to SL>(Z,) under the natural projection from G(Q),) to SL,(Q)) for every p # 2.
A genuine representation 7 of G(Q,) is called unramified if it contains a nonzero
K ,-fixed vector.

Assume now that p = 2. Let K denote the full inverse image of SL;(Z5) in
G(Q»). In this case the central extension splits over a smaller subgroup. More
precisely, we have a subgroup K;(4) C K isomorphic to the subgroup of SL;(Z>)

given by the congruence
ab 1 %
(c d) = (0 1) (mod 4)

MSC2000: 11F70, 22E50, 22E55.

Keywords: modular forms, Shimura correspondence, Hecke algebra, pseudospherical
representations.

Savin is supported by NSF grants DMS-0551846 and DMS-0852429.

435


http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2010.247-2

436 HUNG YEAN LOKE AND GORDAN SAVIN

In this paper we completely describe genuine irreducible representations of G (Q»)
containing nonzero K (4)-fixed vectors. More precisely, in Section 3, we describe
a Hecke algebra H(y) that captures the structure of all representations generated
by K (4)-fixed vectors and with a fixed central character y. In Section 4, we show
that H () is isomorphic to the Iwahori—-Matsumoto Hecke algebra for PGL,(Q,).
In this way we get a correspondence between (some) representations of G(Q>)
and representations of PGL;(Q,). We call this correspondence a local Shimura
correspondence.

In Section 5, we show that the compact group K has exactly two irreducible
genuine representations, with the fixed central character y, containing nonzero
K (4)-fixed vectors. These representations are denoted by V(2) and V(—1) and
have dimensions 2 and 4, respectively. We show that a representation 7z of G (Q>)
has V(2) as a K-type if and only if it corresponds to an unramified representation
of PGL,(Q,), by the local Shimura correspondence. Thus, it is natural to define
unramified representations of G(Q,) to be those that contain V(2) as a K-type,
and we call V(2) a pseudospherical type.

We should point out that the center of G(Q,) is a cyclic group of order 4. Thus,
we have two different genuine central characters y and two classes of unramified
representations. This is analogous to the case of the real group G(R), where the
weights —1/2 and 1/2 are called pseudospherical types.

We apply our local results in a global setting in Section 8. Let A be the ring of
adeles, and let G (A) be the two-fold cover of SL;(A). Let r > 1 be an odd integer.
Let # = ®n, be a genuine cuspidal automorphic representation such that

* T 1S a holomorphic discrete series representation with the lowest weight /2,
e m, is unramified for all p # 2, and
e 7, contains a nonzero K (4)-fixed vector.

Every such 7 corresponds to a Hecke eigenspace in S, 2(I'0(4)), the space of cus-
pidal modular forms of weight r/2. Roughly speaking, a function f =) f, in
gives naturally a modular formin S, 2 (I'g(4)) if fo is a lowest weight vector in 7,
fpis K,-fixedand f; is K1(4)-fixed. Since the space of K (4)-fixed vectors in 7, is
two-dimensional, unless 75 is a Steinberg representation, the cuspidal automorphic
representation 7 gives rise to a two-dimensional Hecke eigenspace in S, /2(I'(4)).
We can pick a line in this subspace by taking f> to be in the K-type isomorphic to
V(2). In this way we get a representation-theoretic description of Kohnen’s plus
space Sf/z(l“o(4)) [1980]. We also obtain that “new forms” in Kohnen’s minus
space S;/Z(Fo(4)) correspond to automorphic representations z, where the local
component 7, is a Steinberg representation. Finally, we show that the global
Shimura correspondence is compatible with our local Shimura correspondence at
the place p = 2.
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Representations of G(Q,) have been studied in great detail by Waldspurger
[1980; 1981; 1991]. However, his approach does not involve the Hecke algebra
H (y). Furthermore, a representation-theoretic description of Kohnen’s plus space
has already been given in [Baruch and Mao 2007]. That approach relies heavily
on the mentioned results of Waldspurger, where needed local results are hard to
extract.

2. Double cover of SL,(Q,)

We now describe the double cover G(Q,) in (1). A section s : SL,(Q,) — G(Q,)
allows us to identify G(Q,) with the set SL,(Q,) x w7, with group law

(81, €1)(g2, €) = (8182, €1€20, (81, &2)),

where o,(g1, g2) is a cocycle that depends on s. Following [Gelbart 1976], we
make the following choice of the cocycle o,. Let (-, -), be the Hilbert symbol
over Q,. For g = (‘c’ Z) € SL,(Q,), we define

(c,d), ifwo is afinite prime, cd # 0
and s(g) = and ord(c) is odd,
1 otherwise.

IR e
87 a ife=0

Then 0, (g1, 82) = (x(8182)x(g1), x(8182)x(82))v5(81)5(82)5(8182)-
An advantage of this particular section is that K, = s(SL»(Z,)) is a subgroup
in G(Q)) if p #2. If p=2, we define

K\ (4) = {((‘c’ Z), 1) € SLy(Za) x {1} :a € 1 +4Z5, ¢ € 422}.
By [Gelbart 1976, Proposition 2.14], K (4) is a compact subgroup of G (Q,).

A smooth representation of G(Q),) is called genuine if y, acts nontrivially. If p
is an odd prime number, a smooth genuine representation of G(Q),) is called un-
ramified if it contains a vector fixed by K,. A vector fixed by K, is called a
spherical vector.

If p = 2, a smooth genuine representation is called tamely ramified if it con-
tains a vector fixed by K(4). Unfortunately SL;,(Z,) does not split in G(Q»), so
we cannot define spherical vectors in the same manner as those for odd primes.
The objective of this paper is to motivate and define spherical vectors of genuine
representations of G(Q;).

We set up some notation for later. For u € Q, and r € Q
elements in SL»(Q,):

xw=(y1) 2=} wo=(_1g) wo=(5 %)

X

~, we define these
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Let x(u) =s(x(u)), y() =s(y(u)), w(r) =s(w()) and h(t) =s(h(1)) in G(Qy).
Note that 2 (t)h(s) = h(ts)(t, s),. Let N = {x(u) :u € Q,}, N = {y(u) : u € Q,}
and T be the subgroup of G generated by elements 4 (t).

3. Hecke algebra at p =2

We fix p = 2 from Sections 3 through 6. We will denote G(Q,) by G and K;(4)
by K. The objective of these sections is to classify genuine representations of G
containing a nonzero vector fixed by K.

Let M be the center of G. It is a cyclic group of order 4 generated by h(—1).
(Note that i(—1)h(—1)=(—1, —1), =—1 € u,.) Thus, a genuine central character
y is determined by its value on /4 (—1); this value is a fourth root of 1. Let K and
Ko be the open compact subgroups in G equal to the inverse images of SL.;(Z5)
and

{(i z) €SLy(Zy): c € 422}

respectively. Let K(4) C K; denote the principal congruence subgroup. It is the
image under the section s of the subgroup of SL;(Z;) consisting of matrices con-
gruent to 1 modulo 4. We have K D Ko D K; D K(4) and Ky = M x K. We
extend the central character y to Ko, so that it is trivial on K;. Given a smooth
representation (z, V) of G, we let

VKoY = (v e V : w(ko)o = y (ko) for all kg € Ko}.

Let R(G, y) denote the category of admissible smooth (necessarily genuine) rep-
resentations V of G such that VX0:7 generates V as a G-module.

Next we define the corresponding Hecke algebra. Let C.(G) denote the set of
locally constant, compactly supported functions on G. Let

H(y) ={f : Cc(G): f(kogky) =7 (ko) [ ()7 (ko) for all ko, ky € Ko}
For fi, f» € H(y), we define

fi -fz(go)=/Gf1(g)fz(glgo)dg=/Gf1(gog)fz(gl)dg,

where dg is the Haar measure on G such that the measure of K is 1. Then H (y)
is a C-algebra. For f € H(y) and v € V, we have

7 (f)o = /G F(e)(g)vdg € VKo,

In this way Vo7 is a left H(y)-module. Let R(H(y)) denote the category of
finite-dimensional left H (y)-modules. We have a functor A : R(G, y) — R(H(y))
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given by V > Vo7 Since the group K has a triangular decomposition
Ko = (KoNN)(KoNT)(KoNN),

the functor A is an equivalence of categories. This follows, in essence, from [Cas-
selman 1995, Corollary 3.3.6]; see also [Borel 1976] and [Berns$tein and Zelevin-
skii 1976, Theorem 4.2].

Our immediate goal is to understand the structure of H(y). The character y of
the center M extends to a character y of T that is trivial on K1NT, and y (h(2"))=1
for all n € Z. Let us abbreviate y(r) = y(h(r)). We define ¢ = (14 y(—1))/~/2.
Note that ¢ is a primitive 8-th root of 1. The character y of T is invariant under
conjugation by w = w(1). We can now extend the character y from T to the
normalizer N (T') by defining y(w) =¢.

We define some functions in H(y). For g in Ng(T'), we set X to be the function
supported on Kyg K( such that

X (kogkt) =7 (k)7 (2)7 (k) for all ko, kj € Ko.

Note that this definition depends only on the image of g in the affine Weyl group
W, = Ng(T)/(T N Kp).

Proposition 1. Functions X, for g in W, form a basis of H(y).

Proof. We need first to determine the Ky-double cosets in G. This can be easily
determined in SL,(Q,) using row-column reduction. In addition to A(2") and
w(27") the double coset representatives are

¥(2), h2My(2), y@h2™), yQuw@2™), w2 My, yQuw2yQ),

where n > 1 in all cases. We claim that the Hecke algebra is not supported on these
cosets.

Lemma 2. The commutator of x(2) and y(2) modulo the principal congruence
subgroup K (4) is equal to —1 € py.

Proof. This can be easily checked using the multiplication rule. It also follows
from applying [Stein 1973, Corollary 2.9] to the ring A = Z/4Z, O

Now we can easily finish the proof of proposition. Indeed if f is in H(y), then

FO@)=f@)xQ2) =-fx2)y@2)=-f((2)

by the lemma above. This implies that f must vanish on y(2). Other cases are
dealt with in the same manner. ([

Let £ : Ng(T) — Z be defined by ¢(g) = log,(n), where n is the number of
left (or right) Kg-cosets in the double coset Kog Ko. In other words, the volume of
KogKo is 2¢®) . For example, w(2~") normalizes Ko, so £(w(2™1)) = 1.
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Proposition 3. For every integer n, we have
(h(2") =2|n| and C(w(R™")) =2|1 —n|.

More precisely, we have the following decompositions of double cosets:

(i) Ifn>0,

Koh@)Ko= | J x@h@HKo= |J Koh(2")y(u).

uez/2?n7 uez/2?n7
(i) Ifn>1,
Koh(2 ™Ky = U y(@u)h(2 ™Ky = U Koh(27")x ().
uez/27 uez/2n7

(i) Ifn =0,

Kow(2")Kog = U x(w)w2"Ky= U Kow(2")x(u).

uez/22+27 uez/22+27
(v) Ifn>1,
Kow@™MKo= | y@uww@™MKo= [J Kow@™")yu).
uez/2*n-27 uez/2*n-27

Proof. This follows easily from the decomposition Ko = (KoNN)(KoNT)(KoNN).
Details are left to the reader. (]

We record the following tautological lemma:

Lemma 4. Let g| and g, be two elements in Ng(T). If £(g182) = €(g1) + €(g2)
then Xg, - Xg, = Xgy4,.

Let T,, = X ny and Uy, = X p2-n).

Proposition 5. Let T, = /1/2Uy. We have the following identities, where m, n
are any integers unless further specified.

1) (T +1)(T, —2)=0.
(i) U;-U;=1.
(i) Ifm,n>00rm,n <0, then T, - T,, = Tp1n.
v) U T, =Ups1and T, - Uy = Uy,
VMU -Uy=T,1and U, - Uy =Ti .
Proof. All statements except for (i) follow from Lemma 4. For (i), we need to show

T?=T,-T, =T,+2. Since T? is supported in K, this is equivalent to T2(1) =2

w w
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and T2(w(1)) = T, (w(1)). Suppose fi, f> € H(y), where f is supported on

w

KorKo = |_|;_, ri Ko (disjoint union). Then

N
i B =D A HE ).
i=1
We can apply this observation to f| = f, = T;,. Proposition 3(iii) with n = 0 gives
a decomposition of Kgw (1)K into single cosets. Hence

T2 = D> Tulx@w())- T,w(=)x(-u)g).
u mod 4
If g = 1, this gives T2(1) = 4T, (w(1)) - T,(w(=1)). Since T, (w(1)) =27"%¢
and T,,(w(—1)) =272¢, we obtain that T>(1) = 2. If g = w(1), then

T2(w(1)) =T, (w(1) D T,(»w).
u mod 4
If u =0 or 2, then y(u) is not in Kow(1)K¢y and T,,(y(u)) = 0. If u = %1, then
y(u) = x(u)w(—u)x(u), and we can rewrite

To(w(1)) = T, (w()[ T, (w(1)) + Ty (w(—1))] = T,y (w(1)). U
Here is the main result of this section.

Theorem 6. The Hecke algebra H(y) is generated by T,, and U; as an abstract
C-algebra modulo the relations

(a) (Tw - 2)(Tu) + 1) = O and
(b) Ut =1.

Proof. Suppose H is the abstract algebra generated by Uy = +/2T,, and U; modulo
the relations (a) and (b). We have a natural homomorphism B : H — H(y) of C-
algebras. By Proposition 1, H(y) is spanned by 7,, and U,, and by Proposition 5,
these elements are generated by Uy and U;. This shows that B is surjective. To
show that it is injective, suppose & € H is in the kernel of B. Since Up and
U, satisfy quadratic relations, i = > . cju;, where ¢; € C and u; € H is of the
form U UyU Uy - -- or UgUUyU, - - -. Because UyU = T, B(u;) is either T,
T,Uy =U\—,, UiT, = Uyqy, or U T,U; = T_,. These elements have disjoint
support as functions in H(y). Therefore B(h) = >, ¢;B(u;) = 0 implies that
¢; =0 and h = 0. This proves that B is an injection and Theorem 6. ([

We now give two consequences of Theorem 6:

Proposition 7. The element Z := Ty /2 + (T1/2)~" belongs to the center of H(y).
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Proof. By Proposition 5, T} and U; generate H (y). Clearly Z commutes with 77. It
suffices to show that Z commutes with U;. Since 77 = UpU|, we can use quadratic
relations satisfied by Uy and U; to write

) 27 = UyU, + U Uy —2'?U;.

Hence Z commutes with Uj. (]
Proposition 8. Forn >0, T, is an invertible element in the algebra H (y).

Proof. The quadratic relations satisfied by Uy and U; imply that Uy and U, are
invertible, and so is 71, since T1 = UpU;. Hence T, = TY' is invertible. O

Suppose (7w, V) is a representation in R(G, y). Let V(N) denote the span of
z(n)v —ov forallo € V andn € N, and let Vy = V/V(N) be the Jacquet module.
Let

(ViKY =ty € Viy sy, ()o = y(¢)v for all t € Ko N T).
The invertibility of 7, implies the following; see [Borel 1976, Lemma 4.7].
Corollary 9. Suppose (z, V) is a representation in R(G, y). Then the canonical

map VKo7 — (V)Xo i q bijection. In particular Vy is nonzero, and V cannot
be a supercuspidal representation. [l

4. Local Shimura correspondence

Let G’ = PGL,(Q5). Let I be its Iwahori subgroup and H' be its Iwahori—-Hecke
algebra. Let 7, and U| denote the characteristic functions of

01 01
I(1 O)] and I(p O)I

respectively. Then H' is the abstract C-algebra generated by T, and U satisfying
the same relations as (a) and (b) of Theorem 6; see [Matsumoto 1977]. This gives

the next corollary.
Corollary 10. The Hecke algebras H(y) and H' are isomorphic C-algebras.

Let R(H’) denote the category of finite-dimensional representations of H'. Let
R(G’, I) denote the category of admissible smooth representations V of G’ such
that V! generates V as a G’-module. By [Borel 1976; Bernstein and Zelevinskif
1976], the functor V > V! is an equivalence of categories from R(G’, I) to R(H).
The isomorphism in Corollary 10 establishes an equivalence of categories between
R(H (y)) and R(H’). Hence the following four categories are equivalent:

R(G,y) ~R(H(y)) ~R(H") ~R(G', I).

If V is a representation in %R (G, y), then we call the corresponding representation
in R(G’, I) the local Shimura lift of V. We denote it by Sh(V).
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Proposition 11. Let V be a representation in R(G, y). Then the following are
equivalent.

(1) The local Shimura lift Sh(V) is a spherical representation of G'.

(ii) The action of T on Sh(V)! has an eigenvalue 2.
(iii) The action of T,, on VX7 has an eigenvalue 2.
Proof. The projection map to G'(Z,)-fixed vectors in Sh(V) is given by %(Tu’) +1),
since T, + 1 is the characteristic function of G'(Z5) and the volume of G'(Z,) is 3.
It follows that a G'(Z;)-fixed vector is an eigenvector of 7, with eigenvalue 2.

This proves the equivalence of (i) and (ii). The equivalence of (ii) and (iii) follows
from Corollary 10. O

This proposition motivates the following definition.

Definition. Let V be a smooth representation of G. An eigenvector of T,, in V Xo-7
with an eigenvalue 2 is called a y-spherical vector. The representation is called a
y-unramified or y-spherical representation if it contains a y-spherical vector.

5. Pseudospherical representation of K at p =2

We retain the notations in Sections 3 and 4 where p = 2. In the previous section
we defined a representation V of G to be unramified if V%07 £ 0 and T, has an
eigenvalue 2 on VX0 In this section, we will reinterpret this condition in terms
of representations of K, and see that K has only two irreducible representations E
such that EX0:7 =£ 0. For both representations, EX0-7 is one-dimensional and they
are distinguished by the action of T,, on EXo-7. That eigenvalue can be either 2
or —1, so we use the eigenvalue to denote the representations by V(2) and V(—1).
Their dimensions are 2 and 4, respectively. Thus, a representation of G is unram-
ified if and only if it contains the two-dimensional K-type V (2), which we may
call a pseudospherical type.

If EX0:7 £ 0, then, by Frobenius reciprocity, the K-type E is a summand of a
six-dimensional induced representation

Ix(y):=Ind¥ y ={(¢: K — C: p(kok) = y (ko) (k) for all k € K, ko € Ko}.

Here the group K acts on it by right translation, denoted 7 . Let Hg () denote the
subalgebra of H(y) consisting of functions supported on K. We have the action of
Hg (y) on Ig(y)X0-7, also denoted by 7. By Proposition 1, Hg (y) = C1 @ CT,
and it is a commutative subalgebra. The algebra Hk (y) is antiisomorphic to the
algebra Hg (y) via the map f — f, where f(g) = f(g™ M.

For f € Hx(y) and ¢ € Ik (y), we set

(L (F)P)(g) = /K FO$( g)dk forall g € K.
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This action commutes with the right action 7z of K on /g (y) and

Hg (7) =Endg (Ix (7).

Note that Ig(y)X0? = H(y). The actions z; and 7z of H(7) and H(y) on
I (y)X07 = H(7) are related by 7, (f) = 7g(f).

We define the functions F_; := %(2 —Ty) and F; := %(Tw +1)in Hg(y). Then
{F_1, F>} is a basis of idempotents of Hg (7).

For j=—1,2,1et V(j) = nL(ﬁj)IK(y). In other words V () is the eigenspace
of rp (fw) on Ik (y) corresponding to the eigenvalue j. Note that F ;€ V(j)and
T R(Tw)ﬁ ;= jI:“ ;. In particular Fisa y-spherical vector.

Proposition 12. (i) We have Ik (y) =V (—=1)® V (2), where each summand is an
irreducible representation of K.

(i) We have dim V(—1) =4 and dim V (2) = 2.

(iii) The K-submodule V (2) contains a y-spherical vector F>. The space of y-
spherical vectors is one-dimensional.

(iv) The K -submodule V (—1) does not have any y-spherical vector.

Proof. Since dimEnd(/gx(y)) = 2, both V(—1) and V(2) are irreducible K-
modules. This proves (i).
To compute the dimensions of V(—1) and V(2) we need a lemma.

Lemma 13. The operator &y (YA"U)) as an element in Endg (I (y)) has trace 0.

Proof. For g € K, let ¢, be an element of Ik (y) such that ¢, is supported on Kog
and ¢ (kog) = y (ko). Let S be a set of representatives of Ko\ K. Then {¢, : g € S}
is a basis of Ix (y). To prove the lemma, it suffices to show that (nL(Tw)¢g)(g) =0.
Indeed, this shows that the matrix of 7 L(f"w) in the basis ¢, has vanishing diagonal
entries. Note that 77 (T,,)¢, is supported on Kow(1)Kog. If (nL(f"w)qﬁg)(g) # 0,
then g € Kow(1)Kopg and 1 € Kow(1)Ky. This is a contradiction since Ky is not
equal to Kow(1)K). O

We have dim V (2) +dim V(—1) = dim Ix(y) = [K : Ko] = 6. By the lemma,
2dim V (2) —dim V(—1) = 0. This implies dim V(—1) =4 and dim V (2) = 2 and
proves Proposition 12(ii). We have Ix (y)X07 = Hg (y) and ng(F;)Ix (y) = CI:“]-
for j = —1,2. The vector B is y-spherical while F_; is not. This proves parts
(iii) and (iv). O

Theorem 14. A smooth representation V of G with central character y is y-
unramified if and only if there is a nontrivial K-module homomorphism | from
V(2) to V. A vector in V proportional to [(F,) is a y-spherical vector of V.
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Proof. A y-spherical vector in V generates a representation of K in which every
irreducible K -submodule is isomorphic to an irreducible submodule of I (y). Now
the theorem follows from Proposition 12. U

6. Unramified principal series representations at p = 2

In this section, we continue to assume p = 2 and use notation of Sections 3 to 5.
We will show that y-unramified representations appear as submodules of principal
series representations.

We recall the character y of T in Section 3. Let (g, 1(y, 5)) be the normalized
induced principal series representation, where I (y, s) is the set of smooth functions
¢ : G — C satisfying

d(ex(u)h(r)g) = ey (0)|t]' ' p(g) foralle € pr, u € Qrandr e Q.
The group G acts by left translation: (z3(g)¢)(g") = ¢ (g'g).

Proposition 15. An irreducible y-unramified representation V is isomorphic to a
submodule of some 1(y, ).

Proof. By Corollary 9, (Vy)X0"T7 is nonzero. Hence there is a nontrivial T-
homomorphism Vy — yv*+! for some s € C. Here v is the character v (h()) = |¢|.
By Frobenius reciprocity, there is a nontrivial map V — I(y, s) that is an injection
because V is irreducible. U

We recall that K (4) is the principal congruence subgroup in K;. Restricting
functions ¢ in I (y, s) to K gives a natural isomorphism [ : I (y) — I(y, s)X® of
K-modules.

Theorem 16. The K -types V(2) and V (—1) are of multiplicity one in I (y, s). The
space I(y, s)X07 is 2-dimensional and is spanned by I(F>) and l(F_1).

Waldspurger [1981, Chapter VI] describes an explicit basis of I(y, s)X07 and
calculates the action of the operator 7.

We will describe a scalar multiple ¢; of [(F;) € V; that is more convenient for

later calculations. Let d, = 1 and d_; = —2, and define ¢; to be the unique vector
in I (y, s) whose restriction to K is given by
djy(k) if k € Ky,
(k) = 12720y (ko) if k = kow(1)ky € Kow (1)Ko,
0 otherwise.

We define an intertwining map M (s) : I(y, s) — I(y, —s) by
MOHE = [ pwxwed,
Q2

where g € G and du is the Haar measure on @Q; such that the measure of 7, is 1.
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Proposition 17. We have
1 H—2s —2s
¢ (1-5277) I 1-227)
M =—|————— d M 1=— —1.
(5)¢2 ﬁ( )t and MO == () e
Proof. Since the vector ¢; is unique up to a scalar in Ix (y), we have M (s)¢; =c¢;
for some ¢ € C. It remains to determine ¢ = dj_l M(s)p;(1).
If u & 7>, we have w(D)x(u) = (=1, u)2 - x(—u DA ) y@w™"). We write
u~!'=2"p, where v € Z5 and m > 1. Recall that y () = y (h(t)). Then

M(s)p; (1)
:/z ¢j(w(1)x(u))du+22m_1/ZX(—I,2mv)2¢j(h(2’”v)y(2’”v))dxv
2 m=1 2

=272 4 D o / (=1, 0)27(2"0)p; (y(2"v))d v,

m=1 ZZ

where d*v is the Haar measure of Z5 with total measure 1. Now ¢; (y(2"v)) =0
if m = 1 and it is equal to 1 if m > 2. Since y(2™v) = y(2™)y(v)(2™, v), and
y(2™) = 1, we can rewrite

MEE 0 =244 32 [ @otonrny
m=2 2

0
=271/2deszmsflélt > @08 (=1,0)70).

m=2 ve(Z/82)*

The sum ZDE(Z/SZ)X on the right is zero if m is odd, and equals «/5( if m is even.
Finally adding up all the terms gives the constant ¢ and the lemma. (]

Letso=1/2or 1/2+ix/log2. From Proposition 17, ¢_; lies in the kernel of
M (s0), so I(y, so) is reducible. Indeed I (y, so) has a unique irreducible quotient
that is an even Weil representation.

Definition. Let so = 1/2 or 1/2 4+ iw/log2. The kernel of M(sp) is called the
Steinberg representation of G(Q,). We shall denote this representation by St(e),
where € = £1 such that 2% = e«/z.

We claim that St(¢) is an irreducible representation of G (Q;). Indeed by [Loke
and Savin 2010, Section 6], we have

(3) I1(7,8)5 =y "M@yl |t forevery s €C,

where 1 (y, s)} is the semisimplification of /(y, s)y as a T-module. Hence I(y, s)
has at most length 2. The claim now follows because St(¢) is a proper submodule
of I1(y, sp). Also see [Savin 2004, Section 7].
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Corollary 18. The even Weil representation contains the irreducible K-module
V(2). It is a y-unramified representation. The Steinberg representation contains
the irreducible K -module V (—1). U

Proposition 19. Let Z = Ty/2 + (T1/2)~"! be the central element in the Hecke
algebra H(y) as in Proposition 7. Then wy(Z) acts on 1(y, s)X07 as the scalar
25 4275,

Proof. By Corollary 9, the natural projection of I(y,s) onto I(y,s)y gives an
isomorphism of 7(y, s)X0” and I(y, s)n. From Proposition 3(i)’s decomposition
of Koh(2)Kj into single Ky-cosets, it follows that the action of 7} on I (y, s)Ko-7
corresponds to the action of 4 - 75 v (h(2)) on I (y, s)y. By (3), the eigenvalues of
Ty/2 are 2° and 27°. [l

Corollary 20. An irreducible y-unramified representation is uniquely determined
by the eigenvalue of the action of Z on its y-spherical vector.

Proof. Suppose the irreducible y-unramified representation is a subquotient of both
I(y,s)and I(y, s’). Then by Proposition 19, 25 4275 =25 42~ which implies
28 =25 or 2¢ =27%. By Proposition 17 both I(y, s) and I (y, —s) have the same
irreducible y-unramified subquotient. O

Corollary 21. The Steinberg representation St(€) corresponds to the one-dimen-
sional representation of H(y) given by T,, = —1 and U} = —e.

Proof. We know that T, = —1 on St(¢)X0-7 . It remains to compute the action of Uj.
Since St(¢) is a subquotient of (7, sg), where 2°0 = e+/2, the central element Z acts
on St(€) by the scalar €(2!/24+271/2). By (2) we have 2'/2Z =T,, U, +U,T,, — U,.
Hence U; = —¢ as claimed. O

Let V be an irreducible y-unramified representation. By Proposition 15, we may
assume that V is the unique y-unramified subquotient of 7 (y, s) for some s € C. By
Proposition 11, its local Shimura lift V/ = Sh(V') is an unramified irreducible repre-
sentation of G’ = PGL,(Qy). Let B’ be the Borel subgroup of G’. We may realize
V' as the unramified irreducible subquotient of the normalized induced principal
series representation (z;, I'(t)) with trivial central character. Here I'(r) = Indg,/ '
(normalized induction), where w is the character

aq 0 .
oy o) =lar/a.

The next theorem is similar to [Waldspurger 1991, Proposition 4]. There the local
correspondence is defined by restricting the oscillator representation to the dual
pair G(Q3) x PGL,(Q;), while the local Shimura lift used here is defined by the
Hecke algebra isomorphism.
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Theorem 22. If V is the unique y-unramified irreducible subquotient of 1(y, s),
then its local Shimura lift Sh(V) is the unique unramified irreducible subquotient

of I'(s).

Proof. Assume that Sh(V) is a subquotient of I’(¢). By Proposition 19 the central
operator Z in H(y) acts on I(y, s)X7 by the scalar 2° +27. The corresponding
operator Z’ in the algebra H’ acts on I'(t) by 2" +27". Thus, 2° +275 =2" 427",
Solving the equation gives 2° = 2" or 2° = 27, Both I'(r) and I'(—t) have the
same irreducible subquotients, so we may set s = t. U

We deduce a corollary that is a part of [Waldspurger 1980, Propositions 1 and 2].

Corollary 23. The principal series representation I (y, s) is reducible if and only
ifs=1/2o0r1/2+in/log?2.

Proof. Let V be the y-unramified irreducible subquotient of 7(y,s). Let W be
the unramified irreducible subquotient of I’(s). Then V = I(y, s) if and only if
dim VK07 = 2. By Theorem 22, dim V%07 = dim W/. Now dim W' = 2 if and
only if I'(s) is irreducible. Finally I'(s) is irreducible if and only if s # 1/2 and
1/2+in/log2. ([l

7. Automorphic forms

In this section we review a connection between automorphic forms and classical
modular forms of half integral weight. This is mostly well known material that can
be found in [Gelbart 1976, Chapters 2 and 3] and in [Waldspurger 1981]. We then
transfer the action of the Hecke algebra H (y) to the setting of classical modular
forms.

Let A=]], @, be the ring of adeles over Q. We recall K ,, s(g) and the cocycle
o, defined in Section 2. Let G(A) = SL,(A) x {£1} as a set. For g1 = (g1.»).
82 =(g2.0) € SL2(A) and €y, € € {£1}, the group law on G(A) is given by

(g1, €1)(g2, €2) = (2182, €1€20 (g1, &2)),

where o (g1, 82) = [1, 00 (81,05 82.0)- Then pr: G(A) — SLy(A), (g, €) > gis a
twofold cover that splits over the subgroup SL,(Q). Since SL,(Q) is perfect, this
splitting is unique and given by

s0:SLa(@) > G(A), g (g.5a(g)), where sa(g) =[], s(80)-
We also need a description of a maximal compact subgroup in G (R). Let

cosf siné
—sind cosé

k(©) = ( ) eSLy(R) for—7 <6 <.
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Then K o := {k(0) : —7 < 0 < x} is a maximal compact subgroup in SL;(R). Let
Koo ={k(@): —2n <6 <2n}, where

k() = k@), 1) if —r <0<m,
| &@), -1 if =27 <0< -7 orm <0 <2x.

Then K is a maximal compact subgroup of G(R) and pr(K«) = K. If 7 is an
odd integer, then k() — ¢'"%/? defines a genuine character of Ko

Let A,/2(4) denote the set of functions ¢ in L?(SL,(Q)\G(A)) satisfying the
following properties:

(1) p(gk1) = p(g) forall ky € Ki(4) [],10.00 Kps
(2) 9(gko) = y(ko)p(g) for all ko € Ko in G(Q2), where y(—1) = —i";

(3) 9(gk(©)) =" p(g);
(4) ¢ is smooth as a function on G(R) and satisfies Ap = —}Lr(%r — 1)@, where
A is the Casimir operator; and

(5) ¢ is cuspidal, that is, fN(@)\N(A) o(x(u)g)du =0 for all g € G(A).

A basis of A, >(4) arises from cuspidal automorphic representations 7 = ), 7,
of G(A) such that 7 is a holomorphic discrete series representation with the
lowest weight r/2, 7, is unramified for all p # 2, and 7, contains a K;(4)-
fixed vectors. In particular, 7r2K 7 £ ( for some central character y. Note that y is
determined by r. Indeed, since the local components of sg (2 (—1)) for v # o0, 2 are
contained in K ,, we have ¢ (1) = ¢ (sq(h(—1))) = y(—=1)e!™"/?¢(1), and therefore
y(=1)=—i".

Let 3¢ be the complex upper half plane. For elements g = (‘Cl Z) € SLy(R),
g=1(g,¢) € G(R) and z € ¥, we define

B _az—i—b
gz—gz—cz+d.

We define a holomorphic function on # by

J(g,2)=J((g,€),2) =€ (cz+d)"/*.

Here we choose w!/? so that —7 /2 < arg(w'/?) < z /2. We call J (g, z) a factor of
automorphy. By [Gelbart 1976, Lemma 3.3], it has J(gg’,z) = J(g, £'2)J (¢, 2)
for any two g and g’ in G(R). Define a congruence subgroup I'y(4) by

Fo@) = G®) N (sa(SL2(@) - Ko@) - [] K, ).
p#2

Similarly, define I';1(4) C I'o(4) by replacing Ko(4) with K1(4). Let S,2(I'o(4))
and S,2(I'1(4)) be the spaces of classical modular forms of weight r/2. By



450 HUNG YEAN LOKE AND GORDAN SAVIN

[Koblitz 1984, page 183], we have S,,2(I'0(4)) = S,2(I'1(4)). We will denote
this space by S,2(4).

By [Gelbart 1976, Proposition 3.1], there is a bijection Q : A, 2(4) — S,/2(4),
which we recall: If ¢ € A, /»(4), then

(Q(P)(Z):(P(goo)-](gomi)ro where 7 = gooi € .

Conversely, given f € S,2(4), let g € G(A). By [Gelbart 1976, Lemma 3.2],
g = g0gook for some gg € sg(SL2(Q)), goo € G(R) and k € K (4) Hp;éZ,oo K.
Then (O f)(8) = (800 (1)) (800, 1)

Using the bijection Q, we define another bijection between the spaces of oper-
ators by

q : Endc(A,2(4) — Ende(S,2(4), L QLQ™.

Since the Hecke algebra H(y) defined in Section 3 acts on A, »(4), it is of interest
to reinterpret this action in terms of classical modular forms.

Proposition 24. Let U; and T be the operators in the local Hecke algebra H (y),

where y(—1) = —i". Recall that { = (1 — i") /2. For f(z) € Sr2(4), we have
(i) (q(U) (=) =CQ2)7?f(~1/(42)) and

(i) (¢(T) ) =273 o f(c+u)/4).

Proof. (i) Suppose ¢ = Q~(f) € A,2(4). For every place v, let w, = w(2~!) be
the element in G(Q,) defined in Section 2. By Proposition 3(iv),

U)o = [ Ui gkl = Ur(02)0 (gct02) = Co(gocn).
Kows Ky

Next, consider w(27!) in SLy(Q). By [Gelbart 1976, (2.30)], so(w™")) =[] w,.

Since ¢ is left SL,(Q)-invariant, and right K ,-invariant for p # 2,

C0(goow2) = L9 goow) =Zo ([ w5 ") 8oo) = Co (0 g
v#2
Applying Q to this equation gives (i). Part (ii) is proved analogously. U

8. Kohnen’s plus space

Hecke eigenforms in S, 2(4) correspond to cuspidal automorphic representations
7 such that 7, is a discrete series representation of lowest weight /2, =, is
unramified for all p £ 2, and 7, has K (4)-fixed vectors. In particular, 7r2K 07 £0
for the central character y(—1) = —i”". If &, is a principal series representation,
then 7r2K %7 is 2-dimensional and therefore the corresponding Hecke eigenspace in
Sr/2(4) is also 2-dimensional. Kohnen’s plus space is introduced to resolve this
ambiguity. In terms of the space of automorphic functions A, »(4), it is clear what
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to do. Decompose A,2(4) = A’ /2(4) ®A, /2(4) where A 2(4) is the eigenspace
of the local Hecke operator T, with eigenvalue 2, while A /2 (4) is the eigenspace
with eigenvalue —1. Since the presence of the eigenvalue 2 for T;, acting on 7,
eliminates a possibility that 7, is a Steinberg representation, we see that there is
a one-to-one correspondence between Hecke eigenforms in A:r/z (4) and cuspidal
automorphic representations 7 (as above) such that 7z, is a y-unramified repre-
sentation. The classical Kohnen plus space is (essentially) Q(Ar /2(4)), as will be
explained in a moment. Niwa [1977] defines two operators T4 and Wy on S, 2(4)

by
3
TN@ =1 Fa+w/d) and (Waf)@) = (=2i2) "2 f(~1/(42).
u=0

Note that Wf = 1. Let k = (r — 1) /2. Niwa shows that the operator
W = (_1)(r2—1)/821—1c W, T,

on S,2(4) satisfies! the quadratic relation (W 4 1)(W — 2) = 0. Kohnen defines
S:;z (4) and S, (4) to be the eigenspaces of W on S, 2(4) of eigenvalues 2 and —1,
respectively [Kohnen 1980]. Proposition 24 says that

q(Un) = (—1)r2_1/8W4 and q(Ty) =2""Ty,
where the sign (—1)’2—1/8 is the quotient of
C=(0+i")/vV2 and i"?=(1+i)/V2).

. -1 . .
Since T, =2 T Uy, it follows that ¢(T,) and W are conjugates of each other
by W,. Thus Kohnen’s plus space is simply a conjugate of our space:

Q(A],(4) = Wa(S,,(4)).

Because W, commutes with the classical Hecke operators T),> whenever p # 2,
Q(Ar /2(4)) and S /2(4) are isomorphic as C[T32, Ts2, ... ]-modules.

There is another description of S /2 (4) in terms of Fourier coefficients. It con-
sists of the cusp forms whose n-th Fourier coefficient vanishes whenever (—1)*n =
2,3 (mod 4). Kohnen defines a Hecke operator T, * that preserves S, "2 (4) in the
following way: For f(z) = 3., axq" € S} 2(4), set (T, f)(z) = >, bnq" where
the sum is taken over integers n > 0 and (—1)*n =0, 1 (mod 4), and

(=D*n
2

b, = ay, + ( )2”_lan + 2r_2an/4.

!In [Kohnen 1980], the operator is Ty W, acting on the right, that is, T4 acts first and Wy follows.
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Here a,, /4 =0 if n is not a multiple of 4. The large parentheses denote the Legendre
symbol.
We can now formulate and prove our main global results.

Theorem 25. There is a one-to-one correspondence between Hecke eigenforms f
in S:;2(4) and irreducible cuspidal automorphic representations 1 = @), @, in
L?*(SLy(Q@)\G(A)) such that

(1) moo is the discrete series representation of G(R) with lowest weight r/2;
(ii) 7, is unramified for all odd primes p;,
(iii) 7y is y-unramified, where y(—1) = —i"; and

Giv) if T, 4+ f = Ay f, then a y-spherical vector in 7, is an eigenvector for Z =
T1/2 4+ (T1/2)~" with eigenvalue 2'77/%1,.

Note that 1, determines the eigenvalue of Z on a y-spherical vector, which in turn
determines my uniquely by Corollary 20.

Proof. The first three statements are clear, since Q! (W, f) is a Hecke eigenform
in A;L/z(4) that is contained in a cuspidal automorphic representation 7 with these
properties. It remains to show (iv).

Lemma 26. Let f bein S}, (4). Then T, f =2"/>"'q(Z) f.

Proof. Recall that T is invertible by Proposition 8. Hence, it suffices to show that

2RI, = q(T+4). 1 £(2) =302 ang" € 5,2(4), then (¢(T1) ) (2) =
22-7r/2 > o2 o aanq" by Proposition 24. Thus, if f(z) € S:;Z (4), then one computes

22T (@) = @I+ D)) =D are +4a)g". O

Now we can finish the proof of Theorem 25. If T, 4+ f =4,f, then Lemma 26
implies that Q~!(f) is an eigenform for Z with eigenvalue 2!="/21,. Since Wy =
(—1)(’2*1)/8q(U1) and Z commutes with U, we see that Q~1 (W, f) is also an
eigenform for Z with the same eigenvalue. (]

If f is a Hecke eigenform in S:;z(4), then by [Kohnen 1980, Theorem 1(ii)]
the corresponding Shimura lift f’ = Sh(f) is a Hecke eigenform in S,_1(SL»(Z)).
Recall that G’ = PGL,. There is a bijection between Hecke eigenforms f” in
Sr—1(SL2(2)) and irreducible cuspidal automorphic representations 7’ = @), 7,
in L2(G'(@)\G'(A)) such that 7/, is a discrete series representation with lowest
weight r — 1 and x, is unramified for all primes p; see [Gelbart 1975, Proposi-
tion 3.1]. Recall the local Shimura lift Sh(z;) in Proposition 11 of a y-unramified
representation 7, of G(Q2). The following corollary gives a precise representation-
theoretic description of the Shimura correspondence at the place p = 2.
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Corollary 27. Let f be a Hecke eigenform in S:;z(4). Let 1 = @, 7, be the
cuspidal automorphic representation corresponding to f in Theorem 25. Let 1’ =
&, @, be the cuspidal automorphic representations of L*(G'(Q)\G'(A)) corre-
sponding to the Hecke eigenform f’ = Sh(f) in S,_1(SLy(Z)). Then Sh(x;) = ).
Proof. 1If T4+f = Ay f, then T f' = A, f" by [Kohnen 1980, Theorem 1(ii)], where
T, is the classical Hecke operator action on S,_;(SL2(Z)). By [Gelbart 1975,
Proposition 5.2.1], one checks that 7} is indeed isomorphic to Sh(x>). ([

Let 7 be a cuspidal automorphic representation of G(A) as in Theorem 25
and 7’ be the corresponding cuspidal automorphic representation of G'(A) as in
Corollary 27. By the Ramanujan conjecture, proved by Deligne, 7, = Sh(x,) is
a tempered irreducible unramified representation, so 7, = I'(s) for some s € iR.
This implies that 7, = I(y, s) by Theorem 22 and Corollary 23. Thus 7r2K ©7 s
an irreducible H (y)-module of dimension 2. It corresponds under Q to a two-
dimensional subspace of S, />(4) spanned by a line in S:;Z (4) and a line in S, 4.

On the other hand, if 7, = St(¢) is a Steinberg representation of G (Q;) (see the
definition before Corollary 18), then 7 corresponds under Q to an Hecke eigenform
in Sr72(4). More precisely:

Theorem 28. There is a one-to-one correspondence between Hecke eigenforms f

in Sr72(4) such that Wy f = —6(—1)(’2*1)/8]‘ for some € = +1 and irreducible

cuspidal automorphic representations 1 = @), m,, in L*>(SL2(Q)\G (A)) such that
(1) oo is the discrete series representation of G(R) with lowest weight r/2,

(ii) 7, is unramified for all odd primes p, and

(iii) 7, is the Steinberg representation St(c).

Proof. Recall by Corollary 21 that T,, and U; act on the one-dimensional space
St(€)X0:7 by —1 and —e. The theorem now follows from Proposition 24 and the
definition of S, 4). O
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