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Given the Lagrangian fibration R4 → R2 and a Lagrangian submanifold,
exhibiting an elliptic umbilic and supporting a flat line bundle, we study
in the context of mirror symmetry the corrections necessary to solve the
monodromy of the holomorphic structure of the mirror bundle on the dual
fibration. This is a preliminary step towards the understanding of quantum
corrections in this specific case.

1. Introduction

The first steps in the study of mirror symmetry, assuming the existence of dual
torus fibrations X and X̂ , has been undertaken in papers such as [Fukaya 2005;
Arinkin and Polishchuk 2001; Leung et al. 2001; Bruzzo et al. 2001; 2002]: Under
certain hypotheses, a transform is provided, defined on some subcategory of the
Fukaya category of X , that maps pairs formed by a Lagrangian submanifold L and
a U (1)-flat connection ∇ to holomorphic bundles Ê over X̂ . The caustic K of L
is always assumed to be empty. The purpose of this paper is to start understanding
how to remove this hypothesis.

We focus our attention on the Lagrangian fibration R4
→ R2 and consider a

Lagrangian map f : L ↪→ R4
→ R2. Generically, f exhibits only folds and cusps,

which are singularities of codimension 1 and 2 respectively. If we restrict the fibra-
tions and L to the subset R2

\K , then the Lagrangian map f has no singular points,
and so we can try to apply the constructions contained in the papers mentioned
before. We can hope to get a holomorphic bundle Ê on the dual fibration restricted
to R2

\K , and whose holomorphic structure can be extended to the whole fibration
over R2. However this hope is in general vain (we consider the elliptic umbilic in
Section 4, but see also the same example described in [Fukaya 2005, Section 5.4]):
What may happen, as in the case we are going to study, is that K is a compact
curve, and in the noncompact subset of R2 determined by K , the holomorphic
structure of Ê presents a monodromy when going around the caustic K , and this
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hinders us from extending the mirror bundle to K and gluing it to the mirror bundle
constructed inside K , and so from producing a holomorphic bundle Ê on the whole
dual fibration. Some kinds of quantum corrections are thus required to obtain a
holomorphic bundle defined on the whole dual fibration R̂4

→ R2.
One program to perform quantum corrections is outlined in [Fukaya 2005]. The

idea is that there is a “classical” or, as it is called there, “semiflat” situation, which
is the one where X is a Lagrangian fibration with only smooth fibers. In this case a
complex structure is easily constructed on the mirror manifold X̂ ; however as soon
singular fibers are allowed, the complex structure constructed on the smooth part
does not extend to the whole X̂ . So there is a need for some corrections to extend
the complex structure.

Computations from physics suggest that pseudoholomorphic discs provide these
corrections. When a Lagrangian submanifold L is given on X , if it is not a ramified
cover a holomorphic mirror bundle is obtained on X̂ . When the caustic is allowed,
the situation is similar to the case of singular fibers, and the classical holomorphic
structure, obtained from L away from the caustic on the mirror bundle, must be
deformed to extend it to the whole mirror bundle. Again, the idea outlined in
[Fukaya 2005] is that quantum corrections are provided by the instanton effect,
that is, by counting pseudoholomorphic strips in R4 that bound L and the fiber Fx

of the fibration.

In a more general framework, quantum corrections are related to the obstruction
theory of well-definedness of Floer homology. As proposed in [Fukaya 2000] as
a general idea and holding beyond the specific case considered there, the fiber
over x ∈ R2

\ K of the mirror bundle Ê on R̂4 is constructed as the Lagrangian
intersection Floer homology of L and of the Lagrangian fiber of R4 over x . Assume
that K contains just one singular point and that this point is an elliptic umbilic. We
know that in dimension 2 this singularity is neither stable nor generic; however,
from [Marelli 2006a; 2006b], we know how the caustic K and the bifurcation locus
B change when f is slightly perturbed to f̃ .

According to a conjecture proposed by Fukaya [2005, Section 3.5], near K ,
Lagrangian intersection Floer homology is equivalent to Morse homology defined
by means of the generating function f of L , which is a Morse function far from
K and B. This conjecture allows us to switch from Floer to Morse homology.
More precisely, Fukaya conjectured that near the caustic, the moduli space of
pseudoholomorphic discs bounded by a fiber and by the Lagrangian submanifold
L is isotopic to the moduli space of gradient lines of the generating function of L
between the points of intersections of the fiber with L . This conjecture has been
proved in [Fukaya and Oh 1997] for the case of the cotangent bundle and in some
of the examples considered in [Fukaya 2005]. Its purpose is just to provide a way
to simplify the computations involved in working with pseudoholomorphic discs.
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In our case, we apply this for a small perturbation of the elliptic umbilic. In view
of this, that is, considering gradient lines rather than pseudoholomorphic discs,
our result can be only a first step in the study of quantum corrections in mirror
symmetry for the example considered.

Another important fact to be remarked is that, put simply, the homological mirror
symmetry conjecture establishes an equivalence between the Fukaya category on
one side and the derived category of coherent sheaves on the mirror side; however
here our concern is only about objects and not also about morphisms, so again
this work should be considered only as a preliminary step in understanding mirror
symmetry.

With all the limitations outlined above, quantum corrections (that is, rules to
glue the holomorphic Morse homology bundle ̂̃E , relative in our case to f̃ ) are
then defined across folds that are not limit points of bifurcation lines, and across
bifurcation lines far from their intersections. Fukaya [2005, Section 5.4] explained
that the cancellation of monodromy, which may look accidental, is in fact related
to the phenomenon of wall crossing of Floer homology. In our case, which is
approximated in the sense that we use Morse homology instead of Floer homology,
the caustic and bifurcation locus represent the walls in an analogous phenomenon
for Morse homology. We check that in this way the holomorphic structure of ̂̃E
can be extended to the codimension 2 subset of R2 containing the remaining points
of K̃ and B̃, that is, the intersection points of bifurcation lines, folds that are limit
points of bifurcation lines, and cusps. We realize however that these corrections
are not enough to extend the holomorphic structure of ̂̃E to cusps. A correction
of different kind is thus required, which is related to the possibility of defining a
spin structure on L̃ or, better, a relative spin structure. This has to do with the
orientation problem in Floer homology theory; see [Fukaya et al. 2000]. In this
way, the monodromy around the caustic is also canceled, and so the mirror bundlễE can be endowed with a holomorphic structure defined on the whole dual fibration.

2. Preliminaries

Throughout this paper we will use results from [Marelli 2006a; 2006b], whose
contents we now summarize.

• We introduced Lagrangian bundles π : X → B, Lagrangian maps g : L→ B
and their generating functions, and defined the caustic K of L as the set of
critical values of π ◦ g;

• We recalled the classification of Lagrangian singularities. We noted that in
dimension 2 only folds and cusps are stable and generic; the elliptic umbilic,
which is the case considered in this paper, is stable and generic starting from
dimension 3. However it can appear as unstable singularity (that is, it breaks
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in folds and cusps under a small perturbation) in dimension 2; it is given by
the generating function

f (y1, y2)=
1
3 y3

1 − y1 y2
2 .

• We showed that the elliptic umbilic in dimension 2 becomes after a small
perturbation a Lagrangian map whose caustic is a tricuspoid, a curve with
three edges, whose points are folds, and three cusps at vertexes.

• For f the generating function of L , we defined the family fx : Rn
→ R of

functions, where x is a point in the base of the fibration, as

fx(y)= f (y)− x · y

and considered the gradient system

(1) ∇ fx(y)=
dy
dt

whose solutions we called gradient lines. We noted that the caustic K of L
is the subset of points x where the gradient field ∇ fx exhibits a degenerate
critical point. We defined B, the bifurcation locus of L , as the subset of points
x where fx is a Morse function but ∇ fx is not Morse–Smale, that is, where
the phase portrait of ∇ fx features a saddle-to-saddle separatrix.

• We studied how the bifurcation locus of the elliptic umbilic, represented by
three straight half-lines with a common vertex at the origin, is modified after
a small perturbation. Far from the caustic, a tricuspoid, the bifurcation locus
looks as that of the unperturbed elliptic umbilic with three bifurcation lines; in
a neighborhood of the caustic, these are half-lines that generically have vertex
at a fold point of the caustic. As for the mutual positions of the bifurcation
lines and their possible intersections, see [Marelli 2006b, Theorem 4.14] and
the pictures there representing the diagrams that can be expected.

3. The mirror bundle

We recall how the mirror bundle should be constructed for the trivial fibration
R4
→ R2 and its dual (but more generally also for R2n

→ Rn). In [Leung et al.
2001; Bruzzo et al. 2001; 2002], it is defined by a kind of Fourier–Mukai transform
that associates to each pair formed by a Lagrangian submanifold L , in the given
Lagrangian fibration, and a local system ∇ on it, a vector bundle Ê on the dual
fibration, endowed with a connection ∇̂. Its curvature F̂ satisfies F̂0,2

= 0 and so
induces a holomorphic structure on Ê . This is achieved under certain hypotheses,
among which that L has no caustic. On the other hand, in [Fukaya 2000], the fiber
of the mirror bundle Ê over the point (x, w) of the dual fibration (x is a coordinate
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on the base and w on the fiber) is defined as the Lagrangian intersection Floer
homology of L and Fx :

Ê(x,w) = HF((L ,∇), (Fx , w)),

where w ∈ F̂x defines a flat connection on Fx . For the affine Lagrangian subman-
ifolds considered in [Fukaya 2000], HFk is nonvanishing only when k equals the
dimension of the fiber. A holomorphic frame is then defined on Ê . These two
constructions are equivalent in the cases considered in the papers above, that is,
when assuming at least that the fibration has no singular fibers and that L has no
caustic.

Here, we will follow mainly the second construction (though sometimes we use
also the Fourier–Mukai construction), since this approach seems to be more suit-
able as quantum corrections are provided by pseudoholomorphic discs. However,
as explained in the introduction, using a conjecture by Fukaya [2005, Section 3.5],
near the caustic we switch from Floer homology and pseudoholomorphic discs to
Morse homology and gradient lines. So that we don’t introduce notation that we
don’t use, we state the conjecture informally and refer to [Fukaya 2005] for the
precise formulation.

Conjecture 3.1. The moduli space of gradient lines is isotopic to the moduli space
of pseudoholomorphic discs in a neighborhood of a point of the caustic.

Partial progress towards a proof of this conjecture has been made by Floer[1988]
and by Fukaya and Oh [1997], the latter in the case of the cotangent bundle.

The transfer to Morse homology is then performed as follows. Consider the
trivial Lagrangian fibration R2n

→ Rn . To L is associated a (local) generating
function f : Rn

→ R. We consider as in Section 2 the family fx : R
n
→ R and the

gradient system (1). Let K and B be the caustic and the bifurcation locus of L . If
x /∈ K ∪ B, with some further hypotheses on f (see [Schwarz 1993]), the Morse
complex is defined over x . The space of k-chains is the free C-module generated
by critical points of Morse index k and the differential is defined counting gradient
lines, that is, the solutions of the gradient system (1) joining two critical points
whose Morse indexes differ by 1. The fiber of the mirror bundle is defined as
the Morse homology Ê(x,w) = HM( fx) of the Morse complex over x , and a holo-
morphic frame is constructed similarly to that proposed in [Fukaya 2000; 2005].
Namely, by writing ∇ = d + A, a section e(x) of Ê turns out to be holomorphic
and descends on the torus fibers when multiplied by the weight

exp
(

2π
(h(x)

2
−

A(x)
4π
+ i ∂h

∂x
·w
))
,

where h is a multivalued function on the base such that each sheet of L is locally
the graph of dh. In other words, h is a set of local generating functions defined in
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the coordinates of the base, one for each sheet of L . The problem is to glue this
bundle along the caustic K and the bifurcation locus B.

4. The monodromy of the elliptic umbilic

Consider the trivial Lagrangian torus fibration R4
→R2 and a Lagrangian subman-

ifold L whose caustic K contains an elliptic umbilic q . In a neighborhood of q,
we can choose symplectic coordinates (y1, y2, x1, x2), with coordinates y1 and y2

on the fibers and x1 and x2 on the base of the fibration, such that L is given by the
generating function

(2) f : R2
→ R, (y1, y2) 7→

1
3 y3

1 − y1 y2
2

Since we will be working in a neighborhood of q, we can use the local coordinates
just introduced. This means we consider the Lagrangian fibration R4

→R2 and the
Lagrangian submanifold L defined by the generating function f . Associated to f ,
we have the caustic K and the bifurcation locus B. By hypothesis, K = {(0, 0)},
while [Marelli 2006b] shows that B is given by three half-lines from (0, 0), defined
by t→ teiα for α = 0, 2π/3, 4π/3 and t > 0.

Consider a line bundle E over L with a flat U (1)-connection ∇. The pair (L ,∇)
defines an object in the Fukaya category of the symplectic manifold R4. On R2

\K
the function f has no critical points, so we can apply results of [Bruzzo et al. 2002]
or [Fukaya 2000], thus producing a bundle Ê of rank 2 over the total space of the
dual fibration restricted to R2

\K . A hermitian connection ∇̂ can be defined on Ê ,
thus inducing a holomorphic structure on Ê . Note that L is a 2-sheeted cover of
R2
\ K . Thus for x ∈ R2

\ K if p1(x) and p2(x) denote the elements of L ∩ Fx ,
where Fx is the fiber of the Lagrangian fibration R4

→R2 over x , and if z1 and z2

are coordinates along the fibers of the dual fibration, then the connection ∇̂ can be
written as d + Â, with

(3) Â(x)= i(p1(x)dz1+ p2(x)dz2).

However, let 0 ∈ π1(R
2
\ K ), 0 : [0, 1]→ R2, and consider the continuous maps

(4) M i
0 : [0, 1] → R4, t 7→ pi (0(t)) for i = 1, 2.

Let M i
0(t)F be the projection onto F0(t) ∼= R2 of M i

0(t).

Definition 4.1. The monodromy of the holomorphic structure of Ê is the map

(5) M : π1(R
2
\ K )→ End(R2), M(0)(M i

0(0)F )= M i
0(1)F .

Since 0(0) = 0(1), M i
0(0) and M i

0(1) belong to the same fiber. Also, the
endomorphism M(0) is well-defined, since {M i

0(t)} for i = 1, 2 is a basis of F0(t).
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Lemma 4.2. If 0 is a nontrivial simple loop in π1(R
2
\ K ), then the monodromy

M of the holomorphic structure Ê on 0 can be represented by the matrix

M(0)=

(
0 1
1 0

)
.

Proof. This follows because the points p1(x) and p2(x) exchange when going
around the origin. In fact, since L can be written as x1= y2

1− y2
2 and x2=−2y1 y2,

it becomes z = w2 by writing z = x1+ i x2 and w = y1+ iy2. �

This lemma shows that Ê cannot be extended to a holomorphic bundle on the
whole dual fibration over R2. For this, some “quantum correction” must be added;
see also [Fukaya 2005, Section 5.4].

5. Perturbations of the elliptic umbilic

Consider now a small perturbation f̃ of f . The caustic K̃ and the bifurcation
locus B̃ of f̃ were studied in [Marelli 2006a] and [Marelli 2006b], respectively.
There K̃ was shown to be diffeomorphic to a tricuspoid, and B̃, outside a disc
containing K̃ , looks as the bifurcation locus of the unperturbed f , while inside
this disc its structure can be highly complicated and bifurcation lines can intersect.
See [Marelli 2006b] for pictures of the several admissible diagrams representing
the reciprocal positions of K̃ and B̃ inside the disc. At first we restrict our attention
to the subset R2

\ K̃ . Given a flat connection ∇̃ on the Lagrangian submanifold L̃
defined by f̃ , we construct a holomorphic bundle ̂̃E on each of the two connected
components of R2

\ K̃ , as explained in [Bruzzo et al. 2002] or in [Fukaya 2000].
As done in Section 4 for Ê , we can define the monodromy M̃ of the holomorphic
structure of ̂̃E and prove the following lemma:

Lemma 5.1. If 0 is a nontrivial simple loop in π1(R
2
\ K ), then the monodromy

M̃ of the holomorphic structure of ̂̃E on 0 can be represented by the matrix

M̃(0)=

(
0 1
1 0

)
.

Proof. Since f is perturbed on a compact subset D containing the origin, it follows
that f̃ coincides with f outside D and that K̃ ⊂ D. So M̃(0)=M(0). �

Therefore, outside the caustic, the holomorphic structure of ̂̃E also exhibits a
monodromy.

6. Quantum corrections to perturbations of the elliptic umbilic

The problem is to solve the monodromy and extend the holomorphic structure of̂̃E across the caustic K̃ , gluing it with the holomorphic structure inside K̃ . The way
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to achieve this is to construct ̂̃E with its holomorphic structure on R2
\ (K̃ ∪ B̃),

define morphism gluing this structure across K̃ and B̃ and check if the monodromy
is solved. This is what we mean by quantum corrections. We are going to define
quantum corrections on ̂̃E . Then, since a holomorphic section is obtained by mul-
tiplying a section of ̂̃E by a suitable weight, we will obtain quantum corrections
for holomorphic sections of ̂̃E . If a section can be extended to K̃ ∪ B̃, the same
will hold for a holomorphic section. The features of the set R2

\ (K̃ ∪ B̃), namely,
the mutual positions of K̃ and B̃, are described in [Marelli 2006b, Theorem 4.14].

We explain now how to construct the mirror bundle (of Section 3) far from K̃∪ B̃
in this case. The function f̃x defined by f̃x(y)= f̃ (y)−x ·y is a Morse function for
every x ∈R2

\(K̃∪ B̃). As computed in [Marelli 2006b], if x lies inside the caustic,
f̃x has four critical points: three saddles si (x), the points with Morse index 1, and
an unstable node n(x), the point with Morse index 2. Thus the Morse complex is

(6) 0← 0←
⊕3

i=1 C[si (x)]
∂x
←− C[n(x)] ← 0← · · · ,

where C[si (x)] and C[n(x)] denote the free modules over C generated by si (x) and
n(x), respectively. The differential ∂ can be defined after an orientation is chosen
on the moduli space of gradient lines from n to si (see [Schwarz 1993] or [McDuff
and Salamon 2004] for a more detailed construction of Morse homology). In our
case, ∂x can be defined as ∂x n(x) = s1(x) + s2(x) + s3(x) (anyway, the Morse
complex has only two nontrivial terms, so ∂ automatically satisfies ∂2

= 0); we fix
this choice of orientation of gradient lines.

If x lies outside the caustic, f̃x has two saddles as critical points, so the Morse
complex is simply given by

(7) 0← 0← C[si (x)]⊕C[s j (x)] ← 0← · · · .

Definition 6.1. The fiber ̂̃E x of ̂̃E over x ∈R2
\(K̃ ∪ B̃) is defined to be the Morse

homology of the Morse complex (6) or (7) if x lies respectively inside or outside
the caustic.

In our case, Morse homology has only one nontrivial term, so for x inside the
caustic ̂̃E x =

⊕3
i=1 C[si (x)]
∂x(C[n(x)])

,

while for x outside the caustic, ̂̃E x = C[si (x)]⊕C[s j (x)].

Definition 6.2. On each connected component of R2
\(K̃ ∪ B̃), we define ̂̃E as the

trivial bundle whose fiber at x ∈Ui is given by Definition 6.1.

We define now morphisms gluing the holomorphic bundle ̂̃E along K̃ and B̃.
We start by considering the subset K̃ F of K̃ consisting of folds that are not limit
points of bifurcation lines. It is a codimension 1 subset of R2. Suppose U and
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V are two connected components of R2
\ (K̃ ∪ B̃), lying respectively outside and

inside the caustic, such that ∂U ∩ ∂V 6= ∅, and let K̃ i ⊂ ∂U ∩ ∂V ∩ K̃ F be a
connected component of K̃ F . For simplicity, suppose that V is inside the caustic
and U is outside, so that along K̃ i the node n and the saddle si in V glue together
and disappear in U . (The pair (n, si ) is also called a birth/death pair.)

Definition 6.3. The isomorphism ̂̃E(U ) ∼= ̂̃E(V ) gluing ̂̃E along K̃ i is defined as
the one induced in homology by the inclusion

C[s j ]⊕C[sk] ↪→

3⊕
l=1

C[sl(x)] for j, k 6= i .

It is a good definition since the inclusion preserves kernel and image of the
differential of the Morse complex.

The second group of definitions is concerned instead with gluing along the sub-
set B̃1 of B̃ consisting of points that are not intersection of bifurcation lines. It is
a codimension 1 subset of R2.

Definition 6.4. For each x ∈ R2
\ (K̃ ∪ B̃) lying inside the caustic, we define the

incidence matrix I (x) = (I (x)i ) ∈ Mat(3, 1) such that I (x)i = 0 if there is no
gradient line from n(x) to si (x), and I (x)i = 1 otherwise.

Remark 6.5. Similar definitions in a different setting appear in [Igusa 2002; 1993;
Igusa and Klein 1993], highlighting the relation between Morse theory and alge-
braic K-theory. The definition of incidence matrix also resembles that of transition
matrix given in [Kokubu 2000].

The incidence matrix at x gives information about the phase portrait of the gra-
dient vector field ∇ f̃x and is related to the Morse differential simply as

∂x n(x)= I (x)1s1(x)+ I (x)2s2(x)+ I (x)3s3(x).

The incidence matrix is constant on each connected component of R2
\ (K̃ ∪ B̃):

Indeed, the gradient vector fields ∇ f̃x are orbit equivalent for all x in the same
connected component, and so the Morse complexes are isomorphic. Let U and V
be two such components lying inside the caustic such that ∂U ∩ ∂V 6= ∅, with
incidence matrix I (U ) and I (V ), respectively. For τ ∈ {1, 0,−1}, let Ei j (τ ) ∈

Mat(3, 3) be the triangular matrix whose (k, l)-entry is 1 if k = l, is τ if k = i
and l = j , and is 0 otherwise. By results in [Marelli 2006b], crossing a bifurcation
line can change at most only one of the entries of the incidence matrix. Therefore
either

• I (U ) 6= I (V ) and so there is only one k ∈ {1, 2, 3} such that I (U )k 6= I (V )k ,
or

• I (U )= I (V ).
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Definition 6.6. Consider the transformation matrix from U to V associated to
points in ∂U ∩ ∂V ∩ B̃1 of a bifurcation line of B̃. When this bifurcation line
is characterized by the appearance of a nongeneric gradient line from si to s j , the
transformation matrix is of the form Ei j (τ ), with Ei j (τ )I (U )= I (V ).

When I (U ) 6= I (V ) it follows that τ = 1 if I (U ) j = 0, and τ =−1 if I (U ) j = 1.
When instead I (U ) = I (V ), there is an ambiguity in the choice of τ , which will
be discussed in Example 6.8.

We give two examples to clarify the previous definition.

Example 6.7. Suppose the phase portrait of ∇ f̃x for x ∈U and for x ∈ V is repre-
sented by the incidence matrices I (U )= (1, 1, 1) and I (V )= (1, 1, 0), respectively.
There are two possible bifurcations from U to V (see [Marelli 2006a; 2006b] for
further explanations and some pictures): Either the nongeneric gradient line γs1s3

or the nongeneric gradient line γs2s3 appears in the phase portrait of ∇ f̃x when
x is the bifurcation point. The first bifurcation corresponds to the transformation
matrix E31(−1), while the second corresponds to E32(−1). Instead, if crossing
from V to U , the same bifurcations give the transformation matrices E31(1) and
E32(1), respectively.

Example 6.8. I (U )= I (V ) occurs only in case (c) of the proof of Proposition 6.11
and shown in Figure 1 (which contains the notation), along the bifurcation line
between δ and ε. The phase portraits in δ and ε, which are represented respectively
in [Marelli 2006b, Figures 4.20 and 4.19], can be summarized here as follows. The
separatrixes that connect s1 and s3 to n in α (the phase portrait over α is shown in
[Marelli 2006b, Figure 4.17]) can form a saddle-to-saddle separatrix in ε, but this
can not occur in δ. This can provide a criterion for the choice of τ (which cannot be
justified further here) considering only the special example of the perturbed elliptic
umbilic. The matrix M(w3) in the proof of Proposition 6.11 is the transformation
matrix from ε to δ. There the choice of τ is the one that solves the monodromy.

Suppose now that U and V lie outside the caustic K̃ and ∂U ∩ ∂V ∩ B̃1 is a
subset of B̃ j , one of the three bifurcation lines forming the bifurcation diagram B̃,
and assume B̃ j enters into K̃ at a point p through the side l j of K̃ , where n and
s j form a birth/death pair. Since we are working in a neighborhood of K̃ , we can
assume that p ∈ ∂U ∩ ∂V . Inside the caustic and in a neighborhood of p, we can
associate a transformation matrix Eik(τ ) to B̃ j using Definition 6.6.

Definition 6.9. If U and V lie outside K̃ and are as above, the transformation
matrix from U to V associated to points in ∂U∩∂V∩B̃1 of the bifurcation line B̃ j is
the matrix Eik(τ )∈Mat(2, 2) obtained from Eik(τ )∈Mat(3, 3) above by deleting
the j-th row and the j-th column.
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The transformation matrix we associate to a bifurcation line B̃ j from U to V
defines a morphism between the Morse complexes of U and V .

Definition 6.10. The isomorphism ̂̃E(U ) ∼= ̂̃E(V ) gluing ̂̃E along B̃ j is the one
induced by the transformation matrix of Definition 6.6 or Definition 6.9 associated
to the bifurcation line B̃ j .

We have now to check that we can extend ̂̃E through the codimension 2 subset
given by intersection points of bifurcation lines, limit points of bifurcation lines on
the caustic, and the three cusps.

We start by considering intersection points of bifurcation lines. In [Marelli
2006b] we analyzed the conditions under which two bifurcation lines can intersect
themselves.

Proposition 6.11. The holomorphic bundle ̂̃E can be extended through intersec-
tion points of bifurcation lines.

Proof. We check that, for all possible cases of intersection of bifurcation lines de-
scribed in [Marelli 2006b] and for a chosen loop 0 around the intersection point p,
the composition of the transformation matrices of bifurcation lines at intersection
points with 0 is the identity.

From [Marelli 2006b], we know there are the three cases (a), (b), and (c) of
Figure 1. The phase portraits in the subsets determined by bifurcation lines and
of bifurcations in cases are represented in [ibid., Figures 4.7, 4.8 and 4.9 for (a),
4.11, 4.12, 4.13 and 4.14 for (b), and 4.17, 4.18, 4.19, 4.20, 4.21 and 4.22 for (c)].

In case (a), we know that the two bifurcation lines are characterized by the ap-
pearance of the same saddle-to-saddle separatrix, obtained by gluing the same pair
of separatrices. So, choosing a simple loop 0 around p intersecting for simplicity
the bifurcation lines at four points wi for i = 1, . . . , 4, and associating to each wi

a transition matrix M(wi ) according to Definition 6.6, we have

M(w1)= M(w3)= M(w2)
−1
= M(w4)

−1,

and thus

M(w4)M(w3)M(w2)M(w1)= Id .

This implies that there is no monodromy around p and so the holomorphic bundlễE can be extended across p.
In case (b), we chose again a simple loop 0 around p intersecting the bifurcation

lines at four points wi for i = 1, . . . , 4. Suppose w1 belongs to the bifurcation line
from α to β, w2 to the bifurcation line from β to δ, w3 to the bifurcation line from
δ to γ , and w4 to the bifurcation line from γ to α. The transformation matrices
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α
β

γ
δ

α β

γ
δ

α β

γ δ
ε

Figure 1. Clockwise from top left: Intersection of bifurcations
lines in cases (a), (b), and (c)

associated by Definition 6.6 to the bifurcation lines at each wi are given by

M(w1)=

1 −1 0
0 1 0
0 0 1

 , M(w2)=

1 0 0
0 1 0
0 −1 1

 ,
M(w3)=

1 1 0
0 1 0
0 0 1

 , M(w4)=

1 0 0
0 1 0
0 1 1

 .
Then M(w4)M(w3)M(w2)M(w1)= Id, and so the holomorphic bundle ̂̃E can be
extended across p.

In case (c) choose a simple loop 0 around p that intersects the bifurcation lines
at five points wi for i = 1, . . . , 5, starting from the bifurcation line from α to β and
then proceeding anticlockwise. The transformation matrices are then

M(w1)=

1 −1 0
0 1 0
0 0 1

 , M(w2)=

1 0 0
0 1 0
0 −1 1

 , M(w3)=

 1 0 0
0 1 0
−1 0 1

 ,
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M(w4)=

1 1 0
0 1 0
0 0 1

 , M(w5)=

1 0 0
0 1 0
1 0 1

 .
Then M(w5)M(w4)M(w3)M(w2)M(w1)= Id, and so the holomorphic bundle ̂̃E

can be extended across p. �

We analyze now the behavior of ̂̃E around limit points of bifurcation lines be-
longing to the caustic.

Proposition 6.12. The holomorphic bundle ̂̃E can be extended through limit points
of bifurcation lines belonging to the caustic, when they are not cusps.

Proof. From [Marelli 2006b] we know there are two cases: generically, either (i)
the bifurcation line B̃ enters into the caustic K̃ at a fold or (ii) it is a half-line with
origin at a fold (and the bifurcation line B̃, near its origin, lies inside K̃ ). See
Figure 2. In both cases, let us denote this fold by p.

In case (i), p is not a cusp. So at each point of the caustic K̃ near p, the node
n glues with a saddle, which we suppose is s1. Suppose also that the half-line B̃
has its endpoint on the side of the caustic where n glues with s2. With α the region
marked in Figure 2, suppose that the phase portrait of ∇ f̃x for x ∈α contains all the
gradient lines γnsi . Choose a simple loop 0 around p intersecting B̃ at two points
w1 and w3, and K̃ at two points w2 and w4. Suppose w1 lies inside the caustic
and w4 outside. The transition matrices at w1 and w3, according respectively to
Definitions 6.6 and 6.9, are

M(w1)=

1 0 0
0 1 0
0 −1 1

 and M(w3)=

(
1 0
1 1

)
.

Consider an element h ∈ ̂̃E x for x ∈ α. Since ̂̃E x = (
⊕3

i=1 C[si (x)])/∂x(C[n]), we
write h as an equivalence class [(h1, h2, h3)] in the basis (s1, s2, s3) of C[si (x)],

K̃

B̃

K̃

B̃(i) (ii)

α α

pp

Figure 2. Mutual positions of bifurcation lines and caustic.
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where (h1, h2, h3) ∼ (h1 + c, h2 + c, h3 + c) for every c ∈ C. Moving along
0 from α into β, crossing B̃ at w1, we transform h by M(w1). At β, we have
(h1, h2, h3)∼ (h1+ c, h2+ c, h3) for every c ∈ C, so we can write

[M(w1)h] = [(h1, h2,−h2+ h3)] = [(0, h2− h1,−h2+ h3)].

According to Definition 6.3, when crossing K̃ at w2 we have the gluing isomor-
phism

[(0, h2− h1,−h2+ h3)] ∼= (h2− h1,−h2+ h3).

Crossing now B̃ along 0 at w3, we have

[M(w3)(h2− h1,−h2+ h3)
t
] = (h2− h1, h3− h1).

Crossing K̃ at w4 and using the gluing isomorphism of Definition 6.3 we obtain

(h2− h1, h3− h1)∼= [(0, h2− h1, h3− h1)] = [(h1, h2, h3)].

This shows that there is no monodromy and so ̂̃E can be extended through p.
In case (ii), suppose for simplicity that at p the node n and the saddle s1 form

the birth/death pair; that B̃ intersects K̃ at another point where n and s2 form the
birth/death pair; and that for x ∈α the phase portrait of∇ f̃x contains all the gradient
lines γnsi . Choose a simple loop 0 around p intersecting B̃ at the point w1, and K̃
at two points w2 and w3. We know w1 lies inside the caustic. The transformation
matrix of Definition 6.6 at w1 is

M(w1)=

 1 0 0
0 1 0
−1 0 1

 .
Consider an element h ∈ ̂̃E x for x ∈ α, and write it again as in case (i) as an
equivalence class [(h1, h2, h3)] in the basis (s1, s2, s3) of C[si (x)]. Going along 0
into β, crossing B̃ in w1, we transform h by M(w1). In β we have (h1, h2, h3)∼

(h1+ c, h2+ c, h3) for every c ∈ C, so we can write

[M(w1)h] = [(h1, h2,−h1+ h3)] = [(0, h2− h1,−h1+ h3)].

Now, crossing K̃ at w2 and using the gluing isomorphism of Definition 6.3, we
have

[(0, h2− h1,−h1+ h3)] ∼= (h2− h1,−h1+ h3).

Finally, entering into K̃ through w3 and using again the gluing isomorphism, we
obtain in (α)

(h2− h1,−h1+ h3)∼= [(0, h2− h1,−h1+ h3)] = [(h1, h2, h3)].

This shows that there is no monodromy and so ̂̃E can be extended through p. �
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Now we check if ̂̃E can be extended to cusps. To start suppose that at a cusp c
the node n glues with the saddles s2 and s3. According to [Marelli 2006b] there
are two cases: either (I) for x in a neighborhood of c, inside the caustic, the phase
portrait of ∇ f̃x contains all the gradient lines γnsi , or (II) it contains only γns2

and γns3 . In both cases a monodromy appears around the cusp.

Lemma 6.13. In case (I), if 0 is a nontrivial simple loop around c, the monodromy
of the holomorphic structure of ̂̃E along 0 is represented by the matrix

(8) M =
(

1 −1
0 −1

)
.

Proof. For x outside the caustic, since ̂̃E x =C[s1]⊕C[s j ], we may write an element
h ∈ ̂̃E x as (h1, h j ). Suppose for k ∈ {2, 3} that lk is the branch of the caustic where
n glues with sk . Then on lk the gluing isomorphism of Definition 6.3 identifies s j

with the saddle different from sk and s1. So, entering into the caustic through l2

we have

(h1, h j )∼= [(h1, h j , 0)] = [(h1− h j , 0,−h j )].

Now exiting from the caustic through l3, we have

[(h1− h j , 0,−h j )] ∼= (h1− h j ,−h j ),

which gives the expected monodromy. �

Lemma 6.14. In case (II), if 0 is a nontrivial simple loop around c, the mon-
odromy of the holomorphic structure of ̂̃E along 0 is represented by the matrix

(9) M =
(

1 0
0 −1

)
Proof. Using the notation in the proof of the previous lemma, we have, entering
into the caustic through l2

(h1, h j )∼= [(h1, h j , 0)] = [(h1, 0,−h j )].

Exiting the caustic through l3, we have

[(h1, 0,−h j )] ∼= (h1,−h j ),

which gives the expected monodromy. �

In both cases, the matrix M is invertible. This means that the same monodromy
is associated to 0 and to its opposite 0−1 in π1(L \ {c}).

If now at c the node n glues with the saddles s1 and s2 we have a similar result:
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Lemma 6.15. If 0 is a nontrivial simple loop around c, the monodromy of the
holomorphic structure of ̂̃E along 0 is represented in case (I) by the matrix

(10) M =
(
−1 0
−1 1

)
and in case (II) by the matrix

(11) M =
(
−1 0
0 1

)
.

Proof. The proof is analogous to that of Lemmas 6.13 and 6.14. �

Again observe that the matrix M is invertible, meaning that 0 and 0−1 provide
the same monodromy.

Finally, if the node n glues at c with the saddles s1 and s3, we obtain:

Lemma 6.16. If 0 is a nontrivial simple loop around c, the monodromy of the
holomorphic structure of ̂̃E along 0 is represented in case (I) by the matrix

(12) M =
(

0 −1
1 −1

)
or by its inverse M−1

=

(
−1 1
−1 0

)
and in case (II) by the matrix

(13) M =
(

0 −1
1 0

)
or by its inverse M−1

=

(
0 1
−1 0

)
.

Proof. The proof is similar to that of Lemma 6.13 and 6.14. �

In both cases, if 0 is associated to M (say), then 0−1 is associated to M−1.
To solve the monodromy around the cusps it is necessary to add a new kind

of correction. It is related to the possibility of defining a spin structure on L̃ and
to the problem of orientation in Lagrangian intersection Floer homology. (In fact
from [Fukaya et al. 2000] we know that the existence of a relative spin structure
on L̃ is a condition for the orientability of the moduli space of pseudoholomorphic
discs.) This is suggested intuitively by what follows: Consider the composition
π ◦ i : L̃ ↪→ R4

→ R2, where π is the projection of the fibration and i is the
Lagrangian immersion, and note that a spin structure can be induced at least on
the subset of L̃ where dπ is invertible, that is, on L̃ \π−1(K̃ ). This means that the
caustic or a subset of it represents an obstruction to the existence of a spin structure
on L̃ .

The following result shows that the set of cusps is actually the obstruction to the
existence of a spin structure on a Lagrangian submanifold L with generating func-
tion f . It proves, in fact, that the second Stiefel–Whitney classw2(L)∈ H 2(L ,Z2)

of L , which represents the obstruction to the existence of spin structures on L , has
the set of cusps as Poincaré dual in H0(L ,Z2).
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Lemma 6.17. We have PD(w2(L)) = A3( f ) where A3( f ) is the set of singular
points of f of type A3, that is, the set of cusps.

Proof. The equality is mainly proved by using the Thom polynomials of Lagrangian
singularities. The proof is essentially given in [Kazarian 2003], where it follows
from other major results given there. Kazarian first demonstrates that the cohomol-
ogy class PD(�( f )), the Poincaré dual to the locus �( f ) of singularities of f of
class �, is equal to the Thom polynomial P� associated to �. Kazarian computes
Thom polynomials (see also [Vassilyev 1988]), and in particular, when � = A3,
shows that P� = w2(T ∗L)= w2(T L). �

Let A be an immersed 1-dimensional submanifold of R2 with three noninter-
secting connected components, each of which is a half-line with vertex at one of
the three cusps of the caustic. To solve the monodromy around the cusps it is
enough to glue (for example along A) the holomorphic structure so as to cancel
the monodromy. The problem is to justify this procedure, which for the moment is
just an ad hoc correction. As said, the idea, coming from the orientation problem
of Lagrangian intersection Floer homology and confirmed by Lemma 6.17, is that
the ability to define a spin structure on some flat bundle on L̃ should provide such
a correction. We make the following natural definition:

Definition 6.18. Along each half-line forming the submanifold A, depending on
which cusp the half-line has as vertex, we glue the holomorphic bundle ̂̃E using the
inverse of morphism (8), (10), or (12) in case (I) and (9), (11) or (13) in case (II).

This correction is called orientation twist in [Fukaya 2005].

Proposition 6.19. If ̂̃E is glued along A according to Definition 6.18, then its
holomorphic structure can be extended across the cusp.

Proof. The proof is a direct consequence of Lemma 6.13, 6.14, 6.15 and 6.16,
since the corrections applied are just the inverses of what we want to cancel. �

We explain now how to justify Definition 6.18, generalizing the idea outlined
in [Fukaya 2005, Section 5.4]. Before considering the case of a perturbed elliptic
umbilic, let us examine for simplicity a Lagrangian submanifold L exhibiting a
cusp c. In this case, A is a half-line with vertex in c. Consider a ball U containing c.
Since U is contractible, L owns a spin structure over U . On the other hand, dπ is
invertible over the complement of U and so induces a spin structure on L . Since by
Lemma 6.17, w2(L) does not vanish because of c, it follows that the nonexistence
of a spin structure on L comes from the gluing of T L along the boundary of U . The
purpose now is to show how A can provide both a correction to T L , by defining a
new bundle carrying a spin structure, and a correction to the flat U (1)-line bundle
L on L , yielding the gluing that cancels the monodromy. Consider representations

ρ : π1(R
2
\ {c})→ {1,−1} = O(1)⊂U (1)
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defining two representations ρO(1)
:= ρ1 and ρU (1)

:= ρ2. According to this choice
we have, respectively, a flat O(1)-bundle Lρ1 or a flat U (1)-bundle Lρ2 on R2

\{c}.
There are two possibilities for ρ. It is either the trivial or the nontrivial group
homomorphism Z→ {1,−1}. When ρ is the nontrivial representation, its values
on a path 0 ∈ π1(R

2
\{c}) are given by the intersection number of 0 and A. Lρ1 is

the trivial bundle when ρ is trivial but is a Möbius strip when ρ is nontrivial. The
same holds for Lρ2 ; the bundle Lρ2 restricted to a generator 0∼= S1 of π1(R

2
\{c})

is the flat line bundle on the torus T 1
= S1 with factor of automorphy equal to

either 1 or −1 according to whether ρ is trivial or not. In other words, we may
think of a section of Lρ2 over 0 as multiplied by respectively 1 or −1 at 0∩ A (the
factor of automorphy for U (1)-line bundles on tori and the induced connection on
the mirror bundle are explained [Bruzzo et al. 2001; 2002]). The projection of the
fibration π :R4

→R2 and the composition π◦i , where i : L ↪→R4 is the Lagrangian
immersion, define respectively bundles LR4

ρ = π
∗Lρ on R4 and LL

ρ = (π ◦ i)∗Lρ

on L , away from π−1(c) and (π ◦ i)−1(c), respectively, where ρ can be either ρ1

or ρ2.
If ρ1 is the nontrivial representation, then, since a Möbius strip has w1 = 1, by

setting M = LR4

ρ1
⊕LR4

ρ1
, we have

w1(M)= 2w1(L
R4

ρ1
)= 0 and w2(M)= 2w2(L

R4

ρ1
)+w1(L

R4

ρ1
)w1(L

R4

ρ2
)= 1.

This implies that the bundle T L ⊕ M |L over L carries a spin structure. In fact,
since LL

ρ = i∗(π∗Lρ)= i∗(LR4

ρ ) and so w2(L
L
ρ )= i∗w2(L

R4

ρ ), we have

w2(T L ⊕M |L)= w2(T L)+w1(T L)w1(M |L)+w2(M |L)= 0

in H 2(L;Z2). This together with the facts that L has dimension 2 and that M is a
real orientable vector bundle on R4 implies by definition that L has a relative spin
structure.

Now consider the flat line bundle L⊗LL
ρ2

over L with connection ∇ρ =∇⊗∇L
ρ2

,
where (L,∇) is the given flat line bundle over L and ∇L

ρ2
is the flat connection

of LL
ρ2

defined by ρ2, and consider the effect of the connection ∇̂ρ on the trans-
formed bundle Ê . It induces a nontrivial gluing along A, given by multiplication
by−1, which cancels the monodromy along c, given also by multiplication by−1.
In fact, if s1 and s2 are the saddles and l1 and l2 are the sides of the caustic
where the node n glues together with s1 and s2, respectively, we have accord-
ing to Definition 6.3 that (h) ∼= [(h, 0)] along l1. In Morse homology we have
the equality [(h, 0)] = [(0,−h)] along l2. According to Definition 6.3, we have
[(0,−h)]∼= (−h). Finally, along A, the connection ∇̂ρ gives the gluing (−h)∼= (h).

Consider now our case of a perturbed elliptic umbilic. Take a suitable ball U
containing a cusp c of L̃ such that L̃ ∩ π−1(U ) has two connected components.
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For simplicity, suppose that c is the cusp of the caustic where n, s2 and s3 glue
together. Identify the critical points of the gradient system over x and the points
of L̃ over x . Then of the two components of L̃ ∩π−1(U ), one contains s1 and the
other s2 and s3. Note that T L̃ carries a spin structure over the first component but
not over the second, where we find the same situation described above for the cusp.
So choose ρ so that LL̃

ρ1
and LL̃

ρ2
are the trivial flat line bundles over the component

containing s1 and the nontrivial one over the component containing s2 and s3. As
above, set M = LL̃

ρ1
⊕LL̃

ρ1
. Then T L̃ ⊕ M |L carries a spin structure on both the

components. Moreover, the connection ̂̃∇ρ on the mirror bundle ̂̃E induced by the
connection ∇̃ρ = ∇̃⊕∇̃ L̃

ρ2
cancels the monodromy of Lemmas 6.13 and 6.14 as we

will now explain.
Consider first the case (II) described by Lemma 6.14. Since no gradient line

exists from n to s1, it can be treated as done above for the cusp. We get that the flat
connection gives a gluing along A that is multiplication by 1 on chains generated
by s1 and multiplication by −1 on chains generated by s2 or s3; this cancels in
homology the monodromy of Lemma 6.14.

Consider now case (I) described by Lemma 6.13. The gluing provided by ̂̃∇ρ
must commute with the equivalence among cycles in Morse homology in order to
define a gluing in homology, and this is not automatic as in case (II) because of
the gradient line from n to s1. In fact, the connection ̂̃∇ρ induces a connection
on ∂(〈n〉) = 〈s1+ s2+ s3〉 characterized by a gluing that is multiplication by −1.
On the other hand, the connection on

∑3
i=1 C[si ] has factor of automorphy −1 on

the chains s2 and s3 and 1 on s1. This means that it does not commute with the
action on cycles determined by the differential ∂ . Thus, to induce a connection in
homology, that is, on the quotient

∑3
i=1 C[si ]/∂(〈n〉), the connection at the chain

level, that is, on
∑3

i=1C[si ], must be split into two parts. One of these, commuting
with that on ∂(〈n〉), will induce a connection in homology. The problem is the
choice of a splitting of the connection at the chains level. This is performed as
follows. The gluing (h1, h2, h3) ∼= (h1,−h2,−h3) is split as (h1,−h2,−h3) =

(h1−h2−h3,−h2,−h3)+ (h2+h3, 0, 0) and on the quotient the gluing given by
[(h1,−h2,−h3)] = [(h1 − h2 − h3,−h2,−h3)] is induced. Indeed, it commutes
with the Morse differential:

(h1, h2, h3)∼= (h1+ g, h2+ g, h3+ g)
∼= (h1+ g− h2− g− h3− g,−h2− g,−h3− g)

= (h1− h2− h3− g,−h2− g,−h3− g),

where the first equivalence is that among cycles in Morse homology and the second
is the gluing, and

(h1, h2, h3)∼= (h1− h2− h3,−h2,−h3)∼= (h1− h2− h3− g,−h2− g,−h3− g)
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where now the first equivalence is the gluing and the second is that among cycles
in Morse homology. The splitting we chose corresponds to a gluing, at the chain
level, given by multiplication by 1 on the generator s1, and, on the generators s2

and s3, by multiplication by −1, followed by a projection parallel to s1 onto the
lines generated by s3 and s2, respectively. A better justification for this choice
requires, perhaps, considering a more general situation than that of a perturbed
elliptic umbilic. Anyway, this solves the monodromy. Indeed, as in the proof of
Lemma 6.13, we have along l2 (h1, h j ) ∼= [(h1, h j , 0)] = [(h1− h j , 0,−h j )], the
connection ∇ρ gives the gluing

[(h1− h j , 0,−h j )] ∼= [(h1− h j + h j , 0, h j )] = [(h1, 0, h j )],

and along l3 we have [(h1, 0, h j )] ∼= (h1, h j ).
It remains to check that there is no monodromy in the holomorphic structure of̂̃E when going along a loop 0 such that the caustic lies in the compact region of R2

determined by 0, as described in Lemma 5.1.

Theorem 6.20. The monodromy of Lemma 5.1 is solved by the following correc-
tions: ̂̃E is glued by means of the morphisms of Definition 6.3 along the caustic K̃ ,
of Definition 6.10 along the bifurcation locus B̃, and of Definition 6.18 along the
relative cycle A.

Proof. The theorem follows from Propositions 6.11, 6.12 and 6.19. �

As an example, we write the transformation matrices associated to bifurcation
lines and to half-lines forming the relative cycles A, which are met by a loop 0 as
described above, and show that their composition is the identity, implying that the
expected monodromy is canceled. Consider, for instance, the bifurcation diagram
of Figure 3.

Assume for simplicity that 0 is directed counterclockwise. Set ai = Ai ∩0 and
bi = B̃i ∩0, where Ai are the half-lines forming the relative cycle A, and B̃i are
the bifurcation lines for i = 1, 2, 3. Then the matrices corresponding to gluing
morphisms at points ai and bi are

M(b1)=

(
1 −1
0 1

)
, M(b2)=

(
1 0
−1 1

)
, M(b3)=

(
1 0
1 1

)
,

M(a1)=

(
1 0
0 −1

)
, M(a2)=

(
−1 0
0 1

)
, M(a3)=

(
0 −1
1 0

)
.

Observe now that M(b3)M(a3)M(a2)M(b2)M(a1)M(b1)= Id, which implies that
the monodromy is solved.

With such corrections, the mirror bundle ̂̃E is endowed with a holomorphic
structure that can be extended along the caustic and the bifurcation locus.
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B̃1

B̃3

B̃2

0

A2

A1

A3

b1

b3

b2

a2

a1

a3

Figure 3. An allowed bifurcation diagram together with the half-
cycle A and the loop 0.
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