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We propose a notion, quasiabelian third cohomology of crossed modules,
which generalizes Eilenberg and Mac Lane’s abelian and Ospel’s quasi-
abelian cohomology. We classify crossed pointed categories in terms of it.
We apply the process of equivariantization to the latter to obtain braided
fusion categories, which may be viewed as generalizations of the categories
of modules over twisted Drinfeld doubles of finite groups. As a consequence,
we obtain a description of all braided group-theoretical categories. We give
a criterion for these categories to be modular. We describe the quasitrian-
gular quasi-Hopf algebras underlying these categories.

1. Introduction

Turaev’s notion [2000; 2008] of a crossed category (short for braided group-crossed
category) has attracted much attention recently [Drinfeld et al. 2010; Kirillov
2001a; 2001b; Müger 2004; 2005]. Roughly, a crossed category consists of a
group G, a G-graded tensor category C, an action g 7→ Tg of G on C by tensor
autoequivalences, and G-braidings c(X, Y ) : X ⊗ Y ∼

−→ Tg(Y )⊗ X for X, Y ∈ C,
satisfying certain compatibility conditions. Crossed categories are known to arise
in various contexts; for instance, Müger [2004] showed that Galois extensions of
braided tensor categories have a natural structure of crossed categories. In [2005],
Müger established a connection between 1-dimensional quantum field theories and
crossed categories. Kirillov [2001b] showed that crossed categories arise in the
theory of vertex operator algebras.

A fusion category is said to be pointed if all its simple objects are invertible.
One of the goals of this paper is to classify all crossed pointed categories. From
[Joyal and Street 1993], it is known that braided pointed categories are classified
by Eilenberg and Mac Lane’s abelian cohomology H3

ab(A,K×), where A is a finite
abelian group. On the other hand, certain crossed pointed categories in which the
group action is strict were described by Turaev [2000; 2008] in terms of Ospel’s
quasiabelian cohomology H3

qa(G,K×), where G is a (not necessarily abelian) finite
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group. As remarked in [Müger 2005, Section 4.9], to obtain a complete classifica-
tion of crossed pointed categories one must allow for nonstrict group actions. To
this end, Definition 3.4 generalizes Ospel’s quasiabelian cohomology to the notion
of quasiabelian third cohomology H3

qa(X,K×) of a crossed module X. To any given
ξ ∈ Z3

qa(X,K×), we associate a crossed pointed category C(ξ) and show that all
crossed pointed categories are of this form.

Another idea that has been studied extensively recently is that of a modular
category. Examples of modular categories arise in quantum group theory, three-
dimensional topology, vertex operator algebras and rational conformal field theory.
Let G be a finite group. Perhaps the most accessible construction of a modular
category is that of the category of modules over the Drinfeld double D(G) of G.
Let ω be a 3-cocycle on G. In [1990; 1992], Dijkgraaf, Pasquier, and Roche
introduced a quasitriangular quasi-Hopf algebra Dω(G), generalizing the Drin-
feld double D(G). It is well known that the category Dω(G)-Mod of modules
over Dω(G) is a modular category. Modular categories resembling Dω(G)-Mod
arise naturally from crossed pointed categories. An important feature of a general
crossed fusion category is that the application of the equivariantization process
(which is analogous to taking the invariants under a group action) yields a braided
fusion category. We apply the equivariantization process to the crossed pointed
category C(ξ) and study the resulting braided fusion category, which resembles the
category Dω(G)-Mod. As a consequence, we obtain a description of all braided
group-theoretical categories. In Proposition 5.6, we show that C(ξ) is modular
if and only if ξ is nondegenerate in the sense of Definition 3.10 and a certain
homomorphism is surjective.

By a general result, the equivariantization of the category C(ξ) is equivalent as
a braided fusion category to the category of modules over some finite-dimensional
quasitriangular quasi-Hopf algebra H . In the sequel we describe such an H .
Namely, given ξ ∈ Z3

qa(X,K×), we construct a finite-dimensional quasitriangular
quasi-Hopf algebra H(ξ), generalizing Dω(G), and show that C(ξ)∼= H(ξ)-Mod,
as braided fusion categories.

Outline. Section 2 recalls essential definitions and results about nondegenerate
fusion categories, equivariantization, and crossed categories. Section 3 proposes
the notion of quasiabelian third cohomology of crossed modules. In Section 4, we
construct crossed pointed categories from quasiabelian 3-cocycles and classify the
former. In Section 5, we apply the process of equivariantization to the categories
obtained in Section 4 and study the resulting braided fusion categories. In Sec-
tion 6, we construct finite-dimensional quasitriangular quasi-Hopf algebras from
quasiabelian 3-cocycles and show that these underlie the braided fusion categories
obtained in Section 5.
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2. Preliminaries

We will freely use the language and basic theory of fusion categories and modular
categories [Bakalov and Kirillov 2001; Ostrik 2003; Etingof et al. 2005].

2a. Conventions. Let K be an algebraically closed field of characteristic 0. The
multiplicative group of nonzero elements of K will be denoted by K×. Unless
otherwise stated, all cocycles will have coefficients in the trivial module K×. All
functors will be assumed to be additive and K-linear on the morphism spaces. The
unit object of a tensor category will be denoted by 1. The identity element of a
group will be denoted by e.

2b. Morita equivalence. Following [Müger 2003a], we say that two fusion cate-
gories C and D are Morita equivalent if D is equivalent to the dual fusion category
C∗M for some indecomposable right C-module category M; see also [Etingof et al.
2005; Ospel 1999]. This is known to be an equivalence relation on the class of
fusion categories. A fusion category is said to be pointed if all its simple objects
are invertible. A fusion category is group-theoretical if it is Morita equivalent to a
pointed category.

2c. Nondegenerate fusion categories. Let C be a braided fusion category with
braiding c. Following [Müger 2003b], we say two objects X and Y of C centralize
each other if c(Y, X) ◦ c(X, Y )= idX⊗Y .

The centralizer of a fusion subcategory D ⊆ C is the full fusion subcategory
D′ of C consisting of all objects X ∈ C that centralize every object in D. The
category C is said to be nondegenerate if C′ = Vec (the fusion category generated
by the unit object). If C is a premodular category, that is, if it has a twist, then it is
nondegenerate if and only if it is modular [Beliakova and Blanchet 2001; Müger
2003b; Drinfeld et al. 2010].

Proposition 2.1. Let C be a nondegenerate fusion category. Suppose C admits a
twist. Then the set of twists on C is in bijection with the set of invertible self-dual
objects of C.

Proof. Let Aut⊗(idC) denote the group of tensor automorphisms of the identity
tensor functor idC. Let Aut∗

⊗
(idC) := {ϕ ∈Aut⊗(idC) | ϕX∗ = (ϕX )

∗ for all X ∈C}.
Let θ be a fixed twist on C. The map ϕ 7→ θϕ defined by (θϕ)X := θX ◦ ϕX for all
X ∈ C is a bijection from Aut∗

⊗
(idC) to the set of all twists on C.

Let X1, X2, . . . denote the simple objects of C, and let G(C) denote the group
of invertible objects of C. Let S denote the S-matrix of C with respect to θ . It was
shown in [Gelaki and Nikshych 2008] that the map

G(C)→ Aut⊗(idC), X j 7→ ϕ j , where (ϕ j )X i :=
Si j

d(X i )d(X j )
idX i ,
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is an isomorphism. It is easy to check that this map restricts to a bijection between
the set of invertible self-dual objects of C and the set Aut∗

⊗
(idC). �

2d. Equivariantization. Recall that a tensor functor between two tensor categories
C and D is a triple (F, ϕ, ϕ0), where F : C → D is a functor, ϕ is a natural
isomorphism F ◦ ⊗C

∼
−→⊗D ◦ (F × F), and ϕ0 is an isomorphism F(1C)

∼
−→ 1D

satisfying certain compatibility conditions; see [Kassel 1995]. We will call ϕ the
tensor structure on F and ϕ0 the unit-preserving structure on F . For a group
G, we will denote by G the tensor category whose objects are elements of G,
whose morphisms are the identities, and whose tensor product is given by the
group operation in G.

Let C be a fusion category with an action of a finite group G given by a tensor
functor T :G→Aut⊗(C), g 7→ Tg. Let γ be the tensor structure on the functor T .
In this situation one can define a G-equivariant object in C to be a pair (X, {ug}g∈G)

in which X is an object of C and

(1) ug : Tg(X) ∼−→ X for g ∈ G,

is a family of isomorphisms, called the equivariant structure on X , such that

(2) ugh = ug ◦ Tg(uh) ◦ γg,h(X) for all g, h ∈ G.

One defines morphisms between equivariant objects to be morphisms in C that
commute with the equivariant structures. The equivariantization CG of C is the
category of G-equivariant objects of C [Kirillov 2001a; Arkhipov and Gaitsgory
2003; Gaitsgory 2005; Tambara 2001]. The equivariantization category CG is a
fusion category with tensor product defined by

(X, {ug}g∈G)⊗ (X ′, {u′g}g∈G) := (X ⊗ X ′, {ũg}g∈G)

for (X, {ug}g∈G), (X ′, {u′g}g∈G) ∈ CG , where

(3) ũg := (ug ⊗ u′g) ◦µg(X, X ′)

for all g ∈ G. Here µg is the tensor structure on the functor Tg, g ∈ G.

Remark 2.2. We have FPdim(CG)= |G|FPdim(C).

2e. Crossed categories. Recall that a grading of a fusion category C by a finite
group G is a decomposition C =

⊕
g∈G Cg of C into a direct sum of full abelian

subcategories such that ⊗ maps Cg × Ch to Cgh and ∗ maps Cg to Cg−1 for all
g, h ∈ G. Note that Ce, called the trivial component, is a fusion subcategory of C.
A grading is said to faithful if Cg 6= 0 for all g ∈ G.

Below we recall the notion of a crossed category (short for braided group-
crossed category), introduced by Turaev [2000; 2008] in a more general form;
see also [Drinfeld et al. 2010; Müger 2004; 2005].
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Definition 2.3. A crossed fusion category is an octuple (C,G, T, γ, ι, µ, ν, c) in
which

• G is a finite group;

• C is a fusion category with (not necessarily faithful) G-grading C=
⊕

g∈G Cg;

• T : G → Aut⊗(C), g 7→ Tg is a tensor functor satisfying Tg(Ch) ⊂ Cghg−1 ,
with tensor structure γ and unit-preserving structure ι;

• µ is a family {µg}g∈G , where µg is a tensor structure on Tg;

• ν is a family {νg}g∈G , where νg is a unit-preserving structure on Tg;

• c(X, Y ) : X ⊗ Y ∼
−→ Tg(Y )⊗ X for X ∈ Cg and Y ∈ C is a family of natural

isomorphisms, called G-braiding;

and the following compatibility conditions are satisfed:

(i) (γg,h(Y )⊗ idTg(X)) ◦ (γ
−1
ghg−1,g(Y )⊗ idTg(X)) ◦ c(Tg(X), Tg(Y )) ◦µg(X, Y )

= µg(Th(Y ), X) ◦ Tg(c(X, Y ))

for all g, h ∈ G and objects X ∈ Ch and Y ∈ C.

(ii) α−1
Tg(Th(Z)),X,Y ◦ (γg,h(Z)⊗ idX⊗Y ) ◦ c(X ⊗ Y, Z) ◦α−1

X,Y,Z

= (c(X, Th(Z))⊗ idY ) ◦α
−1
X,Th(Z),Y ◦ (idX ⊗c(Y, Z)),

for all g, h ∈ G and objects X ∈ Cg, Y ∈ Ch and Z ∈ C.

(iii) αTg(Y ),Tg(Z),X ◦ (µg(Y, Z)⊗ idX ) ◦ c(X, Y ⊗ Z) ◦αX,Y,Z

= (idTg(Y )⊗c(X, Z)) ◦αTg(Y ),X,Z ◦ (c(X, Y )⊗ idZ ),

for all g ∈ G and objects X ∈ Cg and Y, Z ∈ C.
(Here α denotes the associativity constraint of C.)

Remark 2.4. The trivial component of a crossed fusion category is a braided fusion
category.

Now let C := (C,G, T, γ, ι, µ, ν, c) be a crossed fusion category. Kirillov
[2001a] and Müger [2004] explain that the equivariantization category CG admits a
braiding, that is, CG is a braided fusion category. The braiding c̃ on CG is defined as
follows. Let (X, {ug}g∈G) and (X ′, {u′g}g∈G) be objects of CG . Let X =

⊕
g∈G Xg

be a decomposition of X with respect to the G-grading of C. Then c̃X,X ′ is given
by the composition

(4) X ⊗ X ′ =
⊕
g∈G

Xg ⊗ X ′
⊕

cXg ,X ′

−−−−−→

⊕
g∈G

Tg(X ′)⊗ Xg

⊕
u′g⊗idXg

−−−−−−→

⊕
g∈G

X ′⊗ Xg = X ′⊗ X.
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Remark 2.5. It is shown in [Drinfeld et al. 2010] that the equivariantization cat-
egory CG is nondegenerate if and only if the G-grading is faithful and the trivial
component Ce is nondegenerate.

Definition 2.6. Consider two crossed fusion categories C= (C,G, T, γ, ι, µ, ν, c)
and C′ = (C′,G ′, T ′, γ ′, ι′, µ′, ν ′, c′). A crossed tensor functor from C to C′ is a
quintuple ( f, F, η, η0, β) in which

• f : G→ G ′ is a group homomorphism,

• F : C→ C′ is a tensor functor with tensor structure η and unit-preserving
structure η0, and

• β is a family {βg}g∈G , where βg : F ◦ Tg
∼
−→ T ′f (g) ◦ F is an isomorphism of

tensor functors,

and the following compatibility conditions are satisfed:

(i) F(Cg)⊆ C′f (g) for all g ∈ G.

(ii) (βg(Y )⊗ idF(X))◦η(Tg(Y ), X)◦ F(c(X, Y ))= c′(F(X), F(Y ))◦η(X, Y ) for
all g ∈ G and objects X ∈ Cg and Y ∈ C.

(iii) T ′f (g)(βh(X)) ◦ βg(Th(X)) ◦ F(γg,h(X)) = γ ′f (g), f (h)(F(X)) ◦ βgh(X) for all
g, h ∈ G and objects X ∈ C.

We say that ( f, F, η, η0, β) is an equivalence if f is an isomorphism and F is
an equivalence.

2f. Pointed categories. A fusion category is said to be pointed if all its simple
objects are invertible.

Let X be a finite group and ω be a 3-cocycle on X . We associate to the pair
(X, ω) a pointed category VecωX whose objects are X -graded finite-dimensional
vector spaces over K, whose morphisms are linear transformations that respect
the grading, and whose unit object is the ground field K supported on {e}. The
tensor product V ⊗W of homogeneous objects V,W ∈VecωX of degrees x, y ∈ X ,
respectively, is defined to be the homogeneous object V ⊗K W of degree xy.

The associativity constraint α is defined by

αU,V,W : (U ⊗V )⊗W ∼
−→U ⊗ (V ⊗W ), (u⊗v)⊗w 7→ ω(x, y, z)u⊗ (v⊗w),

where U, V,W ∈ VecωG and u ∈ U , v ∈ V , w ∈ W are homogeneous elements of
degrees x, y, z ∈ X , respectively.

The left and right unit constraints λ and ρ, respectively, are defined by

λV := K⊗ V ∼
−→ V, 1⊗ v 7→ ω(e, e, x)−1v,

ρV := V ⊗K ∼
−→ V, v⊗ 1 7→ ω(x, e, e)v,

where V ∈ VecωG and v ∈ V is a homogeneous element of degree x ∈ X .
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Every pointed category is equivalent to some VecωX .

2g. Crossed modules. Recall that a (finite) crossed module is a triple (G, X, ∂),
where G and X are (finite) groups with G acting on X as automorphisms, denoted
(g, x) 7→ gx , and ∂ : X→ G is a homomorphism satisfying

∂(x)x ′ = xx ′x−1 for x, x ′ ∈ X,

∂(gx)= g∂(x)g−1 for g ∈ G and x ∈ X.

Note that Ker ∂ is a central subgroup of X .
A homomorphism of crossed modules (G, X, ∂)→ (G ′, X ′, ∂ ′) is a pair of

group homomorphisms ( f : G → G ′, F : X → X ′) such that ∂ ′ ◦ F = f ◦ ∂ and
F(gx)= f (g)F(x) for g ∈ G. We say that ( f, F) is an isomorphism if both f and
F are isomorphisms.

3. Quasiabelian third cohomology of crossed modules

Let A be an abelian group. Eilenberg and Mac Lane [Eilenberg and Mac Lane
1953; 1954; Mac Lane 1952] argue that the cohomology groups Hn(A,K×) are
inappropriate since they do not take into account the abelianness of A, and so
should be replaced by groups Hn

ab(A,K×). (For the cohomology theory for crossed
modules, see [Whitehead 1949].) Below we recall the definition of H3

ab(A,K×).
An abelian 3-cocycle on A is a pair (ω, c), where ω is a normalized 3-cocycle

on A, that is, for all w, x, y, z ∈ A,

ω(x, y, z)= 1 if x, y or z is the identity,

ω(x, y, z)ω(w, xy, z)ω(w, x, y)= ω(w, x, yz)ω(wx, y, z)

and c is a 2-cochain on A (that is, c ∈ C2(A,K×)) satisfying the equations

c(xy, z)=
ω(x, y, z)ω(z, x, y)

ω(x, z, y)
c(x, z)c(y, z),

c(x, yz)=
ω(y, x, z)

ω(x, y, z)ω(y, z, x)
c(x, y)c(x, z)

for all x, y, z ∈ A.
Abelian 3-cocycles on A form an abelian group, denoted by Z3

ab(A,K×), under
pointwise multiplication. The group of coboundaries is defined by

B3
ab(A,K×) :=

{(
dη, (x, y) 7→

η(y, x)
η(x, y)

) ∣∣∣∣ normalized η ∈ C2(G,K×)

}
,

which is a subgroup of Z3
ab(A,K×). The quotient Z3

ab(A,K×)/B3
ab(A,K×) is the

abelian third cohomology of A, denoted H3
ab(A,K×).
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Remark 3.1. The group H3
ab(A,K×) is isomorphic to the group of quadratic forms

on A; see [Mac Lane 1952].

Definition 3.2. We say an abelian 3-cocycle (ω, c) on A is nondegenerate if the
symmetric bicharacter A× A→ K×, (x, y) 7→ c(y, x)c(x, y) is nondegenerate.

In [1999], C. Ospel generalized the notion of abelian third cohomology in the
following way. Let G be a (not necessarily abelian) group. A quasiabelian 3-
cocycle on G is a pair (ω, c), where ω is a 3-cocycle on G and c is a 2-cochain
on G (that is, c ∈ C2(G,K×)) satisfying for all g, x, y, z ∈ G the equations

ω(gxg−1, gyg−1, gzg−1)= ω(x, y, z),

c(gxg−1, gyg−1)= c(x, y),

c(xy, z)=
ω(x, y, z)ω(xyz(xy)−1, x, y)

ω(x, yzy−1, y)
c(x, yzy−1)c(y, z),

c(x, yz)=
ω(xyx−1, x, z)

ω(x, y, z)ω(y, z, x)
c(x, y)c(x, z),

Note 3.3. The third equation above appeared in a slightly different but equivalent
form in [Ospel 1999].

Quasiabelian 3-cocycles on G form an abelian group, denoted by Z3
qa(G,K×),

under pointwise multiplication. The group of coboundaries is defined by

B3
qa(G,K×)

:=

{(
d(η), (x, y) 7→

η(y, x)
η(x, y)

) ∣∣∣∣ conjugation-invariant η ∈ C2(G,K×)

}
,

which is a subgroup of Z3
qa(G,K×). The quotient Z3

qa(G,K×)/B3
qa(G,K×) is the

quasiabelian third cohomology of G, denoted H3
qa(G,K×). If G is abelian, quasi-

abelian cohomology reduces to abelian cohomology: H3
ab(G,K×)= H3

qa(G,K×).
We can extend Ospel’s quasiabelian cohomology for groups to cover crossed

modules: We allow G to act on an arbitrary group X (not just X = G). The first
condition, ωg

= ω, in Ospel’s definition is replaced by the condition that ωg is
cohomologous to ω via µg. The second condition, cg

= c, is extended similarly,
as are the others. This results in the following definition, whose main motivation
is the classification of crossed pointed categories (see Section 4).

Definition 3.4. A quasiabelian 3-cocycle on a crossed module X= (G, X, ∂) is a
quadruple (ω, γ, µ, c), where

(a) ω ∈ Z3(X,K×),

(b) γ ∈ Z2(G,C1(X,K×)),
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(c) µ ∈ C1(G,C2(X,K×)) and satisfies d(µg)= ω
g/ω for g ∈ G, that is,

µg(y, z)µg(x, yz)
µg(xy, z)µg(x, y)

=
ωg(x, y, z)
ω(x, y, z)

for g ∈ G and x, y, z ∈ X,

(d) d(γg,h)= (dµ)g,h for g, h ∈ G, that is,

γg,h(x)γg,h(y)
γg,h(xy)

=
µg(

hx, hy)µh(x, y)
µgh(x, y)

for g, h ∈ G and x, y ∈ X,

(e) c ∈ C2(X,K×) and satisfies

cg(x, y)
c(x, y)

=
µg(xyx−1, x)
µg(x, y)

γg∂(x)g−1,g(y)
γg,∂(x)(y)

for g ∈ G, x, y ∈ X,(e1)

c(xy, z)=
ω(x, y, z)ω((xy)z(xy)−1, x, y)
ω(x, yzy−1, y)γ∂(x),∂(y)(z)

c(x, yzy−1)c(y, z)(e2)

for x, y, z ∈ X,

c(x, yz)=
ω(xyx−1, x, z)

ω(x, y, z)ω(xyx−1, xzx−1, x)µ∂(x)(y, z)
c(x, y)c(x, z)(e3)

for x, y, z ∈ X.

Note 3.5. Here Cn denotes the space of n-cochains, Zn denotes the space of n-
cocycles, and d is the usual differential operator [Brown 1982]. (The definition of
d depends on whether the module under consideration is left or right.) The action
(g, x) 7→ gx of G on X induces a right action of G on Cn(X,K×) by translations.
The map cg

∈ C2(X,K×) is defined by cg(x, y) := c(gx, gy) and the map ωg is
defined similarly.

Quasiabelian 3-cocycles on a crossed module X = (G, X, ∂) form an abelian
group Z3

qa(X,K×) under pointwise multiplication.
We define the group of coboundaries by

B3
qa(X,K×) :=

{(
dη, dβ, g 7→ d(βg)

ηg

η
, (x, y) 7→ β∂(x)(y)

η(xyx−1, x)
η(x, y)

)
∣∣∣∣ η ∈ C2(X,K×),

β ∈ C1(G,C1(X,K×))

}
.

A direct computation shows that B3
qa(X,K×)⊆ Z3

qa(X,K×).

Definition 3.6. The quasiabelian third cohomology of a crossed module X is the
quotient of Z3

qa(X,K×) by B3
qa(X,K×). We denote it by H3

qa(X,K×).

Remark 3.7. Let G be a group. Consider the crossed module G = (G,G, idG),
where G acts on itself by conjugation.
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(i) There is a homomorphism H3
qa(G,K×)→ H3

qa(G,K×) induced from

Z3
qa(G,K×)→ Z3

qa(G,K×), (ω, c) 7→ (ω, 1, 1, c).

(ii) There exists a homomorphism H3(G,K×)→ H3
qa(G,K×); see Lemma 6.3.

Definition 3.8. A quasiabelian 3-cocycle (ω, γ, µ, c) is normalized if

ω(x, y, z)= 1 if x, y or z is the identity, γg,h(x)= 1 if g, h or x is the identity,

µg(x, y)= 1 if x, y or g is the identity, c(x, y)= 1 if x or y is the identity.

Note 3.9. Every quasiabelian 3-cocycle is cohomologous to a normalized one.

Let (ω, γ, µ, c) be a normalized quasiabelian 3-cocycle on a crossed module
(G, X, ∂). Then (ω|Ker ∂ , c|Ker ∂) is an abelian 3-cocycle on the (abelian) group
Ker ∂ .

Definition 3.10. A normalized quasiabelian 3-cocycle (ω, γ, µ, c) on a crossed
module (G, X, ∂) is nondegenerate if the abelian 3-cocycle (ω|Ker ∂ , c|Ker ∂) on the
(abelian) group Ker ∂ is nondegenerate.

Any homomorphism ( f, F) : (G ′, X ′, ∂ ′) = X′ → X = (G, X, ∂) of crossed
modules induces a homomorphism

Z3
qa(X,K×)→ Z3

qa(X
′,K×), (ω, γ, µ, c) 7→ (ω, γ, µ, c)( f,F),

where

(ω, γ, µ, c)( f,F)
= (ω ◦ F×3, (g, h) 7→ γ f (g), f (h) ◦ F, g 7→µ f (g) ◦ F×2, c ◦ F×2).

It is straightforward to check that this homomorphism preserves coboundaries and
thereby provides a homomorphism H3

qa(X,K×) → H3
qa(X

′,K×). Consequently,
for any crossed module X there is a natural action of the group of automorphisms
Aut(X) of X on H3

qa(X,K×).

4. Classification of crossed pointed categories

In this section we classify crossed pointed categories in terms of quasiabelian third
cohomology of crossed modules.

4a. Construction of a crossed pointed category from a quasiabelian 3-cocyle on
a crossed module. To a quasiabelian 3-cocycle (ω, γ, µ, c) on a finite crossed
module (G, X, ∂), we associate a crossed pointed category (C,G, T, γ̃ , ι, µ̃, ν, c̃)
as follows. As a fusion category, C=VecωX . For each g ∈G, let Cg denote the full
abelian subcategory consisting of objects of VecωX supported on ∂−1(g)⊂ X , that is,
objects of Cg are defined to be finite-dimensional ∂−1(g)-graded vector spaces (we
set Cg := {0} if ∂−1(g) is empty). This defines a G-grading C=

⊕
g∈G Cg of C.
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Next we define a functor T :G→Aut⊗(C), g 7→ Tg as follows. Let V ∈VecωX be
a homogeneous object of degree x ∈ X . The functor Tg :VecωX

∼
−→VecωX is defined

by Tg(V ) := V (as a vector space) and the degree of Tg(V ) is defined to be gx . The
Tg are extended to nonhomogeneous objects and morphisms in the obvious way.

The tensor structure γ̃ on the functor T : G→ Aut⊗(C) is defined by

γg,h(x) idV =: γ̃g,h(V ) : Tgh(V ) ∼−→ (Tg ◦ Th)(V )

for all homogeneous objects V ∈ VecωX of degree x ∈ X , and g, h ∈ G.
The unit-preserving structure ι : Te

∼
−→ idC on the functor T : G→ Aut⊗(C) is

defined by

γ−1
e,e (x) idV =: ι(V ) : Te(V ) ∼−→ idC(V )

for all homogeneous objects V ∈ VecωX of degree x ∈ X .
The tensor structure µ̃g on the functor Tg : VecωX

∼
−→VecωX for g ∈ G is defined

by

µg(x, y) idV⊗KW =: µ̃g(V,W ) : Tg(V ⊗W ) ∼−→ Tg(V )⊗ Tg(W )

for all homogeneous objects V,W ∈ VecωX of degrees x, y ∈ X , respectively.
The unit-preserving structure νg on the functor Tg : VecωX

∼
−→VecωX for g ∈ G is

defined by

µ−1
g (e, e) idK =: νg : Tg(K)

∼
−→K.

For V,W ∈Vec, let τV,W denote the flip operator V⊗K W ∼
−→W⊗K V that takes

v⊗K w 7→ w⊗K v. The G-braiding c̃ is defined by

c(x, y)τV,W =: c̃(V,W ) : V ⊗W ∼
−→ Tg(W )⊗ V

for all homogeneous objects V,W ∈ VecωX of degrees x, y ∈ X . Here g = ∂(x).
The crossed module axioms of (G, X, ∂) and the quasiabelian 3-cocycle axioms

of (ω, γ, µ, c) together ensure that the necessary axioms of a crossed category are
satisfied. Specifically, Definition 3.4(c) ensures that µ̃g is a tensor structure on the
functor Tg defined above. Definition 3.4(d) of ensures that γ̃ is a tensor structure on
the functor T . The conditions of Definition 3.4(e1)–(e3) correspond to the axioms
of Definition 3.4(i)–(iii), respectively.

We will denote the crossed pointed category constructed above by C(ω, γ, µ, c).

Remark 4.1. The trivial component C(ω, γ, µ, c)e of C(ω, γ, µ, c) (under the
G-grading) is a braided fusion category. As a fusion category, C(ω, γ, µ, c)e =
Vecω|Ker ∂

Ker ∂ . Suppose that the quasiabelian 3-cocycle (ω, γ, µ, c) is normalized. Then
the braiding on the trivial component is given by

V ⊗W →W ⊗ V, v⊗w 7→ c(x, y)w⊗ v
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for all homogeneous objects V,W ∈Vecω|Ker ∂
Ker ∂ of degrees x, y ∈Ker ∂ . Clearly, the

braided fusion category C(ω, γ, µ, c)e is nondegenerate if and only if the quasi-
abelian 3-cocycle (ω, γ, µ, c) is nondegenerate in the sense of Definition 3.10.

4b. Classification.

Proposition 4.2. Let C(ω, γ, µ, c) and C(ω′, γ ′, µ′, c′) be crossed pointed cat-
egories as constructed in Section 4a. Then C(ω, γ, µ, c) ∼= C(ω′, γ ′, µ′, c′) as
crossed categories if and only if there is an isomorphism ( f, F) of the underlying
(finite) crossed modules such that the quasiabelian 3-cocycles (ω′, γ ′, µ′, c′)( f,F)

and (ω, γ, µ, c) are cohomologous.

Proof. Suppose (G, X, ∂) and (G ′, X ′, ∂ ′) are the underlying (finite) crossed mod-
ules of C(ω, γ, µ, c) and C(ω′, γ ′, µ′, c′), respectively. Let ( f, F) be an iso-
morphism from (G, X, ∂) to (G ′, X ′, ∂ ′) such that the quasiabelian 3-cocycles
(ω′, γ ′, µ′, c′)( f,F) and (ω, γ, µ, c) are cohomologous via (η, β); see Section 3. In
what follows we will construct an equivalence ( f, F̃, η̃, η0, β̃) of crossed categories
(see Definition 2.6) from C(ω, γ, µ, c) to C(ω′, γ ′, µ′, c′).

Recall that C(ω, γ, µ, c) = VecωX and C(ω′, γ ′, µ′, c′) = Vecω
′

X ′ as fusion cate-
gories. Let V ∈VecωX be a homogeneous object of degree x ∈ X . Define a functor
F̃ :VecωX→Vecω

′

X ′ by F̃(V ) :=V (as a vector space), and define the degree of F̃(V )
to be F(x). The functor F̃ extends to nonhomogeneous objects and morphisms in
the obvious way.

The tensor structure η̃ on the functor F̃ is defined by

η(x, y) idV⊗KW =: η̃(V,W ) : F̃(V ⊗W ) ∼−→ F̃(V )⊗ F̃(W )

for all homogeneous objects V,W ∈ VecωX of degrees x, y ∈ X , respectively.
The definition of the unit-preserving structure η0 on F̃ is obvious. It is easy to

verify that (F̃, η̃, η0) is an equivalence of tensor categories.
Next we define isomorphisms β̃g : F◦Tg

∼
−→T ′f (g)◦F for g∈G of tensor functors

by
βg(x) idV =: β̃g(V ) : (F̃ ◦ Tg)(V ) ∼−→ (T ′f (g) ◦ F̃)(V )

for all homogeneous objects V ∈ VecωX of degree x ∈ X .
It is easy to verify that axioms (i)–(iii) of Definition 2.6 are satisfied. This shows

that C(ω, γ, µ, c)∼= C(ω′, γ ′, µ′, c′) as crossed categories.
The converse is clear from the construction above. �

Remark 4.3. Proposition 4.2 shows that if the quasiabelian 3-cocycles (ω, γ, µ, c)
and (ω′, γ ′, µ′, c′) are cohomologous (on the same crossed module (G, X, ∂)), then
the corresponding crossed pointed categories C(ω, γ, µ, c) and C(ω′, γ ′, µ′, c′)
are equivalent.
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Recall from Section 3 that for any crossed module X there is a natural action of
Aut(X) on the quasiabelian third cohomology H3

qa(X,K×) of X.

Theorem 4.4. Crossed pointed categories are classified, up to equivalence, by
the orbits of the quasiabelian third cohomology H3

qa(X,K×) (of a finite crossed
module X) under the action of Aut(X).

Proof. Every crossed pointed category is equivalent to some C(ω, γ, µ, c) with
underlying (finite) crossed module X. Now apply Proposition 4.2. �

5. Equivariantization of C(ω, γ,µ, c)

Throughout this section, let (ω, γ, µ, c) be a normalized quasiabelian 3-cocycle
on a finite crossed module (G, X, ∂). In Section 4a, we associated to (ω, γ, µ, c)
a crossed pointed category C(ω, γ, µ, c). Our goal in this section is to apply the
equivariantization process to C(ω, γ, µ, c) and study the resulting braided fusion
category.

5a. Description. Recall that C(ω, γ, µ, c)= VecωX as a fusion category.

Proposition 5.1. An object of the equivariantization category C(ω, γ, µ, c)G is
an X-graded vector space V together with a twisted action F of G on V that is
compatible with the grading in the sense that

(4)
gh F v = γg,h(x)(g F (h F v)),

e F v = v, degree(g F v)= gx

for all v ∈ V homogeneous of degree x ∈ X and g, h ∈ G. Morphisms in the
category are linear maps preserving the twisted action and grading. The twisted
action of G on the tensor product is given by

(5) g F (v⊗w)= µg(x, y)(g F v⊗ g Fw)

for homogeneous v,w of degrees x, y ∈ X , respectively. The associativity con-
straint on the category is given by

(u⊗ v)⊗w 7→ ω(x, y, z)u⊗ (v⊗w)

for all homogeneous u, v, w of degrees x, y, z ∈ X. The braiding on the category
is given by

(6) v⊗w 7→ c(x, y)(∂(x) Fw⊗ v)

for all homogeneous v,w of degrees x, y ∈ X.

Proof. The action F corresponds to equivariant structure (1). Equation (4) cor-
responds to (2). The definition of the tensor product (5) comes from (3) and the
definition of the braiding (6) comes from (4). �
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Remark 5.2. For a simple special case of the description above, take the quasi-
abelian 3-cocycle (ω, γ, µ, c) (on the finite crossed module (G, X, ∂)) to be trivial.
Then the corresponding equivariantization category C(1, 1, 1, 1)G admits a simple
description in that objects of this category are G-equivariant vector bundles on X .
This braided fusion category was considered in [Bantay 2005]. This category is
not nondegenerate in general: By Proposition 5.6 it is nondegenerate if and only
if ∂ is an isomorphism. In this case, the category is equivalent to D(G)-Mod, as a
braided fusion category.

Theorem 5.3. Every braided group-theoretical category is equivalent to C(ξ)G for
some normalized quasiabelian 3-cocycle ξ on a finite crossed module (G, X, ∂).

Proof. This follows from [Naidu et al. 2009], where it was shown that every braided
group-theoretical category is the equivariantization of a pointed category. �

Lemma 5.4. For any x ∈ X , let StabG(x) denote the stabilizer of x in G, that is,
StabG(x)= {g ∈ G | gx = x}. Define φx : StabG(x)×StabG(x)→ K× by

φx(g, h) := γg,h(x) for g, h ∈ StabG(x).

Then φx is a 2-cocycle on StabG(x).

Proof. The condition of Definition 3.4(b) on γ means that

γh,k(x)γg,hk(x)= γgh,k(x)γg,h(
kx)

for all g, h, k ∈ G, x ∈ X . Restricting to StabG(x) we get the stated assertion. �

Let R be a complete set of representatives of orbits of X under the action of G.

Proposition 5.5. There is a bijection between the set of isomorphism classes of
simple objects of C(ω, γ, µ, c)G and the isomorphism classes of the set

(7) 0 := {(a, V ) | a ∈ R, V is an irreducible module over Kφa [StabG(a)]},

where φa is the 2-cocycle defined in Lemma 5.4.

Proof. Let Irr(C(ω, γ, µ, c)G) denote the set of simple objects of CG . We will
define a map

(8) 0→ Irr(C(ω, γ, µ, c)G)

and show that it induces a bijection between the isomorphism classes of the source
and target sets. Let g1, g2, . . . be coset representatives of StabG(a) in G. Pick any
(a, V ) ∈ 0. We define the map (8) by

(9) (a, V ) 7→ Ṽ =
⊕

gi

Vgi a,
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where Vgi a = V as a vector space and degree(Vgi a)=
gia. The twisted action of G

on Ṽ is given by

(10) h F v :=
γg j ,t(a)
γh,gi (a)

(t F v)

for all v ∈ Ṽ homogeneous of degree gia with t ∈ StabG(a) uniquely determined
by the equation hgi = g j t . The degree of h F v is defined to be g ja.

To prove that the map (8) defined via (9) and (10) is well defined, we need to
show that the action defined in (10) satisfies (4). This amounts to verifying that
the scalars

γgk ,st(a)γs,t(a)
γgh,gi (a)

and
γg,h(

gia)γg j ,t(a)γgk ,s(a)
γh,gi (a)γg,g j (a)

are equal for all g, h ∈ G and s, t ∈ StabG(a) with hgi = g j t and gg j = gks. But
this follows from applying the condition (b) on γ of Definition 3.4 successively to
the quadruples (g, h, gi , a), (g, g j , t, a) and (gk, s, t, a).

We now show that the map (8) induces a bijection between isomorphism classes
of the source and target sets. It is clear that the map (8) preserves isomorphic
objects. Furthermore, the object in Irr(C(ω, γ, µ, c)G) corresponding to (a, V )∈0
has FP-dimension equal to |Ga| dimK V , where Ga denotes the orbit containing a.
The sum of squares of FP-dimensions of isomorphism classes of objects in the
image of (8) is∑

a∈R

∑
V∈Irr(Kφa [StabG (a)])

|
Ga|2(dim V )2 =

∑
a∈R

|
Ga|2|StabG(a)|

=

∑
a∈R

|
Ga||G|

= |G||X | = FPdim(C(ω, γ, µ, c)G). �

5b. Twist and S-matrix. As before, R denotes a complete set of representatives
of orbits of X under the action of G. By Proposition 5.5, the simple objects of
C(ω, γ, µ, c)G correspond to pairs (a, χ), where a ∈ R and χ is an irreducible
φa-character of StabG(a). Note that C(ω, γ, µ, c)G admits a canonical twist θ
with respect to which categorical dimensions coincide with FP-dimensions. The
values of θ on simple objects are given by θ(a,χ)= c(a, a)χ(∂(a))/degχ. A direct
calculation shows that the S-matrix S is given by

S(a,χ),(b,χ ′)=
∑

x∈(Ga)
y∈(Gb)∩CX (x)

c(x, y)c(y, x)
γg,∂(g−1 y)(a)γh,∂(h−1x)(b)

γ∂(y),g(a)γ∂(x),h(b)
χ(g−1

y)χ ′(h−1
x),
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where in each summand g and h are defined by ga = x and hb = y. Note that the
choice of g and h does not affect the sum.

5c. Modularity. As before, (ω, γ, µ, c) is a normalized quasiabelian 3-cocycle on
a finite crossed module (G, X, ∂).

Proposition 5.6. The braided fusion category C(ω, γ, µ, c)G is nondegenerate if
and only if the homomorphism ∂ is surjective and (ω, γ, µ, c) is nondegenerate in
the sense of Definition 3.10.

Proof. This follows immediately by combining Remark 2.5 and Remark 4.1. �

Assume ∂ is surjective and (ω, γ, µ, c) is nondegenerate. Then C(ω, γ, µ, c)G

together with the canonical twist given in Section 5b is a modular category, that
is, the S-matrix described in Section 5b is invertible. In this situation, using the
orthogonality relations for projective characters we obtain that the Gauss sum and
central charge of C(ω, γ, µ, c)G are given respectively by

τ(C(ω, γ, µ, c)G)= |G|
∑

a∈Ker ∂

c(a, a),

ζ(C(ω, γ, µ, c)G)= 1
√
|Ker ∂|

∑
a∈Ker ∂

c(a, a).

Note 5.7. The sum
∑

a∈Ker ∂ c(a, a) is the classical Gauss sum for the quadratic
form a 7→ c(a, a) on the abelian group Ker ∂ .

Remark 5.8. The category C(ω, γ, µ, c)G may admit other twists besides the
canonical one. In view of Theorem 5.3 and Proposition 5.6, a description of all
twists on C(ω, γ, µ, c)G will imply a description of all modular group-theoretical
categories. The former is easily obtained using Proposition 2.1.

6. Quasitriangular quasi-Hopf algebra arising from quasiabelian 3-cocycles
on crossed modules

Suppose (ω, γ, µ, c) is a normalized quasiabelian 3-cocycle on a finite crossed
module (G, X, ∂). In the previous section we described the braided fusion category
C(ω, γ, µ, c)G . This category is integral (that is, the FP-dimensions of objects are
integers), so there exists a finite-dimensional quasitriangular quasi-Hopf algebra H
such that C(ω, γ, µ, c)G ∼= H -Mod, as braided fusion categories; see [Etingof et al.
2005, Theorem 8.33] and [Kassel 1995, Section XV.2]. Our goal in this section is
to describe such an H .

In what follows we associate to (ω, γ, µ, c) a finite-dimensional quasitriangular
quasi-Hopf algebra H(ω, γ, µ, c), which may be viewed as a generalization of the
twisted Drinfeld double of a finite group. Let H(ω, γ, µ, c) be a finite-dimensional
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vector space with a basis {tx g}(x,g)∈X×G indexed by the set X×G. Define a product
on H(ω, γ, µ, c) by

(11) (tx g)(tyh) := δx,h yγg,h(y)−1ty(gh).

This product admits a unit

(12) 1=
∑
x∈X

tx e.

Define a coproduct1 : H(ω, γ, µ, c)→ H(ω, γ, µ, c)⊗H(ω, γ, µ, c) and counit
ε : H(ω, γ, µ, c)→ K by

1(tx g) :=
∑

a,b∈X
ab=x

µg(a, b)tag⊗ tbg,(13)

ε(tx g) := δx,e.(14)

Also, set

8 :=
∑

x,y,z∈X

ω(x, y, z)tx e⊗ tye⊗ tze,(15)

R :=
∑

x,y∈X

c(x, y)tx e⊗ ty∂(x),(16)

α := 1, β :=
∑
x∈X

ω(x−1, x, x−1)tx e.(17)

Finally, define a linear map S : H(ω, γ, µ, c)→ H(ω, γ, µ, c) by

(18) S(tx g) :=
γg−1,g(x−1)

µg(x, x−1)
tgx−1 g−1.

Proposition 6.1. The product unit, coproduct 1, counit ε, Drinfeld associator
8 and antiautomorphism S of (11)–(14), (15) and (18) make H(ω, γ, µ, c) a
quasitriangular quasi-Hopf algebra with universal R-matrix R (16) in the sense
of [Kassel 1995, Definitions 1.1, 2.1, and 5.1].

Proof. The proof is completely similar to the one for the twisted Drinfeld double
of a finite group: Associativity of the product is equivalent to the equality

γh,k(x)γg,hk(x)= γgh,k(x)γg,h(
kx) for g, h, k ∈ G, x ∈ X,

which holds by axiom (b) in Definition 3.4. Quasicoassociativity of the coproduct
is equivalent to the equality

µg(y, z)µg(x, yz)
µg(xy, z)µg(x, y)

=
ω(gx, gy, gz)
ω(x, y, z)

for g ∈ G, x, y, z ∈ X,
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which holds by axiom (c) in Definition 3.4. That the coproduct is a morphism of
algebras is equivalent to the equality

γg,h(x)γg,h(y)
γg,h(xy)

=
µg(

hx, hy)µh(x, y)
µgh(x, y)

for g, h ∈ G and x, y ∈ X,

which holds by axiom (d) in Definition 3.4.
We note that the inverse of the R-matrix R is

R−1
=

∑
x,y∈X

c(x, x−1 yx)−1γ∂(x),∂(x−1)(y)
−1tx e⊗ ty∂(x−1).

The R-matrix axioms on R hold due to axioms (e1)–(e3) in Definition 3.4.
Finally, axioms (a)–(d) in Definition 3.4 ensure that S is indeed an antiauto-

morphism that satisfies the required axioms. �

Proposition 6.2. Let (ω, γ, µ, c) be a normalized quasiabelian 3-cocycle on a
finite crossed module (G, X, ∂). The categories C(ω, γ, µ, c)G (see Section 5) and
H(ω, γ, µ, c)-Mod are equivalent as braided fusion categories.

Proof. Let V be a (left) module over H(ω, γ, µ, c), with action denoted by · .
Note that V admits an X -grading: V =

⊕
x∈X Vx , where Vx = (tx e) · V . Define a

twisted action of G on V by gFv := (tx g) ·v for all v ∈ V homogeneous of degree
x ∈ X . Observe that the degree of g F v is gx , since (tx g)(tx e) = (tgx e)(tx g). The
aforementioned action is twisted in that gh F v = γg,h(x)(g F (h F v)). Note that
the twisted action of G completely determines the action of H(ω, γ, µ, c) on the
module V . The associativity constraint on the category H(ω, γ, µ, c)-Mod (which
is defined using the Drinfeld associator 8 of (15)) is given by

(u⊗ v)⊗w 7→ ω(x, y, z)u⊗ (v⊗w)

for all homogeneous u, v, w of degrees x, y, z ∈ X . The braiding on the category
H(ω, γ, µ, c)-Mod (which is defined using the R-matrix R of (16)) is given by

v⊗w 7→ c(x, y)(∂(x) Fw⊗ v)

for homogeneous v,w of degrees x, y ∈ X . Now compare with Proposition 5.1. �

We next explain the relation between the quasitriangular quasi-Hopf algebras
constructed above and the twisted Drinfeld double of a finite group. Let ω be a
normalized 3-cocycle on a finite group G.

For all g, h, x, y ∈ G, define

γg,h(x) :=
ω(g, h, x)ω(ghxh−1g−1, g, h)

ω(g, hxh−1, h)
,(19)

µg(x, y) :=
ω(gxg−1, g, y)

ω(gxg−1, gyg−1, g)ω(g, x, y)
.(20)
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A direct computation establishes the following.

Lemma 6.3. The quadruple (ω, γ, µ, 1), where γ and µ are respectively defined
by (19) and (20), is a quasiabelian 3-cocycle on the crossed module (G,G, idG)

(where G acts on itself by conjugation) in the sense of Definition 3.4.

Let (ω, γ, µ, 1) be the quasiabelian 3-cocycle on (G,G, idG) constructed in
Lemma 6.3. Then, evidently, H(ω−1, γ−1, µ−1, 1) ∼= Dω(G) as quasitriangu-
lar quasi-Hopf algebras. In particular, C(ω−1, γ−1, µ−1, 1)G ∼= Dω(G)-Mod as
braided fusion categories.
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