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A residually nilpotent group is k-parafree if all of its lower central series
quotients match those of a free group of rank k. Magnus proved that k-
parafree groups of rank k are themselves free. We mimic this theory with
surface groups playing the role of free groups. Our main result shows that
the analog of Magnus’ theorem is false in this setting.

Introduction

This article is motivated by three stories. The first story concerns a theorem of
Wilhelm Magnus. Recall that the lower central series of a group G is defined to
be

γ1(G) := G and γk(G) := [G, γk−1(G)] for k ≥ 2,

where [A, B] denotes the group generated by commutators of elements of A with
elements of B. The rank of G is the size of a minimal generating set of G. In
[1939], Magnus gave a beautiful characterization of free groups in terms of their
lower central series.

Theorem (Magnus’ theorem on parafree groups). Let Fk be a nonabelian free
group of rank k and G a group of rank k. If G/γi (G) ∼= Fk/γi (Fk) for all i ,
then G ∼= Fk .

Following this result, Hanna Neumann inquired whether it was possible for two
residually nilpotent groups G and G ′ to have G/γi (G)∼=G ′/γi (G ′) for all i without
having G ∼= G ′; see [Liriano 2007]. Gilbert Baumslag [1967] gave a positive
answer to this question by constructing what are now known as parafree groups
that are not themselves free. A group G is parafree if

(1) G is residually nilpotent, and

(2) there exists a finitely generated free group F such that G/γi (G) ∼= F/γi (F)
for all i .
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By Magnus’ theorem, Baumslag’s examples necessarily have rank different from
the corresponding free group. In this paper we give new examples addressing Neu-
mann’s question. Specifically, we construct residually nilpotent groups G that share
the same lower central series quotients with a surface group but are not themselves
surface groups. These examples are analogous to Baumslag’s parafree groups,
where the role of free groups is replaced by surface groups. Consequently, we call
such groups parasurface groups. Since the parasurface examples constructed in
this paper have the same rank as their corresponding surface groups, the analog of
Magnus’ theorem for parasurface groups is false.

Theorem 1. Let 0g be the genus g surface group. There exists a rank 2g residually
nilpotent group G such that G/γi (G)∼= 0g/γi (0g) for all i .

We now turn towards the second story, which concerns residual properties in free
groups. Our second story requires some notation. We say two elements g, h∈G are
nilpotent-conjugacy equivalent if the images of g and h in all nilpotent quotients of
G are conjugate. We say a group G is conjugacy-nilpotent separable if any pair of
nilpotent-conjugacy equivalent elements must be conjugate. Free groups are known
to be conjugacy-nilpotent separable [Lyndon and Schupp 2001; Paris 2009]. A
natural question to ask is whether the role of inner automorphisms may be played
by automorphisms. In this vein, we say two elements g, h ∈ G are automorphism
equivalent if there exists some φ ∈ Aut G with φ(g) = h. Further, we say g is
nilpotent-automorphism equivalent to h if the images of g and h in all nilpotent
quotients of G are automorphism equivalent. A group G is automorphism-nilpotent
separable if all pairs of nilpotent-automorphism equivalent elements must be auto-
morphism equivalent. Free groups are conjugacy-nilpotent separable; however:

Theorem 2. Nonabelian free groups of even rank are not automorphism-nilpotent
separable.

In the same flavor, Orin Chein [1969] showed that there exist automorphisms of
nilpotent quotients of F3 that do not lift to automorphisms of F3.

Our third and final story concerns Magnus’ conjugacy theorem for groups with
one defining relator [Magnus et al. 1976, Theorem 4.11, page 261], which we state
below. Let 〈〈w〉〉H be the group generated by the H -conjugates of w for a subgroup
H of G.

Theorem (Magnus’ conjugacy theorem for groups with one defining relator). Let
s and t be elements in Fk such that 〈〈s〉〉Fk

= 〈〈t〉〉Fk
. Then s is conjugate to tε for

ε = 1 or −1.

Our next result demonstrates that this theorem does not generalize to one-relator
nilpotent groups. Let Fk,i = Fk/γi (Fk) be the free rank k, i-step nilpotent quotient.
Let φk,i be the projection Fk→ Fk,i .
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Theorem 3. Let F4 = 〈a, b, c, d〉 be the free group of rank 4. Let w= [a, b][c, d].
Then

〈〈φ4,i (w[w, bwb−1
])〉〉F4,i

= 〈〈φ4,i (w)〉〉F4,i
for all i .

However, for large i , the element w is not conjugate to w[w, bwb−1
] in F4,i .

1. Almost surface groups

Let 0g be the fundamental group of a closed hyperbolic surface of genus g. A
group G is a weakly g-parasurface group if G/γk(G)∼=0g/γk(0g) for all k ≥ 1. If
G is weakly g-parasurface and residually nilpotent, we say that G is g-parasurface.
Let G = F/N be a weakly g-parasurface group where F is a free group of rank 2g
on generators a1, a2, . . . , a2g−1, a2g. Set w = [a1, a2] · · · [a2g−1, a2g]. Recall that
〈〈w〉〉F is the normal closure of w in F . Then we have the following trichotomy
(see Theorem 4 below) for such groups G:

(Type I) There exists an isomorphism φ : F→ F such that φ(N )≥ 〈〈w〉〉F .

(Type II) There exists an isomorphism φ : F→ F such that φ(N ) < 〈〈w〉〉F .

(Type III) G is not of Type I or II.

The following theorem demonstrates that only examples of Type I or III may be
residually nilpotent.

Theorem 4. Groups of Type I must be surface groups. Further, groups of Type II
are never parasurface.

Our next two theorems show that although surface groups are residually nil-
potent, there exist examples of Type II and III. That is, weakly parasurface groups
that are not parasurface groups exist. Further, parasurface groups that are not sur-
face groups exist.

Theorem 5. Let k > 2 be even, and let Fk = 〈a1, a2, . . . , ak〉. Suppose w =
[a1, a2] · · · [ak−1, ak], and let γ be an element in Fk . If w[w, γwγ−1

] is cyclically
reduced and of different word length than w in Fk , then the group

G = 〈a1, a2, . . . , ak : w[w, γwγ
−1
]〉

is weakly k/2-parasurface of Type II.

In Theorem 5, one can take γ = a2, for example.

Theorem 6. Let k > 2 be even, let Fk = 〈a1, a2, . . . , ak〉, and let δ be in the com-
mutator subgroup of F(a1, a2). If [a1δ, a2] is cyclically reduced and is of different
word length than [a1, a2] in F(a1, a2), then the group

G = 〈a1, a2, . . . , ak : [a1δ, a2][a3, a4] · · · [ak−1, ak]〉

is k/2-parasurface of Type III.
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In Theorem 6 one can take δ = [[a1, a2], a1], for example.

2. Proofs of the main results

2.1. Preliminaries. We first list a couple of results needed in the proofs of our
main theorems. The first is from Magnus, Korass and Solitar [1976, Lemma 5.9,
page 350].

Lemma 7. The Frattini subgroup of a nilpotent group contains the derived sub-
group.

For the following theorem, see [Azarov 1998, Theorem 1].

Theorem 8 (Azarov’s theorem). Let A and B be free groups, and let α and β be
nonidentity elements of the groups A and B, respectively. Let G = (A ∗ B;α = β).
Let n be the largest positive integer such that yn

= β has a solution in B. If n = 1,
then G is a residually finite p-group.

2.2. The proofs. Before proving Theorems 1, 2, and 3 from the introduction, we
prove Theorems 4, 5, and 6.

Proof of Theorem 4. We first show that groups of Type I must be surface groups. For
the sake of a contradiction, suppose that G is weakly g-parasurface of Type I and is
not isomorphic to 0g. Let F and K =〈〈w〉〉F be as in the definition of Type I groups.
By assumption, there exists an isomorphism φ : F→ F such that φ(N )≥ K . The
isomorphism φ−1 induces a homomorphism ρi : 0g/γi (0g) → G/γi (G) that is
surjective for all i . Since finitely generated nilpotent groups are Hopfian (see for
example [de la Harpe 2000, Section III.A.19]), the maps ρi must be isomorphisms
for all i . On the other hand, since G is not isomorphic to 0g, we must have some
γ ∈ φ(N )− K . Further, F/K = 0g is residually nilpotent, so there exists some i
such that γ 6= 1 in 0g/γi (0g). Since γ ∈ ker ρi , we have a contradiction.

We now show that groups of Type II are never residually nilpotent. For the sake
of a contradiction, suppose that G is a residually nilpotent group of Type II. Let
F and K = 〈〈w〉〉F be as in the definition of Type II groups. By assumption, the
map φ : F → F induces a map ψ : G → 0g that is onto with nontrivial kernel.
Let γ ∈ kerψ . Since G is residually nilpotent, there exists i such that g /∈ γi (G).
Hence, the induced map ρi :G/γi (G)→0g/γi (0g) is onto but not bijective, which
is impossible since finitely generated nilpotent groups are Hopfian. �

Proof of Theorem 5. Let G, w, and γ be as in the statement of Theorem 5. We first
show that G is weakly parasurface:

Claim 9. We have w = 1 in all quotients G/γi (G).
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Proof of claim. Let H1=〈〈φk,i (w[w, γwγ
−1
])〉〉 and H2=〈〈φk,i (w)〉〉 in Fk/γi (Fk).

Clearly H1 ≤ H2. Further, the image of H1 in H2/[H2, H2] generates as

φk,i (w[w, γwγ
−1
])= φk,i (w) mod [H2, H2].

Hence, since H2 is nilpotent, Lemma 7 implies that H1 = H2, and so the claim
follows. �

If w 6= 1 in G, then the claim also shows that G is not residually nilpotent. Sup-
pose, for the sake of a contradiction, that w= 1 in G. Then by Magnus’ conjugacy
theorem for groups with one defining relator, wε and w[w, γwγ−1

] are conjugate
for ε= 1 or −1, but this is impossible since they are both cyclically reduced words
of different word lengths [Magnus et al. 1976, Theorem 1.3, page 36]. Hence G is
not residually nilpotent and G is not parasurface. Further, as w= 1 in all nilpotent
quotients, G is weakly parasurface. The proof of Theorem 5 is complete. �

Proof of Theorem 6. Let G and δ be as in the statement of Theorem 6. That G is
residually nilpotent follows from Theorem 8 applied to

A = Fk−2 = 〈a1, a2, . . . , ak−2〉 and B = F2 = 〈ak−1, ak〉,

with α=[a1δ, a2][a3, a4] · · · [ak−3, ak−2] and β= ([ak−1, ak])
−1 and the following

claim:

Claim 10. If β = yn in B, where y ∈ B, then n = 1.

Proof of claim. If β = yn for some n > 1, then since B/〈〈β〉〉 is torsion-free,
y ∈ 〈〈β〉〉. Hence, 〈〈y〉〉 = 〈〈β〉〉, and so by Magnus’ conjugacy theorem for groups
with one defining relator, y is conjugate to β or β−1. But then β would have
the same cyclically reduced form word length as βn , contradicting [Magnus et al.
1976, Theorem 1.3, page 36]. �

We now show that G is not a surface group. Let H=〈a1δ, a2, . . . , ak−1, ak〉≤G.
The next two claims imply that H is a nonfree proper subgroup of G of rank k.
However, if G were a surface group, it would have to be the surface group 0k/2, of
genus k/2. Any rank k proper subgroup of 0k/2 must be free, so H must be free,
a contradiction.

Claim 11. H is not a free group and is of rank k.

Proof of claim. H is rank k, since {a1δ, a2, . . . , ak} generate G/[G,G] and since
G/[G,G] = Zk . If H were free, it would be free of rank k. Let x1, x2, . . . , xk be a
free basis for H . The map H→ H given by x1 7→ a1δ and xk 7→ ak for k > 1 is an
isomorphism because H is Hopfian (being a free group). So H is freely generated
by {a1δ, a2, . . . , ak}, but this is impossible since [a1δ, a2] · · · [ak−1, ak] = 1. �

Claim 12. H is a proper subgroup of G.
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Proof of claim. Indeed, the element a1 cannot be in H . For suppose a1 ∈ H ,
and let N be the normal subgroup generated by ak for k > 2. Then we have
G/N = 〈a1, a2 : [a1δ, a2]〉. Since a1 ∈ H , G/N is abelian, and so has presentation
G/N = 〈a1, a2 : [a1, a2]〉. But then the normal subgroup generated by [a1, a2]

and the normal subgroup generated by [a1δ, a2] are equal in F2 = 〈a1, a2〉. By
Magnus’ conjugacy theorem for groups with one defining relator, [a1, a2]

ε must
be conjugate to [a1δ, a2] for ε = 1 or −1 in F2 = 〈a1, a2〉, which is impossible
since [a1, a2] and [a1δ, a2] are cyclically reduced and have different word lengths
[Magnus et al. 1976, Theorem 1.3, page 36]. Hence a1 /∈ H . �

We finish the proof of Theorem 6 by showing that all of the lower central series
quotients of G match those of a surface group of genus k/2.

Claim 13. G is weakly k/2-parasurface.

Proof of claim. Let ψ be the map defined by a1 7→ a1δ and ak 7→ ak for k > 1.
This gives a well-defined map Fk,i → Fk,i , where Fk,i := Fk/γi (Fk). This is an
epimorphism by Lemma 7. Since finitely generated nilpotent groups are Hop-
fian, ψ : Fk,i → Fk,i must be an isomorphism. Therefore, the induced map on
0k/2/γi (0k/2)→ G/γi (G) is an isomorphism, as claimed. �

The proof of Theorem 6 is now complete. �

We are now ready to quickly prove all of our theorems stated in the introduction.

Proof of Theorem 1. Theorem 6 gives the desired parasurface groups. �

Proof of Theorem 2. The proof of Claim 13 with δ = [[a1, a2], a1] shows that

[a1, a2] · · · [ak−1, ak] and [a1δ, a2] · · · [ak−1, ak]

are nilpotent-automorphism equivalent. However, [a1, a2] · · · [ak−1, ak] is not auto-
morphism equivalent to [a1δ, a2] · · · [ak−1, ak] in Fk by Theorem 6. �

Proof of Theorem 3. The elementw is not conjugate tow[w, bwb−1
] in F4. Hence,

since F4 is conjugacy-nilpotent separable, there exists some large N > 0 such that
φ4,i (w) is not conjugate to φ4,i (w[w, bwb−1

]) in F4,i for all i > N . Moreover, the
equality

〈〈φ4,i (w[w, bwb−1
])〉〉F4,i

= 〈〈φ4,i (w)〉〉F4,i
for all i

is an immediate consequence of Claim 9. �

3. Final remarks

We have shown that there exist groups that are almost surface groups in the sense
that they share all their lower central series quotients with a surface group but are
not themselves surface groups. In light of our examples, we pose the following
question.
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Question 14. What properties do parasurface groups share with surface groups?

As a small step in answering this question, we present this:

Theorem 15. Any finite-index subgroup of a parasurface group is not free.

Proof. Let G be a parasurface group. Note that G is not free, for if it were, Mag-
nus’ theorem would imply that the fundamental group of some compact surface is
free. Further, G is torsion-free, for otherwise by residual nilpotence, there would
exist torsion elements in 0g/γk(0g) for some g and k, but this is impossible by
[Labute 1970].

Let cd(G) denote the cohomological dimension of G. If 0 ≤ G is a free group
of finite index, then by [Brown 1994, Theorem 3.1, page 190] and the fact that G
is torsion-free, cd G = cd0. Hence, cd G = 1, but then by [Stallings 1968] and
[Swan 1969], G must itself be free, a contradiction. �
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