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JOSÉ BURILLO AND SEAN CLEARY

Higher-dimensional Thompson’s groups nV are finitely presented groups
that generalize dyadic self-maps of the unit interval to dyadic self-maps of
n-dimensional unit cubes. We describe some of the metric properties of
these groups. We describe their elements based upon tree-pair diagrams
and give upper and lower bounds for word length in terms of the size of
the diagrams. Though these bounds are somewhat separated, we show that
there are elements realizing the lower bounds and that the fraction of ele-
ments that are close to the upper bound converges to 1, showing that the
bounds are optimal and that the upper bound is generically achieved.

Introduction

Thompson’s groups provide a wide range of interesting examples of unusual group-
theoretic behavior. The family of Thompson’s groups includes the original groups
described by Thompson, commonly denoted F , T and V, as well as generalizations
in many different directions. The bulk of these generalizations includes groups that
can be regarded as self-maps of the unit interval. Brin [2004; 2005] generalized V
to higher-dimensional groups nV, which are described naturally in terms of dyadic
self-maps of n-dimensional cubes. Little is known about these groups aside from
their simplicity. Brin describes their elements geometrically in terms of dyadic
interpolations of collections of dyadic blocks, and gives presentations for 2V.

We describe elements in higher-dimensional Thompson’s groups as being given
by tree-pair diagrams. Though these diagrams usually take advantage of the natural
left-to-right ordering of subintervals of the unit interval, by using several types of
carets, Brin describes elements of nV via tree-pair diagrams. A natural question is
how the size of these tree-pair diagrams corresponds to the word length of elements
with respect to finite generating sets.
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We give upper and lower bounds for the word lengths of elements of higher-
dimensional Thompson’s groups nV with respect to finite generating sets, in terms
of the size of tree-pair descriptions of elements. An element with a minimal tree-
pair description of size N has word length between log N and N log N (up to the
standard affine equivalences) with respect to the standard finite generating set. This
of course also thus holds for any finite generating set.

1. Background on higher-dimensional Thompson’s groups

Brin [2004] describes higher-dimensional Thompson’s groups nV, giving presen-
tations and showing that the group 2V is simple. Brin [2004; 2005] defines nV as
a subgroup of the homeomorphism group of the n-fold product of the Cantor set
with itself, and then shows there are a number of equivalent characterizations. The
one we use here is Brin’s characterization [2005] in terms of equivalence classes
of labeled tree pair diagrams. The properties of the groups nV relevant here are as
follows.

We denote the unit interval [0, 1] by I , and the n-dimensional unit cube by I n .
An element of V is given by two finite-rooted binary trees with the same number

of leaves and a permutation, which represents a bijection between the leaves of the
two trees. Hence an element of V can be seen as a triple (T+, π, T−), where T+
and T− are trees with k leaves, and π ∈ Sk .

Each binary tree can be seen as a way of subdividing the interval I into dyadic
subintervals of the type [i/2r , i+1/2r

], where r>0 and 0≤ i<2r . A rooted binary
tree gives instructions for successive halvings of subintervals to obtain a particular
dyadic subdivision. Given two binary trees with n leaves and a permutation in Sn ,
an element in V is represented as a left-continuous map of the interval into itself,
sending each interval in the first subdivision to a corresponding interval in the
second subdivision, as specified by the given permutation. Though not every dyadic
subdivision of I can be obtained by a successive halving process described by trees,
every dyadic subdivision has a refinement that can be obtained by a successive
halving process.

For more details on the group V, including presentations and a proof of its
simplicity, see Cannon, Floyd and Parry [1996] as well as Brin [2004].

To obtain an element in 2V, we will define a partition of I 2 into dyadic rectangles
of the type [

i
2r ,

i + 1
2r

]
×

[
j

2s ,
j + 1
2s

]
.

Though again, not every such partition can be realized by successive halving pro-
cesses, every such partition has a refinement that can be realized in that way. For
the two-dimensional successive halving process, there are two possible halvings
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that can occur at each stage to a specified dyadic rectangle — a horizontal or a
vertical subdivision. We can obtain a refinement of any dyadic partition of I 2

via iterated horizontal and vertical subdivisions. This gives a natural means of
describing elements of 2V as pairs of dyadic subdivisions, each with m rectangles,
and a permutation in Sm giving the bijection between the rectangles.

We can describe elements of 2V also with pairs of binary trees, with the nodes
representing steps in successive halving processes to represent the refined sub-
divisions. Since there are two types of subdivisions, vertical and horizontal, we
will consider binary trees that contain two types of carets, vertical and horizontal
carets, represented by triangular and square carets, respectively.

As with other tree-based definitions of Thompson’s groups, there are numerous
representatives of a given group element, with natural equivalence relations coming
from expansions and contractions of leaves of trees. To multiply two elements, we
typically find representatives for each of them where the trees are compatible for
a natural multiplication via composition.

We define the group 2V as the set of equivalence classes of triples (T+, π, T−)
in which the trees are labeled to indicate the successive halving process and π is
a permutation between the leaves of the trees (where each leaf represents a dyadic
rectangle).

To fix a labeling convention, we will represent a vertical subdivision with a
traditional triangular caret, where the left and right leaves naturally represent the
left and right rectangles. A horizontal subdivision will be represented by a square
caret; in it, the left leaf represents the bottom rectangle, and the right leaf represents
the top rectangle, as shown below.

vertical caret
and subdivision

horizontal caret
and subdivision

(1) (1)(2) (2)

(1) (2)
(1)

(2)

We say a representative of an element is reduced if for each caret c in T− of
with two leaves, the permutation π does not map both leaves of c to leaves of
the same caret of the same type in T+ in the same order. We say a representative
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Figure 1. An example of a binary tree with the two types of carets,
and its corresponding partition of I 2.

of an element is of minimal size if it has the minimal number of carets among
all representatives in its equivalence class, and we denote by N (x) the number of
carets in a minimal size representative of an element x . Unlike the case of V, but
similar to that of F(n,m) (see Wladis [2007]), each element of minimal size may
have multiple distinct representatives.

See Figure 1 for an example of a partition of I 2 and its corresponding binary
tree. Every dyadic partition of the unit square has a refinement that can be obtained
with a binary tree with these two types of carets.

For the general groups nV, the partitions are divisions of the unit n-cube in n-
rectangles of dyadic lengths, and the corresponding binary trees have n types of
carets. For simplicity, we state our results for n = 2, but all of the results below
extend naturally to n > 2.

The fact that we have vertical and horizontal subdivisions brings new relations
to the group. These relations arise when both types of subdivisions are combined in
different orders to obtain different descriptions of the same dyadic partition of I 2.
The obvious relation (and the one from which all other relations are deducible)
is the combination of one subdivision of each type in the two possible orders, as
illustrated in Figure 2.

Subdividing in both the vertical and horizontal directions once, but in the two
possible orders, gives the same dyadic partitions, but according to our convention
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1 2 3 4 1 2 3 4

1

2

3

4

1 2

3 4

Figure 2. The relation obtained when performing vertical and
horizontal subdivisions.

the resulting rectangles are numbered in different way. This makes using tree dia-
grams to express the multiplication of elements tricky and quite unwieldy for large
elements. Even though the leaves of the two-caret-type tree diagrams are ordered
in a natural way, this order is not apparent in the square, and it is not preserved
when different diagrams represent the same partition. Thus, there are (nonminimal)
diagrams representing the identity whose leaves are ordered in different ways —
an example is illustrated in Figure 3.

1 2 3 4 1 3 2 4

Figure 3. A tree-pair diagram for the identity element that has a
nonidentity permutation.
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2. Families of generators

Brin [2004; 2005] showed that the groups nV are finitely generated and gave sev-
eral generating sets for 2V. As is common with groups of the Thompson family,
there is an infinite presentation, which is useful for its symmetry and regularity and
which has a finite subpresentation. For the purposes of word length, we work with
a standard finite generating set as described by Brin. We next define the families
of generators for 2V, following the usual procedure in Thompson’s groups; see
Cannon, Floyd and Parry [1996]. We build the generators on a backbone of an
all-right tree with only vertical carets.

(1) The generators An involve only vertical subdivisions, and they are the tradi-
tional generators of Thompson’s group F .

(2) The generators Bn have the one nonright caret replaced by a horizontal one.

(3) The generators Cn have the last caret of the all-right tree of horizontal type,
and they are used to build horizontal carets on the right-hand-side of the tree,
as will be seen later.

(4) The generators πn and πn are permutations built on an all-right tree with only
vertical carets. These generators are exactly equal to those for the subgroup
V appearing as the purely vertical elements.

Theorem 2.1 [Brin 2004; 2005]. The families An , Bn , Cn , πn and πn generate the
group 2V.

Proof. Since our proof is quite different from Brin’s, we will include it here and
use aspects of it later for metric considerations.

An element of 2V is given by a triple (T+, π, T−), where the two trees are
composed of the two types of carets. First, we subdivide a given element into
three elements: (T+, id, Rk), (Rk, π, Rk), and (Rk, id, T−), where Rk is the all-
right tree with k leaves and only vertical carets. Clearly (Rk, π, Rk) is product of
the permutation generators, as is the case in V already.

To obtain the element (T+, id, Rk), we will concentrate first on the backbone of
the tree T+, that is, the sequence of carets in the right hand side. If this sequence
of carets has horizontal carets in the positions m1,m2, . . . ,m p, then the product of
the generators Cm1Cm2 · · ·Cm p produces exactly a backbone with horizontal carets
in the desired positions. We denote this backbone by K ; that is, K is the subtree
of T+ that consists only of right carets. Thus, at this stage, we have constructed
the element (K , id, Rm p).

Once the backbone is constructed, each new caret is obtained by a generator of
the type Ai or Bi . To attach a vertical caret from the leaf labeled i , we only need
to multiply by Ai on the right. Similarly, to attach a horizontal caret to leaf i , we
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1

2

2
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Figure 4. Generators of 2V .

multiply by Bi on the right. This multiplication process is shown in Figure 5, with
an example illustrated in Figure 6.

This proves that the element (T+, id, Rk) is product of the generators Ai , Bi

and Ci , and using inverses, we see that the entire group is generated by the full
family of generators. �

An element of the type (T+, id, Rk) is called a positive element of 2V. Positive
elements can always be written as products of the generators Ai , Bi and Ci without
using their inverses.

In the process of proving Brin’s theorem, we have obtained this:

Theorem 2.2. Elements of 2V, with respect to the standard infinite generating set
{Ai , Bi ,Ci , πi , πn}, have these properties:

• Any positive element always admits an expression of the type

Cm1 · · ·Cm p W1(Ai1, Bi1) · · ·Wr (Air , Bir ).
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.
.
.

.
.
.

.
.
.

.
.
.

i-th leaf
Ai or Bi

Figure 5. The building process: attaching a caret to the i-th leaf
by multiplying by Ai or Bi .

where the Wi are words on the positive generators Ai and Bi and never their
inverses, and where m1 < m2 < · · ·< m p and i1 < i2 < · · ·< ir .

• Each element admits an expression P5Q−1, where P and Q are positive
elements and5 is a permutation on an all-right vertical tree, and thus a word
in the πi and π i .

This expression will be used as a seminormal form for elements of 2V.
Brin also shows that several finite generating sets suffice to generate each nV.

We will use the finite generating set {A0, A1, B0, B1,C0,C1, π0, π1, π0, π1}. This
set is larger than the smallest ones used by Brin, but is more convenient for our
methods below.

3. Metric properties

We will be interested in metric properties up to the standard affine equivalence,
defined here.

Definition 3.1. Given two functions f, g :G→R, we say that f ≺ g if there exists
a constant C > 0 such that f (x) ≤ Cg(x) for all x ∈ G. We say that f and g are
equivalent, written f ∼ g, if f ≺ g and g ≺ f .

Elements of Thompson’s groups admit representations as diagrams with binary
trees in one form or another, perhaps with associated permutations or braids be-
tween the leaves. For several of these groups, the distance |x | from an element x
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C1C3

=

C1C3 B0

=

C1C3 B0 A0

=

C1C3 B0 A0 B1

=

C1C3 B0 A0 B1 A6

=

Figure 6. Constructing an element generator-by-generator.

to the identity is closely related with the number of carets N (x) of the minimal
diagram, indicating that the complexity of the minimal (reduced) diagram is a
good indication of the size of the element.

In Thompson’s groups F and T , the two functions are equivalent: for both
groups we have |x | ∼ N (x); see Burillo, Cleary and Stein [2001] and Burillo,
Cleary, Stein and Taback [2009]. This result cannot hold in V, for counting reasons.
The number of elements of V whose trees have N carets is at least the order of N !
(due to the permutations), while the number of distinct elements of length N can
be at most exponential in N in any group.

The best possible bound for the number of carets in terms of word length in the
group V is an inequality proved by Birget as [2004, Theorem 3.8], which says that
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N (x)≺ |x | ≺ N (x) log N (x) and that these bounds are optimal, in a sense similar
to that which will be made precise in Section 4.

In the case of V, the lower bounds on word length are linear in the number
of carets. Therefore, the standard inclusions F ⊂ T ⊂ V are all quasiisometric
embeddings; that is, F is undistorted in T , and T is undistorted in V. This property
will be no longer true for inclusions in 2V, as we will show in Section 5.

In this section we will prove the analog for 2V of the inequality above. In the
next section, we address optimality of the bounds.

Theorem 3.2. In the group 2V, the word length of an element |x | and number of
carets N (x) in a minimal size tree-pair representative satisfy

log N (x)≺ |x | ≺ N (x) log N (x),

and the bounds cannot be improved.

Proof. We defer the proof of its optimality to the following section.
The upper bound is proved the standard way. We take a positive word P , and

according to Theorem 2.2, write it as

Cm1 · · ·Cm p W1(Ai1, Bi1) · · ·Wr (Air , Bir ).

Then, we rewrite each generator using the relations

Ai+1 = A−i+1
0 A1 Ai−1

0 , Bi+1 = A−i+1
0 B1 Ai−1

0 , Ci+1 = A−i+1
0 C1 Ai−1

0

for all i > 1. Since the conjugating element is always A0, cancellations ensure that
the length stays approximately the same. The bound N log N appears because of
the permutations, since N log N is the diameter of SN with respect to the relevant
transpositions.

For the lower bound, we note that if an element has k carets, when it is multiplied
by a generator it is possible that the multiplication could have up to 4k carets. If
an element has, for instance, only horizontal subdivisions, when multiplied by A1

the number of subdivisions (and hence the number of carets) becomes 4k, since
each one of the previous subdivision is divided in four, as illustrated in Figure 7.

If each multiplication by a generator can multiply the number of carets by 4, an
element of length ` could have up to 4` carets. Other generators may increase word
length by additive factors, but the worst case is exactly the increase by a factor of 4.
Hence N (x)≤ 4`, so log N (x)≤ |x |. �

4. Optimality of bounds

To show the optimality of the bounds in Theorem 3.2, we first describe some prop-
erties of the lower bound for word length in terms of the number of carets.
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Figure 7. An illustration of why when two types of carets are
involved, the number of carets gets multiplied. The tree on the top
left has only horizontal subdivisions, so when joined with a tree
with only vertical ones, these have to be put at every leaf.

Lemma 4.1. The word length of an element of 2V that is represented by a tree-pair
diagram of depth D is at least D/3.

Proof. Right multiplying by a generator in the finite generating set can add levels to
the tree-pair diagram. When we right multiply by a generator, we may need to add
carets to T− (and thus to T+) if the carets in the generator are not already present
in T−. This can add at most 3 levels, which happens only in the case that we right-
multiply an element (T+, π, T−) with T− having no right subtree by any of A1, B1

or C1 from the finite generating set. In that case, the right child of the root of T−
is a leaf labeled n and we will need to add carets to it and the corresponding leaf
from T+ to obtain a representative compatible with multiplication by the generator.
If leaf π−1(n) in T+ is at maximal level, then the level could increase but only by
the number of carets added to leaf π−1(n) in T−. Thus, any product of less than
D/3 generators cannot have depth D. �

From this it follows that the cyclic subgroups generated by any single generator
from the An or Bn families are undistorted in 2V, for example.

As seen in the proof of Theorem 3.2, multiplying by a generator can increase
the number of carets by a multiplicative factor. The powers of the element C0

have exponentially many carets. In fact, the minimal number of carets needed to
represent Cn

0 is 2n . We give further related specific examples later in Section 5.
Any of these examples show that the lower bound of Theorem 3.2 is optimal.



60 JOSÉ BURILLO AND SEAN CLEARY

To analyze the genericity of the upper bound in Theorem 3.2, we use arguments
analogous to those for V. Birget [2004] showed not only that n log n is an upper
bound on the growth of elements in V with respect to the number of carets n in
minimal length representatives, but also that the fraction of elements close to this
bound converges exponentially fast to 1. In 2V, we note analogous behavior:

Theorem 4.2. Let Hn be the set of elements of 2V representable with n carets and
having no representatives with fewer than n carets. The fraction of elements of Hn

that have word length greater than n log n converges exponentially fast to 1.

Proof. Here we use a counting argument, analogous to that used by Birget [2004] to
count elements in V. In 2V, we consider the subset of representatives of elements
that have only horizontal subdivisions in the domain and only vertical subdivisions
in the range. Their tree-pair diagrams are guaranteed to be reduced and of minimal
size by a straightforward argument. So to count the set of elements of this type of
diagram size n, we have Cn choices (where Cn is the n-th Catalan number) for the
first all-square tree of size n and Cn choices for the all-triangular tree of size n,
and n! choices for the permutation. This set of elements has size C2

nn!, which is,
by the Stirling formula,

(Cn)
2n! =

(
(2n)!

(n+ 1)!n!

)2
n! =

√
2
π

16n

en n(n−2)(1+ o(1)),

where the o(1) term goes to zero as n increases.
The number of elements of word length n in any finitely generated group with d

generators is no more than (2d)n . Thus we see that the ratio of elements that have
word length less than n log2d n out of elements that have tree-pair diagrams of size
n is less than

nn√
2
π

16n

en n(n−2)(1+o(1))
∼ c

n2en

16n ,

which converges to 0 exponentially fast, as desired. So by complementing we have
the result. �

5. Distortion

Elements of 2V can be represented with pairs of binary trees, where the carets
have been subdivided in two types. This fact makes it more difficult to multiply
elements whose caret types disagree, as illustrated already in Theorem 3.2, and
the number of carets can grow faster because of this situation. This phenomenon
has been described already by Wladis [2007] for the group F(2, 3), which has
also carets of two types (binary and ternary). This feature of 2V implies now that
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Figure 8. The process of multiplication for C−2
0 A0C2

0 , illustrating
the exponential number of subdivisions.

the groups F , T and V, when seen as subgroups of 2V (by doing only vertical
subdivisions, for instance), are exponentially distorted.

Theorem 5.1. The groups F , T and V are at least exponentially distorted in 2V.

Proof. We consider the specific element C−n
0 A0Cn

0 , illustrated in Figure 8. This
element lies in a copy of F in 2V obtained by putting F into 2V using only vertical
subdivisions.

The element Cn
0 has 2n carets, as seen with an easy induction. Its two trees are

balanced trees of depth n, one with only vertical subdivisions, and one with only
horizontal subdivisions. By matching the horizontal subdivisions with the vertical
ones in A0, we see the element C−n

0 A0Cn
0 has a number of carets of order 2n , and

all the carets are of vertical type, so the element is in F . This element has length
in V no more than 2n+1, but the number of carets is exponential in n and thus its
word length as an element of the vertical copy of F in 2V is also exponential.

Thus F is at least exponentially distorted in 2V. Since F is undistorted in T
and V, we see that T and V (as subgroups using only vertical subdivisions) are
also at least exponentially distorted in 2V. �
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