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IVAN IZMESTIEV AND JEAN-MARC SCHLENKER

Let P ⊂ R3 be a polyhedron. It was conjectured that if P is weakly convex
(that is, its vertices lie on the boundary of a strictly convex domain) and
decomposable (that is, P can be triangulated without adding new vertices),
then it is infinitesimally rigid. We prove this conjecture under a weak addi-
tional assumption of codecomposability.

The proof relies on a result of independent interest about the Hilbert–
Einstein function of a triangulated convex polyhedron. We determine the
signature of the Hessian of that function with respect to deformations of
the interior edges. In particular, if there are no interior vertices, then the
Hessian is negative definite.

1. Introduction

The rigidity of convex polyhedra. The rigidity of convex polyhedra is a classi-
cal result in geometry, first proved by Cauchy [1813] using ideas going back to
Legendre [1794, note XII, pages 321–334].

Theorem 1.1 [Cauchy 1813; Legendre 1794]. Let P, Q ⊂ R3 be two convex poly-
hedra with the same combinatorics whose corresponding faces are isometric. Then
P and Q are congruent.

This result had a profound influence on geometry over the last two centuries. It
led for instance to the discovery of the rigidity of smooth convex surfaces in R3,
to Alexandrov’s rigidity, and to his results on the realization of positively curved
cone-metrics on the boundary of polyhedra; see [Alexandrov 2005].

From a practical viewpoint, global rigidity is perhaps not as relevant as infini-
tesimal rigidity (see Definition 1.8). Although the infinitesimal rigidity of convex
polyhedra can be proved using Cauchy’s argument, the first proof was given much
later, and is completely different from Cauchy’s.

Theorem 1.2 [Dehn 1916]. Any convex polyhedron is infinitesimally rigid.
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Figure 1. Cauchy’s rigidity theorem fails for nonconvex polyhedra.

Neither Theorem 1.1 nor Theorem 1.2 extends to nonconvex polyhedra. It is
easy to find a counterexample to the extension of Theorem 1.1 to nonconvex poly-
hedra; see Figure 1. Counterexamples to the extension of Theorem 1.2 are more
complicated; see Figure 2.

In this paper we deal with a generalization of Theorem 1.2 to a vast class of
nonconvex polyhedra. The main idea is that it is not necessary to consider convex
polyhedra; what is important is that the vertices are in convex position. Additional
assumptions are necessary, but are automatically satisfied for convex polyhedra.

Main result. By a polyhedron we mean a body in R3 bounded by a closed poly-
hedral surface.

Figure 2. Examples of infinitesimally flexible polyhedra:
Jessen’s orthogonal icosahedron [Jessen 1967; Weisstein] and
Schönhardt’s polyhedron [Schönhardt 1928; Wunderlich 1965].
Both examples are weakly convex (Definition 1.3) but not decom-
posable (Definition 1.4).
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Definition 1.3. A polyhedron P ⊂ R3 is called weakly convex if its vertices are in
convex position in R3.

In other words, P is weakly convex if its vertices are the vertices of a strictly
convex polyhedron.

Definition 1.4. A polyhedron P is called decomposable if it can be triangulated
without adding new vertices.

In other words, every simplex of the triangulation must have vertices among
those of P .

Our work was motivated by the following conjecture.

Conjecture 1.5. Every weakly convex decomposable polyhedron is infinitesimally
rigid.

Any infinitesimally flexible polyhedron known to us fails to satisfy one of the as-
sumptions of Conjecture 1.5. Thus, both polyhedra on Figure 2 are weakly convex
but not decomposable. The infinitesimally flexible nonconvex octahedron pictured
in [Gluck 1975] is decomposable but not weakly convex.

The main result of this paper is the proof of a weakening of Conjecture 1.5. We
state it for polyhedra with triangular faces for simplicity, and explain in the next
subsection how it extends to polyhedra with nontriangular faces. To state it, we
need another, simple definition.

Definition 1.6. We call a polyhedron P codecomposable if its complement in
conv P can be triangulated without adding new vertices. We call P weakly co-
decomposable if P is contained in a convex polyhedron Q, such that all vertices of
P are vertices of Q and that the complement of P in Q can be triangulated without
adding new vertices.

Theorem 1.7. Let P be a weakly convex, decomposable, and weakly codecompos-
able polyhedron with triangular faces. Then P is infinitesimally rigid.

Note that P is not required to be homeomorphic to a ball. The hypothesis that
P is weakly codecomposable, however, appears to be quite weak for polyhedra
homeomorphic to a ball. In the appendix we describe a simple example of a poly-
hedron that is not weakly codecomposable, but however is not homeomorphic to a
ball; it’s quite possible that this example can be modified fairly simply to make it
contractible.

It is easy to come up with many examples of polyhedra to which Theorem 1.7
applies. Consider a convex polyhedron Q, and select an edge e of Q adjacent to
two triangular faces f and f ′. Cut out from Q the simplex that has f and f ′ as two
of its faces, and let Q1 be the nonconvex polyhedron obtained. Combinatorially,
Q1 is the same as Q, except that the edge e has been removed and replaced by
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the other diagonal of the quadrilateral made of the two triangular faces adjacent
to e. By construction, Q1 is weakly convex and weakly codecomposable; it is
easy to check that it is decomposable (actually, star-shaped with respect to at least
2 of its vertices). This operation of cutting out a simplex can then be repeated,
to obtain polyhedra Q2, Q3, . . . , which are always weakly convex and weakly
codecomposable. It is not guaranteed, however, that they remain decomposable,
and indeed the Schönhardt polyhedron depicted above shows that they might cease
to be decomposable.

On the other hand, examples of noncodecomposable weakly convex polyhe-
dra homeomorphic to a ball are quite complicated [Aichholzer et al. 2002], so a
counterexample to Conjecture 1.5 would be difficult to construct. On the other
hand, the codecomposability assumption is used in our proof of Theorem 1.7 in a
very essential way. Thus the question whether the codecomposability assumption
may be omitted remains wide open. (However, this assumption does not appear in
[Schlenker 2005].)

There is another, clearly equivalent way to state Theorem 1.7. Let Q be a con-
vex polyhedron, with a triangulation T with no interior vertex (all vertices of the
simplices of T are vertices of Q). Let 6 be a subcomplex of T , homeomorphic
to a closed surface. Then 6, considered as a polyhedral surface, is infinitesimally
rigid. This statement is also, in an obvious way, an extension of the Cauchy–Dehn
rigidity result, Theorem 1.2.

Polyhedra with nontriangular faces. It is well known that to prove the infinites-
imal rigidity of a polyhedron with nontriangular faces, it suffices to prove it is so
after triangulating the faces; see for example [Alexandrov 2005]. In Theorem 1.7
the fact that two triangular faces are coplanar makes no difference, so it basically
extends as is to polyhedra with some nontriangular faces. There is however a
slightly subtle point that should be mentioned.

If a polyhedron P with some nontriangular faces is decomposable, then there
is a triangulation of the faces that is compatible with its triangulation. Similarly,
if P is codecomposable, there is a triangulation of its faces that is compatible
with a decomposition of the complement of P in its convex hull. However, it
is conceivable that P could be decomposable and codecomposable, but such that
there is no triangulation of its nontriangular faces that is compatible both with a
triangulation of P and with a triangulation of the complement of P in its convex
hull. In this case, Theorem 1.7 would not apply to P . We have no example of such
a polyhedron, and do not know whether any such example exists.

From this point on, we only consider polyhedra with triangular faces.

Earlier results. Conjecture 1.5 originated as a question in [Schlenker 2005], where
a related result was proved: If P is a decomposable polyhedron such that there
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exists an ellipsoid that intersects all edges of P but contains none of its vertices,
then P is infinitesimally rigid. The proof relies on hyperbolic geometry, more
precisely the properties of the volume of hyperideal hyperbolic polyhedra.

Connelly and Schlenker [2010] then proved two special cases of the conjecture:
when P is a weakly convex suspension containing its north-south axis, and when
P has only one concave edge, or two concave edges adjacent to a vertex. The proof
for suspensions was based on stress arguments, while the proof of the other result
used a refinement of Cauchy’s argument.

More recently, Schlenker [2009] proved that the conjecture holds when P is star-
shaped with respect to one of its vertices. This implies the two results in [Connelly
and Schlenker 2010]. The proof was based on recent results of [Izmestiev 2008]
concerning convex caps. Schlenker’s result — and therefore the two results of Con-
nelly and Schlenker — are consequences of Theorem 1.7, since it is not difficult
to show that a polyhedron that is star-shaped with respect to one of its vertices is
codecomposable (the proof actually appears as a step in [Schlenker 2009]).

Definitions. Every polyhedron has faces, edges, and vertices. As mentioned above
we only consider polyhedra with triangular faces.

Definition 1.8. A polyhedron P is called infinitesimally rigid if every infinitesimal
flex of its 1-skeleton is trivial.

Definition 1.9. By an infinitesimal flex of a graph in R3, we mean an assignment
of vectors to the vertices of the graph such that the displacements of the vertices
in the assigned directions induce a zero first-order change of the edge lengths:

(pi − p j ) · (qi − q j )= 0 for every edge pi p j ,

where qi is the vector associated to the vertex pi . An infinitesimal flex is called
trivial if it is the restriction of an infinitesimal rigid motion of R3.

Polyhedra with flat vertices. We will need to deal with triangulations of the bound-
aries of polyhedra that contain additional vertices. Infinitesimal flexes and infin-
itesimal rigidity for such triangulated spheres are defined in the same way. Note
that a triangulated sphere may be infinitesimally flexible even if it bounds a convex
polyhedron, see Figure 3.

Definition 1.10. Let S be a triangulation of the boundary of a polyhedron P . A
vertex p of S is called a flat vertex if it lies in the interior of a face of P .

The following statement is an easy generalization of Dehn’s theorem.

Theorem 1.11. Let S be a triangulation of the boundary of a convex polyhedron P.
Then every infinitesimal flex of S is the sum of an infinitesimal rigid motion and of
displacements of flat vertices in the directions orthogonal to their ambient faces.
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Figure 3. Convex triangulated sphere with a flat vertex. Moving
this vertex in the direction orthogonal to the face produces a non-
trivial infinitesimal flex.

The Hilbert–Einstein function. The proof of Theorem 1.7 is based on some strik-
ing properties of the discrete Hilbert–Einstein function, also known in the physics
community as the Regge function [1961]. First we have to define a space of defor-
mations of a triangulated polyhedron.

Definition 1.12. Let T be a triangulation of a polyhedron P , and let e1, . . . , en be
the interior edges of T . We denote by DP,T the space of n-tuples (l1, . . . , ln)∈Rn

>0
such that for every simplex σ of T , replacing the lengths of the edges of σ that are
interior edges of T by the corresponding l j produces a nondegenerate simplex.

For every element l ∈DP,T , there is an associated metric structure on P obtained
by gluing the simplices with changed edge lengths. The resulting metric space is
locally Euclidean except that it has cone singularities along the interior edges of T .
For every i ∈{1, . . . , n}, denote by ωi the total angle around ei and by κi :=2π−ωi

the singular curvature along ei . Let e′1, . . . , e′r be the boundary edges of P; for
every j ∈ {1, . . . , r} denote by α j the dihedral angle of P at e′j , and by l ′j the
length of e′j .

Definition 1.13. The Hilbert–Einstein function on DP,T is given by the formula

S(l) :=
n∑

i=1

liκi +

r∑
j=1

l ′j (π −α j ) .

The Schläfli formula. A key tool in polyhedral geometry, this formula has several
generalizations. The 3-dimensional Euclidean version states simply that, under a
first-order deformation of any Euclidean polyhedron,

(1)
∑

e

ledαe = 0 ,

where the sum is taken over all edges e, with le denoting the length of the edge e,
and αe the dihedral angle at e. This equality is also known as the Regge formula.
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It follows directly from the Schläfli formula that, under any first-order variation
of the lengths of the interior edges of a triangulation T of the polyhedron P — that
is, for any vector tangent to DP,T — the first-order variation of S is simply

(2) dS=

n∑
i=1

κi dli .

Therefore, the Hessian of S equals the Jacobian of the map (li )
n
i=1 7→ (κi )

n
i=1.

Definition 1.14. Let T be a triangulation of a polyhedron P with n interior edges.
Define the n× n matrix MT as

MT =

(
∂ωi

∂l j

)
=−

(
∂2S
∂li∂l j

)
.

The derivatives are taken at the point l ∈DP,T that corresponds to the actual edge
lengths in T .

The arguments in this paper use only MT , and not directly the Hilbert–Einstein
function S. The fact that MT is minus the Hessian of S does imply, however, that
MT is symmetric.

The matrix MT is directly related to the infinitesimal rigidity of P , an idea
that, in the smooth rather than the polyhedral context, goes back to Blaschke and
Herglotz.1

Lemma 1.15. Let T be a triangulation of a polyhedron P without interior vertices.
Then P is infinitesimally rigid if and only if MT is nondegenerate.

The proof can be found in [Bobenko and Izmestiev 2008; Schlenker 2009] and
is based on the observation that an isometric deformation of P induces a first-order
variation of the interior edge lengths but a zero variation of the angles around them.

The second-order behavior of S. The following is the key technical statement of
the paper.

Theorem 1.16. Let P be a convex polyhedron, and let T be a triangulation of P
with Vert(T )= Vert(P). Then MT is positive definite.

Theorem 1.16 is actually a special case of the following theorem that describes
the signature of MT for T any triangulation of P .

Theorem 1.17. Let P be a convex polyhedron, and let T be a triangulation of
P with m interior and k flat vertices. Then the dimension of the kernel of MT is
3m+ k, and MT has m negative eigenvalues.

1Blaschke and Herglotz suggested that the critical points of the Hilbert–Einstein function on a
manifold with boundary (in the smooth case), with fixed boundary metric, correspond to Einstein
metrics, that is, to constant curvature metrics in dimension 3. The analog of MT in this context is the
Hessian of the Hilbert–Einstein function.
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From Theorem 1.16 to Theorem 1.7. Let P be a polyhedron satisfies the assump-
tions of Theorem 1.7. Since P is decomposable and weakly codecomposable, there
exists a convex polyhedron Q such that all vertices of P are vertices of Q, and a
triangulation T of Q that contains a triangulation T of P and whose vertices are
only the vertices of Q. It is easy to see that the matrix MT is then a principal minor
of the matrix MT . By Theorem 1.16, MT is positive definite; thus so is MT . In
particular, MT is nondegenerate. Lemma 1.15 implies that the polyhedron P is
infinitesimally rigid.

Since Theorem 1.16 is a special case of Theorem 1.17, the rest of this paper
deals with proving Theorem 1.17.

Plan 1.18 (for proving Theorem 1.17). The proof is based on a standard procedure.
To show that the matrix MT has the desired property for every triangulation T , we
prove three points:

• any two triangulations can be connected by a sequence of moves;

• the moves don’t affect the desired property;

• the property holds for a special triangulation.

These points are dealt with in the given order in the next three sections.

2. Connectedness of the set of triangulations

Moves on simplicial complexes are well studied; see [Lickorish 1999] for an over-
view. Several theorems state that any two triangulations of a given manifold can
be connected by certain kinds of simplicial moves. However, we are in a different
situation here, since we deal with triangulations of a fixed geometric object. Taking
a closer look, one sees that a simplicial move is defined as a geometric move
preceded and followed by a simplicial isomorphism. Performing an isomorphism
is the possibility that is missing in our case.

To emphasize the difference between the combinatorial and the geometric sit-
uation, let us cite a negative result concerning geometric moves. Santos [2005]
exhibited two triangulations with the same set of vertices in R5 that cannot be
connected via 2↔ 5 and 3↔ 4 bistellar moves. For an overview on geometric
bistellar moves, see [Santos 2006].

Geometric stellar moves: the Morelli–Włodarczyk theorem. Morelli [1996] and
Włodarczyk [1997] obtained a positive result on geometric simplicial moves. As
a crucial step in the proof of the weak Oda conjecture, they showed that any two
triangulations of a convex polyhedron can be connected by a sequence of geometric
stellar moves.
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Figure 4. Interior stellar moves in dimension 3.

Definition 2.1. Let p be an interior point of a simplex σ ⊂ Rn . The starring of σ
at p is an operation that replaces σ by the cone with the apex p over the boundary
of σ .

Let T be a triangulation of a subset of Rn , let σ be a simplex of T , and let p be
a point in the relative interior of σ . The operation of starring of T at p consists
of replacing the star st σ of σ by the cone with apex p over the boundary of st σ .
The operation inverse to starring is called welding.

Starrings and weldings are called stellar moves.

See Figures 4 and 5 for stellar moves in dimension 3. Figure 4 depicts starrings
and weldings at interior points of T , while Figure 5 shows starrings and weldings
at boundary points. In the case of a boundary point our definition is not completely
correct: A starring replaces st σ by the cone over ∂ st σ \ ∂T .

Theorem 2.2 [Morelli 1996; Włodarczyk 1997]. Any two triangulations of a con-
vex polyhedron P⊂Rn can be connected by a sequence of geometric stellar moves.

We outline of Morelli’s proof using more elementary language and tools.

Outline of the proof. Let T and T ′ be two triangulations of P . A triangulation 6
of P × [0, 1] with 6P×{1} = T and 6|P×{0} = T ′ is called a simplicial cobordism
between T and T ′.

Definition 2.3. Let pr denote the orthogonal projection P×[0, 1]→ P . A simplex
σ ∈6 is called a circuit if dim pr(σ ) < dim σ and σ is inclusion minimal with this
property.
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Figure 5. Boundary stellar moves in dimension 3.

Clearly, the stars of the circuits are simplicial balls with no vertical faces and
6 =

⋃
circuits σ st σ with disjoint interiors.

Definition 2.4. We call a simplicial cobordism 6 collapsible if there is a sequence
of triangulations 6 =60, 61, . . . , 6N =6P×{0} such that

• 6i+1 =6i \ st σi for a circuit σi ;

• the upper boundary of 6i projects one-to-one on P for every i .

In other words, 6 is collapsible if it can be “dismantled with a crane”.

Lemma 2.5. The triangulation pr(∂+6i+1) can be obtained from pr(∂+6i ) by a
starring with a subsequent welding. Here ∂+ denotes the upper boundary.

Proof. For every circuit σ , the transformation pr(∂+σ) pr(∂−σ) is a bistellar
move and can be realized by a starring and a welding. These extend to a starring
and a welding in st σ . �

Thus, a collapsible simplicial cobordism between two triangulations gives rise
to a sequence of stellar moves joining the triangulations.

Definition 2.6. We call a triangulation6 coherent if there is a function h : |6|→R

that is piecewise linear with respect to6 and strictly convex across every facet of6.
(Here |6| =

⋃
σ∈6 σ is the support of 6.)

The barycentric subdivision of any convex polytope Q is coherent — one can
choose values of h at the barycenters of faces of Q consecutively, along with
increasing dimension. Each time the value must be sufficiently large.
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Lemma 2.7. A coherent simplicial cobordism is collapsible.

Proof. Let σ and σ ′ be two circuits of 6 such that some point of st σ lies directly
above a point of st σ ′. It follows that ∂h/∂xn+1|σ > ∂h/∂xn+1|σ ′ , where ∂/∂xn+1

denotes the derivative in the vertical direction. Thus the stars of the circuits can be
lifted up in nondecreasing order of the vertical derivative of h on the circuits. �

To prove the theorem, we construct a coherent cobordism between stellar sub-
divisions of T and T ′. (By a stellar subdivision, we mean the result of a sequence
of starrings.)

Lemma 2.8. Let 6 and 6′ be two triangulations with the same support. Then 6
can be stellarly subdivided to a triangulation 6′′ that refines 6′.

The reader can find a proof of this classical statement in [Glaser 1970].

Lemma 2.9. Let 6 be an arbitrary triangulation of a convex polytope. Then 6
can be stellarly subdivided to a coherent triangulation.

Proof. By Lemma 2.8, the barycentric triangulation of the convex polytope |6|
can be stellarly subdivided to a triangulation 6′ that refines 6. But the barycentric
subdivision of any polytope is coherent. Since starring a coherent triangulation
produces a coherent triangulation, 6′ is coherent.

Again by Lemma 2.8, the triangulation 6 can be stellarly subdivided to a trian-
gulation 6′′ that refines 6′. We claim that 6′′ is coherent.

Let us show that there exists a function s ′′ : |6| → R that is piecewise linear
with respect to6′′ and strictly convex across all facets of6′′ that are not contained
in the codimension 1 skeleton of 6. We construct s ′′ by induction on the number
of stellar subdivisions that transform 6 to 6′′. As the induction base, we take
the zero function. When a stellar subdivision is done, we redefine the function at
the center of the subdivision by increasing it a little. Then we get strict convexity
across appearing facets and don’t destroy convexity where it already takes place.
Note that s ′′ can be concave across facets of 6′′ that are contained in facets of 6.

Now, since6′ is coherent, there exists a function h′ piecewise linear and strictly
convex with respect to 6′. Since 6′ refines 6, the function h′ is strictly convex
across the codimension 1 skeleton of 6. Therefore the function h′′ = h′ + εs ′′ is
strictly convex on 6′′ for a sufficiently small positive ε. �

Outline of the proof of Theorem 2.2. Applying Lemma 2.9 to an arbitrary simplicial
cobordism6 between T and T ′, we get a coherent simplicial cobordism6′′. Since
6′′|P×1 and 6′′|P×0 are stellar subdivisions of T and T ′ respectively, this yields a
sequence of stellar moves connecting T and T ′.

An alternative way to derive Theorem 2.2 from Lemma 2.9 was suggested to us
by Francisco Santos and is as follows. By Lemma 2.9, the triangulations T and T ′

can be stellarly subdivided to coherent triangulations S and S′, respectively. Let
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h : P × {1} → R and h′ : P × {0} → R be corresponding convex piecewise linear
functions. Then their lower envelope h̃ : P × [0, 1] is a convex function whose
linearity domains determine a polyhedral subdivision of P × [0, 1]. If h and h′

are in general position, then this subdivision is a coherent triangulation, and thus
a collapsible simplicial cobordism between T and T ′. �

Realizing interior stellar moves by bistellar moves. To simplify our task in the
next section, we show that instead of interior stellar moves one can use bistellar or
Pachner moves and continuous displacements of the vertices of the triangulation.

Definition 2.10. Let T be a triangulation of a subset of R3.

• Let σ be a 3-dimensional simplex of T . A 1→ 4 Pachner move replaces σ
by four smaller simplices sharing a vertex that is an interior point of σ .

• Let σ and τ be two 3-simplices of T such that the union σ ∪ τ is a strictly
convex bipyramid. A 2→3 Pachner move replaces σ and τ by three simplices
sharing the edge that joins the opposite vertices of σ and τ .

• A 3→ 2 Pachner move is the inverse of a 2→ 3 Pachner move.

• A 4→ 1 Pachner move is the inverse of a 1→ 4 Pachner move.

The Pachner moves are depicted on Figure 6.

Lemma 2.11. Any two triangulations of a convex polyhedron P can be connected
by a sequence of Pachner moves, boundary stellar moves and continuous displace-
ments of the interior vertices.

Figure 6. The 1↔ 4 and 2↔ 3 Pachner moves.
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Proof. By Theorem 2.2, it suffices to show that every interior stellar move can be
realized as a sequence of Pachner moves and vertex displacements. Since Pachner
moves are invertible, we realize only interior starrings.

The starring in a 3-simplex is a 1→ 4 Pachner move.
Consider the starring in a triangle (middle of Figure 4). Denote the vertices of

the triangle to be starred by 1, 2, 3, and the two remaining vertices by a and b.
Perform a 1→ 4 move on the tetrahedron a123 and denote the new vertex by p.
Then perform a 2→ 3 move on the tetrahedra p123 and b123. Finally move the
vertex p so that it lies in the triangle 123.

To realize a starring of an edge, we also first perform a sequence of Pachner
moves to obtain a triangulation combinatorially equivalent to the starring, and then
move the new vertex. Denote by a and b the vertices of the edge to be starred,
and denote the vertices in the link of the edge ab by 1, 2, . . . , n in the cyclic order.
Perform a 1 → 4 move on the tetrahedron ab1n. The new vertex p should be
chosen so that the plane of the triangle abp does not pass through any other vertex.
Let (k, k + 1) be the edge intersected by this plane. Perform a 2→ 3 move on
the tetrahedra ab1p and ab12, then a 2→ 3 move on the tetrahedra ab2p and
ab23, and so on. This sequence finishes with a 2→ 3 move on ab(k − 1)p and
ab(k− 1)k. After that apply a similar sequence of 2→ 3 moves on the other side
starting with the tetrahedra abnp and abn(n − 1) and finishing with ab(k + 2)p
and ab(k + 2)(k + 1). Finally perform a 3→ 2 move over the tetrahedra abpk,
abp(k + 1) and abk(k + 1). It remains to move the vertex p so that it lies on the
edge ab. �

3. The effect of the elementary moves on the signature of MT

In this section we realize the second point of Plan 1.18. Namely, we show that
if Theorem 1.17 holds for some triangulation T , then it holds for a triangulation
T ′ that is obtained from T by an elementary move. An elementary move is either
a Pachner move or a boundary stellar move or a continuous displacement of the
interior vertices of T .

The rank of the matrix MT . Here we prove a part of Theorem 1.17:

Lemma 3.1. The corank of the matrix MT equals 3m + k, with m the number of
interior vertices and k the number of flat boundary vertices in the triangulation T :

dim ker MT = 3m+ k.

Proof. If m>0 or k>0, then it is easy to find a whole bunch of vectors in the kernel
of MT . Any continuous displacement of the interior vertices of T changes the
lengths of the interior edges, but doesn’t change the angles around them, which stay
equal to 2π . Similarly, moving a flat boundary vertex in the direction orthogonal to



184 IVAN IZMESTIEV AND JEAN-MARC SCHLENKER

its ambient face doesn’t change any of the angles ωi . It does change the lengths of
the boundary edges incident to this vertex, but only in the second order. It follows
that the variations of interior edge lengths induced by the orthogonal displacement
of a flat boundary vertex belong to the kernel of MT .

Being formal, let Q : V(T )→ R3 be an assignment to every vertex pi of T of
a vector qi such that

(1) qi = 0 if pi is a nonflat boundary vertex of T ;

(2) qi ⊥ Fi if pi is a flat boundary vertex lying in the face Fi of P .

For every edge i j of T put

`
Q
i j =

pi − p j

‖pi − p j‖
· (qi − q j ).

It is easy to see that this formula gives the infinitesimal change of `i j that results
from the infinitesimal displacements of the vertices pi , p j by the vectors qi , q j .
By the previous paragraph, `Q

i j ∈ ker MT .
Let us show that the span of the vectors `Q has dimension 3m+k. The correspon-

dence between Q and `Q is linear, and the space of assignments Q with properties
(1) and (2) has dimension 3m+k, so it suffices to show that `Q

= 0 implies Q= 0.
Indeed, `Q

= 0 means that Q is an infinitesimal flex of the 1-skeleton of T ; see
Definition 1.9. But T is infinitesimally rigid, since every simplex is. Thus `Q

= 0
implies that Q is trivial. Since qi = 0 on the vertices of P , we have Q = 0.

It remains to show that any vector ˙̀ ∈ ker MT has the form `Q for some Q. Let
p1 p2 p3 be a triangle of T . Choose q1, q2, and q3 arbitrarily. Let p4 be a vertex such
that there is a simplex p1 p2 p3 p4 in T . The values of ˙̀i4 for i = 1, 2, 3 determine
uniquely a vector q4 such that ˙̀i4 = `

Q
i4 for i = 1, 2, 3. If i j is a boundary edge

of T , we put ˙̀i j = 0. Similarly, we define q5 for the vertex p5 of a simplex that
shares a face with p1 p2 p3 p4. Proceeding in this manner, we can assign a vector qi

to every vertex pi if we show that this is well-defined (we extend our assignment
along paths in the dual graph of T , and it needs to be shown that the extension does
not depend on the choice of a path). It is not hard to see that this is ensured by the
property MT ˙̀ = 0. Thus we have constructed an assignment Q :V(T )→R3 such
that ˙̀ = `Q . Since ˙̀i j = 0 for every boundary edge i j of T , the vectors (qi )|pi∈∂P

define an infinitesimal flex of the boundary of P . Due to Theorem 1.11, Q satisfies
properties (1) and (2) above, after subtracting an infinitesimal motion. Thus the
kernel of MT consists of the vectors of the form `Q . �

Corollary 3.2. Let T be a triangulation of a convex polyhedron P. Consider a
continuous displacement of the vertices of T such that no simplex of the triangula-
tion degenerates, the underlying space of T remains a convex polyhedron, all flat
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boundary vertices remain flat, and nonflat remain nonflat. Then the signature of
the matrix MT does not change during this deformation.

Proof. Due to Lemma 3.1, the rank of MT does not change during the deformation.
Hence no eigenvalue changes its sign. �

The effect of the Pachner moves.

Lemma 3.3. Let P be a convex polyhedron, and let T and T ′ be two triangulations
of P such that T ′ is obtained from T by a 2→ 3 Pachner move. Then the statement
of Theorem 1.17 applies to T if and only if it applies to T ′.

Proof. Since triangulations T and T ′ have the same number of interior and flat
boundary vertices, the matrices MT and MT ′ have the same corank by Lemma 3.1.
It remains to show that MT and MT ′ have the same number of negative eigenvalues.

Matrices MT and MT ′ define symmetric bilinear forms (that are denoted by the
same letters) on the spaces REint(T ) and REint(T ′), respectively. Here Eint(T ) denotes
the set of interior edges of the triangulation T . Note that Eint(T ′)= Eint(T )∪{e0},
where e0 is the vertical edge on the lower right of Figure 6. Extend MT to a
symmetric bilinear form on REint(T ′) by augmenting the matrix MT with a zero row
and a zero column, and put 8= MT ′ −MT . By Definition 1.14, we have

8=

(
∂(ω′i −ωi )

∂` j

)
i, j∈Eint(T ′)

,

where we put ∂ω0/∂` j = 0 for all j .
Denote those edges on the upper right of Figure 6 that are interior edges of T by

e1, . . . , es . Note that ωi =ω
′

i as functions of the edge lengths for all i /∈ {0, . . . , s}.
Thus, the matrix 8 reduces to an (s+1)× (s+1) matrix with rows corresponding
to the edges e0, . . . , es .

We claim that the matrix 8 is positive semidefinite of rank 1. To construct
a vector in the kernel of 8, note that during any continuous deformation of the
bipyramid on Figure 6 we haveωi =ω

′

i as functions of edge lengths for i=1, . . . , s,
while ω′0 is identically 2π . Thus if we choose ˙̀1, . . . , ˙̀s arbitrarily and define ˙̀0 as
the infinitesimal change of the length of e0 under the corresponding infinitesimal
deformation of the bipyramid, then we have 8 ˙̀ = 0. Therefore rank8 ≤ 1. The
infinitesimal rigidity of the bipyramid implies ∂ω′0/∂`0 6= 0; thus rank8 = 1.
Since the space of convex bipyramids is connected, it suffices to prove the positive
semidefiniteness of 8 in some special case. In the case when all edges of the
bipyramid have equal length, one can easily see that ∂ω′0/∂`0 > 0, which implies
the positivity of the unique eigenvalue of 8.

The equation

rank MT ′ = rank MT + 1= rank MT + rank8
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implies that ker MT and ker8 intersect transversally and ker MT ′=ker MT∩ker8.
Therefore

rank(MT + t8)= rank MT + 1 for all t 6= 0.

The Courant minimax principle [Courant and Hilbert 1953, Chapter I, Section 4]
implies that the eigenvalues of MT + ε8 are larger than or equal to the corre-
sponding eigenvalues of MT . It follows that when MT is deformed into MT ′ via
{MT + t8}t∈[0,1], exactly one of the zero eigenvalues of MT becomes positive, and
all of the nonzero eigenvalues preserve their sign. Thus MT ′ has the same number
of negative eigenvalues as MT and the lemma is proved. �

Lemma 3.4. Let P be a convex polyhedron, and let T and T ′ be two triangulations
of P such that T ′ is obtained from T by a 1→ 4 Pachner move. Then the statement
of Theorem 1.17 applies to T if and only if it applies to T ′.

Proof. The same arguments as in the proof of Lemma 3.3 work. The triangulation
T ′ has one interior vertex more that the triangulation T and four interior edges
more than T . By Lemma 3.1, we have rank MT ′ = rank MT + 1, and we have to
prove that MT ′ has the same number of positive eigenvalues as MT and one negative
eigenvalue more. For this it suffices to show that the quadratic form8=MT ′−MT

is negative semidefinite of rank 1. In the same way as in the proof of Lemma 3.3,
one shows that rank8 ≤ 1. After that, it suffices to show that the restriction of
8 to the space spanned by the variations of lengths of the four interior edges on
the lower left of Figure 6 is nontrivial and negative semidefinite. The nontriviality
follows from the infinitesimal rigidity of the simplex, and it suffices to check the
negative semidefiniteness in some convenient special case. �

The effect of the boundary stellar moves.

Lemma 3.5. Let P be a convex polyhedron, and let T and T ′ be two triangulations
of P such that T ′ is obtained from T by the starring of a boundary 2-simplex. Then
the statement of Theorem 1.17 applies to T if and only if it applies to T ′.

Proof. We have rank MT ′ = rank MT and need to show that MT ′ has the same
signature as MT . This is true because in fact MT ′ = MT — more precisely, MT ′

is obtained from MT by adding a column and a row, each with all elements equal
to zero. This can be shown using the explicit formulas for ∂ωi/∂` j and ∂ω′i/∂` j

from [Bobenko and Izmestiev 2008, Section 3.1] and [Korepanov 2000]. �

Lemma 3.6. Let P be a convex polyhedron, and let T and T ′ be two triangulations
of P such that T ′ is obtained from T by the starring of a boundary 1-simplex. Then
the statement of Theorem 1.17 applies to T if and only if it applies to T ′.
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Proof. The strategy is the same as in the proofs of Lemmas 3.3 and 3.4. Put
8= MT ′ −MT and note that by Lemma 3.1

(3) rank MT ′ = rank MT + i,

where i is one less than the number of simplices incident to the starred edge (for
example, i = 2 in the right column of Figure 5). As in the proof of Lemma 3.3,
one shows that rank8 ≤ i . Then (3) implies rank8 = i . Since we aim to show
that MT ′ has the same number of negative eigenvalues as MT , it suffices to show
that 8 is positively semidefinite.

Let 9 be the i × i principal minor of 8 formed by the rows and columns that
correspond to the interior edges of the triangulation on the lower right of Figure
5. We claim that 9 is positively definite, which implies the nonnegativity of 8.
The proof is by continuity argument as in Lemma 3.3. To prove the nondegeneracy
of 9, it suffices to show that the framework of the boundary edges on the lower
right of Figure 5 is infinitesimally rigid. The framework on the upper right of
Figure 5 is infinitesimally rigid, since it is formed by skeleta of 3-simplices that
are rigid. This implies the infinitesimal rigidity of the boundary framework on the
lower right (an easy exercise in applying the definition of an infinitesimal flex).
Now consider a deformation of the triangulation on the upper right that makes the
underlying polyhedron convex. This deformation can be extended to a deformation
of the triangulation on the lower right. Since the matrix 9 remains nondegenerate
during the deformation, its signature is preserved. After the polyhedron is made
convex, push the starring vertex off the starred edge so that the vertices of the
triangulation are in the convex position. This also preserves the signature of 9. In
the final position, 9 is positive due to Theorem 4.1. �

4. Investigating MT for a special triangulation T .

Let P be a convex polyhedron. Let S be a triangulation of ∂P such that Vert(S)=
Vert(P), and let p be a vertex of P . Consider the triangulation T consisting of
simplices with a common vertex p and opposite faces the triangles of S disjoint
from p.

Theorem 4.1. The matrix MT is positive definite.

Proof. Formally, this is a special case of [Schlenker 2009, Theorem 1.5] that claims
that MT is positive if P is weakly convex and star-shaped with respect to the
vertex p. The proof uses the positivity of the corresponding matrix for convex
caps [Izmestiev 2008, Lemma 6 and Theorem 5] and the projective invariance of
infinitesimal rigidity [Schlenker 2009, Section 5]. �

Theorem 4.1 accomplishes the plan outlined in Plan 1.18. Theorem 1.17 is
proved, and therewith Theorem 1.7.
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Figure 7. The twisted octahedron.

Appendix: A polyhedron that is not weakly codecomposable

Definition A.1. Let θ ∈ (−2π/3, 2π/3). The twisted octahedron Octθ of Figure 7
is the polyhedron with vertices A, B,C, A′, B ′,C ′ of coordinates respectively

(1, 0, 1), (cos(2π/3), sin(2π/3), 1),

(cos(4π/3), sin(4π/3), 1), (cos(−π + θ), sin(−π + θ),−1),

(cos(−π/3+ θ), sin(−π/3+ θ),−1), (cos(π/3+ θ), sin(π/3+ θ),−1).

The edges are the segments joining A to B ′ and C ′, B to A′ and C ′, C to A′ and
B ′, and the faces are the triangles (ABC), (A′B ′C ′), (AB ′C ′), (A′BC ′), (A′B ′C),
(ABC ′), (AB ′C), (A′BC).

Note that Oct±π/2 is a Schönhardt polyhedron; see Figure 2, right.

Proposition A.2. Octθ is embedded for all θ ∈ (−2π/3, 2π/3).

For θ ∈ (−2π/3, 2π/3), we call At(θ) the area of the intersection of Octθ with
the horizontal plane {z = t}.

Proposition A.3. limθ→2π/3 A0(θ)= 0.

Let K be a large enough convex polygon in the plane Oxy (it suffices to require
that the interior of K contains the disk x2

+ y2
≤ 1). Consider the polyhedron

Pθ = conv(A, B,C, A′, B ′,C ′, K ) \Octθ homeomorphic to a solid torus.

Lemma A.4. For θ close enough to 2π/3, Pθ is not weakly codecomposable.

Proof. Suppose that Pθ is weakly codecomposable. Then there exists a convex
polyhedron Qθ⊃ Pθ such that Qθ\Pθ can be triangulated without an interior vertex.
Let S1, . . . , Sn be the simplices in this triangulation that intersect Octθ ∩(Oxy).
For each i ∈ {1, . . . , n}, let ai (t) be the area of the intersection of Si with the
horizontal plane {z = t}.

Each of the Si can have either:
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• Two vertices with z ≥ 1 and two vertices with z ≤−1. Then the restriction of
ai to (−1, 1) is a concave quadratic function, so that 2ai (0)≥ ai (−1)+ai (1).

• One vertex with z ≥ 1 and three vertices with z ≤−1. Then ai is of the form
ai (t)= ci (t+bi )

2 with bi ≥ 1. It easily implies that 4ai (0)≥ ai (−1)+ai (1).

• One vertex with z ≤ −1 and three vertices with z ≥ 1. The same argument
then shows the same result.

So 4ai (0) ≥ ai (−1)+ ai (1) for all i and the union of the Si contains Octθ . It
follows that 4A0(θ)≥ A−1(θ)+A1(θ). But A1(θ) and A−1(θ) are equal to the area
of an equilateral triangle of fixed side length, while A0(θ) goes to 0 as θ→ 2π/3.
This is a contradiction, and the claim follows. �
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