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A link in the 3-sphere is homotopically trivial, according to Milnor, if its
components bound disjoint maps of disks in the 4-ball. This paper is con-
cerned with the question of what spaces, when used in place of disks in
an analogous definition, give rise to the same class of homotopically trivial
links. We show that there are 4-manifolds for which this property depends
on their embedding in the 4-ball. This work is motivated by the A-B slice
problem, a reformulation of the 4-dimensional topological surgery conjec-
ture. As a corollary, this provides a new, secondary obstruction in the A-B
slice problem for a certain class of decompositions of D4.

1. Introduction

The classification of knots and links up to concordance, in both the smooth and
topological categories, is an important and difficult problem in 4-dimensional topol-
ogy. Recall that two links in the 3-sphere are concordant if they bound disjoint em-
beddings of (smooth or locally flat, depending on the category) annuli in S3

×[0, 1].
Milnor [1954] introduced the notion of link homotopy, often referred to as the
“theory of links modulo knots”, which turned out to be much more tractable. In
particular, there is an elegant characterization of homotopically trivial links using
the Milnor group, a certain rather natural nilpotent quotient of the fundamental
group of the link. Two links are link homotopic if they bound disjoint maps of
annuli in S3

× [0, 1], so the annuli are disjoint from each other, but (unlike the
definition of concordance) they are allowed to have self-intersections. (Strictly
speaking, this defines the notion of a singular concordance of links; however, it is
known [Giffen 1979; Goldsmith 1979] to be equivalent to Milnor’s original notion
[Milnor 1954] of link homotopy.)

The subject of link homotopy brings together 4-dimensional geometric topology
and the classical techniques of nilpotent group theory. An area where both ap-
proaches are important, and which is a motivation for the results in this paper, is the
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A-B slice problem, a reformulation of the topological 4-dimensional surgery con-
jecture [Freedman and Lin 1989; Freedman and Quinn 1990]. Roughly speaking,
this paper is concerned with the problem of characterizing spaces (in interesting
cases, 4-manifolds with a specified curve in the boundary) which, when used in
place of disks in a definition analogous to Milnor’s, give rise to the same class of
homotopically trivial links.

A specific question about the A-B slice problem, and related to link-homotopy
theory, is the following: Suppose M is a codimension-zero submanifold of the 4-
ball, i : M ↪→ D4, with a specified curve γ ⊂ ∂M forming a knot in the 3-sphere:
i(γ) ⊂ S3

= ∂D4. Given such a pair (M, γ), does there exist a homotopically
essential link

(
i1(γ), . . . , in(γ)

)
in the 3-sphere, formed by disjoint embeddings

i1, . . . , in of (M, γ) into (D4, S3)? If the answer is negative, the pair (M, γ) is
called robust. The analysis of this problem is substantially more involved than the
classical link homotopy case where one considers disks with self-intersections: in
general the 1- and 2-handles of 4-manifolds embedded in D4 may link, and the
relations in the fundamental group of the complement do not have the “standard”
form implied by the Clifford tori in Milnor’s theory.

The main result of this paper is the existence of 4-manifolds for which this
property depends on their embedding in the 4-ball:

Theorem 1. There exist submanifolds i : (M, γ) ↪→ (D4, S3) such that

(i) there are disjoint embeddings of copies (Mi , γi ) of (M, γ) into (D4, S3) form-
ing a homotopically essential link (γ1, . . . , γn) in the 3-sphere, and

(ii) given any disjoint embeddings of (M, γ) into (D4, S3), each one isotopic
to the original embedding i , the link (γ1, . . . , γn) formed by their attaching
curves in the 3-sphere is homotopically trivial.

In the A-B slice problem, one considers decompositions of the 4-ball, D4
=

A ∪ B, where the specified curves α, β of the two parts form the Hopf link in
S3
= ∂D4 (see [Freedman and Lin 1989; Krushkal 2008], and Section 2 below).

It is shown in [Krushkal 2008] that there exist decompositions where neither of
the two sides is robust. This result left open the question of whether, in fact, these
decompositions may be used to solve the general 4-dimensional topological surgery
conjecture.

This paper provides a detailed analysis of the construction in [Krushkal 2008].
The proof of Theorem 1 shows that, in this case, one of the two parts of the decom-
position is robust provided that the re-embeddings forming the link (γ1, . . . , γn) are
topologically equivalent to the original embedding into the 4-ball. This provides a
new obstruction in the A-B slice problem for this class of decompositions of the
4-ball, exhibiting a new phenomenon where the obstruction depends not just on the
submanifold but also on its specific embedding into D4. In particular, this shows
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that the construction in [Krushkal 2008] does not satisfy the equivariance condition
which is necessary for solving the canonical 4-dimensional surgery problems. An
important open question is whether, given any decomposition D4

= A ∪ B, the
conclusion (ii) of Theorem 1 holds for either A or B.

The main tool in the proof of part (ii) is the Milnor group, in the context of
the relative-slice problem. This context is substantially different from Milnor’s
original work, since we use it to analyze embeddings of more general submanifolds
in the 4-ball. The topology of these spaces is richer than the setting of disks with
self-intersections in the 4-ball, considered in classical link homotopy. To find an
obstruction, one has to consider in detail the structure of the graded Lie algebra
associated to the lower central series of the link group. The strategy of the proof
should be useful for further study of the A-B slice problem.

Section 2 gives a detailed definition of robust 4-manifolds and robust embed-
dings, and discusses its relation with the A-B slice problem. The construction
[Krushkal 2008] of the submanifolds, used in the proof of Theorem 1, is recalled
in Section 3. In Section 4, we review the Milnor group in the 4-dimensional setting
and complete the proof of Theorem 1.

2. Robust 4-manifolds and the A-B slice problem

This section states the definition of robust 4-manifolds and robust embeddings,
notions which provide a convenient setting for the results of this paper and are
important for the A-B slice problem. Let M be a 4-manifold with a specified
curve γ in its boundary. Let i : M ↪→ D4 be an embedding into the 4-ball with
i(γ)⊂ S3

= ∂D4.

Definition 2.1. The pair (M, γ) is called robust if, given any n ≥ 2 and disjoint
embeddings i1, . . . , in of (M, γ) into (D4, S3), the link formed by the curves
i1(γ), . . . , in(γ) in the 3-sphere is homotopically trivial.

An embedding i : (M, γ) ↪→ (D4, S3) is robust if, given any n ≥ 2 and dis-
joint embeddings i1, . . . , in of (M, γ) into (D4, S3), each isotopic to the original
embedding i , the link formed by the curves i1(γ), . . . , in(γ) in the 3-sphere is
homotopically trivial. (In this case, we say that the re-embeddings are standard.)

In these terms, Theorem 1 states that there exist pairs (M, γ) that are not robust
but admit robust embeddings; these are the first examples of this phenomenon.

It follows easily from the definition that the 2-handle (D2
×D2, {0}×∂D2), and

more generally any kinky handle (a regular neighborhood in the 4-ball of a disk
with self-intersections) is robust.

It is not difficult to give further examples: it follows from the link composition
lemma [Freedman and Lin 1989; Krushkal and Teichner 1997] that the 4-manifold
(B0, β) in Figure 1, obtained from the collar β×D2

×[0, 1] by attaching 2-handles
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to the Bing double of the core of the solid torus, is robust. This example illustrates
the important point that the disjoint copies i j (M) in the definition above are em-
bedded: it is easy to see that, if the 2-handles H1, H2 in Figure 1 were allowed to
intersect, this 4-manifold may be mapped to the collar on its attaching curve, and
therefore there exist disjoint singular maps of copies of this manifold such that
their attaching curves {γi } form a homotopically essential link in the 3-sphere.

The complement in D4 of the standard embedding of the 4-manifold in Figure 1
is the 4-manifold A= (genus-one surface with one boundary component α)×D2.
It is easy to see that (A, α) is not robust: for example, the Borromean rings form a
homotopically essential link bounding disjoint standard genus-one surfaces in the
4-ball.

To review the relation of these results to the 4-dimensional topological surgery
conjecture, recall the definition of an A-B slice link (see [Freedman and Lin 1989;
Krushkal 2008] for a more detailed discussion.)

Definition 2.2. A decomposition of D4 is a pair of compact codimension-zero sub-
manifolds with boundary A, B ⊂ D4, satisfying conditions (1)–(3) below, where

∂+A = ∂A∩∂D4, ∂+B = ∂B∩∂D4, ∂−A = ∂A\∂+A, ∂−B = ∂B \∂+B.

(1) A∪ B = D4.

(2) A∩ B = ∂−A = ∂−B.

(3) S3
= ∂+A ∪ ∂+B is the standard genus-one Heegaard decomposition of S3.

Given an n-component link L = (l1, . . . , ln)⊂ S3, let D(L)= (l1, l ′1, . . . , ln, l ′n)
denote the 2n-component link obtained by adding an untwisted parallel copy L ′

to L . The link L is A-B slice if there exist decompositions (Ai , Bi ), i = 1, . . . , n,
of D4, and self-homeomorphisms ϕi , ψi of D4, for i = 1, . . . , n, such that all sets
in the collection ϕ1 A1, . . . , ϕn An, ψ1 B1, . . . , ψn Bn are disjoint, and the following
boundary data is satisfied: ϕi (∂

+Ai ) is a tubular neighborhood of li and ψi (∂
+Bi )

is a tubular neighborhood of l ′i , for each i .

The surgery conjecture is equivalent to the statement that the Borromean rings,
and a certain family of their generalizations, are A-B slice. In [Krushkal 2008],
we constructed a decomposition D4

= A∪ B and disjoint embeddings Ai , Bi into
D4 so that the attaching curves {αi } of the Ai formed the Borromean rings (or,
more generally, any given link with trivial linking numbers) and the curves {βi }

formed an untwisted parallel copy. The validity of one of the conditions necessary
for solving the canonical surgery problems was unknown at the time of that con-
struction, namely the equivariance (the existence of the homeomorphisms ϕi , ψi );
phrased differently, it was not known whether there exist disjoint re-embeddings
of the submanifolds A, B which are standard. It follows from Theorem 1 that
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standard disjoint embeddings for these decompositions do not exist. Therefore, an
open question (important in the search for an obstruction to surgery in the context
of the A-B slice problem) is: Given any decomposition D4

= A∪ B, is one of the
two embeddings A ↪→ D4, B ↪→ D4 necessarily robust?

3. Construction of the submanifolds

This section reviews the construction [Krushkal 2008] of the submanifolds of D4,
which will be used in the proof of Theorem 1 in Section 4. The construction
consists of a series of modifications of the handle structures, starting with a standard
surface and its complement in the 4-ball. Consider the genus-one surface S with
a single boundary component α, and set A0 = S × D2. Consider the standard
embedding (S, α)⊂ (D4, S3) (take an embedding of the surface in S3, push it into
the 4-ball and take a regular neighborhood). Then, A0 is identified with a regular
neighborhood of S in D4. The complement B0 of A0 in the 4-ball is obtained from
the collar on its attaching curve, S1

× D2
× I , by attaching a pair of zero-framed

2-handles to the Bing double of the core of the solid torus S1
× D2

× {1}, as in
Figure 1. (See for example [Freedman and Lin 1989] for a proof of this statement.)

β

H1
H2

B0
0

0

β

Figure 1

Note that a distinguished pair of curves α1, α2, forming a symplectic basis in
the surface S, is determined as the meridians (linking circles) to the cores of the
2-handles H1, H2 of B0 in D4. In other words, α1, α2 are fibers of the circle normal
bundles over the cores of H1, H2 in D4.

An important observation [Freedman and Lin 1989] is that this construction may
be iterated: Consider the 2-handle H1 in place of the original 4-ball. The pair of
curves (α1 and the attaching circle β1 of H1) form the Hopf link in the boundary of
H1. In H1, consider the standard genus-one surface T bounded by β1. As discussed
above, its complement is given by two zero-framed 2-handles attached to the Bing
double of α1. Assembling this data, consider the new decomposition D4

= A1∪B1

(in this paper we need only the B-side of the decomposition, shown in Figure 2.)
As above, the diagrams are drawn in solid tori (complements in S3 of the unknotted
circles drawn dashed in the figures.)
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B1

β

β

0 0

Figure 2

The handlebodies A1, B1 are examples of model decompositions [Freedman and
Lin 1989] obtained by iterated applications of the construction above. It is known
that such model handlebodies are robust and, in particular, the Borromean rings
are not weakly A-B slice when restricted to the class of model decompositions.
(A link L is weakly A-B slice if the submanifolds {Ai , Bi } in Definition 2.2 may
be embedded into D4 disjointly, but the equivariance condition encoded by the
existence of the homeomorphisms ϕi , ψi is omitted; see [Krushkal 2008].)

We are now in a position to define the decomposition D4
= A ∪ B used in the

proof of Theorem 1.

Definition 3.1. Consider B = (B1 ∪ zero-framed 2-handle), attached as shown in
the Kirby diagram in Figure 3.

γ
δ

T D

B

β

β

0 0

0

Figure 3

Imprecisely (up to homotopy, on the level of spines) B may be viewed as the
union of B1 with a 2-cell, attached along the composition of the attaching circle β
of B1 and a curve representing a generator of H1(the second-stage surface of B1).
This 2-cell is schematically shown in the spine picture of B in Figure 3, left, as a
cylinder connecting the two curves. The shading indicates that the new generator
of π1 created by adding the cylinder is filled-in with a disk. The figure showing
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β

0

0

Figure 4

the spine is provided only as motivation for the construction; a precise description
is given by the handle diagram.

Note that, by canceling a (1-handle, 2-handle) pair, one gets the diagram for B
shown in Figure 4; this fact will be used in the proof of Theorem 1 in the next
section. (Observe that the handle diagram in Figure 4 may also be obtained from
the handle diagram of its complement, [Krushkal 2008, Figure 12].)

4. The Milnor group and the proof of Theorem 1

We start this section by summarizing the relevant information about the Milnor
group, which will be used in the proof of Theorem 1. The reader is referred to
the original [Milnor 1954] for a more complete introduction to the Milnor group
of links in the 3-sphere; see also [Freedman and Teichner 1995, Section 2] for a
discussion of the Milnor group in the more general 4-dimensional context.

Definition 4.1. Given a group G, normally generated by elements g1, . . . , gn , the
Milnor group of G relative to the given normal generating set {gi } is defined as

(4-1) MG = G / 〈〈 [gx
i , gy

i ] | x, y ∈ G, i = 1, . . . , n 〉〉.

The Milnor group is a finitely presented nilpotent group of class ≤ n, where
n is the number of normal generators in the previous definition. In this paper, an
example of interest is G = π1(D4

\6), where 6 is a collection of surfaces with
boundary, properly and disjointly embedded in (D4, S3). In this case, a choice of
normal generators is provided by the meridians mi to the components 6i of 6.
Here, a meridian mi is an element of G which is obtained by following a path αi

in D4
\6 from the basepoint to the boundary of a regular neighborhood of 6i ,

followed by a small circle (a fiber of the circle normal bundle) linking 6i , then
followed by α−1

i .
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Denote by Fg1,...,gn the free group generated by the gi , and consider the Magnus
expansion

(4-2) M : Fg1,...,gn → Z[x1, . . . , xn]

into the ring of formal power series in noncommuting variables {xi }, defined by

M(gi )= 1+ xi , M(g−1
i )= 1− xi + x2

i ∓ . . .

We will keep the same notation for the homomorphism

(4-3) M : M Fg1,...,gn → Rx1,...,xn ,

induced by the Magnus expansion, into the quotient Rx1,...,xn of Z[x1, . . . , xn] by
the ideal generated by all monomials xi1 · · · xik with some index occurring at least
twice. It is established in [Milnor 1954] that the homomorphism (4-3) is well
defined and injective.

We now turn to the proof of Theorem 1. Consider the submanifold i : (B, β)⊂
(D4, S3) that was constructed in Definition 3.1. Part (i) of the theorem follows from
[Krushkal 2008, Theorem 1], which showed that there exist disjoint embeddings
of three copies (Bi , βi ), such that the link formed by the curves β1, β2, β3 in the
3-sphere is the Borromean rings. It is convenient to introduce the next definition.

Definition 4.2. An embedding j : (B, β) ↪→ (D4, S3) is standard if there exists
an ambient isotopy between j and the original embedding i from Definition 3.1.

Examining the proof of [Krushkal 2008, Theorem 1], one may check that the
embeddings of the Bi , constructed there and giving rise to the Borromean rings on
the boundary, are not standard. (In terms of the spine picture of B in Figure 3, for
the standard embedding, the curve δ bounds a disk in D4 which is disjoint from the
2-sphere formed by the core of the 2-handle D capped off with a null-homotopy for
its attaching curve; on the other hand, for the embedding constructed in [Krushkal
2008], δ has linking number 1 with this 2-sphere.)

We will now show that given disjoint standard embeddings of several copies
(Bi , βi ) into the 4-ball, the link formed by the curves β1, . . . , βn in the 3-sphere
is necessarily homotopically trivial. We will show that the Borromean rings do
not bound disjoint standard embeddings of three copies of (B, β). The Borromean
rings case is the most interesting example from the perspective of the A-B slice
problem, while the case of other homotopically essential links is proved analo-
gously.

Suppose to the contrary that the Borromean rings bound disjoint standard em-
beddings B1, B2, B3. We will consider the relative-slice reformulation of the prob-
lem; see [Freedman and Lin 1989] and also [Krushkal 2008] for a more detailed
introduction. Using the handle diagram in Figure 4, one then observes that there is
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a solution to the relative-slice problem shown in Figure 5. This means that the six
components l1, . . . , l6 (drawn solid in the figure) bound disjoint embedded disks
in the handlebody D4

∪a,b,c 2-handles, where the 2-handles are attached to the
4-ball with zero framings along the curves a, b, c (drawn dashed) from Figure 5.
The fact that the embeddings Bi ↪→ D4 are standard is reflected by the fact that
the slices bounded by the “solid” curves of each Bi do not go over the 2-handles
(dashed curves) corresponding to the same Bi . This means that the slices for l1, l2

do not go over a and, similarly, l3, l4 do not go over b, nor l5, l6 over c. (Note that,
without this restriction, there is a rather straightforward solution to this relative-
slice problem.)

l1

l6

l5

l2

l3

l4

a

b

c

Figure 5

Therefore, assume the link in Figure 5 is relatively slice, subject to the “stan-
dard” condition discussed previously. Denote by Di the slice bounded by li ,
i = 1, . . . , 6, and let D =

⋃
i=2,...,6 Di . Consider

X := (D4
∪a,b,c 2-handles) \ D.

Denote by mi the meridians to the components li , and by ma,mb,mc the meridi-
ans to the curves a, b, c, respectively. The first homology H1(X) is generated by
m2, . . . ,m6. In fact, we view {mi } as based loops in X normally generating π1(X).

If we omit the first component l1, the remaining link (l2, . . . , l6, a, b, c) in
Figure 5 is the unlink. This implies that the second homology H2(X) is spher-
ical. Indeed, its generators may be represented by parallel copies of the cores
of the 2-handles attached to a, b, c, capped off by disks in the complement of a
neighborhood of the link (l2, . . . , l6, a, b, c) in the 3-sphere. Therefore, the Milnor
group Mπ1(X) with respect to the normal generators mi is isomorphic to the free
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Milnor group:

Mπ1(X)∼= M Fm2,...,m6 .

Indeed, since the Milnor group is nilpotent, it is obtained from the quotient by a
term of the lower central series, π1(X)/(π1(X))n , by adding the Milnor relations
(4-1). The relations in the nilpotent group π1(X)/(π1(X))n may be read off from
surfaces representing generators of H2(X); see [Krushkal 1998, Lemma 13]. In
particular, the relations corresponding to spherical classes are trivial. Therefore, all
relations in Mπ1(X) are the standard relations (4-1) or, in other words, Mπ1(X)
is the free Milnor group.

It follows that the Magnus expansion (4-3)

(4-4) M : Mπ1(X)∼= M Fm2,...,m6 → Rx2,...,x6

is well defined. Connecting the first component l1 to the basepoint, consider it as
an element of Mπ1(X). From the assumption that the link in Figure 5 is relatively
slice, it follows that l1 bounds a disk in X and, in particular, that it is trivial in
Mπ1(X). We will find a nontrivial term in the Magnus expansion (4-4) M(l1) ∈

Rx2,...,x6 , giving a contradiction with the relative-slice assumption.
Consider the meridians mi to the components li in S3, for i = 2, . . . , 6, and also

the meridians ma,mb,mc to a, b, c. The meridians mi will also serve as meridians
to the slices Di bounded by li , for i=2, . . . , 6, that were discussed above. Consider

(4-5) l1 =
[
mam2,

[
[m3,mbm4], [m5,m6mc]

]]
∈ Mπ1(X).

In this expression, ma,mb,mc are elements of Mπ1(X) that depend on how the
hypothetical slices Di go over the 2-handles attached to a, b, c. The expression
(4-5) may be read from the capped grope (see Figure 6) bounded by l1 in the
complement of the other components in the 3-sphere. (Note that the components
l2, . . . , l6, a, b, c intersect only the caps and not the body of the grope.)

Recall a basic commutator identity: any three elements f, g, h in a group satisfy

(4-6) [ f g, h] = [ f, h]g [g, h].

Suppose two elements s, t ∈ Mπ1(X) have Magnus expansions

M(s)= 1+ x and M(t)= 1+ y,

where x, y denote the sum of all monomials of nonzero degree in the expansions
of s, t . Then, the expansion of the conjugate tst−1 is of the form

1+ x+ x y+ yx+ · · ·
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l1

l2

a

l4

b

l3

l6

c

l5

Figure 6

In particular, any first nontrivial term in the expansion M(s) also appears in the
expansion of any conjugate of s, M(st). The expression (4-5) for l1 is a 5-fold com-
mutator and, since the ring Rx2,...,x6 is defined in terms of nonrepeating variables,
this implies that any monomial of nonzero degree in the expansion M(l1) contains
all the variables x2, . . . x6. This means that, to read off the Magnus expansion, any
conjugation coming up while using (4-6) to simplify (4-5) may be omitted. These
observations imply that the Magnus expansion M(l1) equals

(4-7) M
([

m2,
[
[m3,m4], [m5,m6]

]])
,

times the Magnus expansion of seven other terms where some (or all) of m2,m4,m6

are replaced with ma,mb,mc. Moreover, recall that the “standard” embedding
assumption implies that the slice D2 bounded by l2 does not go over the 2-handle
attached to a. Therefore, the Magnus expansion of ma is of the form

M(ma)= 1+
6∑

i=3

αi xi + higher terms,

for some coefficients αi . Since the meridians m3,m5 are present in each commu-
tator obtained by simplifying (4-5), the only terms in the Magnus expansion of ma

that may contribute to a nontrivial monomial in M(l1) are x4 and x6. Similarly,
the only possibly nontrivial contributions to M(l1) of mb are x2, x6, and of mc are
x2, x4.

Using the fact that

M([s, t])= 1+ x y− yx± · · · ,
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where M(s)=1+x, M(t)=1+ y, note that the expansion (4-7) contains the mono-
mial x2x3x4x6x5. We claim that this monomial does not cancel with any other term
in the expansion M(l1). This claim is proved by a direct inspection: any monomial
in the Magnus expansion of a commutator of the form (4-7) with m2 replaced by
ma has x4 or x6 as either the first or last variable. The only other possibility is the
expansion of the commutator

[
m2,

[
[m3,mb], [m5,mc]

]]
with M(mb) contributing

x6, and M(mc) contributing x4. The monomial x2x3x4x6x5 does not appear in this
expansion either. Therefore, we found a nontrivial term in the Magnus expansion
M(l1) ∈ Mπ1(X), contradicting the relative-slice assumption. This contradiction
completes the proof.
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